xref: /openbmc/linux/fs/nilfs2/inode.c (revision 1e512c65)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * inode.c - NILFS inode operations.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  *
9  */
10 
11 #include <linux/buffer_head.h>
12 #include <linux/gfp.h>
13 #include <linux/mpage.h>
14 #include <linux/pagemap.h>
15 #include <linux/writeback.h>
16 #include <linux/uio.h>
17 #include <linux/fiemap.h>
18 #include "nilfs.h"
19 #include "btnode.h"
20 #include "segment.h"
21 #include "page.h"
22 #include "mdt.h"
23 #include "cpfile.h"
24 #include "ifile.h"
25 
26 /**
27  * struct nilfs_iget_args - arguments used during comparison between inodes
28  * @ino: inode number
29  * @cno: checkpoint number
30  * @root: pointer on NILFS root object (mounted checkpoint)
31  * @for_gc: inode for GC flag
32  * @for_btnc: inode for B-tree node cache flag
33  * @for_shadow: inode for shadowed page cache flag
34  */
35 struct nilfs_iget_args {
36 	u64 ino;
37 	__u64 cno;
38 	struct nilfs_root *root;
39 	bool for_gc;
40 	bool for_btnc;
41 	bool for_shadow;
42 };
43 
44 static int nilfs_iget_test(struct inode *inode, void *opaque);
45 
46 void nilfs_inode_add_blocks(struct inode *inode, int n)
47 {
48 	struct nilfs_root *root = NILFS_I(inode)->i_root;
49 
50 	inode_add_bytes(inode, i_blocksize(inode) * n);
51 	if (root)
52 		atomic64_add(n, &root->blocks_count);
53 }
54 
55 void nilfs_inode_sub_blocks(struct inode *inode, int n)
56 {
57 	struct nilfs_root *root = NILFS_I(inode)->i_root;
58 
59 	inode_sub_bytes(inode, i_blocksize(inode) * n);
60 	if (root)
61 		atomic64_sub(n, &root->blocks_count);
62 }
63 
64 /**
65  * nilfs_get_block() - get a file block on the filesystem (callback function)
66  * @inode - inode struct of the target file
67  * @blkoff - file block number
68  * @bh_result - buffer head to be mapped on
69  * @create - indicate whether allocating the block or not when it has not
70  *      been allocated yet.
71  *
72  * This function does not issue actual read request of the specified data
73  * block. It is done by VFS.
74  */
75 int nilfs_get_block(struct inode *inode, sector_t blkoff,
76 		    struct buffer_head *bh_result, int create)
77 {
78 	struct nilfs_inode_info *ii = NILFS_I(inode);
79 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
80 	__u64 blknum = 0;
81 	int err = 0, ret;
82 	unsigned int maxblocks = bh_result->b_size >> inode->i_blkbits;
83 
84 	down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
85 	ret = nilfs_bmap_lookup_contig(ii->i_bmap, blkoff, &blknum, maxblocks);
86 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
87 	if (ret >= 0) {	/* found */
88 		map_bh(bh_result, inode->i_sb, blknum);
89 		if (ret > 0)
90 			bh_result->b_size = (ret << inode->i_blkbits);
91 		goto out;
92 	}
93 	/* data block was not found */
94 	if (ret == -ENOENT && create) {
95 		struct nilfs_transaction_info ti;
96 
97 		bh_result->b_blocknr = 0;
98 		err = nilfs_transaction_begin(inode->i_sb, &ti, 1);
99 		if (unlikely(err))
100 			goto out;
101 		err = nilfs_bmap_insert(ii->i_bmap, blkoff,
102 					(unsigned long)bh_result);
103 		if (unlikely(err != 0)) {
104 			if (err == -EEXIST) {
105 				/*
106 				 * The get_block() function could be called
107 				 * from multiple callers for an inode.
108 				 * However, the page having this block must
109 				 * be locked in this case.
110 				 */
111 				nilfs_warn(inode->i_sb,
112 					   "%s (ino=%lu): a race condition while inserting a data block at offset=%llu",
113 					   __func__, inode->i_ino,
114 					   (unsigned long long)blkoff);
115 				err = 0;
116 			}
117 			nilfs_transaction_abort(inode->i_sb);
118 			goto out;
119 		}
120 		nilfs_mark_inode_dirty_sync(inode);
121 		nilfs_transaction_commit(inode->i_sb); /* never fails */
122 		/* Error handling should be detailed */
123 		set_buffer_new(bh_result);
124 		set_buffer_delay(bh_result);
125 		map_bh(bh_result, inode->i_sb, 0);
126 		/* Disk block number must be changed to proper value */
127 
128 	} else if (ret == -ENOENT) {
129 		/*
130 		 * not found is not error (e.g. hole); must return without
131 		 * the mapped state flag.
132 		 */
133 		;
134 	} else {
135 		err = ret;
136 	}
137 
138  out:
139 	return err;
140 }
141 
142 /**
143  * nilfs_readpage() - implement readpage() method of nilfs_aops {}
144  * address_space_operations.
145  * @file - file struct of the file to be read
146  * @page - the page to be read
147  */
148 static int nilfs_readpage(struct file *file, struct page *page)
149 {
150 	return mpage_readpage(page, nilfs_get_block);
151 }
152 
153 static void nilfs_readahead(struct readahead_control *rac)
154 {
155 	mpage_readahead(rac, nilfs_get_block);
156 }
157 
158 static int nilfs_writepages(struct address_space *mapping,
159 			    struct writeback_control *wbc)
160 {
161 	struct inode *inode = mapping->host;
162 	int err = 0;
163 
164 	if (sb_rdonly(inode->i_sb)) {
165 		nilfs_clear_dirty_pages(mapping, false);
166 		return -EROFS;
167 	}
168 
169 	if (wbc->sync_mode == WB_SYNC_ALL)
170 		err = nilfs_construct_dsync_segment(inode->i_sb, inode,
171 						    wbc->range_start,
172 						    wbc->range_end);
173 	return err;
174 }
175 
176 static int nilfs_writepage(struct page *page, struct writeback_control *wbc)
177 {
178 	struct inode *inode = page->mapping->host;
179 	int err;
180 
181 	if (sb_rdonly(inode->i_sb)) {
182 		/*
183 		 * It means that filesystem was remounted in read-only
184 		 * mode because of error or metadata corruption. But we
185 		 * have dirty pages that try to be flushed in background.
