xref: /openbmc/linux/fs/nfsd/nfscache.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Request reply cache. This is currently a global cache, but this may
4  * change in the future and be a per-client cache.
5  *
6  * This code is heavily inspired by the 44BSD implementation, although
7  * it does things a bit differently.
8  *
9  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10  */
11 
12 #include <linux/sunrpc/svc_xprt.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/highmem.h>
17 #include <linux/log2.h>
18 #include <linux/hash.h>
19 #include <net/checksum.h>
20 
21 #include "nfsd.h"
22 #include "cache.h"
23 #include "trace.h"
24 
25 /*
26  * We use this value to determine the number of hash buckets from the max
27  * cache size, the idea being that when the cache is at its maximum number
28  * of entries, then this should be the average number of entries per bucket.
29  */
30 #define TARGET_BUCKET_SIZE	64
31 
32 struct nfsd_drc_bucket {
33 	struct rb_root rb_head;
34 	struct list_head lru_head;
35 	spinlock_t cache_lock;
36 };
37 
38 static struct kmem_cache	*drc_slab;
39 
40 static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
42 					    struct shrink_control *sc);
43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
44 					   struct shrink_control *sc);
45 
46 /*
47  * Put a cap on the size of the DRC based on the amount of available
48  * low memory in the machine.
49  *
50  *  64MB:    8192
51  * 128MB:   11585
52  * 256MB:   16384
53  * 512MB:   23170
54  *   1GB:   32768
55  *   2GB:   46340
56  *   4GB:   65536
57  *   8GB:   92681
58  *  16GB:  131072
59  *
60  * ...with a hard cap of 256k entries. In the worst case, each entry will be
61  * ~1k, so the above numbers should give a rough max of the amount of memory
62  * used in k.
63  *
64  * XXX: these limits are per-container, so memory used will increase
65  * linearly with number of containers.  Maybe that's OK.
66  */
67 static unsigned int
68 nfsd_cache_size_limit(void)
69 {
70 	unsigned int limit;
71 	unsigned long low_pages = totalram_pages() - totalhigh_pages();
72 
73 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
74 	return min_t(unsigned int, limit, 256*1024);
75 }
76 
77 /*
78  * Compute the number of hash buckets we need. Divide the max cachesize by
79  * the "target" max bucket size, and round up to next power of two.
80  */
81 static unsigned int
82 nfsd_hashsize(unsigned int limit)
83 {
84 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
85 }
86 
87 static u32
88 nfsd_cache_hash(__be32 xid, struct nfsd_net *nn)
89 {
90 	return hash_32(be32_to_cpu(xid), nn->maskbits);
91 }
92 
93 static struct svc_cacherep *
94 nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum,
95 			struct nfsd_net *nn)
96 {
97 	struct svc_cacherep	*rp;
98 
99 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
100 	if (rp) {
101 		rp->c_state = RC_UNUSED;
102 		rp->c_type = RC_NOCACHE;
103 		RB_CLEAR_NODE(&rp->c_node);
104 		INIT_LIST_HEAD(&rp->c_lru);
105 
106 		memset(&rp->c_key, 0, sizeof(rp->c_key));
107 		rp->c_key.k_xid = rqstp->rq_xid;
108 		rp->c_key.k_proc = rqstp->rq_proc;
109 		rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
110 		rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
111 		rp->c_key.k_prot = rqstp->rq_prot;
112 		rp->c_key.k_vers = rqstp->rq_vers;
113 		rp->c_key.k_len = rqstp->rq_arg.len;
114 		rp->c_key.k_csum = csum;
115 	}
116 	return rp;
117 }
118 
119 static void
120 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
121 				struct nfsd_net *nn)
122 {
123 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
124 		nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
125 		kfree(rp->c_replvec.iov_base);
126 	}
127 	if (rp->c_state != RC_UNUSED) {
128 		rb_erase(&rp->c_node, &b->rb_head);
129 		list_del(&rp->c_lru);
130 		atomic_dec(&nn->num_drc_entries);
131 		nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
