1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Request reply cache. This is currently a global cache, but this may 4 * change in the future and be a per-client cache. 5 * 6 * This code is heavily inspired by the 44BSD implementation, although 7 * it does things a bit differently. 8 * 9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 10 */ 11 12 #include <linux/sunrpc/svc_xprt.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/sunrpc/addr.h> 16 #include <linux/highmem.h> 17 #include <linux/log2.h> 18 #include <linux/hash.h> 19 #include <net/checksum.h> 20 21 #include "nfsd.h" 22 #include "cache.h" 23 #include "trace.h" 24 25 /* 26 * We use this value to determine the number of hash buckets from the max 27 * cache size, the idea being that when the cache is at its maximum number 28 * of entries, then this should be the average number of entries per bucket. 29 */ 30 #define TARGET_BUCKET_SIZE 64 31 32 struct nfsd_drc_bucket { 33 struct rb_root rb_head; 34 struct list_head lru_head; 35 spinlock_t cache_lock; 36 }; 37 38 static struct kmem_cache *drc_slab; 39 40 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); 41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink, 42 struct shrink_control *sc); 43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink, 44 struct shrink_control *sc); 45 46 /* 47 * Put a cap on the size of the DRC based on the amount of available 48 * low memory in the machine. 49 * 50 * 64MB: 8192 51 * 128MB: 11585 52 * 256MB: 16384 53 * 512MB: 23170 54 * 1GB: 32768 55 * 2GB: 46340 56 * 4GB: 65536 57 * 8GB: 92681 58 * 16GB: 131072 59 * 60 * ...with a hard cap of 256k entries. In the worst case, each entry will be 61 * ~1k, so the above numbers should give a rough max of the amount of memory 62 * used in k. 63 * 64 * XXX: these limits are per-container, so memory used will increase 65 * linearly with number of containers. Maybe that's OK. 66 */ 67 static unsigned int 68 nfsd_cache_size_limit(void) 69 { 70 unsigned int limit; 71 unsigned long low_pages = totalram_pages() - totalhigh_pages(); 72 73 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); 74 return min_t(unsigned int, limit, 256*1024); 75 } 76 77 /* 78 * Compute the number of hash buckets we need. Divide the max cachesize by 79 * the "target" max bucket size, and round up to next power of two. 80 */ 81 static unsigned int 82 nfsd_hashsize(unsigned int limit) 83 { 84 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE); 85 } 86 87 static struct nfsd_cacherep * 88 nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum, 89 struct nfsd_net *nn) 90 { 91 struct nfsd_cacherep *rp; 92 93 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); 94 if (rp) { 95 rp->c_state = RC_UNUSED; 96 rp->c_type = RC_NOCACHE; 97 RB_CLEAR_NODE(&rp->c_node); 98 INIT_LIST_HEAD(&rp->c_lru); 99 100 memset(&rp->c_key, 0, sizeof(rp->c_key)); 101 rp->c_key.k_xid = rqstp->rq_xid; 102 rp->c_key.k_proc = rqstp->rq_proc; 103 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp)); 104 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp))); 105 rp->c_key.k_prot = rqstp->rq_prot; 106 rp->c_key.k_vers = rqstp->rq_vers; 107 rp->c_key.k_len = rqstp->rq_arg.len; 108 rp->c_key.k_csum = csum; 109 } 110 return rp; 111 } 112 113 static void nfsd_cacherep_free(struct nfsd_cacherep *rp) 114 { 115 if (rp->c_type == RC_REPLBUFF) 116 kfree(rp->c_replvec.iov_base); 117 kmem_cache_free(drc_slab, rp); 118 } 119 120 static unsigned long 121 nfsd_cacherep_dispose(struct list_head *dispose) 122 { 123 struct nfsd_cacherep *rp; 124 unsigned long freed = 0; 125 126 while (!list_empty(dispose)) { 127 rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru); 128 list_del(&rp->c_lru); 129 nfsd_cacherep_free(rp); 130 freed++; 131 } 132 return freed; 133 } 134 135 static void 136 nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b, 137 struct nfsd_cacherep *rp) 138 { 139 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) 140 nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len); 141 if (rp->c_state != RC_UNUSED) { 142 rb_erase(&rp->c_node, &b->rb_head); 143 list_del(&rp->c_lru); 144 