xref: /openbmc/linux/fs/nfsd/nfscache.c (revision d7955ce4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Request reply cache. This is currently a global cache, but this may
4  * change in the future and be a per-client cache.
5  *
6  * This code is heavily inspired by the 44BSD implementation, although
7  * it does things a bit differently.
8  *
9  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10  */
11 
12 #include <linux/sunrpc/svc_xprt.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/highmem.h>
17 #include <linux/log2.h>
18 #include <linux/hash.h>
19 #include <net/checksum.h>
20 
21 #include "nfsd.h"
22 #include "cache.h"
23 #include "trace.h"
24 
25 /*
26  * We use this value to determine the number of hash buckets from the max
27  * cache size, the idea being that when the cache is at its maximum number
28  * of entries, then this should be the average number of entries per bucket.
29  */
30 #define TARGET_BUCKET_SIZE	64
31 
32 struct nfsd_drc_bucket {
33 	struct rb_root rb_head;
34 	struct list_head lru_head;
35 	spinlock_t cache_lock;
36 };
37 
38 static struct kmem_cache	*drc_slab;
39 
40 static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
42 					    struct shrink_control *sc);
43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
44 					   struct shrink_control *sc);
45 
46 /*
47  * Put a cap on the size of the DRC based on the amount of available
48  * low memory in the machine.
49  *
50  *  64MB:    8192
51  * 128MB:   11585
52  * 256MB:   16384
53  * 512MB:   23170
54  *   1GB:   32768
55  *   2GB:   46340
56  *   4GB:   65536
57  *   8GB:   92681
58  *  16GB:  131072
59  *
60  * ...with a hard cap of 256k entries. In the worst case, each entry will be
61  * ~1k, so the above numbers should give a rough max of the amount of memory
62  * used in k.
63  *
64  * XXX: these limits are per-container, so memory used will increase
65  * linearly with number of containers.  Maybe that's OK.
66  */
67 static unsigned int
68 nfsd_cache_size_limit(void)
69 {
70 	unsigned int limit;
71 	unsigned long low_pages = totalram_pages() - totalhigh_pages();
72 
73 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
74 	return min_t(unsigned int, limit, 256*1024);
75 }
76 
77 /*
78  * Compute the number of hash buckets we need. Divide the max cachesize by
79  * the "target" max bucket size, and round up to next power of two.
80  */
81 static unsigned int
82 nfsd_hashsize(unsigned int limit)
83 {
84 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
85 }
86 
87 static struct svc_cacherep *
88 nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum,
89 			struct nfsd_net *nn)
90 {
91 	struct svc_cacherep	*rp;
92 
93 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
94 	if (rp) {
95 		rp->c_state = RC_UNUSED;
96 		rp->c_type = RC_NOCACHE;
97 		RB_CLEAR_NODE(&rp->c_node);
98 		INIT_LIST_HEAD(&rp->c_lru);
99 
100 		memset(&rp->c_key, 0, sizeof(rp->c_key));
101 		rp->c_key.k_xid = rqstp->rq_xid;
102 		rp->c_key.k_proc = rqstp->rq_proc;
103 		rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
104 		rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
105 		rp->c_key.k_prot = rqstp->rq_prot;
106 		rp->c_key.k_vers = rqstp->rq_vers;
107 		rp->c_key.k_len = rqstp->rq_arg.len;
108 		rp->c_key.k_csum = csum;
109 	}
110 	return rp;
111 }
112 
113 static void
114 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
115 				struct nfsd_net *nn)
116 {
117 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
118 		nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
119 		kfree(rp->c_replvec.iov_base);
120 	}
121 	if (rp->c_state != RC_UNUSED) {
122 		rb_erase(&rp->c_node, &b->rb_head);
123 		list_del(&rp->c_lru);
124 		atomic_dec(&nn->num_drc_entries);
125 		nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
126 	}
127 	kmem_cache_free(drc_slab, rp);
128 }
129 
130 static void
131 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
132 			struct nfsd_net *nn)
133 {
134 	spin_lock(&b->cache_lock);
135 	nfsd_reply_cache_free_locked(b, rp, nn);
136 	spin_unlock(&b->cache_lock);
137 }
138 
139 int nfsd_drc_slab_create(void)
140 {
141 	drc_slab = kmem_cache_create("nfsd_drc",
142 				sizeof(struct svc_cacherep), 0, 0, NULL);
143 	return drc_slab ? 0: -ENOMEM;
144 }
145 
146 void nfsd_drc_slab_free(void)
147 {
148 	kmem_cache_destroy(drc_slab);
149 }
150 
151 /**
152  * nfsd_net_reply_cache_init - per net namespace reply cache set-up
153  * @nn: nfsd_net being initialized
154  *
155  * Returns zero on succes; otherwise a negative errno is returned.