132 	}
133 	kmem_cache_free(drc_slab, rp);
134 }
135 
136 static void
137 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
138 			struct nfsd_net *nn)
139 {
140 	spin_lock(&b->cache_lock);
141 	nfsd_reply_cache_free_locked(b, rp, nn);
142 	spin_unlock(&b->cache_lock);
143 }
144 
145 int nfsd_drc_slab_create(void)
146 {
147 	drc_slab = kmem_cache_create("nfsd_drc",
148 				sizeof(struct svc_cacherep), 0, 0, NULL);
149 	return drc_slab ? 0: -ENOMEM;
150 }
151 
152 void nfsd_drc_slab_free(void)
153 {
154 	kmem_cache_destroy(drc_slab);
155 }
156 
157 static int nfsd_reply_cache_stats_init(struct nfsd_net *nn)
158 {
159 	return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM);
160 }
161 
162 static void nfsd_reply_cache_stats_destroy(struct nfsd_net *nn)
163 {
164 	nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM);
165 }
166 
167 int nfsd_reply_cache_init(struct nfsd_net *nn)
168 {
169 	unsigned int hashsize;
170 	unsigned int i;
171 	int status = 0;
172 
173 	nn->max_drc_entries = nfsd_cache_size_limit();
174 	atomic_set(&nn->num_drc_entries, 0);
175 	hashsize = nfsd_hashsize(nn->max_drc_entries);
176 	nn->maskbits = ilog2(hashsize);
177 
178 	status = nfsd_reply_cache_stats_init(nn);
179 	if (status)
180 		goto out_nomem;
181 
182 	nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan;
183 	nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count;
184 	nn->nfsd_reply_cache_shrinker.seeks = 1;
185 	status = register_shrinker(&nn->nfsd_reply_cache_shrinker);
186 	if (status)
187 		goto out_stats_destroy;
188 
189 	nn->drc_hashtbl = kvzalloc(array_size(hashsize,
190 				sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
191 	if (!nn->drc_hashtbl)
192 		goto out_shrinker;
193 
194 	for (i = 0; i < hashsize; i++) {
195 		INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
196 		spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
197 	}
198 	nn->drc_hashsize = hashsize;
199 
200 	return 0;
201 out_shrinker:
202 	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
203 out_stats_destroy:
204 	nfsd_reply_cache_stats_destroy(nn);
205 out_nomem:
206 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
207 	return -ENOMEM;
208 }
209 
210 void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
211 {
212 	struct svc_cacherep	*rp;
213 	unsigned int i;
214 
215 	nfsd_reply_cache_stats_destroy(nn);
216 	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
217 
218 	for (i = 0; i < nn->drc_hashsize; i++) {
219 		struct list_head *head = &nn->drc_hashtbl[i].lru_head;
220 		while (!list_empty(head)) {
221 			rp = list_first_entry(head, struct svc_cacherep, c_lru);
222 			nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
223 									rp, nn);
224 		}
225 	}
226 
227 	kvfree(nn->drc_hashtbl);
228 	nn->drc_hashtbl = NULL;
229 	nn->drc_hashsize = 0;
230 
231 }
232 
233 /*
234  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
235  * not already scheduled.
236  */
237 static void
238 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
239 {
240 	rp->c_timestamp = jiffies;
241 	list_move_tail(&rp->c_lru, &b->lru_head);
242 }
243 
244 static long
245 prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn)
246 {
247 	struct svc_cacherep *rp, *tmp;
248 	long freed = 0;
249 
250 	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
251 		/*
252 		 * Don't free entries attached to calls that are still
253 		 * in-progress, but do keep scanning the list.
254 		 */
255 		if (rp->c_state == RC_INPROG)
256 			continue;
257 		if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
258 		    time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
259 			break;
260 		nfsd_reply_cache_free_locked(b, rp, nn);
261 		freed++;
262 	}
263 	return freed;
264 }
265 
266 /*
267  * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
268  * Also prune the oldest ones when the total exceeds the max number of entries.