atomic_dec(&nn->num_drc_entries); 145 nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp)); 146 } 147 } 148 149 static void 150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp, 151 struct nfsd_net *nn) 152 { 153 nfsd_cacherep_unlink_locked(nn, b, rp); 154 nfsd_cacherep_free(rp); 155 } 156 157 static void 158 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp, 159 struct nfsd_net *nn) 160 { 161 spin_lock(&b->cache_lock); 162 nfsd_cacherep_unlink_locked(nn, b, rp); 163 spin_unlock(&b->cache_lock); 164 nfsd_cacherep_free(rp); 165 } 166 167 int nfsd_drc_slab_create(void) 168 { 169 drc_slab = kmem_cache_create("nfsd_drc", 170 sizeof(struct nfsd_cacherep), 0, 0, NULL); 171 return drc_slab ? 0: -ENOMEM; 172 } 173 174 void nfsd_drc_slab_free(void) 175 { 176 kmem_cache_destroy(drc_slab); 177 } 178 179 int nfsd_reply_cache_init(struct nfsd_net *nn) 180 { 181 unsigned int hashsize; 182 unsigned int i; 183 int status = 0; 184 185 nn->max_drc_entries = nfsd_cache_size_limit(); 186 atomic_set(&nn->num_drc_entries, 0); 187 hashsize = nfsd_hashsize(nn->max_drc_entries); 188 nn->maskbits = ilog2(hashsize); 189 190 nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan; 191 nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count; 192 nn->nfsd_reply_cache_shrinker.seeks = 1; 193 status = register_shrinker(&nn->nfsd_reply_cache_shrinker, 194 "nfsd-reply:%s", nn->nfsd_name); 195 if (status) 196 return status; 197 198 nn->drc_hashtbl = kvzalloc(array_size(hashsize, 199 sizeof(*nn->drc_hashtbl)), GFP_KERNEL); 200 if (!nn->drc_hashtbl) 201 goto out_shrinker; 202 203 for (i = 0; i < hashsize; i++) { 204 INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head); 205 spin_lock_init(&nn->drc_hashtbl[i].cache_lock); 206 } 207 nn->drc_hashsize = hashsize; 208 209 return 0; 210 out_shrinker: 211 unregister_shrinker(&nn->nfsd_reply_cache_shrinker); 212 printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); 213 return -ENOMEM; 214 } 215 216 void nfsd_reply_cache_shutdown(struct nfsd_net *nn) 217 { 218 struct nfsd_cacherep *rp; 219 unsigned int i; 220 221 unregister_shrinker(&nn->nfsd_reply_cache_shrinker); 222 223 for (i = 0; i < nn->drc_hashsize; i++) { 224 struct list_head *head = &nn->drc_hashtbl[i].lru_head; 225 while (!list_empty(head)) { 226 rp = list_first_entry(head, struct nfsd_cacherep, c_lru); 227 nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i], 228 rp, nn); 229 } 230 } 231 232 kvfree(nn->drc_hashtbl); 233 nn->drc_hashtbl = NULL; 234 nn->drc_hashsize = 0; 235 236 } 237 238 /* 239 * Move cache entry to end of LRU list, and queue the cleaner to run if it's 240 * not already scheduled. 241 */ 242 static void 243 lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp) 244 { 245 rp->c_timestamp = jiffies; 246 list_move_tail(&rp->c_lru, &b->lru_head); 247 } 248 249 static noinline struct nfsd_drc_bucket * 250 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn) 251 { 252 unsigned int hash = hash_32((__force u32)xid, nn->maskbits); 253 254 return &nn->drc_hashtbl[hash]; 255 } 256 257 /* 258 * Remove and return no more than @max expired entries in bucket @b. 259 * If @max is zero, do not limit the number of removed entries. 260 */ 261 static void 262 nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b, 263 unsigned int max, struct list_head *dispose) 264 { 265 unsigned long expiry = jiffies - RC_EXPIRE; 266 struct nfsd_cacherep *rp, *tmp; 267 unsigned int freed = 0; 268 269 lockdep_assert_held(&b->cache_lock); 270 271 /* The bucket LRU is ordered oldest-first. */ 272 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) { 273 /* 274 * Don't free entries attached to calls that are still 275 * in-progress, but do keep scanning the list. 276 */ 277 if (rp->c_state == RC_INPROG) 278 continue; 279 280 if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries && 281 time_before(expiry, rp->c_timestamp)) 282 break; 283 284 nfsd_cacherep_unlink_locked(nn, b, rp); 285 list_add(&rp->c_lru, dispose); 286 287 if (max && ++freed > max) 288 break; 289 } 290 } 291 292 /** 293 * nfsd_reply_cache_count - count_objects method for the DRC shrinker 294 * @shrink: our registered shrinker context 295 * @sc: garbage collection parameters 296 * 297 * Returns the total number of entries in the duplicate reply cache. To 298 * keep things simple and quick, this is not the number of expired entries 299 * in the cache (ie, the number that would be removed by a call to 300 * nfsd_reply_cache_scan). 