156  */
157 int nfsd_net_reply_cache_init(struct nfsd_net *nn)
158 {
159 	return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM);
160 }
161 
162 /**
163  * nfsd_net_reply_cache_destroy - per net namespace reply cache tear-down
164  * @nn: nfsd_net being freed
165  *
166  */
167 void nfsd_net_reply_cache_destroy(struct nfsd_net *nn)
168 {
169 	nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM);
170 }
171 
172 int nfsd_reply_cache_init(struct nfsd_net *nn)
173 {
174 	unsigned int hashsize;
175 	unsigned int i;
176 	int status = 0;
177 
178 	nn->max_drc_entries = nfsd_cache_size_limit();
179 	atomic_set(&nn->num_drc_entries, 0);
180 	hashsize = nfsd_hashsize(nn->max_drc_entries);
181 	nn->maskbits = ilog2(hashsize);
182 
183 	nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan;
184 	nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count;
185 	nn->nfsd_reply_cache_shrinker.seeks = 1;
186 	status = register_shrinker(&nn->nfsd_reply_cache_shrinker,
187 				   "nfsd-reply:%s", nn->nfsd_name);
188 	if (status)
189 		return status;
190 
191 	nn->drc_hashtbl = kvzalloc(array_size(hashsize,
192 				sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
193 	if (!nn->drc_hashtbl)
194 		goto out_shrinker;
195 
196 	for (i = 0; i < hashsize; i++) {
197 		INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
198 		spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
199 	}
200 	nn->drc_hashsize = hashsize;
201 
202 	return 0;
203 out_shrinker:
204 	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
205 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
206 	return -ENOMEM;
207 }
208 
209 void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
210 {
211 	struct svc_cacherep	*rp;
212 	unsigned int i;
213 
214 	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
215 
216 	for (i = 0; i < nn->drc_hashsize; i++) {
217 		struct list_head *head = &nn->drc_hashtbl[i].lru_head;
218 		while (!list_empty(head)) {
219 			rp = list_first_entry(head, struct svc_cacherep, c_lru);
220 			nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
221 									rp, nn);
222 		}
223 	}
224 
225 	kvfree(nn->drc_hashtbl);
226 	nn->drc_hashtbl = NULL;
227 	nn->drc_hashsize = 0;
228 
229 }
230 
231 /*
232  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
233  * not already scheduled.
234  */
235 static void
236 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
237 {
238 	rp->c_timestamp = jiffies;
239 	list_move_tail(&rp->c_lru, &b->lru_head);
240 }
241 
242 static noinline struct nfsd_drc_bucket *
243 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn)
244 {
245 	unsigned int hash = hash_32((__force u32)xid, nn->maskbits);
246 
247 	return &nn->drc_hashtbl[hash];
248 }
249 
250 static long prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn,
251 			 unsigned int max)
252 {
253 	struct svc_cacherep *rp, *tmp;
254 	long freed = 0;
255 
256 	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
257 		/*
258 		 * Don't free entries attached to calls that are still
259 		 * in-progress, but do keep scanning the list.