186 		 * So, here we simply discard this dirty page.
187 		 */
188 		nilfs_clear_dirty_page(page, false);
189 		unlock_page(page);
190 		return -EROFS;
191 	}
192 
193 	redirty_page_for_writepage(wbc, page);
194 	unlock_page(page);
195 
196 	if (wbc->sync_mode == WB_SYNC_ALL) {
197 		err = nilfs_construct_segment(inode->i_sb);
198 		if (unlikely(err))
199 			return err;
200 	} else if (wbc->for_reclaim)
201 		nilfs_flush_segment(inode->i_sb, inode->i_ino);
202 
203 	return 0;
204 }
205 
206 static int nilfs_set_page_dirty(struct page *page)
207 {
208 	struct inode *inode = page->mapping->host;
209 	int ret = __set_page_dirty_nobuffers(page);
210 
211 	if (page_has_buffers(page)) {
212 		unsigned int nr_dirty = 0;
213 		struct buffer_head *bh, *head;
214 
215 		/*
216 		 * This page is locked by callers, and no other thread
217 		 * concurrently marks its buffers dirty since they are
218 		 * only dirtied through routines in fs/buffer.c in
219 		 * which call sites of mark_buffer_dirty are protected
220 		 * by page lock.
221 		 */
222 		bh = head = page_buffers(page);
223 		do {
224 			/* Do not mark hole blocks dirty */
225 			if (buffer_dirty(bh) || !buffer_mapped(bh))
226 				continue;
227 
228 			set_buffer_dirty(bh);
229 			nr_dirty++;
230 		} while (bh = bh->b_this_page, bh != head);
231 
232 		if (nr_dirty)
233 			nilfs_set_file_dirty(inode, nr_dirty);
234 	} else if (ret) {
235 		unsigned int nr_dirty = 1 << (PAGE_SHIFT - inode->i_blkbits);
236 
237 		nilfs_set_file_dirty(inode, nr_dirty);
238 	}
239 	return ret;
240 }
241 
242 void nilfs_write_failed(struct address_space *mapping, loff_t to)
243 {
244 	struct inode *inode = mapping->host;
245 
246 	if (to > inode->i_size) {
247 		truncate_pagecache(inode, inode->i_size);
248 		nilfs_truncate(inode);
249 	}
250 }
251 
252 static int nilfs_write_begin(struct file *file, struct address_space *mapping,
253 			     loff_t pos, unsigned len, unsigned flags,
254 			     struct page **pagep, void **fsdata)
255 
256 {
257 	struct inode *inode = mapping->host;
258 	int err = nilfs_transaction_begin(inode->i_sb, NULL, 1);
259 
260 	if (unlikely(err))
261 		return err;
262 
263 	err = block_write_begin(mapping, pos, len, flags, pagep,
264 				nilfs_get_block);
265 	if (unlikely(err)) {
266 		nilfs_write_failed(mapping, pos + len);
267 		nilfs_transaction_abort(inode->i_sb);
268 	}
269 	return err;
270 }
271 
272 static int nilfs_write_end(struct file *file, struct address_space *mapping,
273 			   loff_t pos, unsigned len, unsigned copied,
274 			   struct page *page, void *fsdata)
275 {
276 	struct inode *inode = mapping->host;
277 	unsigned int start = pos & (PAGE_SIZE - 1);
278 	unsigned int nr_dirty;
279 	int err;
280 
281 	nr_dirty = nilfs_page_count_clean_buffers(page, start,
282 						  start + copied);
283 	copied = generic_write_end(file, mapping, pos, len, copied, page,
284 				   fsdata);
285 	nilfs_set_file_dirty(inode, nr_dirty);
286 	err = nilfs_transaction_commit(inode->i_sb);
287 	return err ? : copied;
288 }
289 
290 static ssize_t
291 nilfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
292 {
293 	struct inode *inode = file_inode(iocb->ki_filp);
294 
295 	if (iov_iter_rw(iter) == WRITE)
296 		return 0;
297 
298 	/* Needs synchronization with the cleaner */
299 	return blockdev_direct_IO(iocb, inode, iter, nilfs_get_block);
300 }
301 
302 const struct address_space_operations nilfs_aops = {
303 	.writepage		= nilfs_writepage,
304 	.readpage		= nilfs_readpage,
305 	.writepages		= nilfs_writepages,
306 	.set_page_dirty		= nilfs_set_page_dirty,
307 	.readahead		= nilfs_readahead,
308 	.write_begin		= nilfs_write_begin,
309 	.write_end		= nilfs_write_end,
310 	/* .releasepage		= nilfs_releasepage, */
311 	.invalidatepage		= block_invalidatepage,
312 	.direct_IO		= nilfs_direct_IO,
313 	.is_partially_uptodate  = block_is_partially_uptodate,
314 };
315 
316 static int nilfs_insert_inode_locked(struct inode *inode,
317 				     struct nilfs_root *root,
318 				     unsigned long ino)
319 {
320 	struct nilfs_iget_args args = {
321 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
322 		.for_btnc = false, .for_shadow = false
323 	};
324 
325 	return insert_inode_locked4(inode, ino, nilfs_iget_test, &args);
326 }
