xref: /openbmc/linux/fs/nfsd/nfscache.c (revision ca79522c)
1 /*
2  * Request reply cache. This is currently a global cache, but this may
3  * change in the future and be a per-client cache.
4  *
5  * This code is heavily inspired by the 44BSD implementation, although
6  * it does things a bit differently.
7  *
8  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
9  */
10 
11 #include <linux/slab.h>
12 #include <linux/sunrpc/addr.h>
13 #include <linux/highmem.h>
14 #include <linux/log2.h>
15 #include <linux/hash.h>
16 #include <net/checksum.h>
17 
18 #include "nfsd.h"
19 #include "cache.h"
20 
21 #define NFSDDBG_FACILITY	NFSDDBG_REPCACHE
22 
23 /*
24  * We use this value to determine the number of hash buckets from the max
25  * cache size, the idea being that when the cache is at its maximum number
26  * of entries, then this should be the average number of entries per bucket.
27  */
28 #define TARGET_BUCKET_SIZE	64
29 
30 static struct hlist_head *	cache_hash;
31 static struct list_head 	lru_head;
32 static struct kmem_cache	*drc_slab;
33 
34 /* max number of entries allowed in the cache */
35 static unsigned int		max_drc_entries;
36 
37 /* number of significant bits in the hash value */
38 static unsigned int		maskbits;
39 
40 /*
41  * Stats and other tracking of on the duplicate reply cache. All of these and
42  * the "rc" fields in nfsdstats are protected by the cache_lock
43  */
44 
45 /* total number of entries */
46 static unsigned int		num_drc_entries;
47 
48 /* cache misses due only to checksum comparison failures */
49 static unsigned int		payload_misses;
50 
51 /* amount of memory (in bytes) currently consumed by the DRC */
52 static unsigned int		drc_mem_usage;
53 
54 /* longest hash chain seen */
55 static unsigned int		longest_chain;
56 
57 /* size of cache when we saw the longest hash chain */
58 static unsigned int		longest_chain_cachesize;
59 
60 static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
61 static void	cache_cleaner_func(struct work_struct *unused);
62 static int 	nfsd_reply_cache_shrink(struct shrinker *shrink,
63 					struct shrink_control *sc);
64 
65 static struct shrinker nfsd_reply_cache_shrinker = {
66 	.shrink	= nfsd_reply_cache_shrink,
67 	.seeks	= 1,
68 };
69 
70 /*
71  * locking for the reply cache:
72  * A cache entry is "single use" if c_state == RC_INPROG
73  * Otherwise, it when accessing _prev or _next, the lock must be held.
74  */
75 static DEFINE_SPINLOCK(cache_lock);
76 static DECLARE_DELAYED_WORK(cache_cleaner, cache_cleaner_func);
77 
78 /*
79  * Put a cap on the size of the DRC based on the amount of available
80  * low memory in the machine.
81  *
82  *  64MB:    8192
83  * 128MB:   11585
84  * 256MB:   16384
85  * 512MB:   23170
86  *   1GB:   32768
87  *   2GB:   46340
88  *   4GB:   65536
89  *   8GB:   92681
90  *  16GB:  131072
91  *
92  * ...with a hard cap of 256k entries. In the worst case, each entry will be
93  * ~1k, so the above numbers should give a rough max of the amount of memory
94  * used in k.
95  */
96 static unsigned int
97 nfsd_cache_size_limit(void)
98 {
99 	unsigned int limit;
100 	unsigned long low_pages = totalram_pages - totalhigh_pages;
101 
102 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
103 	return min_t(unsigned int, limit, 256*1024);
104 }
105 
106 /*
107  * Compute the number of hash buckets we need. Divide the max cachesize by
108  * the "target" max bucket size, and round up to next power of two.
