xref: /openbmc/linux/fs/nilfs2/inode.c (revision d05cc539)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * inode.c - NILFS inode operations.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  *
9  */
10 
11 #include <linux/buffer_head.h>
12 #include <linux/gfp.h>
13 #include <linux/mpage.h>
14 #include <linux/pagemap.h>
15 #include <linux/writeback.h>
16 #include <linux/uio.h>
17 #include <linux/fiemap.h>
18 #include "nilfs.h"
19 #include "btnode.h"
20 #include "segment.h"
21 #include "page.h"
22 #include "mdt.h"
23 #include "cpfile.h"
24 #include "ifile.h"
25 
26 /**
27  * struct nilfs_iget_args - arguments used during comparison between inodes
28  * @ino: inode number
29  * @cno: checkpoint number
30  * @root: pointer on NILFS root object (mounted checkpoint)
31  * @for_gc: inode for GC flag
32  * @for_btnc: inode for B-tree node cache flag
33  */
34 struct nilfs_iget_args {
35 	u64 ino;
36 	__u64 cno;
37 	struct nilfs_root *root;
38 	bool for_gc;
39 	bool for_btnc;
40 };
41 
42 static int nilfs_iget_test(struct inode *inode, void *opaque);
43 
44 void nilfs_inode_add_blocks(struct inode *inode, int n)
45 {
46 	struct nilfs_root *root = NILFS_I(inode)->i_root;
47 
48 	inode_add_bytes(inode, i_blocksize(inode) * n);
49 	if (root)
50 		atomic64_add(n, &root->blocks_count);
51 }
52 
53 void nilfs_inode_sub_blocks(struct inode *inode, int n)
54 {
55 	struct nilfs_root *root = NILFS_I(inode)->i_root;
56 
57 	inode_sub_bytes(inode, i_blocksize(inode) * n);
58 	if (root)
59 		atomic64_sub(n, &root->blocks_count);
60 }
61 
62 /**
63  * nilfs_get_block() - get a file block on the filesystem (callback function)
64  * @inode - inode struct of the target file
65  * @blkoff - file block number
66  * @bh_result - buffer head to be mapped on
67  * @create - indicate whether allocating the block or not when it has not
68  *      been allocated yet.
69  *
70  * This function does not issue actual read request of the specified data
71  * block. It is done by VFS.
72  */
73 int nilfs_get_block(struct inode *inode, sector_t blkoff,
74 		    struct buffer_head *bh_result, int create)
75 {
76 	struct nilfs_inode_info *ii = NILFS_I(inode);
77 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
78 	__u64 blknum = 0;
79 	int err = 0, ret;
80 	unsigned int maxblocks = bh_result->b_size >> inode->i_blkbits;
81 
82 	down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
83 	ret = nilfs_bmap_lookup_contig(ii->i_bmap, blkoff, &blknum, maxblocks);
84 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
85 	if (ret >= 0) {	/* found */
86 		map_bh(bh_result, inode->i_sb, blknum);
87 		if (ret > 0)
88 			bh_result->b_size = (ret << inode->i_blkbits);
89 		goto out;
90 	}
91 	/* data block was not found */
92 	if (ret == -ENOENT && create) {
93 		struct nilfs_transaction_info ti;
94 
95 		bh_result->b_blocknr = 0;
96 		err = nilfs_transaction_begin(inode->i_sb, &ti, 1);
97 		if (unlikely(err))
98 			goto out;
99 		err = nilfs_bmap_insert(ii->i_bmap, blkoff,
100 					(unsigned long)bh_result);
101 		if (unlikely(err != 0)) {
102 			if (err == -EEXIST) {
103 				/*
104 				 * The get_block() function could be called
105 				 * from multiple callers for an inode.
106 				 * However, the page having this block must
107 				 * be locked in this case.
108 				 */
109 				nilfs_warn(inode->i_sb,
110 					   "%s (ino=%lu): a race condition while inserting a data block at offset=%llu",
111 					   __func__, inode->i_ino,
112 					   (unsigned long long)blkoff);
113 				err = 0;
114 			}
115 			nilfs_transaction_abort(inode->i_sb);
116 			goto out;
117 		}
118 		nilfs_mark_inode_dirty_sync(inode);
119 		nilfs_transaction_commit(inode->i_sb); /* never fails */
120 		/* Error handling should be detailed */
121 		set_buffer_new(bh_result);
122 		set_buffer_delay(bh_result);
123 		map_bh(bh_result, inode->i_sb, 0);
124 		/* Disk block number must be changed to proper value */
125 
126 	} else if (ret == -ENOENT) {
127 		/*
128 		 * not found is not error (e.g. hole); must return without
129 		 * the mapped state flag.
130 		 */
131 		;
132 	} else {
133 		err = ret;
134 	}
135 
136  out:
137 	return err;
138 }
139 
140 /**
141  * nilfs_readpage() - implement readpage() method of nilfs_aops {}
142  * address_space_operations.
