1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Request reply cache. This is currently a global cache, but this may 4 * change in the future and be a per-client cache. 5 * 6 * This code is heavily inspired by the 44BSD implementation, although 7 * it does things a bit differently. 8 * 9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 10 */ 11 12 #include <linux/sunrpc/svc_xprt.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/sunrpc/addr.h> 16 #include <linux/highmem.h> 17 #include <linux/log2.h> 18 #include <linux/hash.h> 19 #include <net/checksum.h> 20 21 #include "nfsd.h" 22 #include "cache.h" 23 #include "trace.h" 24 25 /* 26 * We use this value to determine the number of hash buckets from the max 27 * cache size, the idea being that when the cache is at its maximum number 28 * of entries, then this should be the average number of entries per bucket. 29 */ 30 #define TARGET_BUCKET_SIZE 64 31 32 struct nfsd_drc_bucket { 33 struct rb_root rb_head; 34 struct list_head lru_head; 35 spinlock_t cache_lock; 36 }; 37 38 static struct kmem_cache *drc_slab; 39 40 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); 41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink, 42 struct shrink_control *sc); 43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink, 44 struct shrink_control *sc); 45 46 /* 47 * Put a cap on the size of the DRC based on the amount of available 48 * low memory in the machine. 49 * 50 * 64MB: 8192 51 * 128MB: 11585 52 * 256MB: 16384 53 * 512MB: 23170 54 * 1GB: 32768 55 * 2GB: 46340 56 * 4GB: 65536 57 * 8GB: 92681 58 * 16GB: 131072 59 * 60 * ...with a hard cap of 256k entries. In the worst case, each entry will be 61 * ~1k, so the above numbers should give a rough max of the amount of memory 62 * used in k. 63 * 64 * XXX: these limits are per-container, so memory used will increase 65 * linearly with number of containers. Maybe that's OK. 66 */ 67 static unsigned int 68 nfsd_cache_size_limit(void) 69 { 70 unsigned int limit; 71 unsigned long low_pages = totalram_pages() - totalhigh_pages(); 72 73 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); 74 return min_t(unsigned int, limit, 256*1024); 75 } 76 77 /* 78 * Compute the number of hash buckets we need. Divide the max cachesize by 79 * the "target" max bucket size, and round up to next power of two. 80 */ 81 static unsigned int 82 nfsd_hashsize(unsigned int limit) 83 { 84 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE); 85 } 86 87 static struct nfsd_cacherep * 88 nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum, 89 struct nfsd_net *nn) 90 { 91 struct nfsd_cacherep *rp; 92 93 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); 94 if (rp) { 95 rp->c_state = RC_UNUSED; 96 rp->c_type = RC_NOCACHE; 97 RB_CLEAR_NODE(&rp->c_node); 98 INIT_LIST_HEAD(&rp->c_lru); 99 100 memset(&rp->c_key, 0, sizeof(rp->c_key)); 101 rp->c_key.k_xid = rqstp->rq_xid; 102 rp->c_key.k_proc = rqstp->rq_proc; 103 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp)); 104 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp))); 105 rp->c_key.k_prot = rqstp->rq_prot; 106 rp->c_key.k_vers = rqstp->rq_vers; 107 rp->c_key.k_len = rqstp->rq_arg.len; 108 rp->c_key.k_csum = csum; 109 } 110 return rp; 111 } 112 113 static void nfsd_cacherep_free(struct nfsd_cacherep *rp) 114 { 115 if (rp->c_type == RC_REPLBUFF) 116 kfree(rp->c_replvec.iov_base); 117 kmem_cache_free(drc_slab, rp); 118 } 119 120 static unsigned long 121 nfsd_cacherep_dispose(struct list_head *dispose) 122 { 123 struct nfsd_cacherep *rp; 124 unsigned long freed = 0; 125 126 while (!list_empty(dispose)) { 127 rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru); 128 list_del(&rp->c_lru); 129 nfsd_cacherep_free(rp); 130 freed++; 131 } 132 return freed; 133 } 134 135 static void 136 nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b, 137 struct nfsd_cacherep *rp) 138 { 139 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) 140 nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len); 141 if (rp->c_state != RC_UNUSED) { 142 rb_erase(&rp->c_node, &b->rb_head); 143 list_del(&rp->c_lru); 144 atomic_dec(&nn->num_drc_entries); 145 nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp)); 146 } 147 } 148 149 static void 150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp, 151 struct nfsd_net *nn) 152 { 153 nfsd_cacherep_unlink_locked(nn, b, rp); 154 nfsd_cacherep_free(rp); 155 } 156 157 static void 158 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp, 159 struct nfsd_net *nn) 160 { 161 spin_lock(&b->cache_lock); 162 nfsd_cacherep_unlink_locked(nn, b, rp); 163 spin_unlock(&b->cache_lock); 164 nfsd_cacherep_free(rp); 165 } 166 167 int nfsd_drc_slab_create(void) 168 { 169 drc_slab = kmem_cache_create("nfsd_drc", 170 sizeof(struct nfsd_cacherep), 0, 0, NULL); 171 return drc_slab ? 