109  */
110 static unsigned int
111 nfsd_hashsize(unsigned int limit)
112 {
113 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
114 }
115 
116 static struct svc_cacherep *
117 nfsd_reply_cache_alloc(void)
118 {
119 	struct svc_cacherep	*rp;
120 
121 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
122 	if (rp) {
123 		rp->c_state = RC_UNUSED;
124 		rp->c_type = RC_NOCACHE;
125 		INIT_LIST_HEAD(&rp->c_lru);
126 		INIT_HLIST_NODE(&rp->c_hash);
127 	}
128 	return rp;
129 }
130 
131 static void
132 nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
133 {
134 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
135 		drc_mem_usage -= rp->c_replvec.iov_len;
136 		kfree(rp->c_replvec.iov_base);
137 	}
138 	if (!hlist_unhashed(&rp->c_hash))
139 		hlist_del(&rp->c_hash);
140 	list_del(&rp->c_lru);
141 	--num_drc_entries;
142 	drc_mem_usage -= sizeof(*rp);
143 	kmem_cache_free(drc_slab, rp);
144 }
145 
146 static void
147 nfsd_reply_cache_free(struct svc_cacherep *rp)
148 {
149 	spin_lock(&cache_lock);
150 	nfsd_reply_cache_free_locked(rp);
151 	spin_unlock(&cache_lock);
152 }
153 
154 int nfsd_reply_cache_init(void)
155 {
156 	unsigned int hashsize;
157 
158 	INIT_LIST_HEAD(&lru_head);
159 	max_drc_entries = nfsd_cache_size_limit();
160 	num_drc_entries = 0;
161 	hashsize = nfsd_hashsize(max_drc_entries);
162 	maskbits = ilog2(hashsize);
163 
164 	register_shrinker(&nfsd_reply_cache_shrinker);
165 	drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
166 					0, 0, NULL);
167 	if (!drc_slab)
168 		goto out_nomem;
169 
170 	cache_hash = kcalloc(hashsize, sizeof(struct hlist_head), GFP_KERNEL);
171 	if (!cache_hash)
172 		goto out_nomem;
173 
174 	return 0;
175 out_nomem:
176 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
177 	nfsd_reply_cache_shutdown();
178 	return -ENOMEM;
179 }
180 
181 void nfsd_reply_cache_shutdown(void)
182 {
183 	struct svc_cacherep	*rp;
184 
185 	unregister_shrinker(&nfsd_reply_cache_shrinker);
186 	cancel_delayed_work_sync(&cache_cleaner);
187 
188 	while (!list_empty(&lru_head)) {
189 		rp = list_entry(lru_head.next, struct svc_cacherep, c_lru);
190 		nfsd_reply_cache_free_locked(rp);
191 	}
192 
193 	kfree (cache_hash);
194 	cache_hash = NULL;
195 
196 	if (drc_slab) {
197 		kmem_cache_destroy(drc_slab);
198 		drc_slab = NULL;
199 	}
200 }
201 
202 /*
203  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
204  * not already scheduled.
205  */
206 static void
207 lru_put_end(struct svc_cacherep *rp)
208 {
209 	rp->c_timestamp = jiffies;
210 	list_move_tail(&rp->c_lru, &lru_head);
211 	schedule_delayed_work(&cache_cleaner, RC_EXPIRE);
212 }
213 
214 /*
215  * Move a cache entry from one hash list to another
216  */
217 static void
218 hash_refile(struct svc_cacherep *rp)
219 {
220 	hlist_del_init(&rp->c_hash);
221 	hlist_add_head(&rp->c_hash, cache_hash + hash_32(rp->c_xid, maskbits));
222 }
223 
224 static inline bool
225 nfsd_cache_entry_expired(struct svc_cacherep *rp)
226 {
227 	return rp->c_state != RC_INPROG &&
228 	       time_after(jiffies, rp->c_timestamp + RC_EXPIRE);
229 }
230 
231 /*
232  * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
233  * Also prune the oldest ones when the total exceeds the max number of entries.
234  */
235 static void
236 prune_cache_entries(void)
237 {
238 	struct svc_cacherep *rp, *tmp;
239 
240 	list_for_each_entry_safe(rp, tmp, &lru_head, c_lru) {
241 		if (!nfsd_cache_entry_expired(rp) &&
242 		    num_drc_entries <= max_drc_entries)
243 			break;
244 		nfsd_reply_cache_free_locked(rp);
245 	}
246 
247 	/*
248 	 * Conditionally rearm the job. If we cleaned out the list, then
249 	 * cancel any pending run (since there won't be any work to do).
250 	 * Otherwise, we rearm the job or modify the existing one to run in
251 	 * RC_EXPIRE since we just ran the pruner.