260 		 */
261 		if (rp->c_state == RC_INPROG)
262 			continue;
263 		if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
264 		    time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
265 			break;
266 		nfsd_reply_cache_free_locked(b, rp, nn);
267 		if (max && freed++ > max)
268 			break;
269 	}
270 	return freed;
271 }
272 
273 static long nfsd_prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn)
274 {
275 	return prune_bucket(b, nn, 3);
276 }
277 
278 /*
279  * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
280  * Also prune the oldest ones when the total exceeds the max number of entries.
281  */
282 static long
283 prune_cache_entries(struct nfsd_net *nn)
284 {
285 	unsigned int i;
286 	long freed = 0;
287 
288 	for (i = 0; i < nn->drc_hashsize; i++) {
289 		struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
290 
291 		if (list_empty(&b->lru_head))
292 			continue;
293 		spin_lock(&b->cache_lock);
294 		freed += prune_bucket(b, nn, 0);
295 		spin_unlock(&b->cache_lock);
296 	}
297 	return freed;
298 }
299 
300 static unsigned long
301 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
302 {
303 	struct nfsd_net *nn = container_of(shrink,
304 				struct nfsd_net, nfsd_reply_cache_shrinker);
305 
306 	return atomic_read(&nn->num_drc_entries);
307 }
308 
309 static unsigned long
310 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
311 {
312 	struct nfsd_net *nn = container_of(shrink,
313 				struct nfsd_net, nfsd_reply_cache_shrinker);
314 
315 	return prune_cache_entries(nn);
316 }
317 /*
318  * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
319  */
320 static __wsum
321 nfsd_cache_csum(struct svc_rqst *rqstp)
322 {
323 	int idx;
324 	unsigned int base;
325 	__wsum csum;
326 	struct xdr_buf *buf = &rqstp->rq_arg;
327 	const unsigned char *p = buf->head[0].iov_base;
328 	size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
329 				RC_CSUMLEN);
330 	size_t len = min(buf->head[0].iov_len, csum_len);
331 
332 	/* rq_arg.head first */
333 	csum = csum_partial(p, len, 0);
334 	csum_len -= len;
335 
336 	/* Continue into page array */
337 	idx = buf->page_base / PAGE_SIZE;
338 	base = buf->page_base & ~PAGE_MASK;
339 	while (csum_len) {
340 		p = page_address(buf->pages[idx]) + base;
341 		len = min_t(size_t, PAGE_SIZE - base, csum_len);
342 		csum = csum_partial(p, len, csum);
343 		csum_len -= len;
344 		base = 0;
345 		++idx;
346 	}
347 	return csum;
348 }
349 
350 static int
351 nfsd_cache_key_cmp(const struct svc_cacherep *key,
352 			const struct svc_cacherep *rp, struct nfsd_net *nn)
353 {
354 	if (key->c_key.k_xid == rp->c_key.k_xid &&
355 	    key->c_key.k_csum != rp->c_key.k_csum) {
356 		nfsd_stats_payload_misses_inc(nn);
357 		trace_nfsd_drc_mismatch(nn, key, rp);
358 	}
359 
360 	return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
361 }
362 
363 /*
364  * Search the request hash for an entry that matches the given rqstp.
365  * Must be called with cache_lock held. Returns the found entry or
366  * inserts an empty key on failure.
367  */
368 static struct svc_cacherep *
369 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key,
370 			struct nfsd_net *nn)
371 {
372 	struct svc_cacherep	*rp, *ret = key;
373 	struct rb_node		**p = &b->rb_head.rb_node,
374 				*parent = NULL;
375 	unsigned int		entries = 0;
376 	int cmp;
377 
378 	while (*p != NULL) {
379 		++entries;
380 		parent = *p;
381 		rp = rb_entry(parent, struct svc_cacherep, c_node);
382 
383 		cmp = nfsd_cache_key_cmp(key, rp, nn);
384 		if (cmp < 0)
385 			p = &parent->rb_left;
386 		else if (cmp > 0)
387 			p = &parent->rb_right;
388 		else {
389 			ret = rp;
390 			goto out;
391 		}
392 	}
393 	rb_link_node(&key->c_node, parent, p);
394 	rb_insert_color(&key->c_node, &b->rb_head);
395 out:
396 	/* tally hash chain length stats */
397 	if (entries > nn->longest_chain) {
398 		nn->longest_chain = entries;
399 		nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
400 	} else if (entries == nn->longest_chain) {
401 		/* prefer to keep the smallest cachesize possible here */
402 		nn->longest_chain_cachesize = min_t(unsigned int,
403 				nn->longest_chain_cachesize,
404 				atomic_read(&nn->num_drc_entries));
405 	}
406 
407 	lru_put_end(b, ret);
408 	return ret;
409 }
410 
411 /**
412  * nfsd_cache_lookup - Find an entry in the duplicate reply cache
413  * @rqstp: Incoming Call to find
414  *
415  * Try to find an entry matching the current call in the cache. When none
416  * is found, we try to grab the oldest expired entry off the LRU list. If
417  * a suitable one isn't there, then drop the cache_lock and allocate a
418  * new one, then search again in case one got inserted while this thread
419  * didn't hold the lock.