143  * @file - file struct of the file to be read
144  * @page - the page to be read
145  */
146 static int nilfs_readpage(struct file *file, struct page *page)
147 {
148 	return mpage_readpage(page, nilfs_get_block);
149 }
150 
151 static void nilfs_readahead(struct readahead_control *rac)
152 {
153 	mpage_readahead(rac, nilfs_get_block);
154 }
155 
156 static int nilfs_writepages(struct address_space *mapping,
157 			    struct writeback_control *wbc)
158 {
159 	struct inode *inode = mapping->host;
160 	int err = 0;
161 
162 	if (sb_rdonly(inode->i_sb)) {
163 		nilfs_clear_dirty_pages(mapping, false);
164 		return -EROFS;
165 	}
166 
167 	if (wbc->sync_mode == WB_SYNC_ALL)
168 		err = nilfs_construct_dsync_segment(inode->i_sb, inode,
169 						    wbc->range_start,
170 						    wbc->range_end);
171 	return err;
172 }
173 
174 static int nilfs_writepage(struct page *page, struct writeback_control *wbc)
175 {
176 	struct inode *inode = page->mapping->host;
177 	int err;
178 
179 	if (sb_rdonly(inode->i_sb)) {
180 		/*
181 		 * It means that filesystem was remounted in read-only
182 		 * mode because of error or metadata corruption. But we
183 		 * have dirty pages that try to be flushed in background.
184 		 * So, here we simply discard this dirty page.
185 		 */
186 		nilfs_clear_dirty_page(page, false);
187 		unlock_page(page);
188 		return -EROFS;
189 	}
190 
191 	redirty_page_for_writepage(wbc, page);
192 	unlock_page(page);
193 
194 	if (wbc->sync_mode == WB_SYNC_ALL) {
195 		err = nilfs_construct_segment(inode->i_sb);
196 		if (unlikely(err))
197 			return err;
198 	} else if (wbc->for_reclaim)
199 		nilfs_flush_segment(inode->i_sb, inode->i_ino);
200 
201 	return 0;
202 }
203 
204 static int nilfs_set_page_dirty(struct page *page)
205 {
206 	struct inode *inode = page->mapping->host;
207 	int ret = __set_page_dirty_nobuffers(page);
208 
209 	if (page_has_buffers(page)) {
210 		unsigned int nr_dirty = 0;
211 		struct buffer_head *bh, *head;
212 
213 		/*
214 		 * This page is locked by callers, and no other thread
215 		 * concurrently marks its buffers dirty since they are
216 		 * only dirtied through routines in fs/buffer.c in
217 		 * which call sites of mark_buffer_dirty are protected
218 		 * by page lock.
219 		 */
220 		bh = head = page_buffers(page);
221 		do {
222 			/* Do not mark hole blocks dirty */
223 			if (buffer_dirty(bh) || !buffer_mapped(bh))
224 				continue;
225 
226 			set_buffer_dirty(bh);
227 			nr_dirty++;
228 		} while (bh = bh->b_this_page, bh != head);
229 
230 		if (nr_dirty)
231 			nilfs_set_file_dirty(inode, nr_dirty);
232 	} else if (ret) {
233 		unsigned int nr_dirty = 1 << (PAGE_SHIFT - inode->i_blkbits);
234 
235 		nilfs_set_file_dirty(inode, nr_dirty);
236 	}
237 	return ret;
238 }
239 
240 void nilfs_write_failed(struct address_space *mapping, loff_t to)
241 {
242 	struct inode *inode = mapping->host;
243 
244 	if (to > inode->i_size) {
245 		truncate_pagecache(inode, inode->i_size);
246 		nilfs_truncate(inode);
247 	}
248 }
249 
250 static int nilfs_write_begin(struct file *file, struct address_space *mapping,
251 			     loff_t pos, unsigned len, unsigned flags,
252 			     struct page **pagep, void **fsdata)
253 
254 {
255 	struct inode *inode = mapping->host;
256 	int err = nilfs_transaction_begin(inode->i_sb, NULL, 1);
257 
258 	if (unlikely(err))
259 		return err;
260 
261 	err = block_write_begin(mapping, pos, len, flags, pagep,
262 				nilfs_get_block);
263 	if (unlikely(err)) {
264 		nilfs_write_failed(mapping, pos + len);
265 		nilfs_transaction_abort(inode->i_sb);
266 	}
267 	return err;
268 }
269 
270 static int nilfs_write_end(struct file *file, struct address_space *mapping,
271 			   loff_t pos, unsigned len, unsigned copied,
272 			   struct page *page, void *fsdata)
273 {
274 	struct inode *inode = mapping->host;
275 	unsigned int start = pos & (PAGE_SIZE - 1);
276 	unsigned int nr_dirty;
277 	int err;
278 
279 	nr_dirty = nilfs_page_count_clean_buffers(page, start,
280 						  start + copied);
281 	copied = generic_write_end(file, mapping, pos, len, copied, page,
282 				   fsdata);
283 	nilfs_set_file_dirty(inode, nr_dirty);
284 	err = nilfs_transaction_commit(inode->i_sb);
285 	return err ? : copied;
286 }
287 
288 static ssize_t
289 nilfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
290 {
291 	struct inode *inode = file_inode(iocb->ki_filp);
292 
293 	if (iov_iter_rw(iter) == WRITE)
294 		return 0;
295 
296 	/* Needs synchronization with the cleaner */
297 	return blockdev_direct_IO(iocb, inode, iter, nilfs_get_block);
298 }
299 
300 const struct address_space_operations nilfs_aops = {
301 	.writepage		= nilfs_writepage,
302 	.readpage		= nilfs_readpage,
303 	.writepages		= nilfs_writepages,
304 	.set_page_dirty		= nilfs_set_page_dirty,