252 	 */
253 	if (list_empty(&lru_head))
254 		cancel_delayed_work(&cache_cleaner);
255 	else
256 		mod_delayed_work(system_wq, &cache_cleaner, RC_EXPIRE);
257 }
258 
259 static void
260 cache_cleaner_func(struct work_struct *unused)
261 {
262 	spin_lock(&cache_lock);
263 	prune_cache_entries();
264 	spin_unlock(&cache_lock);
265 }
266 
267 static int
268 nfsd_reply_cache_shrink(struct shrinker *shrink, struct shrink_control *sc)
269 {
270 	unsigned int num;
271 
272 	spin_lock(&cache_lock);
273 	if (sc->nr_to_scan)
274 		prune_cache_entries();
275 	num = num_drc_entries;
276 	spin_unlock(&cache_lock);
277 
278 	return num;
279 }
280 
281 /*
282  * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
283  */
284 static __wsum
285 nfsd_cache_csum(struct svc_rqst *rqstp)
286 {
287 	int idx;
288 	unsigned int base;
289 	__wsum csum;
290 	struct xdr_buf *buf = &rqstp->rq_arg;
291 	const unsigned char *p = buf->head[0].iov_base;
292 	size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
293 				RC_CSUMLEN);
294 	size_t len = min(buf->head[0].iov_len, csum_len);
295 
296 	/* rq_arg.head first */
297 	csum = csum_partial(p, len, 0);
298 	csum_len -= len;
299 
300 	/* Continue into page array */
301 	idx = buf->page_base / PAGE_SIZE;
302 	base = buf->page_base & ~PAGE_MASK;
303 	while (csum_len) {
304 		p = page_address(buf->pages[idx]) + base;
305 		len = min_t(size_t, PAGE_SIZE - base, csum_len);
306 		csum = csum_partial(p, len, csum);
307 		csum_len -= len;
308 		base = 0;
309 		++idx;
310 	}
311 	return csum;
312 }
313 
314 static bool
315 nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
316 {
317 	/* Check RPC header info first */
318 	if (rqstp->rq_xid != rp->c_xid || rqstp->rq_proc != rp->c_proc ||
319 	    rqstp->rq_prot != rp->c_prot || rqstp->rq_vers != rp->c_vers ||
320 	    rqstp->rq_arg.len != rp->c_len ||
321 	    !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
322 	    rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
323 		return false;
324 
325 	/* compare checksum of NFS data */
326 	if (csum != rp->c_csum) {
327 		++payload_misses;
328 		return false;
329 	}
330 
331 	return true;
332 }
333 
334 /*
335  * Search the request hash for an entry that matches the given rqstp.
336  * Must be called with cache_lock held. Returns the found entry or
337  * NULL on failure.
338  */
339 static struct svc_cacherep *
340 nfsd_cache_search(struct svc_rqst *rqstp, __wsum csum)
341 {
342 	struct svc_cacherep	*rp, *ret = NULL;
343 	struct hlist_head 	*rh;
344 	unsigned int		entries = 0;
345 
346 	rh = &cache_hash[hash_32(rqstp->rq_xid, maskbits)];
347 	hlist_for_each_entry(rp, rh, c_hash) {
348 		++entries;
349 		if (nfsd_cache_match(rqstp, csum, rp)) {
350 			ret = rp;
351 			break;
352 		}
353 	}
354 
355 	/* tally hash chain length stats */
356 	if (entries > longest_chain) {
357 		longest_chain = entries;
358 		longest_chain_cachesize = num_drc_entries;
359 	} else if (entries == longest_chain) {
360 		/* prefer to keep the smallest cachesize possible here */
361 		longest_chain_cachesize = min(longest_chain_cachesize,
362 						num_drc_entries);
363 	}
364 
365 	return ret;
366 }
367 
368 /*
369  * Try to find an entry matching the current call in the cache. When none
370  * is found, we try to grab the oldest expired entry off the LRU list. If
371  * a suitable one isn't there, then drop the cache_lock and allocate a
372  * new one, then search again in case one got inserted while this thread
373  * didn't hold the lock.
