xref: /openbmc/linux/fs/nfsd/nfscache.c (revision 77d84ff8)
1 /*
2  * Request reply cache. This is currently a global cache, but this may
3  * change in the future and be a per-client cache.
4  *
5  * This code is heavily inspired by the 44BSD implementation, although
6  * it does things a bit differently.
7  *
8  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
9  */
10 
11 #include <linux/slab.h>
12 #include <linux/sunrpc/addr.h>
13 #include <linux/highmem.h>
14 #include <linux/log2.h>
15 #include <linux/hash.h>
16 #include <net/checksum.h>
17 
18 #include "nfsd.h"
19 #include "cache.h"
20 
21 #define NFSDDBG_FACILITY	NFSDDBG_REPCACHE
22 
23 /*
24  * We use this value to determine the number of hash buckets from the max
25  * cache size, the idea being that when the cache is at its maximum number
26  * of entries, then this should be the average number of entries per bucket.
27  */
28 #define TARGET_BUCKET_SIZE	64
29 
30 static struct hlist_head *	cache_hash;
31 static struct list_head 	lru_head;
32 static struct kmem_cache	*drc_slab;
33 
34 /* max number of entries allowed in the cache */
35 static unsigned int		max_drc_entries;
36 
37 /* number of significant bits in the hash value */
38 static unsigned int		maskbits;
39 
40 /*
41  * Stats and other tracking of on the duplicate reply cache. All of these and
42  * the "rc" fields in nfsdstats are protected by the cache_lock
43  */
44 
45 /* total number of entries */
46 static unsigned int		num_drc_entries;
47 
48 /* cache misses due only to checksum comparison failures */
49 static unsigned int		payload_misses;
50 
51 /* amount of memory (in bytes) currently consumed by the DRC */
52 static unsigned int		drc_mem_usage;
53 
54 /* longest hash chain seen */
55 static unsigned int		longest_chain;
56 
57 /* size of cache when we saw the longest hash chain */
58 static unsigned int		longest_chain_cachesize;
59 
60 static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
61 static void	cache_cleaner_func(struct work_struct *unused);
62 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
63 					    struct shrink_control *sc);
64 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
65 					   struct shrink_control *sc);
66 
67 static struct shrinker nfsd_reply_cache_shrinker = {
68 	.scan_objects = nfsd_reply_cache_scan,
69 	.count_objects = nfsd_reply_cache_count,
70 	.seeks	= 1,
71 };
72 
73 /*
74  * locking for the reply cache:
75  * A cache entry is "single use" if c_state == RC_INPROG
76  * Otherwise, it when accessing _prev or _next, the lock must be held.
77  */
78 static DEFINE_SPINLOCK(cache_lock);
79 static DECLARE_DELAYED_WORK(cache_cleaner, cache_cleaner_func);
80 
81 /*
82  * Put a cap on the size of the DRC based on the amount of available
83  * low memory in the machine.
84  *
85  *  64MB:    8192
86  * 128MB:   11585
87  * 256MB:   16384
88  * 512MB:   23170
89  *   1GB:   32768
90  *   2GB:   46340
91  *   4GB:   65536
92  *   8GB:   92681
93  *  16GB:  131072
94  *
95  * ...with a hard cap of 256k entries. In the worst case, each entry will be
96  * ~1k, so the above numbers should give a rough max of the amount of memory
97  * used in k.
98  */
99 static unsigned int
100 nfsd_cache_size_limit(void)
101 {
102 	unsigned int limit;
103 	unsigned long low_pages = totalram_pages - totalhigh_pages;
104 
105 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
106 	return min_t(unsigned int, limit, 256*1024);
107 }
108 
109 /*
110  * Compute the number of hash buckets we need. Divide the max cachesize by
111  * the "target" max bucket size, and round up to next power of two.