305 	.readahead		= nilfs_readahead,
306 	.write_begin		= nilfs_write_begin,
307 	.write_end		= nilfs_write_end,
308 	/* .releasepage		= nilfs_releasepage, */
309 	.invalidatepage		= block_invalidatepage,
310 	.direct_IO		= nilfs_direct_IO,
311 	.is_partially_uptodate  = block_is_partially_uptodate,
312 };
313 
314 static int nilfs_insert_inode_locked(struct inode *inode,
315 				     struct nilfs_root *root,
316 				     unsigned long ino)
317 {
318 	struct nilfs_iget_args args = {
319 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
320 		.for_btnc = false
321 	};
322 
323 	return insert_inode_locked4(inode, ino, nilfs_iget_test, &args);
324 }
325 
326 struct inode *nilfs_new_inode(struct inode *dir, umode_t mode)
327 {
328 	struct super_block *sb = dir->i_sb;
329 	struct the_nilfs *nilfs = sb->s_fs_info;
330 	struct inode *inode;
331 	struct nilfs_inode_info *ii;
332 	struct nilfs_root *root;
333 	int err = -ENOMEM;
334 	ino_t ino;
335 
336 	inode = new_inode(sb);
337 	if (unlikely(!inode))
338 		goto failed;
339 
340 	mapping_set_gfp_mask(inode->i_mapping,
341 			   mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
342 
343 	root = NILFS_I(dir)->i_root;
344 	ii = NILFS_I(inode);
345 	ii->i_state = BIT(NILFS_I_NEW);
346 	ii->i_root = root;
347 
348 	err = nilfs_ifile_create_inode(root->ifile, &ino, &ii->i_bh);
349 	if (unlikely(err))
350 		goto failed_ifile_create_inode;
351 	/* reference count of i_bh inherits from nilfs_mdt_read_block() */
352 
353 	atomic64_inc(&root->inodes_count);
354 	inode_init_owner(&init_user_ns, inode, dir, mode);
355 	inode->i_ino = ino;
356 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
357 
358 	if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) {
359 		err = nilfs_bmap_read(ii->i_bmap, NULL);
360 		if (err < 0)
361 			goto failed_after_creation;
362 
363 		set_bit(NILFS_I_BMAP, &ii->i_state);
364 		/* No lock is needed; iget() ensures it. */
365 	}
366 
367 	ii->i_flags = nilfs_mask_flags(
368 		mode, NILFS_I(dir)->i_flags & NILFS_FL_INHERITED);
369 
370 	/* ii->i_file_acl = 0; */
371 	/* ii->i_dir_acl = 0; */
372 	ii->i_dir_start_lookup = 0;
373 	nilfs_set_inode_flags(inode);
374 	spin_lock(&nilfs->ns_next_gen_lock);
375 	inode->i_generation = nilfs->ns_next_generation++;
376 	spin_unlock(&nilfs->ns_next_gen_lock);
377 	if (nilfs_insert_inode_locked(inode, root, ino) < 0) {
378 		err = -EIO;
379 		goto failed_after_creation;
380 	}
381 
382 	err = nilfs_init_acl(inode, dir);
383 	if (unlikely(err))
384 		/*
385 		 * Never occur.  When supporting nilfs_init_acl(),
386 		 * proper cancellation of above jobs should be considered.
387 		 */
388 		goto failed_after_creation;
389 
390 	return inode;
391 
392  failed_after_creation:
393 	clear_nlink(inode);
394 	if (inode->i_state & I_NEW)
395 		unlock_new_inode(inode);
396 	iput(inode);  /*
397 		       * raw_inode will be deleted through
398 		       * nilfs_evict_inode().
399 		       */
400 	goto failed;
401 
402  failed_ifile_create_inode:
403 	make_bad_inode(inode);
404 	iput(inode);
405  failed:
406 	return ERR_PTR(err);
407 }
408 
409 void nilfs_set_inode_flags(struct inode *inode)
410 {
411 	unsigned int flags = NILFS_I(inode)->i_flags;
412 	unsigned int new_fl = 0;
413 
414 	if (flags & FS_SYNC_FL)
415 		new_fl |= S_SYNC;
416 	if (flags & FS_APPEND_FL)
417 		new_fl |= S_APPEND;
418 	if (flags & FS_IMMUTABLE_FL)
419 		new_fl |= S_IMMUTABLE;
420 	if (flags & FS_NOATIME_FL)
421 		new_fl |= S_NOATIME;
422 	if (flags & FS_DIRSYNC_FL)
423 		new_fl |= S_DIRSYNC;
424 	inode_set_flags(inode, new_fl, S_SYNC | S_APPEND | S_IMMUTABLE |
425 			S_NOATIME | S_DIRSYNC);
426 }
427 
428 int nilfs_read_inode_common(struct inode *inode,
429 			    struct nilfs_inode *raw_inode)
430 {
431 	struct nilfs_inode_info *ii = NILFS_I(inode);
432 	int err;
433 
434 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
435 	i_uid_write(inode, le32_to_cpu(raw_inode->i_uid));
436 	i_gid_write(inode, le32_to_cpu(raw_inode->i_gid));
437 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
438 	inode->i_size = le64_to_cpu(raw_inode->i_size);
439 	inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
440 	inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
441 	inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
442 	inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
443 	inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
444 	inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
445 	if (inode->i_nlink == 0)
446 		return -ESTALE; /* this inode is deleted */
447 
448 	inode->i_blocks = le64_to_cpu(raw_inode->i_blocks);
449 	ii->i_flags = le32_to_cpu(raw_inode->i_flags);
450 #if 0
451 	ii->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
452 	ii->i_dir_acl = S_ISREG(inode->i_mode) ?