327 
328 struct inode *nilfs_new_inode(struct inode *dir, umode_t mode)
329 {
330 	struct super_block *sb = dir->i_sb;
331 	struct the_nilfs *nilfs = sb->s_fs_info;
332 	struct inode *inode;
333 	struct nilfs_inode_info *ii;
334 	struct nilfs_root *root;
335 	int err = -ENOMEM;
336 	ino_t ino;
337 
338 	inode = new_inode(sb);
339 	if (unlikely(!inode))
340 		goto failed;
341 
342 	mapping_set_gfp_mask(inode->i_mapping,
343 			   mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
344 
345 	root = NILFS_I(dir)->i_root;
346 	ii = NILFS_I(inode);
347 	ii->i_state = BIT(NILFS_I_NEW);
348 	ii->i_root = root;
349 
350 	err = nilfs_ifile_create_inode(root->ifile, &ino, &ii->i_bh);
351 	if (unlikely(err))
352 		goto failed_ifile_create_inode;
353 	/* reference count of i_bh inherits from nilfs_mdt_read_block() */
354 
355 	atomic64_inc(&root->inodes_count);
356 	inode_init_owner(&init_user_ns, inode, dir, mode);
357 	inode->i_ino = ino;
358 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
359 
360 	if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) {
361 		err = nilfs_bmap_read(ii->i_bmap, NULL);
362 		if (err < 0)
363 			goto failed_after_creation;
364 
365 		set_bit(NILFS_I_BMAP, &ii->i_state);
366 		/* No lock is needed; iget() ensures it. */
367 	}
368 
369 	ii->i_flags = nilfs_mask_flags(
370 		mode, NILFS_I(dir)->i_flags & NILFS_FL_INHERITED);
371 
372 	/* ii->i_file_acl = 0; */
373 	/* ii->i_dir_acl = 0; */
374 	ii->i_dir_start_lookup = 0;
375 	nilfs_set_inode_flags(inode);
376 	spin_lock(&nilfs->ns_next_gen_lock);
377 	inode->i_generation = nilfs->ns_next_generation++;
378 	spin_unlock(&nilfs->ns_next_gen_lock);
379 	if (nilfs_insert_inode_locked(inode, root, ino) < 0) {
380 		err = -EIO;
381 		goto failed_after_creation;
382 	}
383 
384 	err = nilfs_init_acl(inode, dir);
385 	if (unlikely(err))
386 		/*
387 		 * Never occur.  When supporting nilfs_init_acl(),
388 		 * proper cancellation of above jobs should be considered.
389 		 */
390 		goto failed_after_creation;
391 
392 	return inode;
393 
394  failed_after_creation:
395 	clear_nlink(inode);
396 	if (inode->i_state & I_NEW)
397 		unlock_new_inode(inode);
398 	iput(inode);  /*
399 		       * raw_inode will be deleted through
400 		       * nilfs_evict_inode().
401 		       */
402 	goto failed;
403 
404  failed_ifile_create_inode:
405 	make_bad_inode(inode);
406 	iput(inode);
407  failed:
408 	return ERR_PTR(err);
409 }
410 
411 void nilfs_set_inode_flags(struct inode *inode)
412 {
413 	unsigned int flags = NILFS_I(inode)->i_flags;
414 	unsigned int new_fl = 0;
415 
416 	if (flags & FS_SYNC_FL)
417 		new_fl |= S_SYNC;
418 	if (flags & FS_APPEND_FL)
419 		new_fl |= S_APPEND;
420 	if (flags & FS_IMMUTABLE_FL)
421 		new_fl |= S_IMMUTABLE;
422 	if (flags & FS_NOATIME_FL)
423 		new_fl |= S_NOATIME;
424 	if (flags & FS_DIRSYNC_FL)
425 		new_fl |= S_DIRSYNC;
426 	inode_set_flags(inode, new_fl, S_SYNC | S_APPEND | S_IMMUTABLE |
427 			S_NOATIME | S_DIRSYNC);
428 }
429 
430 int nilfs_read_inode_common(struct inode *inode,
431 			    struct nilfs_inode *raw_inode)
432 {
433 	struct nilfs_inode_info *ii = NILFS_I(inode);
434 	int err;
435 
436 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
437 	i_uid_write(inode, le32_to_cpu(raw_inode->i_uid));
438 	i_gid_write(inode, le32_to_cpu(raw_inode->i_gid));
439 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
440 	inode->i_size = le64_to_cpu(raw_inode->i_size);
441 	inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
442 	inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
443 	inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
444 	inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
445 	inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
446 	inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
447 	if (nilfs_is_metadata_file_inode(inode) && !S_ISREG(inode->i_mode))
448 		return -EIO; /* this inode is for metadata and corrupted */
449 	if (inode->i_nlink == 0)
450 		return -ESTALE; /* this inode is deleted */
451 
452 	inode->i_blocks = le64_to_cpu(raw_inode->i_blocks);
453 	ii->i_flags = le32_to_cpu(raw_inode->i_flags);
454 #if 0
455 	ii->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
456 	ii->i_dir_acl = S_ISREG(inode->i_mode) ?