112  */
113 static unsigned int
114 nfsd_hashsize(unsigned int limit)
115 {
116 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
117 }
118 
119 static struct svc_cacherep *
120 nfsd_reply_cache_alloc(void)
121 {
122 	struct svc_cacherep	*rp;
123 
124 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
125 	if (rp) {
126 		rp->c_state = RC_UNUSED;
127 		rp->c_type = RC_NOCACHE;
128 		INIT_LIST_HEAD(&rp->c_lru);
129 		INIT_HLIST_NODE(&rp->c_hash);
130 	}
131 	return rp;
132 }
133 
134 static void
135 nfsd_reply_cache_unhash(struct svc_cacherep *rp)
136 {
137 	hlist_del_init(&rp->c_hash);
138 	list_del_init(&rp->c_lru);
139 }
140 
141 static void
142 nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
143 {
144 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
145 		drc_mem_usage -= rp->c_replvec.iov_len;
146 		kfree(rp->c_replvec.iov_base);
147 	}
148 	if (!hlist_unhashed(&rp->c_hash))
149 		hlist_del(&rp->c_hash);
150 	list_del(&rp->c_lru);
151 	--num_drc_entries;
152 	drc_mem_usage -= sizeof(*rp);
153 	kmem_cache_free(drc_slab, rp);
154 }
155 
156 static void
157 nfsd_reply_cache_free(struct svc_cacherep *rp)
158 {
159 	spin_lock(&cache_lock);
160 	nfsd_reply_cache_free_locked(rp);
161 	spin_unlock(&cache_lock);
162 }
163 
164 int nfsd_reply_cache_init(void)
165 {
166 	unsigned int hashsize;
167 
168 	INIT_LIST_HEAD(&lru_head);
169 	max_drc_entries = nfsd_cache_size_limit();
170 	num_drc_entries = 0;
171 	hashsize = nfsd_hashsize(max_drc_entries);
172 	maskbits = ilog2(hashsize);
173 
174 	register_shrinker(&nfsd_reply_cache_shrinker);
175 	drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
176 					0, 0, NULL);
177 	if (!drc_slab)
178 		goto out_nomem;
179 
180 	cache_hash = kcalloc(hashsize, sizeof(struct hlist_head), GFP_KERNEL);
181 	if (!cache_hash)
182 		goto out_nomem;
183 
184 	return 0;
185 out_nomem:
186 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
187 	nfsd_reply_cache_shutdown();
188 	return -ENOMEM;
189 }
190 
191 void nfsd_reply_cache_shutdown(void)
192 {
193 	struct svc_cacherep	*rp;
194 
195 	unregister_shrinker(&nfsd_reply_cache_shrinker);
196 	cancel_delayed_work_sync(&cache_cleaner);
197 
198 	while (!list_empty(&lru_head)) {
199 		rp = list_entry(lru_head.next, struct svc_cacherep, c_lru);
200 		nfsd_reply_cache_free_locked(rp);
201 	}
202 
203 	kfree (cache_hash);
204 	cache_hash = NULL;
205 
206 	if (drc_slab) {
207 		kmem_cache_destroy(drc_slab);
208 		drc_slab = NULL;
209 	}
210 }
211 
212 /*
213  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
214  * not already scheduled.
215  */
216 static void
217 lru_put_end(struct svc_cacherep *rp)
218 {
219 	rp->c_timestamp = jiffies;
220 	list_move_tail(&rp->c_lru, &lru_head);
221 	schedule_delayed_work(&cache_cleaner, RC_EXPIRE);
222 }
223 
224 /*
225  * Move a cache entry from one hash list to another
226  */
227 static void
228 hash_refile(struct svc_cacherep *rp)
229 {
230 	hlist_del_init(&rp->c_hash);
231 	hlist_add_head(&rp->c_hash, cache_hash + hash_32(rp->c_xid, maskbits));
232 }
233 
234 static inline bool
235 nfsd_cache_entry_expired(struct svc_cacherep *rp)
236 {
237 	return rp->c_state != RC_INPROG &&
238 	       time_after(jiffies, rp->c_timestamp + RC_EXPIRE);
239 }
240 
241 /*
242  * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
243  * Also prune the oldest ones when the total exceeds the max number of entries.
244  */
245 static long
246 prune_cache_entries(void)
247 {
248 	struct svc_cacherep *rp, *tmp;
249 	long freed = 0;
250 
251 	list_for_each_entry_safe(rp, tmp, &lru_head, c_lru) {
252 		if (!nfsd_cache_entry_expired(rp) &&
253 		    num_drc_entries <= max_drc_entries)
254 			break;
255 		nfsd_reply_cache_free_locked(rp);
256 		freed++;
257 	}
258 
259 	/*
260 	 * Conditionally rearm the job. If we cleaned out the list, then
261 	 * cancel any pending run (since there won't be any work to do).