0: -ENOMEM; 172 } 173 174 void nfsd_drc_slab_free(void) 175 { 176 kmem_cache_destroy(drc_slab); 177 } 178 179 /** 180 * nfsd_net_reply_cache_init - per net namespace reply cache set-up 181 * @nn: nfsd_net being initialized 182 * 183 * Returns zero on succes; otherwise a negative errno is returned. 184 */ 185 int nfsd_net_reply_cache_init(struct nfsd_net *nn) 186 { 187 return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM); 188 } 189 190 /** 191 * nfsd_net_reply_cache_destroy - per net namespace reply cache tear-down 192 * @nn: nfsd_net being freed 193 * 194 */ 195 void nfsd_net_reply_cache_destroy(struct nfsd_net *nn) 196 { 197 nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM); 198 } 199 200 int nfsd_reply_cache_init(struct nfsd_net *nn) 201 { 202 unsigned int hashsize; 203 unsigned int i; 204 int status = 0; 205 206 nn->max_drc_entries = nfsd_cache_size_limit(); 207 atomic_set(&nn->num_drc_entries, 0); 208 hashsize = nfsd_hashsize(nn->max_drc_entries); 209 nn->maskbits = ilog2(hashsize); 210 211 nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan; 212 nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count; 213 nn->nfsd_reply_cache_shrinker.seeks = 1; 214 status = register_shrinker(&nn->nfsd_reply_cache_shrinker, 215 "nfsd-reply:%s", nn->nfsd_name); 216 if (status) 217 return status; 218 219 nn->drc_hashtbl = kvzalloc(array_size(hashsize, 220 sizeof(*nn->drc_hashtbl)), GFP_KERNEL); 221 if (!nn->drc_hashtbl) 222 goto out_shrinker; 223 224 for (i = 0; i < hashsize; i++) { 225 INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head); 226 spin_lock_init(&nn->drc_hashtbl[i].cache_lock); 227 } 228 nn->drc_hashsize = hashsize; 229 230 return 0; 231 out_shrinker: 232 unregister_shrinker(&nn->nfsd_reply_cache_shrinker); 233 printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); 234 return -ENOMEM; 235 } 236 237 void nfsd_reply_cache_shutdown(struct nfsd_net *nn) 238 { 239 struct nfsd_cacherep *rp; 240 unsigned int i; 241 242 unregister_shrinker(&nn->nfsd_reply_cache_shrinker); 243 244 for (i = 0; i < nn->drc_hashsize; i++) { 245 struct list_head *head = &nn->drc_hashtbl[i].lru_head; 246 while (!list_empty(head)) { 247 rp = list_first_entry(head, struct nfsd_cacherep, c_lru); 248 nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i], 249 rp, nn); 250 } 251 } 252 253 kvfree(nn->drc_hashtbl); 254 nn->drc_hashtbl = NULL; 255 nn->drc_hashsize = 0; 256 257 } 258 259 /* 260 * Move cache entry to end of LRU list, and queue the cleaner to run if it's 261 * not already scheduled. 262 */ 263 static void 264 lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp) 265 { 266 rp->c_timestamp = jiffies; 267 list_move_tail(&rp->c_lru, &b->lru_head); 268 } 269 270 static noinline struct nfsd_drc_bucket * 271 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn) 272 { 273 unsigned int hash = hash_32((__force u32)xid, nn->maskbits); 274 275 return &nn->drc_hashtbl[hash]; 276 } 277 278 /* 279 * Remove and return no more than @max expired entries in bucket @b. 280 * If @max is zero, do not limit the number of removed entries. 