457 		0 : le32_to_cpu(raw_inode->i_dir_acl);
458 #endif
459 	ii->i_dir_start_lookup = 0;
460 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
461 
462 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
463 	    S_ISLNK(inode->i_mode)) {
464 		err = nilfs_bmap_read(ii->i_bmap, raw_inode);
465 		if (err < 0)
466 			return err;
467 		set_bit(NILFS_I_BMAP, &ii->i_state);
468 		/* No lock is needed; iget() ensures it. */
469 	}
470 	return 0;
471 }
472 
473 static int __nilfs_read_inode(struct super_block *sb,
474 			      struct nilfs_root *root, unsigned long ino,
475 			      struct inode *inode)
476 {
477 	struct the_nilfs *nilfs = sb->s_fs_info;
478 	struct buffer_head *bh;
479 	struct nilfs_inode *raw_inode;
480 	int err;
481 
482 	down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
483 	err = nilfs_ifile_get_inode_block(root->ifile, ino, &bh);
484 	if (unlikely(err))
485 		goto bad_inode;
486 
487 	raw_inode = nilfs_ifile_map_inode(root->ifile, ino, bh);
488 
489 	err = nilfs_read_inode_common(inode, raw_inode);
490 	if (err)
491 		goto failed_unmap;
492 
493 	if (S_ISREG(inode->i_mode)) {
494 		inode->i_op = &nilfs_file_inode_operations;
495 		inode->i_fop = &nilfs_file_operations;
496 		inode->i_mapping->a_ops = &nilfs_aops;
497 	} else if (S_ISDIR(inode->i_mode)) {
498 		inode->i_op = &nilfs_dir_inode_operations;
499 		inode->i_fop = &nilfs_dir_operations;
500 		inode->i_mapping->a_ops = &nilfs_aops;
501 	} else if (S_ISLNK(inode->i_mode)) {
502 		inode->i_op = &nilfs_symlink_inode_operations;
503 		inode_nohighmem(inode);
504 		inode->i_mapping->a_ops = &nilfs_aops;
505 	} else {
506 		inode->i_op = &nilfs_special_inode_operations;
507 		init_special_inode(
508 			inode, inode->i_mode,
509 			huge_decode_dev(le64_to_cpu(raw_inode->i_device_code)));
510 	}
511 	nilfs_ifile_unmap_inode(root->ifile, ino, bh);
512 	brelse(bh);
513 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
514 	nilfs_set_inode_flags(inode);
515 	mapping_set_gfp_mask(inode->i_mapping,
516 			   mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
517 	return 0;
518 
519  failed_unmap:
520 	nilfs_ifile_unmap_inode(root->ifile, ino, bh);
521 	brelse(bh);
522 
523  bad_inode:
524 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
525 	return err;
526 }
527 
528 static int nilfs_iget_test(struct inode *inode, void *opaque)
529 {
530 	struct nilfs_iget_args *args = opaque;
531 	struct nilfs_inode_info *ii;
532 
533 	if (args->ino != inode->i_ino || args->root != NILFS_I(inode)->i_root)
534 		return 0;
535 
536 	ii = NILFS_I(inode);
537 	if (test_bit(NILFS_I_BTNC, &ii->i_state)) {
538 		if (!args->for_btnc)
539 			return 0;
540 	} else if (args->for_btnc) {
541 		return 0;
542 	}
543 	if (test_bit(NILFS_I_SHADOW, &ii->i_state)) {
544 		if (!args->for_shadow)
545 			return 0;
546 	} else if (args->for_shadow) {
547 		return 0;
548 	}
549 
550 	if (!test_bit(NILFS_I_GCINODE, &ii->i_state))
551 		return !args->for_gc;
552 
553 	return args->for_gc && args->cno == ii->i_cno;
554 }
555 
556 static int nilfs_iget_set(struct inode *inode, void *opaque)
557 {
558 	struct nilfs_iget_args *args = opaque;
559 
560 	inode->i_ino = args->ino;
561 	NILFS_I(inode)->i_cno = args->cno;
562 	NILFS_I(inode)->i_root = args->root;
563 	if (args->root && args->ino == NILFS_ROOT_INO)
564 		nilfs_get_root(args->root);
565 
566 	if (args->for_gc)
567 		NILFS_I(inode)->i_state = BIT(NILFS_I_GCINODE);
568 	if (args->for_btnc)
569 		NILFS_I(inode)->i_state |= BIT(NILFS_I_BTNC);
570 	if (args->for_shadow)
571 		NILFS_I(inode)->i_state |= BIT(NILFS_I_SHADOW);
572 	return 0;
573 }
574 
575 struct inode *nilfs_ilookup(struct super_block *sb, struct nilfs_root *root,
576 			    unsigned long ino)
577 {
578 	struct nilfs_iget_args args = {
579 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
580 		.for_btnc = false, .for_shadow = false
581 	};
582 
583 	return ilookup5(sb, ino, nilfs_iget_test, &args);
584 }
585 
586 struct inode *nilfs_iget_locked(struct super_block *sb, struct nilfs_root *root,
587 				unsigned long ino)
588 {
589 	struct nilfs_iget_args args = {
590 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
591 		.for_btnc = false, .for_shadow = false
592 	};
593 
594 	return iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
595 }
596 
597 struct inode *nilfs_iget(struct super_block *sb, struct nilfs_root *root,
598 			 unsigned long ino)
599 {
600 	struct inode *inode;
601 	int err;
602 
603 	inode = nilfs_iget_locked(sb, root, ino);
604 	if (unlikely(!inode))
605 		return ERR_PTR(-ENOMEM);
606 	if (!(inode->i_state & I_NEW))
607 		return inode;
608 
609 	err = __nilfs_read_inode(sb, root, ino, inode);
610 	if (unlikely(err)) {
611 		iget_failed(inode);
612 		return ERR_PTR(err);
613 	}
614 	unlock_new_inode(inode);
615 	return inode;
616 }
617 
618 struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino,
619 				__u64 cno)
620 {
621 	struct nilfs_iget_args args = {
622 		.ino = ino, .root = NULL, .cno = cno, .for_gc = true,
623 		.for_btnc = false, .for_shadow = false
624 	};
625 	struct inode *inode;
626 	int err;
627 
628 	inode = iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
629 	if (unlikely(!inode))
630 		return ERR_PTR(-ENOMEM);
631 	if (!(inode->i_state & I_NEW))
632 		return inode;
633 
634 	err = nilfs_init_gcinode(inode);
635 	if (unlikely(err)) {
636 		iget_failed(inode);
637 		return ERR_PTR(err);
638 	}
639 	unlock_new_inode(inode);
640 	return inode;
641 }
642 
643 /**
644  * nilfs_attach_btree_node_cache - attach a B-tree node cache to the inode
645  * @inode: inode object
646  *
647  * nilfs_attach_btree_node_cache() attaches a B-tree node cache to @inode,
648  * or does nothing if the inode already has it.  This function allocates
649  * an additional inode to maintain page cache of B-tree nodes one-on-one.