262 	 * Otherwise, we rearm the job or modify the existing one to run in
263 	 * RC_EXPIRE since we just ran the pruner.
264 	 */
265 	if (list_empty(&lru_head))
266 		cancel_delayed_work(&cache_cleaner);
267 	else
268 		mod_delayed_work(system_wq, &cache_cleaner, RC_EXPIRE);
269 	return freed;
270 }
271 
272 static void
273 cache_cleaner_func(struct work_struct *unused)
274 {
275 	spin_lock(&cache_lock);
276 	prune_cache_entries();
277 	spin_unlock(&cache_lock);
278 }
279 
280 static unsigned long
281 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
282 {
283 	unsigned long num;
284 
285 	spin_lock(&cache_lock);
286 	num = num_drc_entries;
287 	spin_unlock(&cache_lock);
288 
289 	return num;
290 }
291 
292 static unsigned long
293 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
294 {
295 	unsigned long freed;
296 
297 	spin_lock(&cache_lock);
298 	freed = prune_cache_entries();
299 	spin_unlock(&cache_lock);
300 	return freed;
301 }
302 /*
303  * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
304  */
305 static __wsum
306 nfsd_cache_csum(struct svc_rqst *rqstp)
307 {
308 	int idx;
309 	unsigned int base;
310 	__wsum csum;
311 	struct xdr_buf *buf = &rqstp->rq_arg;
312 	const unsigned char *p = buf->head[0].iov_base;
313 	size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
314 				RC_CSUMLEN);
315 	size_t len = min(buf->head[0].iov_len, csum_len);
316 
317 	/* rq_arg.head first */
318 	csum = csum_partial(p, len, 0);
319 	csum_len -= len;
320 
321 	/* Continue into page array */
322 	idx = buf->page_base / PAGE_SIZE;
323 	base = buf->page_base & ~PAGE_MASK;
324 	while (csum_len) {
325 		p = page_address(buf->pages[idx]) + base;
326 		len = min_t(size_t, PAGE_SIZE - base, csum_len);
327 		csum = csum_partial(p, len, csum);
328 		csum_len -= len;
329 		base = 0;
330 		++idx;
331 	}
332 	return csum;
333 }
334 
335 static bool
336 nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
337 {
338 	/* Check RPC header info first */
339 	if (rqstp->rq_xid != rp->c_xid || rqstp->rq_proc != rp->c_proc ||
340 	    rqstp->rq_prot != rp->c_prot || rqstp->rq_vers != rp->c_vers ||
341 	    rqstp->rq_arg.len != rp->c_len ||
342 	    !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
343 	    rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
344 		return false;
345 
346 	/* compare checksum of NFS data */
347 	if (csum != rp->c_csum) {
348 		++payload_misses;
349 		return false;
350 	}
351 
352 	return true;
353 }
354 
355 /*
356  * Search the request hash for an entry that matches the given rqstp.
357  * Must be called with cache_lock held. Returns the found entry or
358  * NULL on failure.
359  */
360 static struct svc_cacherep *
361 nfsd_cache_search(struct svc_rqst *rqstp, __wsum csum)
362 {
363 	struct svc_cacherep	*rp, *ret = NULL;
364 	struct hlist_head 	*rh;
365 	unsigned int		entries = 0;
366 
367 	rh = &cache_hash[hash_32(rqstp->rq_xid, maskbits)];
368 	hlist_for_each_entry(rp, rh, c_hash) {
369 		++entries;
370 		if (nfsd_cache_match(rqstp, csum, rp)) {
371 			ret = rp;
372 			break;
373 		}
374 	}
375 
376 	/* tally hash chain length stats */
377 	if (entries > longest_chain) {
378 		longest_chain = entries;
379 		longest_chain_cachesize = num_drc_entries;
380 	} else if (entries == longest_chain) {
381 		/* prefer to keep the smallest cachesize possible here */
382 		longest_chain_cachesize = min(longest_chain_cachesize,
383 						num_drc_entries);
384 	}
385 
386 	return ret;
387 }
388 
389 /*
390  * Try to find an entry matching the current call in the cache. When none
391  * is found, we try to grab the oldest expired entry off the LRU list. If
392  * a suitable one isn't there, then drop the cache_lock and allocate a
393  * new one, then search again in case one got inserted while this thread
394  * didn't hold the lock.