281 */ 282 static void 283 nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b, 284 unsigned int max, struct list_head *dispose) 285 { 286 unsigned long expiry = jiffies - RC_EXPIRE; 287 struct nfsd_cacherep *rp, *tmp; 288 unsigned int freed = 0; 289 290 lockdep_assert_held(&b->cache_lock); 291 292 /* The bucket LRU is ordered oldest-first. */ 293 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) { 294 /* 295 * Don't free entries attached to calls that are still 296 * in-progress, but do keep scanning the list. 297 */ 298 if (rp->c_state == RC_INPROG) 299 continue; 300 301 if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries && 302 time_before(expiry, rp->c_timestamp)) 303 break; 304 305 nfsd_cacherep_unlink_locked(nn, b, rp); 306 list_add(&rp->c_lru, dispose); 307 308 if (max && ++freed > max) 309 break; 310 } 311 } 312 313 /** 314 * nfsd_reply_cache_count - count_objects method for the DRC shrinker 315 * @shrink: our registered shrinker context 316 * @sc: garbage collection parameters 317 * 318 * Returns the total number of entries in the duplicate reply cache. To 319 * keep things simple and quick, this is not the number of expired entries 320 * in the cache (ie, the number that would be removed by a call to 321 * nfsd_reply_cache_scan). 322 */ 323 static unsigned long 324 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc) 325 { 326 struct nfsd_net *nn = container_of(shrink, 327 struct nfsd_net, nfsd_reply_cache_shrinker); 328 329 return atomic_read(&nn->num_drc_entries); 330 } 331 332 /** 333 * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker 334 * @shrink: our registered shrinker context 335 * @sc: garbage collection parameters 336 * 337 * Free expired entries on each bucket's LRU list until we've released 338 * nr_to_scan freed objects. Nothing will be released if the cache 339 * has not exceeded it's max_drc_entries limit. 340 * 341 * Returns the number of entries released by this call. 342 */ 343 static unsigned long 344 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 345 { 346 struct nfsd_net *nn = container_of(shrink, 347 struct nfsd_net, nfsd_reply_cache_shrinker); 348 unsigned long freed = 0; 349 LIST_HEAD(dispose); 350 unsigned int i; 351 352 for (i = 0; i < nn->drc_hashsize; i++) { 353 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i]; 354 355 if (list_empty(&b->lru_head)) 356 continue; 357 358 spin_lock(&b->cache_lock); 359 nfsd_prune_bucket_locked(nn, b, 0, &dispose); 360 spin_unlock(&b->cache_lock); 361 362 freed += nfsd_cacherep_dispose(&dispose); 363 if (freed > sc->nr_to_scan) 364 break; 365 } 366 367 trace_nfsd_drc_gc(nn, freed); 368 return freed; 369 } 370 371 /** 372 * nfsd_cache_csum - Checksum incoming NFS Call arguments 373 * @buf: buffer containing a whole RPC Call message 374 * @start: starting byte of the NFS Call header 375 * @remaining: size of the NFS Call header, in bytes 376 * 377 * Compute a weak checksum of the leading bytes of an NFS procedure 378 * call header to help verify that a retransmitted Call matches an 379 * entry in the duplicate reply cache. 380 * 381 * To avoid assumptions about how the RPC message is laid out in 382 * @buf and what else it might contain (eg, a GSS MIC suffix), the 383 * caller passes us the exact location and length of the NFS Call 384 * header. 385 * 386 * Returns a 32-bit checksum value, as defined in RFC 793. 387 */ 388 static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start, 389 unsigned int remaining) 390 { 391 unsigned int base, len; 392 struct xdr_buf subbuf; 393 __wsum csum = 0; 394 void *p; 395 int idx; 396 397 if (remaining > RC_CSUMLEN) 398 remaining = RC_CSUMLEN; 399 if (xdr_buf_subsegment(buf, &subbuf, start, remaining)) 400 return csum; 401 402 /* rq_arg.head first */ 403 if (subbuf.head[0].iov_len) { 404 len = min_t(unsigned int, subbuf.head[0].iov_len, remaining); 405 csum = csum_partial(subbuf.head[0].iov_base, len, csum); 406 remaining -= len; 407 } 408 409 /* Continue into page array */ 410 idx = subbuf.page_base / PAGE_SIZE; 411 base = subbuf.page_base & ~PAGE_MASK; 412 while (remaining) { 413 p = page_address(subbuf.pages[idx]) + base; 414 len = min_t(unsigned int, PAGE_SIZE - base, remaining); 415 csum = csum_partial(p, len, csum); 416 remaining -= len; 417 base = 0; 418 ++idx; 419 } 420 return csum; 421 } 422 423 static int 424 nfsd_cache_key_cmp(const struct nfsd_cacherep *key, 425 const struct nfsd_cacherep *rp, struct nfsd_net *nn) 426 { 427 if (key->c_key.k_xid == rp->c_key.k_xid && 428 key->c_key.k_csum != rp->c_key.k_csum) { 429 nfsd_stats_payload_misses_inc(nn); 430 trace_nfsd_drc_mismatch(nn, key, rp); 431 } 432 433 return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key)); 434 } 435 436 /* 437 * Search the request hash for an entry that matches the given rqstp. 