453 		0 : le32_to_cpu(raw_inode->i_dir_acl);
454 #endif
455 	ii->i_dir_start_lookup = 0;
456 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
457 
458 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
459 	    S_ISLNK(inode->i_mode)) {
460 		err = nilfs_bmap_read(ii->i_bmap, raw_inode);
461 		if (err < 0)
462 			return err;
463 		set_bit(NILFS_I_BMAP, &ii->i_state);
464 		/* No lock is needed; iget() ensures it. */
465 	}
466 	return 0;
467 }
468 
469 static int __nilfs_read_inode(struct super_block *sb,
470 			      struct nilfs_root *root, unsigned long ino,
471 			      struct inode *inode)
472 {
473 	struct the_nilfs *nilfs = sb->s_fs_info;
474 	struct buffer_head *bh;
475 	struct nilfs_inode *raw_inode;
476 	int err;
477 
478 	down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
479 	err = nilfs_ifile_get_inode_block(root->ifile, ino, &bh);
480 	if (unlikely(err))
481 		goto bad_inode;
482 
483 	raw_inode = nilfs_ifile_map_inode(root->ifile, ino, bh);
484 
485 	err = nilfs_read_inode_common(inode, raw_inode);
486 	if (err)
487 		goto failed_unmap;
488 
489 	if (S_ISREG(inode->i_mode)) {
490 		inode->i_op = &nilfs_file_inode_operations;
491 		inode->i_fop = &nilfs_file_operations;
492 		inode->i_mapping->a_ops = &nilfs_aops;
493 	} else if (S_ISDIR(inode->i_mode)) {
494 		inode->i_op = &nilfs_dir_inode_operations;
495 		inode->i_fop = &nilfs_dir_operations;
496 		inode->i_mapping->a_ops = &nilfs_aops;
497 	} else if (S_ISLNK(inode->i_mode)) {
498 		inode->i_op = &nilfs_symlink_inode_operations;
499 		inode_nohighmem(inode);
500 		inode->i_mapping->a_ops = &nilfs_aops;
501 	} else {
502 		inode->i_op = &nilfs_special_inode_operations;
503 		init_special_inode(
504 			inode, inode->i_mode,
505 			huge_decode_dev(le64_to_cpu(raw_inode->i_device_code)));
506 	}
507 	nilfs_ifile_unmap_inode(root->ifile, ino, bh);
508 	brelse(bh);
509 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
510 	nilfs_set_inode_flags(inode);
511 	mapping_set_gfp_mask(inode->i_mapping,
512 			   mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
513 	return 0;
514 
515  failed_unmap:
516 	nilfs_ifile_unmap_inode(root->ifile, ino, bh);
517 	brelse(bh);
518 
519  bad_inode:
520 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
521 	return err;
522 }
523 
524 static int nilfs_iget_test(struct inode *inode, void *opaque)
525 {
526 	struct nilfs_iget_args *args = opaque;
527 	struct nilfs_inode_info *ii;
528 
529 	if (args->ino != inode->i_ino || args->root != NILFS_I(inode)->i_root)
530 		return 0;
531 
532 	ii = NILFS_I(inode);
533 	if (test_bit(NILFS_I_BTNC, &ii->i_state)) {
534 		if (!args->for_btnc)
535 			return 0;
536 	} else if (args->for_btnc) {
537 		return 0;
538 	}
539 
540 	if (!test_bit(NILFS_I_GCINODE, &ii->i_state))
541 		return !args->for_gc;
542 
543 	return args->for_gc && args->cno == ii->i_cno;
544 }
545 
546 static int nilfs_iget_set(struct inode *inode, void *opaque)
547 {
548 	struct nilfs_iget_args *args = opaque;
549 
550 	inode->i_ino = args->ino;
551 	NILFS_I(inode)->i_cno = args->cno;
552 	NILFS_I(inode)->i_root = args->root;
553 	if (args->root && args->ino == NILFS_ROOT_INO)
554 		nilfs_get_root(args->root);
555 
556 	if (args->for_gc)
557 		NILFS_I(inode)->i_state = BIT(NILFS_I_GCINODE);
558 	if (args->for_btnc)
559 		NILFS_I(inode)->i_state |= BIT(NILFS_I_BTNC);
560 	return 0;
561 }
562 
563 struct inode *nilfs_ilookup(struct super_block *sb, struct nilfs_root *root,
564 			    unsigned long ino)
565 {
566 	struct nilfs_iget_args args = {
567 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
568 		.for_btnc = false
569 	};
570 
571 	return ilookup5(sb, ino, nilfs_iget_test, &args);
572 }
573 
574 struct inode *nilfs_iget_locked(struct super_block *sb, struct nilfs_root *root,
575 				unsigned long ino)
576 {
577 	struct nilfs_iget_args args = {
578 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
579 		.for_btnc = false
580 	};
581 
582 	return iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
583 }
584 
585 struct inode *nilfs_iget(struct super_block *sb, struct nilfs_root *root,
586 			 unsigned long ino)
587 {
588 	struct inode *inode;
589 	int err;
590 
591 	inode = nilfs_iget_locked(sb, root, ino);
592 	if (unlikely(!inode))
593 		return ERR_PTR(-ENOMEM);
594 	if (!(inode->i_state & I_NEW))
595 		return inode;
596 
597 	err = __nilfs_read_inode(sb, root, ino, inode);
598 	if (unlikely(err)) {
599 		iget_failed(inode);
600 		return ERR_PTR(err);
601 	}
602 	unlock_new_inode(inode);
603 	return inode;
604 }
605 
606 struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino,
607 				__u64 cno)
608 {
609 	struct nilfs_iget_args args = {
610 		.ino = ino, .root = NULL, .cno = cno, .for_gc = true,
611 		.for_btnc = false
612 	};
613 	struct inode *inode;
614 	int err;
615 
616 	inode = iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
617 	if (unlikely(!inode))
618 		return ERR_PTR(-ENOMEM);
619 	if (!(inode->i_state & I_NEW))
620 		return inode;
621 
622 	err = nilfs_init_gcinode(inode);
623 	if (unlikely(err)) {
624 		iget_failed(inode);
625 		return ERR_PTR(err);
626 	}
627 	unlock_new_inode(inode);
628 	return inode;
629 }
630 
631 /**
632  * nilfs_attach_btree_node_cache - attach a B-tree node cache to the inode
633  * @inode: inode object
634  *
635  * nilfs_attach_btree_node_cache() attaches a B-tree node cache to @inode,
636  * or does nothing if the inode already has it.  This function allocates
637  * an additional inode to maintain page cache of B-tree nodes one-on-one.