650  *
651  * Return Value: On success, 0 is returned. On errors, one of the following
652  * negative error code is returned.
653  *
654  * %-ENOMEM - Insufficient memory available.
655  */
656 int nilfs_attach_btree_node_cache(struct inode *inode)
657 {
658 	struct nilfs_inode_info *ii = NILFS_I(inode);
659 	struct inode *btnc_inode;
660 	struct nilfs_iget_args args;
661 
662 	if (ii->i_assoc_inode)
663 		return 0;
664 
665 	args.ino = inode->i_ino;
666 	args.root = ii->i_root;
667 	args.cno = ii->i_cno;
668 	args.for_gc = test_bit(NILFS_I_GCINODE, &ii->i_state) != 0;
669 	args.for_btnc = true;
670 	args.for_shadow = test_bit(NILFS_I_SHADOW, &ii->i_state) != 0;
671 
672 	btnc_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test,
673 				  nilfs_iget_set, &args);
674 	if (unlikely(!btnc_inode))
675 		return -ENOMEM;
676 	if (btnc_inode->i_state & I_NEW) {
677 		nilfs_init_btnc_inode(btnc_inode);
678 		unlock_new_inode(btnc_inode);
679 	}
680 	NILFS_I(btnc_inode)->i_assoc_inode = inode;
681 	NILFS_I(btnc_inode)->i_bmap = ii->i_bmap;
682 	ii->i_assoc_inode = btnc_inode;
683 
684 	return 0;
685 }
686 
687 /**
688  * nilfs_detach_btree_node_cache - detach the B-tree node cache from the inode
689  * @inode: inode object
690  *
691  * nilfs_detach_btree_node_cache() detaches the B-tree node cache and its
692  * holder inode bound to @inode, or does nothing if @inode doesn't have it.
693  */
694 void nilfs_detach_btree_node_cache(struct inode *inode)
695 {
696 	struct nilfs_inode_info *ii = NILFS_I(inode);
697 	struct inode *btnc_inode = ii->i_assoc_inode;
698 
699 	if (btnc_inode) {
700 		NILFS_I(btnc_inode)->i_assoc_inode = NULL;
701 		ii->i_assoc_inode = NULL;
702 		iput(btnc_inode);
703 	}
704 }
705 
706 /**
707  * nilfs_iget_for_shadow - obtain inode for shadow mapping
708  * @inode: inode object that uses shadow mapping
709  *
710  * nilfs_iget_for_shadow() allocates a pair of inodes that holds page
711  * caches for shadow mapping.  The page cache for data pages is set up
712  * in one inode and the one for b-tree node pages is set up in the
713  * other inode, which is attached to the former inode.
714  *
715  * Return Value: On success, a pointer to the inode for data pages is
716  * returned. On errors, one of the following negative error code is returned
717  * in a pointer type.
718  *
719  * %-ENOMEM - Insufficient memory available.
720  */
721 struct inode *nilfs_iget_for_shadow(struct inode *inode)
722 {
723 	struct nilfs_iget_args args = {
724 		.ino = inode->i_ino, .root = NULL, .cno = 0, .for_gc = false,
725 		.for_btnc = false, .for_shadow = true
726 	};
727 	struct inode *s_inode;
728 	int err;
729 
730 	s_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test,
731 			       nilfs_iget_set, &args);
732 	if (unlikely(!s_inode))
733 		return ERR_PTR(-ENOMEM);
734 	if (!(s_inode->i_state & I_NEW))
735 		return inode;
736 
737 	NILFS_I(s_inode)->i_flags = 0;
738 	memset(NILFS_I(s_inode)->i_bmap, 0, sizeof(struct nilfs_bmap));
739 	mapping_set_gfp_mask(s_inode->i_mapping, GFP_NOFS);
740 
741 	err = nilfs_attach_btree_node_cache(s_inode);
742 	if (unlikely(err)) {
743 		iget_failed(s_inode);
744 		return ERR_PTR(err);
745 	}
746 	unlock_new_inode(s_inode);
747 	return s_inode;
748 }
749 
750 void nilfs_write_inode_common(struct inode *inode,
751 			      struct nilfs_inode *raw_inode, int has_bmap)
752 {
753 	struct nilfs_inode_info *ii = NILFS_I(inode);
754 
755 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
756 	raw_inode->i_uid = cpu_to_le32(i_uid_read(inode));
757 	raw_inode->i_gid = cpu_to_le32(i_gid_read(inode));
758 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
759 	raw_inode->i_size = cpu_to_le64(inode->i_size);
760 	raw_inode->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
761 	raw_inode->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
762 	raw_inode->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
763 	raw_inode->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
764 	raw_inode->i_blocks = cpu_to_le64(inode->i_blocks);
765 
766 	raw_inode->i_flags = cpu_to_le32(ii->i_flags);
767 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
768 
769 	if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) {
770 		struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
771 
772 		/* zero-fill unused portion in the case of super root block */
773 		raw_inode->i_xattr = 0;
774 		raw_inode->i_pad = 0;
775 		memset((void *)raw_inode + sizeof(*raw_inode), 0,
776 		       nilfs->ns_inode_size - sizeof(*raw_inode));
777 	}
778 
779 	if (has_bmap)
780 		nilfs_bmap_write(ii->i_bmap, raw_inode);
781 	else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
782 		raw_inode->i_device_code =
783 			cpu_to_le64(huge_encode_dev(inode->i_rdev));
784 	/*
785 	 * When extending inode, nilfs->ns_inode_size should be checked
786 	 * for substitutions of appended fields.