438 * Must be called with cache_lock held. Returns the found entry or 439 * inserts an empty key on failure. 440 */ 441 static struct nfsd_cacherep * 442 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key, 443 struct nfsd_net *nn) 444 { 445 struct nfsd_cacherep *rp, *ret = key; 446 struct rb_node **p = &b->rb_head.rb_node, 447 *parent = NULL; 448 unsigned int entries = 0; 449 int cmp; 450 451 while (*p != NULL) { 452 ++entries; 453 parent = *p; 454 rp = rb_entry(parent, struct nfsd_cacherep, c_node); 455 456 cmp = nfsd_cache_key_cmp(key, rp, nn); 457 if (cmp < 0) 458 p = &parent->rb_left; 459 else if (cmp > 0) 460 p = &parent->rb_right; 461 else { 462 ret = rp; 463 goto out; 464 } 465 } 466 rb_link_node(&key->c_node, parent, p); 467 rb_insert_color(&key->c_node, &b->rb_head); 468 out: 469 /* tally hash chain length stats */ 470 if (entries > nn->longest_chain) { 471 nn->longest_chain = entries; 472 nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries); 473 } else if (entries == nn->longest_chain) { 474 /* prefer to keep the smallest cachesize possible here */ 475 nn->longest_chain_cachesize = min_t(unsigned int, 476 nn->longest_chain_cachesize, 477 atomic_read(&nn->num_drc_entries)); 478 } 479 480 lru_put_end(b, ret); 481 return ret; 482 } 483 484 /** 485 * nfsd_cache_lookup - Find an entry in the duplicate reply cache 486 * @rqstp: Incoming Call to find 487 * @start: starting byte in @rqstp->rq_arg of the NFS Call header 488 * @len: size of the NFS Call header, in bytes 489 * @cacherep: OUT: DRC entry for this request 490 * 491 * Try to find an entry matching the current call in the cache. When none 492 * is found, we try to grab the oldest expired entry off the LRU list. If 493 * a suitable one isn't there, then drop the cache_lock and allocate a 494 * new one, then search again in case one got inserted while this thread 495 * didn't hold the lock. 496 * 497 * Return values: 498 * %RC_DOIT: Process the request normally 499 * %RC_REPLY: Reply from cache 500 * %RC_DROPIT: Do not process the request further 501 */ 502 int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start, 503 unsigned int len, struct nfsd_cacherep **cacherep) 504 { 505 struct nfsd_net *nn; 506 struct nfsd_cacherep *rp, *found; 507 __wsum csum; 508 struct nfsd_drc_bucket *b; 509 int type = rqstp->rq_cachetype; 510 unsigned long freed; 511 LIST_HEAD(dispose); 512 int rtn = RC_DOIT; 513 514 if (type == RC_NOCACHE) { 515 nfsd_stats_rc_nocache_inc(); 516 goto out; 517 } 518 519 csum = nfsd_cache_csum(&rqstp->rq_arg, start, len); 520 521 /* 522 * Since the common case is a cache miss followed by an insert, 523 * preallocate an entry. 524 */ 525 nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 526 rp = nfsd_cacherep_alloc(rqstp, csum, nn); 527 if (!rp) 528 goto out; 529 530 b = nfsd_cache_bucket_find(rqstp->rq_xid, nn); 531 spin_lock(&b->cache_lock); 532 found = nfsd_cache_insert(b, rp, nn); 533 if (found != rp) 534 goto found_entry; 535 *cacherep = rp; 536 rp->c_state = RC_INPROG; 537 nfsd_prune_bucket_locked(nn, b, 3, &dispose); 538 spin_unlock(&b->cache_lock); 539 540 freed = nfsd_cacherep_dispose(&dispose); 541 trace_nfsd_drc_gc(nn, freed); 542 543 nfsd_stats_rc_misses_inc(); 544 atomic_inc(&nn->num_drc_entries); 545 nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp)); 546 goto out; 547 548 found_entry: 549 /* We found a matching entry which is either in progress or done. */ 550 nfsd_reply_cache_free_locked(NULL, rp, nn); 551 nfsd_stats_rc_hits_inc(); 552 rtn = RC_DROPIT; 553 rp = found; 554 555 /* Request being processed */ 556 if (rp->c_state == RC_INPROG) 557 goto out_trace; 558 559 /* From the hall of fame of impractical attacks: 560 * Is this a user who tries to snoop on the cache? */ 561 rtn = RC_DOIT; 562 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure) 563 goto out_trace; 564 565 /* Compose RPC reply header */ 566 switch (rp->c_type) { 567 case RC_NOCACHE: 568 break; 569 case RC_REPLSTAT: 570 xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat); 571 rtn = RC_REPLY; 572 break; 573 case RC_REPLBUFF: 574 if (!nfsd_cache_append(rqstp, &rp->c_replvec)) 575 goto out_unlock; /* should not happen */ 576 rtn = RC_REPLY; 577 break; 578 default: 579 WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type); 580 } 581 582 out_trace: 583 trace_nfsd_drc_found(nn, rqstp, rtn); 584 out_unlock: 585 spin_unlock(&b->cache_lock); 586 out: 587 return rtn; 588 } 589 590 /** 591 * nfsd_cache_update - Update an entry in the duplicate reply cache. 