395  */
396 int
397 nfsd_cache_lookup(struct svc_rqst *rqstp)
398 {
399 	struct svc_cacherep	*rp, *found;
400 	__be32			xid = rqstp->rq_xid;
401 	u32			proto =  rqstp->rq_prot,
402 				vers = rqstp->rq_vers,
403 				proc = rqstp->rq_proc;
404 	__wsum			csum;
405 	unsigned long		age;
406 	int type = rqstp->rq_cachetype;
407 	int rtn = RC_DOIT;
408 
409 	rqstp->rq_cacherep = NULL;
410 	if (type == RC_NOCACHE) {
411 		nfsdstats.rcnocache++;
412 		return rtn;
413 	}
414 
415 	csum = nfsd_cache_csum(rqstp);
416 
417 	/*
418 	 * Since the common case is a cache miss followed by an insert,
419 	 * preallocate an entry. First, try to reuse the first entry on the LRU
420 	 * if it works, then go ahead and prune the LRU list.
421 	 */
422 	spin_lock(&cache_lock);
423 	if (!list_empty(&lru_head)) {
424 		rp = list_first_entry(&lru_head, struct svc_cacherep, c_lru);
425 		if (nfsd_cache_entry_expired(rp) ||
426 		    num_drc_entries >= max_drc_entries) {
427 			nfsd_reply_cache_unhash(rp);
428 			prune_cache_entries();
429 			goto search_cache;
430 		}
431 	}
432 
433 	/* No expired ones available, allocate a new one. */
434 	spin_unlock(&cache_lock);
435 	rp = nfsd_reply_cache_alloc();
436 	spin_lock(&cache_lock);
437 	if (likely(rp)) {
438 		++num_drc_entries;
439 		drc_mem_usage += sizeof(*rp);
440 	}
441 
442 search_cache:
443 	found = nfsd_cache_search(rqstp, csum);
444 	if (found) {
445 		if (likely(rp))
446 			nfsd_reply_cache_free_locked(rp);
447 		rp = found;
448 		goto found_entry;
449 	}
450 
451 	if (!rp) {
452 		dprintk("nfsd: unable to allocate DRC entry!\n");
453 		goto out;
454 	}
455 
456 	/*
457 	 * We're keeping the one we just allocated. Are we now over the
458 	 * limit? Prune one off the tip of the LRU in trade for the one we
459 	 * just allocated if so.
460 	 */
461 	if (num_drc_entries >= max_drc_entries)
462 		nfsd_reply_cache_free_locked(list_first_entry(&lru_head,
463 						struct svc_cacherep, c_lru));
464 
465 	nfsdstats.rcmisses++;
466 	rqstp->rq_cacherep = rp;
467 	rp->c_state = RC_INPROG;
468 	rp->c_xid = xid;
469 	rp->c_proc = proc;
470 	rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
471 	rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
472 	rp->c_prot = proto;
473 	rp->c_vers = vers;
474 	rp->c_len = rqstp->rq_arg.len;
475 	rp->c_csum = csum;
476 
477 	hash_refile(rp);
478 	lru_put_end(rp);
479 
480 	/* release any buffer */
481 	if (rp->c_type == RC_REPLBUFF) {
482 		drc_mem_usage -= rp->c_replvec.iov_len;
483 		kfree(rp->c_replvec.iov_base);
484 		rp->c_replvec.iov_base = NULL;
485 	}
486 	rp->c_type = RC_NOCACHE;
487  out:
488 	spin_unlock(&cache_lock);
489 	return rtn;
490 
491 found_entry:
492 	nfsdstats.rchits++;
493 	/* We found a matching entry which is either in progress or done. */
494 	age = jiffies - rp->c_timestamp;
495 	lru_put_end(rp);
496 
497 	rtn = RC_DROPIT;
498 	/* Request being processed or excessive rexmits */
499 	if (rp->c_state == RC_INPROG || age < RC_DELAY)
500 		goto out;
501 
502 	/* From the hall of fame of impractical attacks:
503 	 * Is this a user who tries to snoop on the cache? */
504 	rtn = RC_DOIT;
505 	if (!rqstp->rq_secure && rp->c_secure)
506 		goto out;
507 
508 	/* Compose RPC reply header */
509 	switch (rp->c_type) {
510 	case RC_NOCACHE:
511 		break;
512 	case RC_REPLSTAT:
513 		svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
514 		rtn = RC_REPLY;
515 		break;
516 	case RC_REPLBUFF:
517 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
518 			goto out;	/* should not happen */
519 		rtn = RC_REPLY;
520 		break;
521 	default:
522 		printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
523 		nfsd_reply_cache_free_locked(rp);
524 	}
525 
526 	goto out;
527 }
528 
529 /*
530  * Update a cache entry. This is called from nfsd_dispatch when
531  * the procedure has been executed and the complete reply is in
532  * rqstp->rq_res.