787 	 */
788 }
789 
790 void nilfs_update_inode(struct inode *inode, struct buffer_head *ibh, int flags)
791 {
792 	ino_t ino = inode->i_ino;
793 	struct nilfs_inode_info *ii = NILFS_I(inode);
794 	struct inode *ifile = ii->i_root->ifile;
795 	struct nilfs_inode *raw_inode;
796 
797 	raw_inode = nilfs_ifile_map_inode(ifile, ino, ibh);
798 
799 	if (test_and_clear_bit(NILFS_I_NEW, &ii->i_state))
800 		memset(raw_inode, 0, NILFS_MDT(ifile)->mi_entry_size);
801 	if (flags & I_DIRTY_DATASYNC)
802 		set_bit(NILFS_I_INODE_SYNC, &ii->i_state);
803 
804 	nilfs_write_inode_common(inode, raw_inode, 0);
805 		/*
806 		 * XXX: call with has_bmap = 0 is a workaround to avoid
807 		 * deadlock of bmap.  This delays update of i_bmap to just
808 		 * before writing.
809 		 */
810 
811 	nilfs_ifile_unmap_inode(ifile, ino, ibh);
812 }
813 
814 #define NILFS_MAX_TRUNCATE_BLOCKS	16384  /* 64MB for 4KB block */
815 
816 static void nilfs_truncate_bmap(struct nilfs_inode_info *ii,
817 				unsigned long from)
818 {
819 	__u64 b;
820 	int ret;
821 
822 	if (!test_bit(NILFS_I_BMAP, &ii->i_state))
823 		return;
824 repeat:
825 	ret = nilfs_bmap_last_key(ii->i_bmap, &b);
826 	if (ret == -ENOENT)
827 		return;
828 	else if (ret < 0)
829 		goto failed;
830 
831 	if (b < from)
832 		return;
833 
834 	b -= min_t(__u64, NILFS_MAX_TRUNCATE_BLOCKS, b - from);
835 	ret = nilfs_bmap_truncate(ii->i_bmap, b);
836 	nilfs_relax_pressure_in_lock(ii->vfs_inode.i_sb);
837 	if (!ret || (ret == -ENOMEM &&
838 		     nilfs_bmap_truncate(ii->i_bmap, b) == 0))
839 		goto repeat;
840 
841 failed:
842 	nilfs_warn(ii->vfs_inode.i_sb, "error %d truncating bmap (ino=%lu)",
843 		   ret, ii->vfs_inode.i_ino);
844 }
845 
846 void nilfs_truncate(struct inode *inode)
847 {
848 	unsigned long blkoff;
849 	unsigned int blocksize;
850 	struct nilfs_transaction_info ti;
851 	struct super_block *sb = inode->i_sb;
852 	struct nilfs_inode_info *ii = NILFS_I(inode);
853 
854 	if (!test_bit(NILFS_I_BMAP, &ii->i_state))
855 		return;
856 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
857 		return;
858 
859 	blocksize = sb->s_blocksize;
860 	blkoff = (inode->i_size + blocksize - 1) >> sb->s_blocksize_bits;
861 	nilfs_transaction_begin(sb, &ti, 0); /* never fails */
862 
863 	block_truncate_page(inode->i_mapping, inode->i_size, nilfs_get_block);
864 
865 	nilfs_truncate_bmap(ii, blkoff);
866 
867 	inode->i_mtime = inode->i_ctime = current_time(inode);
868 	if (IS_SYNC(inode))
869 		nilfs_set_transaction_flag(NILFS_TI_SYNC);
870 
871 	nilfs_mark_inode_dirty(inode);
872 	nilfs_set_file_dirty(inode, 0);
873 	nilfs_transaction_commit(sb);
874 	/*
875 	 * May construct a logical segment and may fail in sync mode.
876 	 * But truncate has no return value.
877 	 */
878 }
879 
880 static void nilfs_clear_inode(struct inode *inode)
881 {
882 	struct nilfs_inode_info *ii = NILFS_I(inode);
883 
884 	/*
885 	 * Free resources allocated in nilfs_read_inode(), here.
886 	 */
887 	BUG_ON(!list_empty(&ii->i_dirty));
888 	brelse(ii->i_bh);
889 	ii->i_bh = NULL;
890 
891 	if (nilfs_is_metadata_file_inode(inode))
892 		nilfs_mdt_clear(inode);
893 
894 	if (test_bit(NILFS_I_BMAP, &ii->i_state))
895 		nilfs_bmap_clear(ii->i_bmap);
896 
897 	if (!test_bit(NILFS_I_BTNC, &ii->i_state))
898 		nilfs_detach_btree_node_cache(inode);
899 
900 	if (ii->i_root && inode->i_ino == NILFS_ROOT_INO)
901 		nilfs_put_root(ii->i_root);
902 }
903 
904 void nilfs_evict_inode(struct inode *inode)
905 {
906 	struct nilfs_transaction_info ti;
907 	struct super_block *sb = inode->i_sb;
908 	struct nilfs_inode_info *ii = NILFS_I(inode);
909 	int ret;
910 
911 	if (inode->i_nlink || !ii->i_root || unlikely(is_bad_inode(inode))) {
912 		truncate_inode_pages_final(&inode->i_data);
913 		clear_inode(inode);
914 		nilfs_clear_inode(inode);
915 		return;
916 	}
917 	nilfs_transaction_begin(sb, &ti, 0); /* never fails */
918 
919 	truncate_inode_pages_final(&inode->i_data);
920 
921 	/* TODO: some of the following operations may fail.  */
922 	nilfs_truncate_bmap(ii, 0);
923 	nilfs_mark_inode_dirty(inode);
924 	clear_inode(inode);
925 
926 	ret = nilfs_ifile_delete_inode(ii->i_root->ifile, inode->i_ino);
927 	if (!ret)
928 		atomic64_dec(&ii->i_root->inodes_count);
929 
930 	nilfs_clear_inode(inode);
931 
932 	if (IS_SYNC(inode))
933 		nilfs_set_transaction_flag(NILFS_TI_SYNC);
934 	nilfs_transaction_commit(sb);
935 	/*
936 	 * May construct a logical segment and may fail in sync mode.