638  *
639  * Return Value: On success, 0 is returned. On errors, one of the following
640  * negative error code is returned.
641  *
642  * %-ENOMEM - Insufficient memory available.
643  */
644 int nilfs_attach_btree_node_cache(struct inode *inode)
645 {
646 	struct nilfs_inode_info *ii = NILFS_I(inode);
647 	struct inode *btnc_inode;
648 	struct nilfs_iget_args args;
649 
650 	if (ii->i_assoc_inode)
651 		return 0;
652 
653 	args.ino = inode->i_ino;
654 	args.root = ii->i_root;
655 	args.cno = ii->i_cno;
656 	args.for_gc = test_bit(NILFS_I_GCINODE, &ii->i_state) != 0;
657 	args.for_btnc = true;
658 
659 	btnc_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test,
660 				  nilfs_iget_set, &args);
661 	if (unlikely(!btnc_inode))
662 		return -ENOMEM;
663 	if (btnc_inode->i_state & I_NEW) {
664 		nilfs_init_btnc_inode(btnc_inode);
665 		unlock_new_inode(btnc_inode);
666 	}
667 	NILFS_I(btnc_inode)->i_assoc_inode = inode;
668 	NILFS_I(btnc_inode)->i_bmap = ii->i_bmap;
669 	ii->i_assoc_inode = btnc_inode;
670 
671 	return 0;
672 }
673 
674 /**
675  * nilfs_detach_btree_node_cache - detach the B-tree node cache from the inode
676  * @inode: inode object
677  *
678  * nilfs_detach_btree_node_cache() detaches the B-tree node cache and its
679  * holder inode bound to @inode, or does nothing if @inode doesn't have it.
680  */
681 void nilfs_detach_btree_node_cache(struct inode *inode)
682 {
683 	struct nilfs_inode_info *ii = NILFS_I(inode);
684 	struct inode *btnc_inode = ii->i_assoc_inode;
685 
686 	if (btnc_inode) {
687 		NILFS_I(btnc_inode)->i_assoc_inode = NULL;
688 		ii->i_assoc_inode = NULL;
689 		iput(btnc_inode);
690 	}
691 }
692 
693 void nilfs_write_inode_common(struct inode *inode,
694 			      struct nilfs_inode *raw_inode, int has_bmap)
695 {
696 	struct nilfs_inode_info *ii = NILFS_I(inode);
697 
698 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
699 	raw_inode->i_uid = cpu_to_le32(i_uid_read(inode));
700 	raw_inode->i_gid = cpu_to_le32(i_gid_read(inode));
701 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
702 	raw_inode->i_size = cpu_to_le64(inode->i_size);
703 	raw_inode->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
704 	raw_inode->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
705 	raw_inode->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
706 	raw_inode->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
707 	raw_inode->i_blocks = cpu_to_le64(inode->i_blocks);
708 
709 	raw_inode->i_flags = cpu_to_le32(ii->i_flags);
710 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
711 
712 	if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) {
713 		struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
714 
715 		/* zero-fill unused portion in the case of super root block */
716 		raw_inode->i_xattr = 0;
717 		raw_inode->i_pad = 0;
718 		memset((void *)raw_inode + sizeof(*raw_inode), 0,
719 		       nilfs->ns_inode_size - sizeof(*raw_inode));
720 	}
721 
722 	if (has_bmap)
723 		nilfs_bmap_write(ii->i_bmap, raw_inode);
724 	else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
725 		raw_inode->i_device_code =
726 			cpu_to_le64(huge_encode_dev(inode->i_rdev));
727 	/*
728 	 * When extending inode, nilfs->ns_inode_size should be checked
729 	 * for substitutions of appended fields.
730 	 */
731 }
732 
733 void nilfs_update_inode(struct inode *inode, struct buffer_head *ibh, int flags)
734 {
735 	ino_t ino = inode->i_ino;
736 	struct nilfs_inode_info *ii = NILFS_I(inode);
737 	struct inode *ifile = ii->i_root->ifile;
738 	struct nilfs_inode *raw_inode;
739 
740 	raw_inode = nilfs_ifile_map_inode(ifile, ino, ibh);
741 
742 	if (test_and_clear_bit(NILFS_I_NEW, &ii->i_state))
743 		memset(raw_inode, 0, NILFS_MDT(ifile)->mi_entry_size);
744 	if (flags & I_DIRTY_DATASYNC)
745 		set_bit(NILFS_I_INODE_SYNC, &ii->i_state);
746 
747 	nilfs_write_inode_common(inode, raw_inode, 0);
748 		/*
749 		 * XXX: call with has_bmap = 0 is a workaround to avoid
750 		 * deadlock of bmap.  This delays update of i_bmap to just
751 		 * before writing.