592 * @rqstp: svc_rqst with a finished Reply 593 * @rp: IN: DRC entry for this request 594 * @cachetype: which cache to update 595 * @statp: pointer to Reply's NFS status code, or NULL 596 * 597 * This is called from nfsd_dispatch when the procedure has been 598 * executed and the complete reply is in rqstp->rq_res. 599 * 600 * We're copying around data here rather than swapping buffers because 601 * the toplevel loop requires max-sized buffers, which would be a waste 602 * of memory for a cache with a max reply size of 100 bytes (diropokres). 603 * 604 * If we should start to use different types of cache entries tailored 605 * specifically for attrstat and fh's, we may save even more space. 606 * 607 * Also note that a cachetype of RC_NOCACHE can legally be passed when 608 * nfsd failed to encode a reply that otherwise would have been cached. 609 * In this case, nfsd_cache_update is called with statp == NULL. 610 */ 611 void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp, 612 int cachetype, __be32 *statp) 613 { 614 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 615 struct kvec *resv = &rqstp->rq_res.head[0], *cachv; 616 struct nfsd_drc_bucket *b; 617 int len; 618 size_t bufsize = 0; 619 620 if (!rp) 621 return; 622 623 b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn); 624 625 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); 626 len >>= 2; 627 628 /* Don't cache excessive amounts of data and XDR failures */ 629 if (!statp || len > (256 >> 2)) { 630 nfsd_reply_cache_free(b, rp, nn); 631 return; 632 } 633 634 switch (cachetype) { 635 case RC_REPLSTAT: 636 if (len != 1) 637 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); 638 rp->c_replstat = *statp; 639 break; 640 case RC_REPLBUFF: 641 cachv = &rp->c_replvec; 642 bufsize = len << 2; 643 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL); 644 if (!cachv->iov_base) { 645 nfsd_reply_cache_free(b, rp, nn); 646 return; 647 } 648 cachv->iov_len = bufsize; 649 memcpy(cachv->iov_base, statp, bufsize); 650 break; 651 case RC_NOCACHE: 652 nfsd_reply_cache_free(b, rp, nn); 653 return; 654 } 655 spin_lock(&b->cache_lock); 656 nfsd_stats_drc_mem_usage_add(nn, bufsize); 657 lru_put_end(b, rp); 658 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags); 659 rp->c_type = cachetype; 660 rp->c_state = RC_DONE; 661 spin_unlock(&b->cache_lock); 662 return; 663 } 664 665 static int 666 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) 667 { 668 __be32 *p; 669 670 p = xdr_reserve_space(&rqstp->rq_res_stream, data->iov_len); 671 if (unlikely(!p)) 672 return false; 673 memcpy(p, data->iov_base, data->iov_len); 674 xdr_commit_encode(&rqstp->rq_res_stream); 675 return true; 676 } 677 678 /* 679 * Note that fields may be added, removed or reordered in the future. Programs 680 * scraping this file for info should test the labels to ensure they're 681 * getting the correct field. 682 */ 683 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v) 684 { 685 struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info, 686 nfsd_net_id); 687 688 seq_printf(m, "max entries: %u\n", nn->max_drc_entries); 689 seq_printf(m, "num entries: %u\n", 690 atomic_read(&nn->num_drc_entries)); 691 seq_printf(m, "hash buckets: %u\n", 1 << nn->maskbits); 692 seq_printf(m, "mem usage: %lld\n", 693 percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE])); 694 seq_printf(m, "cache hits: %lld\n", 695 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS])); 696 seq_printf(m, "cache misses: %lld\n", 697 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES])); 698 seq_printf(m, "not cached: %lld\n", 699 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE])); 700 seq_printf(m, "payload misses: %lld\n", 701 percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES])); 702 seq_printf(m, "longest chain len: %u\n", nn->longest_chain); 703 seq_printf(m, "cachesize at longest: %u\n", nn->longest_chain_cachesize); 704 return 0; 705 } 706