937 	 * But delete_inode has no return value.
938 	 */
939 }
940 
941 int nilfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
942 		  struct iattr *iattr)
943 {
944 	struct nilfs_transaction_info ti;
945 	struct inode *inode = d_inode(dentry);
946 	struct super_block *sb = inode->i_sb;
947 	int err;
948 
949 	err = setattr_prepare(&init_user_ns, dentry, iattr);
950 	if (err)
951 		return err;
952 
953 	err = nilfs_transaction_begin(sb, &ti, 0);
954 	if (unlikely(err))
955 		return err;
956 
957 	if ((iattr->ia_valid & ATTR_SIZE) &&
958 	    iattr->ia_size != i_size_read(inode)) {
959 		inode_dio_wait(inode);
960 		truncate_setsize(inode, iattr->ia_size);
961 		nilfs_truncate(inode);
962 	}
963 
964 	setattr_copy(&init_user_ns, inode, iattr);
965 	mark_inode_dirty(inode);
966 
967 	if (iattr->ia_valid & ATTR_MODE) {
968 		err = nilfs_acl_chmod(inode);
969 		if (unlikely(err))
970 			goto out_err;
971 	}
972 
973 	return nilfs_transaction_commit(sb);
974 
975 out_err:
976 	nilfs_transaction_abort(sb);
977 	return err;
978 }
979 
980 int nilfs_permission(struct user_namespace *mnt_userns, struct inode *inode,
981 		     int mask)
982 {
983 	struct nilfs_root *root = NILFS_I(inode)->i_root;
984 
985 	if ((mask & MAY_WRITE) && root &&
986 	    root->cno != NILFS_CPTREE_CURRENT_CNO)
987 		return -EROFS; /* snapshot is not writable */
988 
989 	return generic_permission(&init_user_ns, inode, mask);
990 }
991 
992 int nilfs_load_inode_block(struct inode *inode, struct buffer_head **pbh)
993 {
994 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
995 	struct nilfs_inode_info *ii = NILFS_I(inode);
996 	int err;
997 
998 	spin_lock(&nilfs->ns_inode_lock);
999 	if (ii->i_bh == NULL) {
1000 		spin_unlock(&nilfs->ns_inode_lock);
1001 		err = nilfs_ifile_get_inode_block(ii->i_root->ifile,
1002 						  inode->i_ino, pbh);
1003 		if (unlikely(err))
1004 			return err;
1005 		spin_lock(&nilfs->ns_inode_lock);
1006 		if (ii->i_bh == NULL)
1007 			ii->i_bh = *pbh;
1008 		else {
1009 			brelse(*pbh);
1010 			*pbh = ii->i_bh;
1011 		}
1012 	} else
1013 		*pbh = ii->i_bh;
1014 
1015 	get_bh(*pbh);
1016 	spin_unlock(&nilfs->ns_inode_lock);
1017 	return 0;
1018 }
1019 
1020 int nilfs_inode_dirty(struct inode *inode)
1021 {
1022 	struct nilfs_inode_info *ii = NILFS_I(inode);
1023 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1024 	int ret = 0;
1025 
1026 	if (!list_empty(&ii->i_dirty)) {
1027 		spin_lock(&nilfs->ns_inode_lock);
1028 		ret = test_bit(NILFS_I_DIRTY, &ii->i_state) ||
1029 			test_bit(NILFS_I_BUSY, &ii->i_state);
1030 		spin_unlock(&nilfs->ns_inode_lock);
1031 	}
1032 	return ret;
1033 }
1034 
1035 int nilfs_set_file_dirty(struct inode *inode, unsigned int nr_dirty)
1036 {
1037 	struct nilfs_inode_info *ii = NILFS_I(inode);
1038 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1039 
1040 	atomic_add(nr_dirty, &nilfs->ns_ndirtyblks);
1041 
1042 	if (test_and_set_bit(NILFS_I_DIRTY, &ii->i_state))
1043 		return 0;
1044 
1045 	spin_lock(&nilfs->ns_inode_lock);
1046 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
1047 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
1048 		/*
1049 		 * Because this routine may race with nilfs_dispose_list(),
1050 		 * we have to check NILFS_I_QUEUED here, too.
1051 		 */
1052 		if (list_empty(&ii->i_dirty) && igrab(inode) == NULL) {
1053 			/*
1054 			 * This will happen when somebody is freeing
1055 			 * this inode.
1056 			 */
1057 			nilfs_warn(inode->i_sb,
1058 				   "cannot set file dirty (ino=%lu): the file is being freed",
1059 				   inode->i_ino);
1060 			spin_unlock(&nilfs->ns_inode_lock);
1061 			return -EINVAL; /*
1062 					 * NILFS_I_DIRTY may remain for
1063 					 * freeing inode.
1064 					 */
1065 		}
1066 		list_move_tail(&ii->i_dirty, &nilfs->ns_dirty_files);
1067 		set_bit(NILFS_I_QUEUED, &ii->i_state);
1068 	}
1069 	spin_unlock(&nilfs->ns_inode_lock);
1070 	return 0;
1071 }
1072 
1073 int __nilfs_mark_inode_dirty(struct inode *inode, int flags)
1074 {
1075 	struct buffer_head *ibh;
1076 	int err;
1077 
1078 	err = nilfs_load_inode_block(inode, &ibh);
1079 	if (unlikely(err)) {
1080 		nilfs_warn(inode->i_sb,
1081 			   "cannot mark inode dirty (ino=%lu): error %d loading inode block",
1082 			   inode->i_ino, err);
1083 		return err;
1084 	}
1085 	nilfs_update_inode(inode, ibh, flags);
1086 	mark_buffer_dirty(ibh);
1087 	nilfs_mdt_mark_dirty(NILFS_I(inode)->i_root->ifile);
1088 	brelse(ibh);
1089 	return 0;
1090 }
1091 
1092 /**
1093  * nilfs_dirty_inode - reflect changes on given inode to an inode block.