752 		 */
753 
754 	nilfs_ifile_unmap_inode(ifile, ino, ibh);
755 }
756 
757 #define NILFS_MAX_TRUNCATE_BLOCKS	16384  /* 64MB for 4KB block */
758 
759 static void nilfs_truncate_bmap(struct nilfs_inode_info *ii,
760 				unsigned long from)
761 {
762 	__u64 b;
763 	int ret;
764 
765 	if (!test_bit(NILFS_I_BMAP, &ii->i_state))
766 		return;
767 repeat:
768 	ret = nilfs_bmap_last_key(ii->i_bmap, &b);
769 	if (ret == -ENOENT)
770 		return;
771 	else if (ret < 0)
772 		goto failed;
773 
774 	if (b < from)
775 		return;
776 
777 	b -= min_t(__u64, NILFS_MAX_TRUNCATE_BLOCKS, b - from);
778 	ret = nilfs_bmap_truncate(ii->i_bmap, b);
779 	nilfs_relax_pressure_in_lock(ii->vfs_inode.i_sb);
780 	if (!ret || (ret == -ENOMEM &&
781 		     nilfs_bmap_truncate(ii->i_bmap, b) == 0))
782 		goto repeat;
783 
784 failed:
785 	nilfs_warn(ii->vfs_inode.i_sb, "error %d truncating bmap (ino=%lu)",
786 		   ret, ii->vfs_inode.i_ino);
787 }
788 
789 void nilfs_truncate(struct inode *inode)
790 {
791 	unsigned long blkoff;
792 	unsigned int blocksize;
793 	struct nilfs_transaction_info ti;
794 	struct super_block *sb = inode->i_sb;
795 	struct nilfs_inode_info *ii = NILFS_I(inode);
796 
797 	if (!test_bit(NILFS_I_BMAP, &ii->i_state))
798 		return;
799 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
800 		return;
801 
802 	blocksize = sb->s_blocksize;
803 	blkoff = (inode->i_size + blocksize - 1) >> sb->s_blocksize_bits;
804 	nilfs_transaction_begin(sb, &ti, 0); /* never fails */
805 
806 	block_truncate_page(inode->i_mapping, inode->i_size, nilfs_get_block);
807 
808 	nilfs_truncate_bmap(ii, blkoff);
809 
810 	inode->i_mtime = inode->i_ctime = current_time(inode);
811 	if (IS_SYNC(inode))
812 		nilfs_set_transaction_flag(NILFS_TI_SYNC);
813 
814 	nilfs_mark_inode_dirty(inode);
815 	nilfs_set_file_dirty(inode, 0);
816 	nilfs_transaction_commit(sb);
817 	/*
818 	 * May construct a logical segment and may fail in sync mode.
819 	 * But truncate has no return value.
820 	 */
821 }
822 
823 static void nilfs_clear_inode(struct inode *inode)
824 {
825 	struct nilfs_inode_info *ii = NILFS_I(inode);
826 
827 	/*
828 	 * Free resources allocated in nilfs_read_inode(), here.
829 	 */
830 	BUG_ON(!list_empty(&ii->i_dirty));
831 	brelse(ii->i_bh);
832 	ii->i_bh = NULL;
833 
834 	if (nilfs_is_metadata_file_inode(inode))
835 		nilfs_mdt_clear(inode);
836 
837 	if (test_bit(NILFS_I_BMAP, &ii->i_state))
838 		nilfs_bmap_clear(ii->i_bmap);
839 
840 	if (!test_bit(NILFS_I_BTNC, &ii->i_state))
841 		nilfs_detach_btree_node_cache(inode);
842 
843 	if (ii->i_root && inode->i_ino == NILFS_ROOT_INO)
844 		nilfs_put_root(ii->i_root);
845 }
846 
847 void nilfs_evict_inode(struct inode *inode)
848 {
849 	struct nilfs_transaction_info ti;
850 	struct super_block *sb = inode->i_sb;
851 	struct nilfs_inode_info *ii = NILFS_I(inode);
852 	int ret;
853 
854 	if (inode->i_nlink || !ii->i_root || unlikely(is_bad_inode(inode))) {
855 		truncate_inode_pages_final(&inode->i_data);
856 		clear_inode(inode);
857 		nilfs_clear_inode(inode);
858 		return;
859 	}
860 	nilfs_transaction_begin(sb, &ti, 0); /* never fails */
861 
862 	truncate_inode_pages_final(&inode->i_data);
863 
864 	/* TODO: some of the following operations may fail.  */
865 	nilfs_truncate_bmap(ii, 0);
866 	nilfs_mark_inode_dirty(inode);
867 	clear_inode(inode);
868 
869 	ret = nilfs_ifile_delete_inode(ii->i_root->ifile, inode->i_ino);
870 	if (!ret)
871 		atomic64_dec(&ii->i_root->inodes_count);
872 
873 	nilfs_clear_inode(inode);
874 
875 	if (IS_SYNC(inode))
876 		nilfs_set_transaction_flag(NILFS_TI_SYNC);
877 	nilfs_transaction_commit(sb);
878 	/*
879 	 * May construct a logical segment and may fail in sync mode.
880 	 * But delete_inode has no return value.