374  */
375 int
376 nfsd_cache_lookup(struct svc_rqst *rqstp)
377 {
378 	struct svc_cacherep	*rp, *found;
379 	__be32			xid = rqstp->rq_xid;
380 	u32			proto =  rqstp->rq_prot,
381 				vers = rqstp->rq_vers,
382 				proc = rqstp->rq_proc;
383 	__wsum			csum;
384 	unsigned long		age;
385 	int type = rqstp->rq_cachetype;
386 	int rtn = RC_DOIT;
387 
388 	rqstp->rq_cacherep = NULL;
389 	if (type == RC_NOCACHE) {
390 		nfsdstats.rcnocache++;
391 		return rtn;
392 	}
393 
394 	csum = nfsd_cache_csum(rqstp);
395 
396 	/*
397 	 * Since the common case is a cache miss followed by an insert,
398 	 * preallocate an entry. First, try to reuse the first entry on the LRU
399 	 * if it works, then go ahead and prune the LRU list.
400 	 */
401 	spin_lock(&cache_lock);
402 	if (!list_empty(&lru_head)) {
403 		rp = list_first_entry(&lru_head, struct svc_cacherep, c_lru);
404 		if (nfsd_cache_entry_expired(rp) ||
405 		    num_drc_entries >= max_drc_entries) {
406 			lru_put_end(rp);
407 			prune_cache_entries();
408 			goto search_cache;
409 		}
410 	}
411 
412 	/* No expired ones available, allocate a new one. */
413 	spin_unlock(&cache_lock);
414 	rp = nfsd_reply_cache_alloc();
415 	spin_lock(&cache_lock);
416 	if (likely(rp)) {
417 		++num_drc_entries;
418 		drc_mem_usage += sizeof(*rp);
419 	}
420 
421 search_cache:
422 	found = nfsd_cache_search(rqstp, csum);
423 	if (found) {
424 		if (likely(rp))
425 			nfsd_reply_cache_free_locked(rp);
426 		rp = found;
427 		goto found_entry;
428 	}
429 
430 	if (!rp) {
431 		dprintk("nfsd: unable to allocate DRC entry!\n");
432 		goto out;
433 	}
434 
435 	/*
436 	 * We're keeping the one we just allocated. Are we now over the
437 	 * limit? Prune one off the tip of the LRU in trade for the one we
438 	 * just allocated if so.
439 	 */
440 	if (num_drc_entries >= max_drc_entries)
441 		nfsd_reply_cache_free_locked(list_first_entry(&lru_head,
442 						struct svc_cacherep, c_lru));
443 
444 	nfsdstats.rcmisses++;
445 	rqstp->rq_cacherep = rp;
446 	rp->c_state = RC_INPROG;
447 	rp->c_xid = xid;
448 	rp->c_proc = proc;
449 	rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
450 	rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
451 	rp->c_prot = proto;
452 	rp->c_vers = vers;
453 	rp->c_len = rqstp->rq_arg.len;
454 	rp->c_csum = csum;
455 
456 	hash_refile(rp);
457 	lru_put_end(rp);
458 
459 	/* release any buffer */
460 	if (rp->c_type == RC_REPLBUFF) {
461 		drc_mem_usage -= rp->c_replvec.iov_len;
462 		kfree(rp->c_replvec.iov_base);
463 		rp->c_replvec.iov_base = NULL;
464 	}
465 	rp->c_type = RC_NOCACHE;
466  out:
467 	spin_unlock(&cache_lock);
468 	return rtn;
469 
470 found_entry:
471 	nfsdstats.rchits++;
472 	/* We found a matching entry which is either in progress or done. */
473 	age = jiffies - rp->c_timestamp;
474 	lru_put_end(rp);
475 
476 	rtn = RC_DROPIT;
477 	/* Request being processed or excessive rexmits */
478 	if (rp->c_state == RC_INPROG || age < RC_DELAY)
479 		goto out;
480 
481 	/* From the hall of fame of impractical attacks:
482 	 * Is this a user who tries to snoop on the cache? */
483 	rtn = RC_DOIT;
484 	if (!rqstp->rq_secure && rp->c_secure)
485 		goto out;
486 
487 	/* Compose RPC reply header */
488 	switch (rp->c_type) {
489 	case RC_NOCACHE:
490 		break;
491 	case RC_REPLSTAT:
492 		svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
493 		rtn = RC_REPLY;
494 		break;
495 	case RC_REPLBUFF:
496 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
497 			goto out;	/* should not happen */
498 		rtn = RC_REPLY;
499 		break;
500 	default:
501 		printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
502 		nfsd_reply_cache_free_locked(rp);
503 	}
504 
505 	goto out;
506 }
507 
508 /*
509  * Update a cache entry. This is called from nfsd_dispatch when
510  * the procedure has been executed and the complete reply is in
511  * rqstp->rq_res.