269  */
270 static long
271 prune_cache_entries(struct nfsd_net *nn)
272 {
273 	unsigned int i;
274 	long freed = 0;
275 
276 	for (i = 0; i < nn->drc_hashsize; i++) {
277 		struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
278 
279 		if (list_empty(&b->lru_head))
280 			continue;
281 		spin_lock(&b->cache_lock);
282 		freed += prune_bucket(b, nn);
283 		spin_unlock(&b->cache_lock);
284 	}
285 	return freed;
286 }
287 
288 static unsigned long
289 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
290 {
291 	struct nfsd_net *nn = container_of(shrink,
292 				struct nfsd_net, nfsd_reply_cache_shrinker);
293 
294 	return atomic_read(&nn->num_drc_entries);
295 }
296 
297 static unsigned long
298 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
299 {
300 	struct nfsd_net *nn = container_of(shrink,
301 				struct nfsd_net, nfsd_reply_cache_shrinker);
302 
303 	return prune_cache_entries(nn);
304 }
305 /*
306  * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
307  */
308 static __wsum
309 nfsd_cache_csum(struct svc_rqst *rqstp)
310 {
311 	int idx;
312 	unsigned int base;
313 	__wsum csum;
314 	struct xdr_buf *buf = &rqstp->rq_arg;
315 	const unsigned char *p = buf->head[0].iov_base;
316 	size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
317 				RC_CSUMLEN);
318 	size_t len = min(buf->head[0].iov_len, csum_len);
319 
320 	/* rq_arg.head first */
321 	csum = csum_partial(p, len, 0);
322 	csum_len -= len;
323 
324 	/* Continue into page array */
325 	idx = buf->page_base / PAGE_SIZE;
326 	base = buf->page_base & ~PAGE_MASK;
327 	while (csum_len) {
328 		p = page_address(buf->pages[idx]) + base;
329 		len = min_t(size_t, PAGE_SIZE - base, csum_len);
330 		csum = csum_partial(p, len, csum);
331 		csum_len -= len;
332 		base = 0;
333 		++idx;
334 	}
335 	return csum;
336 }
337 
338 static int
339 nfsd_cache_key_cmp(const struct svc_cacherep *key,
340 			const struct svc_cacherep *rp, struct nfsd_net *nn)
341 {
342 	if (key->c_key.k_xid == rp->c_key.k_xid &&
343 	    key->c_key.k_csum != rp->c_key.k_csum) {
344 		nfsd_stats_payload_misses_inc(nn);
345 		trace_nfsd_drc_mismatch(nn, key, rp);
346 	}
347 
348 	return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
349 }
350 
351 /*
352  * Search the request hash for an entry that matches the given rqstp.
353  * Must be called with cache_lock held. Returns the found entry or
354  * inserts an empty key on failure.
355  */
356 static struct svc_cacherep *
357 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key,
358 			struct nfsd_net *nn)
359 {
360 	struct svc_cacherep	*rp, *ret = key;
361 	struct rb_node		**p = &b->rb_head.rb_node,
362 				*parent = NULL;
363 	unsigned int		entries = 0;
364 	int cmp;
365 
366 	while (*p != NULL) {
367 		++entries;
368 		parent = *p;
369 		rp = rb_entry(parent, struct svc_cacherep, c_node);
370 
371 		cmp = nfsd_cache_key_cmp(key, rp, nn);
372 		if (cmp < 0)
373 			p = &parent->rb_left;
374 		else if (cmp > 0)
375 			p = &parent->rb_right;
376 		else {
377 			ret = rp;
378 			goto out;
379 		}
380 	}
381 	rb_link_node(&key->c_node, parent, p);
382 	rb_insert_color(&key->c_node, &b->rb_head);
383 out:
384 	/* tally hash chain length stats */
385 	if (entries > nn->longest_chain) {
386 		nn->longest_chain = entries;
387 		nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
388 	} else if (entries == nn->longest_chain) {
389 		/* prefer to keep the smallest cachesize possible here */
390 		nn->longest_chain_cachesize = min_t(unsigned int,
391 				nn->longest_chain_cachesize,
392 				atomic_read(&nn->num_drc_entries));
393 	}
394 
395 	lru_put_end(b, ret);
396 	return ret;
397 }
398 
399 /**
400  * nfsd_cache_lookup - Find an entry in the duplicate reply cache
401  * @rqstp: Incoming Call to find
402  *
403  * Try to find an entry matching the current call in the cache. When none
404  * is found, we try to grab the oldest expired entry off the LRU list. If
405  * a suitable one isn't there, then drop the cache_lock and allocate a
406  * new one, then search again in case one got inserted while this thread
407  * didn't hold the lock.