420  *
421  * Return values:
422  *   %RC_DOIT: Process the request normally
423  *   %RC_REPLY: Reply from cache
424  *   %RC_DROPIT: Do not process the request further
425  */
426 int nfsd_cache_lookup(struct svc_rqst *rqstp)
427 {
428 	struct nfsd_net		*nn;
429 	struct svc_cacherep	*rp, *found;
430 	__wsum			csum;
431 	struct nfsd_drc_bucket	*b;
432 	int type = rqstp->rq_cachetype;
433 	int rtn = RC_DOIT;
434 
435 	rqstp->rq_cacherep = NULL;
436 	if (type == RC_NOCACHE) {
437 		nfsd_stats_rc_nocache_inc();
438 		goto out;
439 	}
440 
441 	csum = nfsd_cache_csum(rqstp);
442 
443 	/*
444 	 * Since the common case is a cache miss followed by an insert,
445 	 * preallocate an entry.
446 	 */
447 	nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
448 	rp = nfsd_reply_cache_alloc(rqstp, csum, nn);
449 	if (!rp)
450 		goto out;
451 
452 	b = nfsd_cache_bucket_find(rqstp->rq_xid, nn);
453 	spin_lock(&b->cache_lock);
454 	found = nfsd_cache_insert(b, rp, nn);
455 	if (found != rp)
456 		goto found_entry;
457 
458 	nfsd_stats_rc_misses_inc();
459 	rqstp->rq_cacherep = rp;
460 	rp->c_state = RC_INPROG;
461 
462 	atomic_inc(&nn->num_drc_entries);
463 	nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
464 
465 	nfsd_prune_bucket(b, nn);
466 
467 out_unlock:
468 	spin_unlock(&b->cache_lock);
469 out:
470 	return rtn;
471 
472 found_entry:
473 	/* We found a matching entry which is either in progress or done. */
474 	nfsd_reply_cache_free_locked(NULL, rp, nn);
475 	nfsd_stats_rc_hits_inc();
476 	rtn = RC_DROPIT;
477 	rp = found;
478 
479 	/* Request being processed */
480 	if (rp->c_state == RC_INPROG)
481 		goto out_trace;
482 
483 	/* From the hall of fame of impractical attacks:
484 	 * Is this a user who tries to snoop on the cache? */
485 	rtn = RC_DOIT;
486 	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
487 		goto out_trace;
488 
489 	/* Compose RPC reply header */
490 	switch (rp->c_type) {
491 	case RC_NOCACHE:
492 		break;
493 	case RC_REPLSTAT:
494 		xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat);
495 		rtn = RC_REPLY;
496 		break;
497 	case RC_REPLBUFF:
498 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
499 			goto out_unlock; /* should not happen */
500 		rtn = RC_REPLY;
501 		break;
502 	default:
503 		WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
504 	}
505 
506 out_trace:
507 	trace_nfsd_drc_found(nn, rqstp, rtn);
508 	goto out_unlock;
509 }
510 
511 /**
512  * nfsd_cache_update - Update an entry in the duplicate reply cache.