512  *
513  * We're copying around data here rather than swapping buffers because
514  * the toplevel loop requires max-sized buffers, which would be a waste
515  * of memory for a cache with a max reply size of 100 bytes (diropokres).
516  *
517  * If we should start to use different types of cache entries tailored
518  * specifically for attrstat and fh's, we may save even more space.
519  *
520  * Also note that a cachetype of RC_NOCACHE can legally be passed when
521  * nfsd failed to encode a reply that otherwise would have been cached.
522  * In this case, nfsd_cache_update is called with statp == NULL.
523  */
524 void
525 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
526 {
527 	struct svc_cacherep *rp = rqstp->rq_cacherep;
528 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
529 	int		len;
530 	size_t		bufsize = 0;
531 
532 	if (!rp)
533 		return;
534 
535 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
536 	len >>= 2;
537 
538 	/* Don't cache excessive amounts of data and XDR failures */
539 	if (!statp || len > (256 >> 2)) {
540 		nfsd_reply_cache_free(rp);
541 		return;
542 	}
543 
544 	switch (cachetype) {
545 	case RC_REPLSTAT:
546 		if (len != 1)
547 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
548 		rp->c_replstat = *statp;
549 		break;
550 	case RC_REPLBUFF:
551 		cachv = &rp->c_replvec;
552 		bufsize = len << 2;
553 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
554 		if (!cachv->iov_base) {
555 			nfsd_reply_cache_free(rp);
556 			return;
557 		}
558 		cachv->iov_len = bufsize;
559 		memcpy(cachv->iov_base, statp, bufsize);
560 		break;
561 	case RC_NOCACHE:
562 		nfsd_reply_cache_free(rp);
563 		return;
564 	}
565 	spin_lock(&cache_lock);
566 	drc_mem_usage += bufsize;
567 	lru_put_end(rp);
568 	rp->c_secure = rqstp->rq_secure;
569 	rp->c_type = cachetype;
570 	rp->c_state = RC_DONE;
571 	spin_unlock(&cache_lock);
572 	return;
573 }
574 
575 /*
576  * Copy cached reply to current reply buffer. Should always fit.
577  * FIXME as reply is in a page, we should just attach the page, and
578  * keep a refcount....
579  */
580 static int
581 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
582 {
583 	struct kvec	*vec = &rqstp->rq_res.head[0];
584 
585 	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
586 		printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n",
587 				data->iov_len);
588 		return 0;
589 	}
590 	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
591 	vec->iov_len += data->iov_len;
592 	return 1;
593 }
594 
595 /*
596  * Note that fields may be added, removed or reordered in the future. Programs
597  * scraping this file for info should test the labels to ensure they're
598  * getting the correct field.
599  */
600 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
601 {
602 	spin_lock(&cache_lock);
603 	seq_printf(m, "max entries:           %u\n", max_drc_entries);
604 	seq_printf(m, "num entries:           %u\n", num_drc_entries);
605 	seq_printf(m, "hash buckets:          %u\n", 1 << maskbits);
606 	seq_printf(m, "mem usage:             %u\n", drc_mem_usage);
607 	seq_printf(m, "cache hits:            %u\n", nfsdstats.rchits);
608 	seq_printf(m, "cache misses:          %u\n", nfsdstats.rcmisses);
609 	seq_printf(m, "not cached:            %u\n", nfsdstats.rcnocache);
610 	seq_printf(m, "payload misses:        %u\n", payload_misses);
611 	seq_printf(m, "longest chain len:     %u\n", longest_chain);
612 	seq_printf(m, "cachesize at longest:  %u\n", longest_chain_cachesize);
613 	spin_unlock(&cache_lock);
614 	return 0;
615 }
616 
617 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
618 {
619 	return single_open(file, nfsd_reply_cache_stats_show, NULL);
620 }
621