301 */ 302 static unsigned long 303 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc) 304 { 305 struct nfsd_net *nn = container_of(shrink, 306 struct nfsd_net, nfsd_reply_cache_shrinker); 307 308 return atomic_read(&nn->num_drc_entries); 309 } 310 311 /** 312 * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker 313 * @shrink: our registered shrinker context 314 * @sc: garbage collection parameters 315 * 316 * Free expired entries on each bucket's LRU list until we've released 317 * nr_to_scan freed objects. Nothing will be released if the cache 318 * has not exceeded it's max_drc_entries limit. 319 * 320 * Returns the number of entries released by this call. 321 */ 322 static unsigned long 323 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 324 { 325 struct nfsd_net *nn = container_of(shrink, 326 struct nfsd_net, nfsd_reply_cache_shrinker); 327 unsigned long freed = 0; 328 LIST_HEAD(dispose); 329 unsigned int i; 330 331 for (i = 0; i < nn->drc_hashsize; i++) { 332 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i]; 333 334 if (list_empty(&b->lru_head)) 335 continue; 336 337 spin_lock(&b->cache_lock); 338 nfsd_prune_bucket_locked(nn, b, 0, &dispose); 339 spin_unlock(&b->cache_lock); 340 341 freed += nfsd_cacherep_dispose(&dispose); 342 if (freed > sc->nr_to_scan) 343 break; 344 } 345 346 trace_nfsd_drc_gc(nn, freed); 347 return freed; 348 } 349 350 /** 351 * nfsd_cache_csum - Checksum incoming NFS Call arguments 352 * @buf: buffer containing a whole RPC Call message 353 * @start: starting byte of the NFS Call header 354 * @remaining: size of the NFS Call header, in bytes 355 * 356 * Compute a weak checksum of the leading bytes of an NFS procedure 357 * call header to help verify that a retransmitted Call matches an 358 * entry in the duplicate reply cache. 359 * 360 * To avoid assumptions about how the RPC message is laid out in 361 * @buf and what else it might contain (eg, a GSS MIC suffix), the 362 * caller passes us the exact location and length of the NFS Call 363 * header. 364 * 365 * Returns a 32-bit checksum value, as defined in RFC 793. 366 */ 367 static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start, 368 unsigned int remaining) 369 { 370 unsigned int base, len; 371 struct xdr_buf subbuf; 372 __wsum csum = 0; 373 void *p; 374 int idx; 375 376 if (remaining > RC_CSUMLEN) 377 remaining = RC_CSUMLEN; 378 if (xdr_buf_subsegment(buf, &subbuf, start, remaining)) 379 return csum; 380 381 /* rq_arg.head first */ 382 if (subbuf.head[0].iov_len) { 383 len = min_t(unsigned int, subbuf.head[0].iov_len, remaining); 384 csum = csum_partial(subbuf.head[0].iov_base, len, csum); 385 remaining -= len; 386 } 387 388 /* Continue into page array */ 389 idx = subbuf.page_base / PAGE_SIZE; 390 base = subbuf.page_base & ~PAGE_MASK; 391 while (remaining) { 392 p = page_address(subbuf.pages[idx]) + base; 393 len = min_t(unsigned int, PAGE_SIZE - base, remaining); 394 csum = csum_partial(p, len, csum); 395 remaining -= len; 396 base = 0; 397 ++idx; 398 } 399 return csum; 400 } 401 402 static int 403 nfsd_cache_key_cmp(const struct nfsd_cacherep *key, 404 const struct nfsd_cacherep *rp, struct nfsd_net *nn) 405 { 406 if (key->c_key.k_xid == rp->c_key.k_xid && 407 key->c_key.k_csum != rp->c_key.k_csum) { 408 nfsd_stats_payload_misses_inc(nn); 409 trace_nfsd_drc_mismatch(nn, key, rp); 410 } 411 412 return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key)); 413 } 414 415 /* 416 * Search the request hash for an entry that matches the given rqstp. 417 * Must be called with cache_lock held. Returns the found entry or 418 * inserts an empty key on failure. 