513  * @rqstp: svc_rqst with a finished Reply
514  * @cachetype: which cache to update
515  * @statp: pointer to Reply's NFS status code, or NULL
516  *
517  * This is called from nfsd_dispatch when the procedure has been
518  * executed and the complete reply is in rqstp->rq_res.
519  *
520  * We're copying around data here rather than swapping buffers because
521  * the toplevel loop requires max-sized buffers, which would be a waste
522  * of memory for a cache with a max reply size of 100 bytes (diropokres).
523  *
524  * If we should start to use different types of cache entries tailored
525  * specifically for attrstat and fh's, we may save even more space.
526  *
527  * Also note that a cachetype of RC_NOCACHE can legally be passed when
528  * nfsd failed to encode a reply that otherwise would have been cached.
529  * In this case, nfsd_cache_update is called with statp == NULL.
530  */
531 void nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
532 {
533 	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
534 	struct svc_cacherep *rp = rqstp->rq_cacherep;
535 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
536 	struct nfsd_drc_bucket *b;
537 	int		len;
538 	size_t		bufsize = 0;
539 
540 	if (!rp)
541 		return;
542 
543 	b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn);
544 
545 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
546 	len >>= 2;
547 
548 	/* Don't cache excessive amounts of data and XDR failures */
549 	if (!statp || len > (256 >> 2)) {
550 		nfsd_reply_cache_free(b, rp, nn);
551 		return;
552 	}
553 
554 	switch (cachetype) {
555 	case RC_REPLSTAT:
556 		if (len != 1)
557 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
558 		rp->c_replstat = *statp;
559 		break;
560 	case RC_REPLBUFF:
561 		cachv = &rp->c_replvec;
562 		bufsize = len << 2;
563 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
564 		if (!cachv->iov_base) {
565 			nfsd_reply_cache_free(b, rp, nn);
566 			return;
567 		}
568 		cachv->iov_len = bufsize;
569 		memcpy(cachv->iov_base, statp, bufsize);
570 		break;
571 	case RC_NOCACHE:
572 		nfsd_reply_cache_free(b, rp, nn);
573 		return;
574 	}
575 	spin_lock(&b->cache_lock);
576 	nfsd_stats_drc_mem_usage_add(nn, bufsize);
577 	lru_put_end(b, rp);
578 	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
579 	rp->c_type = cachetype;
580 	rp->c_state = RC_DONE;
581 	spin_unlock(&b->cache_lock);
582 	return;
583 }
584 
585 /*
586  * Copy cached reply to current reply buffer. Should always fit.
587  * FIXME as reply is in a page, we should just attach the page, and
588  * keep a refcount....
589  */
590 static int
591 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
592 {
593 	struct kvec	*vec = &rqstp->rq_res.head[0];
594 
595 	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
596 		printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
597 				data->iov_len);
598 		return 0;
599 	}
600 	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
601 	vec->iov_len += data->iov_len;
602 	return 1;
603 }
604 
605 /*
606  * Note that fields may be added, removed or reordered in the future. Programs
607  * scraping this file for info should test the labels to ensure they're
608  * getting the correct field.
609  */
610 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
611 {
612 	struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info,
613 					  nfsd_net_id);
614 
615 	seq_printf(m, "max entries:           %u\n", nn->max_drc_entries);
616 	seq_printf(m, "num entries:           %u\n",
617 		   atomic_read(&nn->num_drc_entries));
618 	seq_printf(m, "hash buckets:          %u\n", 1 << nn->maskbits);
619 	seq_printf(m, "mem usage:             %lld\n",
620 		   percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE]));
621 	seq_printf(m, "cache hits:            %lld\n",
622 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS]));
623 	seq_printf(m, "cache misses:          %lld\n",
624 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES]));
625 	seq_printf(m, "not cached:            %lld\n",
626 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE]));
627 	seq_printf(m, "payload misses:        %lld\n",
628 		   percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES]));
629 	seq_printf(m, "longest chain len:     %u\n", nn->longest_chain);
630 	seq_printf(m, "cachesize at longest:  %u\n", nn->longest_chain_cachesize);
631 	return 0;
632 }
633