881 	 */
882 }
883 
884 int nilfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
885 		  struct iattr *iattr)
886 {
887 	struct nilfs_transaction_info ti;
888 	struct inode *inode = d_inode(dentry);
889 	struct super_block *sb = inode->i_sb;
890 	int err;
891 
892 	err = setattr_prepare(&init_user_ns, dentry, iattr);
893 	if (err)
894 		return err;
895 
896 	err = nilfs_transaction_begin(sb, &ti, 0);
897 	if (unlikely(err))
898 		return err;
899 
900 	if ((iattr->ia_valid & ATTR_SIZE) &&
901 	    iattr->ia_size != i_size_read(inode)) {
902 		inode_dio_wait(inode);
903 		truncate_setsize(inode, iattr->ia_size);
904 		nilfs_truncate(inode);
905 	}
906 
907 	setattr_copy(&init_user_ns, inode, iattr);
908 	mark_inode_dirty(inode);
909 
910 	if (iattr->ia_valid & ATTR_MODE) {
911 		err = nilfs_acl_chmod(inode);
912 		if (unlikely(err))
913 			goto out_err;
914 	}
915 
916 	return nilfs_transaction_commit(sb);
917 
918 out_err:
919 	nilfs_transaction_abort(sb);
920 	return err;
921 }
922 
923 int nilfs_permission(struct user_namespace *mnt_userns, struct inode *inode,
924 		     int mask)
925 {
926 	struct nilfs_root *root = NILFS_I(inode)->i_root;
927 
928 	if ((mask & MAY_WRITE) && root &&
929 	    root->cno != NILFS_CPTREE_CURRENT_CNO)
930 		return -EROFS; /* snapshot is not writable */
931 
932 	return generic_permission(&init_user_ns, inode, mask);
933 }
934 
935 int nilfs_load_inode_block(struct inode *inode, struct buffer_head **pbh)
936 {
937 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
938 	struct nilfs_inode_info *ii = NILFS_I(inode);
939 	int err;
940 
941 	spin_lock(&nilfs->ns_inode_lock);
942 	if (ii->i_bh == NULL) {
943 		spin_unlock(&nilfs->ns_inode_lock);
944 		err = nilfs_ifile_get_inode_block(ii->i_root->ifile,
945 						  inode->i_ino, pbh);
946 		if (unlikely(err))
947 			return err;
948 		spin_lock(&nilfs->ns_inode_lock);
949 		if (ii->i_bh == NULL)
950 			ii->i_bh = *pbh;
951 		else {
952 			brelse(*pbh);
953 			*pbh = ii->i_bh;
954 		}
955 	} else
956 		*pbh = ii->i_bh;
957 
958 	get_bh(*pbh);
959 	spin_unlock(&nilfs->ns_inode_lock);
960 	return 0;
961 }
962 
963 int nilfs_inode_dirty(struct inode *inode)
964 {
965 	struct nilfs_inode_info *ii = NILFS_I(inode);
966 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
967 	int ret = 0;
968 
969 	if (!list_empty(&ii->i_dirty)) {
970 		spin_lock(&nilfs->ns_inode_lock);
971 		ret = test_bit(NILFS_I_DIRTY, &ii->i_state) ||
972 			test_bit(NILFS_I_BUSY, &ii->i_state);
973 		spin_unlock(&nilfs->ns_inode_lock);
974 	}
975 	return ret;
976 }
977 
978 int nilfs_set_file_dirty(struct inode *inode, unsigned int nr_dirty)
979 {
980 	struct nilfs_inode_info *ii = NILFS_I(inode);
981 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
982 
983 	atomic_add(nr_dirty, &nilfs->ns_ndirtyblks);
984 
985 	if (test_and_set_bit(NILFS_I_DIRTY, &ii->i_state))
986 		return 0;
987 
988 	spin_lock(&nilfs->ns_inode_lock);
989 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
990 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
991 		/*
992 		 * Because this routine may race with nilfs_dispose_list(),
993 		 * we have to check NILFS_I_QUEUED here, too.
994 		 */
995 		if (list_empty(&ii->i_dirty) && igrab(inode) == NULL) {
996 			/*
997 			 * This will happen when somebody is freeing
998 			 * this inode.
999 			 */
1000 			nilfs_warn(inode->i_sb,
1001 				   "cannot set file dirty (ino=%lu): the file is being freed",
1002 				   inode->i_ino);
1003 			spin_unlock(&nilfs->ns_inode_lock);
1004 			return -EINVAL; /*
1005 					 * NILFS_I_DIRTY may remain for
1006 					 * freeing inode.
1007 					 */
1008 		}
1009 		list_move_tail(&ii->i_dirty, &nilfs->ns_dirty_files);
1010 		set_bit(NILFS_I_QUEUED, &ii->i_state);
1011 	}
1012 	spin_unlock(&nilfs->ns_inode_lock);
1013 	return 0;
1014 }
1015 
1016 int __nilfs_mark_inode_dirty(struct inode *inode, int flags)
1017 {
1018 	struct buffer_head *ibh;
1019 	int err;
1020 
1021 	err = nilfs_load_inode_block(inode, &ibh);
1022 	if (unlikely(err)) {
1023 		nilfs_warn(inode->i_sb,
1024 			   "cannot mark inode dirty (ino=%lu): error %d loading inode block",
1025 			   inode->i_ino, err);
1026 		return err;
1027 	}
1028 	nilfs_update_inode(inode, ibh, flags);
1029 	mark_buffer_dirty(ibh);
1030 	nilfs_mdt_mark_dirty(NILFS_I(inode)->i_root->ifile);
1031 	brelse(ibh);
1032 	return 0;
1033 }
1034 
1035 /**
1036  * nilfs_dirty_inode - reflect changes on given inode to an inode block.
1037  * @inode: inode of the file to be registered.