419 */ 420 static struct nfsd_cacherep * 421 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key, 422 struct nfsd_net *nn) 423 { 424 struct nfsd_cacherep *rp, *ret = key; 425 struct rb_node **p = &b->rb_head.rb_node, 426 *parent = NULL; 427 unsigned int entries = 0; 428 int cmp; 429 430 while (*p != NULL) { 431 ++entries; 432 parent = *p; 433 rp = rb_entry(parent, struct nfsd_cacherep, c_node); 434 435 cmp = nfsd_cache_key_cmp(key, rp, nn); 436 if (cmp < 0) 437 p = &parent->rb_left; 438 else if (cmp > 0) 439 p = &parent->rb_right; 440 else { 441 ret = rp; 442 goto out; 443 } 444 } 445 rb_link_node(&key->c_node, parent, p); 446 rb_insert_color(&key->c_node, &b->rb_head); 447 out: 448 /* tally hash chain length stats */ 449 if (entries > nn->longest_chain) { 450 nn->longest_chain = entries; 451 nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries); 452 } else if (entries == nn->longest_chain) { 453 /* prefer to keep the smallest cachesize possible here */ 454 nn->longest_chain_cachesize = min_t(unsigned int, 455 nn->longest_chain_cachesize, 456 atomic_read(&nn->num_drc_entries)); 457 } 458 459 lru_put_end(b, ret); 460 return ret; 461 } 462 463 /** 464 * nfsd_cache_lookup - Find an entry in the duplicate reply cache 465 * @rqstp: Incoming Call to find 466 * @start: starting byte in @rqstp->rq_arg of the NFS Call header 467 * @len: size of the NFS Call header, in bytes 468 * @cacherep: OUT: DRC entry for this request 469 * 470 * Try to find an entry matching the current call in the cache. When none 471 * is found, we try to grab the oldest expired entry off the LRU list. If 472 * a suitable one isn't there, then drop the cache_lock and allocate a 473 * new one, then search again in case one got inserted while this thread 474 * didn't hold the lock. 475 * 476 * Return values: 477 * %RC_DOIT: Process the request normally 478 * %RC_REPLY: Reply from cache 479 * %RC_DROPIT: Do not process the request further 480 */ 481 int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start, 482 unsigned int len, struct nfsd_cacherep **cacherep) 483 { 484 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 485 struct nfsd_cacherep *rp, *found; 486 __wsum csum; 487 struct nfsd_drc_bucket *b; 488 int type = rqstp->rq_cachetype; 489 unsigned long freed; 490 LIST_HEAD(dispose); 491 int rtn = RC_DOIT; 492 493 if (type == RC_NOCACHE) { 494 nfsd_stats_rc_nocache_inc(nn); 495 goto out; 496 } 497 498 csum = nfsd_cache_csum(&rqstp->rq_arg, start, len); 499 500 /* 501 * Since the common case is a cache miss followed by an insert, 502 * preallocate an entry. 503 */ 504 rp = nfsd_cacherep_alloc(rqstp, csum, nn); 505 if (!rp) 506 goto out; 507 508 b = nfsd_cache_bucket_find(rqstp->rq_xid, nn); 509 spin_lock(&b->cache_lock); 510 found = nfsd_cache_insert(b, rp, nn); 511 if (found != rp) 512 goto found_entry; 513 *cacherep = rp; 514 rp->c_state = RC_INPROG; 515 nfsd_prune_bucket_locked(nn, b, 3, &dispose); 516 spin_unlock(&b->cache_lock); 517 518 freed = nfsd_cacherep_dispose(&dispose); 519 trace_nfsd_drc_gc(nn, freed); 520 521 nfsd_stats_rc_misses_inc(nn); 522 atomic_inc(&nn->num_drc_entries); 523 nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp)); 524 goto out; 525 526 found_entry: 527 /* We found a matching entry which is either in progress or done. */ 528 nfsd_reply_cache_free_locked(NULL, rp, nn); 529 nfsd_stats_rc_hits_inc(nn); 530 rtn = RC_DROPIT; 531 rp = found; 532 533 /* Request being processed */ 534 if (rp->c_state == RC_INPROG) 535 goto out_trace; 536 537 /* From the hall of fame of impractical attacks: 538 * Is this a user who tries to snoop on the cache? */ 539 rtn = RC_DOIT; 540 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure) 541 goto out_trace; 542 543 /* Compose RPC reply header */ 544 switch (rp->c_type) { 545 case RC_NOCACHE: 546 break; 547 case RC_REPLSTAT: 548 xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat); 549 rtn = RC_REPLY; 550 break; 551 case RC_REPLBUFF: 552 if (!nfsd_cache_append(rqstp, &rp->c_replvec)) 553 goto out_unlock; /* should not happen */ 554 rtn = RC_REPLY; 555 break; 556 default: 557 WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type); 558 } 559 560 out_trace: 561 trace_nfsd_drc_found(nn, rqstp, rtn); 562 out_unlock: 563 spin_unlock(&b->cache_lock); 564 out: 565 return rtn; 566 } 567 568 /** 569 * nfsd_cache_update - Update an entry in the duplicate reply cache. 