1094  * @inode: inode of the file to be registered.
1095  *
1096  * nilfs_dirty_inode() loads a inode block containing the specified
1097  * @inode and copies data from a nilfs_inode to a corresponding inode
1098  * entry in the inode block. This operation is excluded from the segment
1099  * construction. This function can be called both as a single operation
1100  * and as a part of indivisible file operations.
1101  */
1102 void nilfs_dirty_inode(struct inode *inode, int flags)
1103 {
1104 	struct nilfs_transaction_info ti;
1105 	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
1106 
1107 	if (is_bad_inode(inode)) {
1108 		nilfs_warn(inode->i_sb,
1109 			   "tried to mark bad_inode dirty. ignored.");
1110 		dump_stack();
1111 		return;
1112 	}
1113 	if (mdi) {
1114 		nilfs_mdt_mark_dirty(inode);
1115 		return;
1116 	}
1117 	nilfs_transaction_begin(inode->i_sb, &ti, 0);
1118 	__nilfs_mark_inode_dirty(inode, flags);
1119 	nilfs_transaction_commit(inode->i_sb); /* never fails */
1120 }
1121 
1122 int nilfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1123 		 __u64 start, __u64 len)
1124 {
1125 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1126 	__u64 logical = 0, phys = 0, size = 0;
1127 	__u32 flags = 0;
1128 	loff_t isize;
1129 	sector_t blkoff, end_blkoff;
1130 	sector_t delalloc_blkoff;
1131 	unsigned long delalloc_blklen;
1132 	unsigned int blkbits = inode->i_blkbits;
1133 	int ret, n;
1134 
1135 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
1136 	if (ret)
1137 		return ret;
1138 
1139 	inode_lock(inode);
1140 
1141 	isize = i_size_read(inode);
1142 
1143 	blkoff = start >> blkbits;
1144 	end_blkoff = (start + len - 1) >> blkbits;
1145 
1146 	delalloc_blklen = nilfs_find_uncommitted_extent(inode, blkoff,
1147 							&delalloc_blkoff);
1148 
1149 	do {
1150 		__u64 blkphy;
1151 		unsigned int maxblocks;
1152 
1153 		if (delalloc_blklen && blkoff == delalloc_blkoff) {
1154 			if (size) {
1155 				/* End of the current extent */
1156 				ret = fiemap_fill_next_extent(
1157 					fieinfo, logical, phys, size, flags);
1158 				if (ret)
1159 					break;
1160 			}
1161 			if (blkoff > end_blkoff)
1162 				break;
1163 
1164 			flags = FIEMAP_EXTENT_MERGED | FIEMAP_EXTENT_DELALLOC;
1165 			logical = blkoff << blkbits;
1166 			phys = 0;
1167 			size = delalloc_blklen << blkbits;
1168 
1169 			blkoff = delalloc_blkoff + delalloc_blklen;
1170 			delalloc_blklen = nilfs_find_uncommitted_extent(
1171 				inode, blkoff, &delalloc_blkoff);
1172 			continue;
1173 		}
1174 
1175 		/*
1176 		 * Limit the number of blocks that we look up so as
1177 		 * not to get into the next delayed allocation extent.
1178 		 */
1179 		maxblocks = INT_MAX;
1180 		if (delalloc_blklen)
1181 			maxblocks = min_t(sector_t, delalloc_blkoff - blkoff,
1182 					  maxblocks);
1183 		blkphy = 0;
1184 
1185 		down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
1186 		n = nilfs_bmap_lookup_contig(
1187 			NILFS_I(inode)->i_bmap, blkoff, &blkphy, maxblocks);
1188 		up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
1189 
1190 		if (n < 0) {
1191 			int past_eof;
1192 
1193 			if (unlikely(n != -ENOENT))
1194 				break; /* error */
1195 
1196 			/* HOLE */
1197 			blkoff++;
1198 			past_eof = ((blkoff << blkbits) >= isize);
1199 
1200 			if (size) {
1201 				/* End of the current extent */
1202 
1203 				if (past_eof)
1204 					flags |= FIEMAP_EXTENT_LAST;
1205 
1206 				ret = fiemap_fill_next_extent(
1207 					fieinfo, logical, phys, size, flags);
1208 				if (ret)
1209 					break;
1210 				size = 0;
1211 			}
1212 			if (blkoff > end_blkoff || past_eof)
1213 				break;
1214 		} else {
1215 			if (size) {
1216 				if (phys && blkphy << blkbits == phys + size) {
1217 					/* The current extent goes on */
1218 					size += n << blkbits;
1219 				} else {
1220 					/* Terminate the current extent */
1221 					ret = fiemap_fill_next_extent(
1222 						fieinfo, logical, phys, size,
1223 						flags);
1224 					if (ret || blkoff > end_blkoff)
1225 						break;
1226 
1227 					/* Start another extent */
1228 					flags = FIEMAP_EXTENT_MERGED;
1229 					logical = blkoff << blkbits;
1230 					phys = blkphy << blkbits;
1231 					size = n << blkbits;
1232 				}
1233 			} else {
1234 				/* Start a new extent */
1235 				flags = FIEMAP_EXTENT_MERGED;
1236 				logical = blkoff << blkbits;
1237 				phys = blkphy << blkbits;
1238 				size = n << blkbits;
1239 			}
1240 			blkoff += n;
1241 		}
1242 		cond_resched();
1243 	} while (true);
1244 
1245 	/* If ret is 1 then we just hit the end of the extent array */
1246 	if (ret == 1)
1247 		ret = 0;
1248 
1249 	inode_unlock(inode);
1250 	return ret;
1251 }
1252