1038  *
1039  * nilfs_dirty_inode() loads a inode block containing the specified
1040  * @inode and copies data from a nilfs_inode to a corresponding inode
1041  * entry in the inode block. This operation is excluded from the segment
1042  * construction. This function can be called both as a single operation
1043  * and as a part of indivisible file operations.
1044  */
1045 void nilfs_dirty_inode(struct inode *inode, int flags)
1046 {
1047 	struct nilfs_transaction_info ti;
1048 	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
1049 
1050 	if (is_bad_inode(inode)) {
1051 		nilfs_warn(inode->i_sb,
1052 			   "tried to mark bad_inode dirty. ignored.");
1053 		dump_stack();
1054 		return;
1055 	}
1056 	if (mdi) {
1057 		nilfs_mdt_mark_dirty(inode);
1058 		return;
1059 	}
1060 	nilfs_transaction_begin(inode->i_sb, &ti, 0);
1061 	__nilfs_mark_inode_dirty(inode, flags);
1062 	nilfs_transaction_commit(inode->i_sb); /* never fails */
1063 }
1064 
1065 int nilfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1066 		 __u64 start, __u64 len)
1067 {
1068 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1069 	__u64 logical = 0, phys = 0, size = 0;
1070 	__u32 flags = 0;
1071 	loff_t isize;
1072 	sector_t blkoff, end_blkoff;
1073 	sector_t delalloc_blkoff;
1074 	unsigned long delalloc_blklen;
1075 	unsigned int blkbits = inode->i_blkbits;
1076 	int ret, n;
1077 
1078 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
1079 	if (ret)
1080 		return ret;
1081 
1082 	inode_lock(inode);
1083 
1084 	isize = i_size_read(inode);
1085 
1086 	blkoff = start >> blkbits;
1087 	end_blkoff = (start + len - 1) >> blkbits;
1088 
1089 	delalloc_blklen = nilfs_find_uncommitted_extent(inode, blkoff,
1090 							&delalloc_blkoff);
1091 
1092 	do {
1093 		__u64 blkphy;
1094 		unsigned int maxblocks;
1095 
1096 		if (delalloc_blklen && blkoff == delalloc_blkoff) {
1097 			if (size) {
1098 				/* End of the current extent */
1099 				ret = fiemap_fill_next_extent(
1100 					fieinfo, logical, phys, size, flags);
1101 				if (ret)
1102 					break;
1103 			}
1104 			if (blkoff > end_blkoff)
1105 				break;
1106 
1107 			flags = FIEMAP_EXTENT_MERGED | FIEMAP_EXTENT_DELALLOC;
1108 			logical = blkoff << blkbits;
1109 			phys = 0;
1110 			size = delalloc_blklen << blkbits;
1111 
1112 			blkoff = delalloc_blkoff + delalloc_blklen;
1113 			delalloc_blklen = nilfs_find_uncommitted_extent(
1114 				inode, blkoff, &delalloc_blkoff);
1115 			continue;
1116 		}
1117 
1118 		/*
1119 		 * Limit the number of blocks that we look up so as
1120 		 * not to get into the next delayed allocation extent.
1121 		 */
1122 		maxblocks = INT_MAX;
1123 		if (delalloc_blklen)
1124 			maxblocks = min_t(sector_t, delalloc_blkoff - blkoff,
1125 					  maxblocks);
1126 		blkphy = 0;
1127 
1128 		down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
1129 		n = nilfs_bmap_lookup_contig(
1130 			NILFS_I(inode)->i_bmap, blkoff, &blkphy, maxblocks);
1131 		up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
1132 
1133 		if (n < 0) {
1134 			int past_eof;
1135 
1136 			if (unlikely(n != -ENOENT))
1137 				break; /* error */
1138 
1139 			/* HOLE */
1140 			blkoff++;
1141 			past_eof = ((blkoff << blkbits) >= isize);
1142 
1143 			if (size) {
1144 				/* End of the current extent */
1145 
1146 				if (past_eof)
1147 					flags |= FIEMAP_EXTENT_LAST;
1148 
1149 				ret = fiemap_fill_next_extent(
1150 					fieinfo, logical, phys, size, flags);
1151 				if (ret)
1152 					break;
1153 				size = 0;
1154 			}
1155 			if (blkoff > end_blkoff || past_eof)
1156 				break;
1157 		} else {
1158 			if (size) {
1159 				if (phys && blkphy << blkbits == phys + size) {
1160 					/* The current extent goes on */
1161 					size += n << blkbits;
1162 				} else {
1163 					/* Terminate the current extent */
1164 					ret = fiemap_fill_next_extent(
1165 						fieinfo, logical, phys, size,
1166 						flags);
1167 					if (ret || blkoff > end_blkoff)
1168 						break;
1169 
1170 					/* Start another extent */
1171 					flags = FIEMAP_EXTENT_MERGED;
1172 					logical = blkoff << blkbits;
1173 					phys = blkphy << blkbits;
1174 					size = n << blkbits;
1175 				}
1176 			} else {
1177 				/* Start a new extent */
1178 				flags = FIEMAP_EXTENT_MERGED;
1179 				logical = blkoff << blkbits;
1180 				phys = blkphy << blkbits;
1181 				size = n << blkbits;
1182 			}
1183 			blkoff += n;
1184 		}
1185 		cond_resched();
1186 	} while (true);
1187 
1188 	/* If ret is 1 then we just hit the end of the extent array */
1189 	if (ret == 1)
1190 		ret = 0;
1191 
1192 	inode_unlock(inode);
1193 	return ret;
1194 }
1195