570 * @rqstp: svc_rqst with a finished Reply 571 * @rp: IN: DRC entry for this request 572 * @cachetype: which cache to update 573 * @statp: pointer to Reply's NFS status code, or NULL 574 * 575 * This is called from nfsd_dispatch when the procedure has been 576 * executed and the complete reply is in rqstp->rq_res. 577 * 578 * We're copying around data here rather than swapping buffers because 579 * the toplevel loop requires max-sized buffers, which would be a waste 580 * of memory for a cache with a max reply size of 100 bytes (diropokres). 581 * 582 * If we should start to use different types of cache entries tailored 583 * specifically for attrstat and fh's, we may save even more space. 584 * 585 * Also note that a cachetype of RC_NOCACHE can legally be passed when 586 * nfsd failed to encode a reply that otherwise would have been cached. 587 * In this case, nfsd_cache_update is called with statp == NULL. 588 */ 589 void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp, 590 int cachetype, __be32 *statp) 591 { 592 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 593 struct kvec *resv = &rqstp->rq_res.head[0], *cachv; 594 struct nfsd_drc_bucket *b; 595 int len; 596 size_t bufsize = 0; 597 598 if (!rp) 599 return; 600 601 b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn); 602 603 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); 604 len >>= 2; 605 606 /* Don't cache excessive amounts of data and XDR failures */ 607 if (!statp || len > (256 >> 2)) { 608 nfsd_reply_cache_free(b, rp, nn); 609 return; 610 } 611 612 switch (cachetype) { 613 case RC_REPLSTAT: 614 if (len != 1) 615 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); 616 rp->c_replstat = *statp; 617 break; 618 case RC_REPLBUFF: 619 cachv = &rp->c_replvec; 620 bufsize = len << 2; 621 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL); 622 if (!cachv->iov_base) { 623 nfsd_reply_cache_free(b, rp, nn); 624 return; 625 } 626 cachv->iov_len = bufsize; 627 memcpy(cachv->iov_base, statp, bufsize); 628 break; 629 case RC_NOCACHE: 630 nfsd_reply_cache_free(b, rp, nn); 631 return; 632 } 633 spin_lock(&b->cache_lock); 634 nfsd_stats_drc_mem_usage_add(nn, bufsize); 635 lru_put_end(b, rp); 636 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags); 637 rp->c_type = cachetype; 638 rp->c_state = RC_DONE; 639 spin_unlock(&b->cache_lock); 640 return; 641 } 642 643 static int 644 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) 645 { 646 __be32 *p; 647 648 p = xdr_reserve_space(&rqstp->rq_res_stream, data->iov_len); 649 if (unlikely(!p)) 650 return false; 651 memcpy(p, data->iov_base, data->iov_len); 652 xdr_commit_encode(&rqstp->rq_res_stream); 653 return true; 654 } 655 656 /* 657 * Note that fields may be added, removed or reordered in the future. Programs 658 * scraping this file for info should test the labels to ensure they're 659 * getting the correct field. 660 */ 661 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v) 662 { 663 struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info, 664 nfsd_net_id); 665 666 seq_printf(m, "max entries: %u\n", nn->max_drc_entries); 667 seq_printf(m, "num entries: %u\n", 668 atomic_read(&nn->num_drc_entries)); 669 seq_printf(m, "hash buckets: %u\n", 1 << nn->maskbits); 670 seq_printf(m, "mem usage: %lld\n", 671 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_DRC_MEM_USAGE])); 672 seq_printf(m, "cache hits: %lld\n", 673 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_HITS])); 674 seq_printf(m, "cache misses: %lld\n", 675 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_MISSES])); 676 seq_printf(m, "not cached: %lld\n", 677 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_NOCACHE])); 678 seq_printf(m, "payload misses: %lld\n", 679 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_PAYLOAD_MISSES])); 680 seq_printf(m, "longest chain len: %u\n", nn->longest_chain); 681 seq_printf(m, "cachesize at longest: %u\n", nn->longest_chain_cachesize); 682 return 0; 683 } 684