408  *
409  * Return values:
410  *   %RC_DOIT: Process the request normally
411  *   %RC_REPLY: Reply from cache
412  *   %RC_DROPIT: Do not process the request further
413  */
414 int nfsd_cache_lookup(struct svc_rqst *rqstp)
415 {
416 	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
417 	struct svc_cacherep	*rp, *found;
418 	__be32			xid = rqstp->rq_xid;
419 	__wsum			csum;
420 	u32 hash = nfsd_cache_hash(xid, nn);
421 	struct nfsd_drc_bucket *b = &nn->drc_hashtbl[hash];
422 	int type = rqstp->rq_cachetype;
423 	int rtn = RC_DOIT;
424 
425 	rqstp->rq_cacherep = NULL;
426 	if (type == RC_NOCACHE) {
427 		nfsd_stats_rc_nocache_inc();
428 		goto out;
429 	}
430 
431 	csum = nfsd_cache_csum(rqstp);
432 
433 	/*
434 	 * Since the common case is a cache miss followed by an insert,
435 	 * preallocate an entry.
436 	 */
437 	rp = nfsd_reply_cache_alloc(rqstp, csum, nn);
438 	if (!rp)
439 		goto out;
440 
441 	spin_lock(&b->cache_lock);
442 	found = nfsd_cache_insert(b, rp, nn);
443 	if (found != rp) {
444 		nfsd_reply_cache_free_locked(NULL, rp, nn);
445 		rp = found;
446 		goto found_entry;
447 	}
448 
449 	nfsd_stats_rc_misses_inc();
450 	rqstp->rq_cacherep = rp;
451 	rp->c_state = RC_INPROG;
452 
453 	atomic_inc(&nn->num_drc_entries);
454 	nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
455 
456 	/* go ahead and prune the cache */
457 	prune_bucket(b, nn);
458 
459 out_unlock:
460 	spin_unlock(&b->cache_lock);
461 out:
462 	return rtn;
463 
464 found_entry:
465 	/* We found a matching entry which is either in progress or done. */
466 	nfsd_stats_rc_hits_inc();
467 	rtn = RC_DROPIT;
468 
469 	/* Request being processed */
470 	if (rp->c_state == RC_INPROG)
471 		goto out_trace;
472 
473 	/* From the hall of fame of impractical attacks:
474 	 * Is this a user who tries to snoop on the cache? */
475 	rtn = RC_DOIT;
476 	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
477 		goto out_trace;
478 
479 	/* Compose RPC reply header */
480 	switch (rp->c_type) {
481 	case RC_NOCACHE:
482 		break;
483 	case RC_REPLSTAT:
484 		svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
485 		rtn = RC_REPLY;
486 		break;
487 	case RC_REPLBUFF:
488 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
489 			goto out_unlock; /* should not happen */
490 		rtn = RC_REPLY;
491 		break;
492 	default:
493 		WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
494 	}
495 
496 out_trace:
497 	trace_nfsd_drc_found(nn, rqstp, rtn);
498 	goto out_unlock;
499 }
500 
501 /**
502  * nfsd_cache_update - Update an entry in the duplicate reply cache.
503  * @rqstp: svc_rqst with a finished Reply
504  * @cachetype: which cache to update
505  * @statp: Reply's status code
506  *
507  * This is called from nfsd_dispatch when the procedure has been
508  * executed and the complete reply is in rqstp->rq_res.
509  *
510  * We're copying around data here rather than swapping buffers because
511  * the toplevel loop requires max-sized buffers, which would be a waste
512  * of memory for a cache with a max reply size of 100 bytes (diropokres).