533  *
534  * We're copying around data here rather than swapping buffers because
535  * the toplevel loop requires max-sized buffers, which would be a waste
536  * of memory for a cache with a max reply size of 100 bytes (diropokres).
537  *
538  * If we should start to use different types of cache entries tailored
539  * specifically for attrstat and fh's, we may save even more space.
540  *
541  * Also note that a cachetype of RC_NOCACHE can legally be passed when
542  * nfsd failed to encode a reply that otherwise would have been cached.
543  * In this case, nfsd_cache_update is called with statp == NULL.
544  */
545 void
546 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
547 {
548 	struct svc_cacherep *rp = rqstp->rq_cacherep;
549 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
550 	int		len;
551 	size_t		bufsize = 0;
552 
553 	if (!rp)
554 		return;
555 
556 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
557 	len >>= 2;
558 
559 	/* Don't cache excessive amounts of data and XDR failures */
560 	if (!statp || len > (256 >> 2)) {
561 		nfsd_reply_cache_free(rp);
562 		return;
563 	}
564 
565 	switch (cachetype) {
566 	case RC_REPLSTAT:
567 		if (len != 1)
568 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
569 		rp->c_replstat = *statp;
570 		break;
571 	case RC_REPLBUFF:
572 		cachv = &rp->c_replvec;
573 		bufsize = len << 2;
574 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
575 		if (!cachv->iov_base) {
576 			nfsd_reply_cache_free(rp);
577 			return;
578 		}
579 		cachv->iov_len = bufsize;
580 		memcpy(cachv->iov_base, statp, bufsize);
581 		break;
582 	case RC_NOCACHE:
583 		nfsd_reply_cache_free(rp);
584 		return;
585 	}
586 	spin_lock(&cache_lock);
587 	drc_mem_usage += bufsize;
588 	lru_put_end(rp);
589 	rp->c_secure = rqstp->rq_secure;
590 	rp->c_type = cachetype;
591 	rp->c_state = RC_DONE;
592 	spin_unlock(&cache_lock);
593 	return;
594 }
595 
596 /*
597  * Copy cached reply to current reply buffer. Should always fit.
598  * FIXME as reply is in a page, we should just attach the page, and
599  * keep a refcount....
600  */
601 static int
602 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
603 {
604 	struct kvec	*vec = &rqstp->rq_res.head[0];
605 
606 	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
607 		printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n",
608 				data->iov_len);
609 		return 0;
610 	}
611 	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
612 	vec->iov_len += data->iov_len;
613 	return 1;
614 }
615 
616 /*
617  * Note that fields may be added, removed or reordered in the future. Programs
618  * scraping this file for info should test the labels to ensure they're
619  * getting the correct field.
620  */
621 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
622 {
623 	spin_lock(&cache_lock);
624 	seq_printf(m, "max entries:           %u\n", max_drc_entries);
625 	seq_printf(m, "num entries:           %u\n", num_drc_entries);
626 	seq_printf(m, "hash buckets:          %u\n", 1 << maskbits);
627 	seq_printf(m, "mem usage:             %u\n", drc_mem_usage);
628 	seq_printf(m, "cache hits:            %u\n", nfsdstats.rchits);
629 	seq_printf(m, "cache misses:          %u\n", nfsdstats.rcmisses);
630 	seq_printf(m, "not cached:            %u\n", nfsdstats.rcnocache);
631 	seq_printf(m, "payload misses:        %u\n", payload_misses);
632 	seq_printf(m, "longest chain len:     %u\n", longest_chain);
633 	seq_printf(m, "cachesize at longest:  %u\n", longest_chain_cachesize);
634 	spin_unlock(&cache_lock);
635 	return 0;
636 }
637 
638 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
639 {
640 	return single_open(file, nfsd_reply_cache_stats_show, NULL);
641 }
642