513  *
514  * If we should start to use different types of cache entries tailored
515  * specifically for attrstat and fh's, we may save even more space.
516  *
517  * Also note that a cachetype of RC_NOCACHE can legally be passed when
518  * nfsd failed to encode a reply that otherwise would have been cached.
519  * In this case, nfsd_cache_update is called with statp == NULL.
520  */
521 void nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
522 {
523 	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
524 	struct svc_cacherep *rp = rqstp->rq_cacherep;
525 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
526 	u32		hash;
527 	struct nfsd_drc_bucket *b;
528 	int		len;
529 	size_t		bufsize = 0;
530 
531 	if (!rp)
532 		return;
533 
534 	hash = nfsd_cache_hash(rp->c_key.k_xid, nn);
535 	b = &nn->drc_hashtbl[hash];
536 
537 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
538 	len >>= 2;
539 
540 	/* Don't cache excessive amounts of data and XDR failures */
541 	if (!statp || len > (256 >> 2)) {
542 		nfsd_reply_cache_free(b, rp, nn);
543 		return;
544 	}
545 
546 	switch (cachetype) {
547 	case RC_REPLSTAT:
548 		if (len != 1)
549 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
550 		rp->c_replstat = *statp;
551 		break;
552 	case RC_REPLBUFF:
553 		cachv = &rp->c_replvec;
554 		bufsize = len << 2;
555 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
556 		if (!cachv->iov_base) {
557 			nfsd_reply_cache_free(b, rp, nn);
558 			return;
559 		}
560 		cachv->iov_len = bufsize;
561 		memcpy(cachv->iov_base, statp, bufsize);
562 		break;
563 	case RC_NOCACHE:
564 		nfsd_reply_cache_free(b, rp, nn);
565 		return;
566 	}
567 	spin_lock(&b->cache_lock);
568 	nfsd_stats_drc_mem_usage_add(nn, bufsize);
569 	lru_put_end(b, rp);
570 	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
571 	rp->c_type = cachetype;
572 	rp->c_state = RC_DONE;
573 	spin_unlock(&b->cache_lock);
574 	return;
575 }
576 
577 /*
578  * Copy cached reply to current reply buffer. Should always fit.
579  * FIXME as reply is in a page, we should just attach the page, and
580  * keep a refcount....
581  */
582 static int
583 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
584 {
585 	struct kvec	*vec = &rqstp->rq_res.head[0];
586 
587 	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
588 		printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
589 				data->iov_len);
590 		return 0;
591 	}
592 	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
593 	vec->iov_len += data->iov_len;
594 	return 1;
595 }
596 
597 /*
598  * Note that fields may be added, removed or reordered in the future. Programs
599  * scraping this file for info should test the labels to ensure they're
600  * getting the correct field.
601  */
602 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
603 {
604 	struct nfsd_net *nn = m->private;
605 
606 	seq_printf(m, "max entries:           %u\n", nn->max_drc_entries);
607 	seq_printf(m, "num entries:           %u\n",
608 		   atomic_read(&nn->num_drc_entries));
609 	seq_printf(m, "hash buckets:          %u\n", 1 << nn->maskbits);
610 	seq_printf(m, "mem usage:             %lld\n",
611 		   percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE]));
612 	seq_printf(m, "cache hits:            %lld\n",
613 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS]));
614 	seq_printf(m, "cache misses:          %lld\n",
615 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES]));
616 	seq_printf(m, "not cached:            %lld\n",
617 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE]));
618 	seq_printf(m, "payload misses:        %lld\n",
619 		   percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES]));
620 	seq_printf(m, "longest chain len:     %u\n", nn->longest_chain);
621 	seq_printf(m, "cachesize at longest:  %u\n", nn->longest_chain_cachesize);
622 	return 0;
623 }
624 
625 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
626 {
627 	struct nfsd_net *nn = net_generic(file_inode(file)->i_sb->s_fs_info,
628 								nfsd_net_id);
629 
630 	return single_open(file, nfsd_reply_cache_stats_show, nn);
631 }
632