xref: /openbmc/linux/fs/nfsd/nfscache.c (revision 4f3db074)
1 /*
2  * Request reply cache. This is currently a global cache, but this may
3  * change in the future and be a per-client cache.
4  *
5  * This code is heavily inspired by the 44BSD implementation, although
6  * it does things a bit differently.
7  *
8  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
9  */
10 
11 #include <linux/slab.h>
12 #include <linux/sunrpc/addr.h>
13 #include <linux/highmem.h>
14 #include <linux/log2.h>
15 #include <linux/hash.h>
16 #include <net/checksum.h>
17 
18 #include "nfsd.h"
19 #include "cache.h"
20 
21 #define NFSDDBG_FACILITY	NFSDDBG_REPCACHE
22 
23 /*
24  * We use this value to determine the number of hash buckets from the max
25  * cache size, the idea being that when the cache is at its maximum number
26  * of entries, then this should be the average number of entries per bucket.
27  */
28 #define TARGET_BUCKET_SIZE	64
29 
30 struct nfsd_drc_bucket {
31 	struct list_head lru_head;
32 	spinlock_t cache_lock;
33 };
34 
35 static struct nfsd_drc_bucket	*drc_hashtbl;
36 static struct kmem_cache	*drc_slab;
37 
38 /* max number of entries allowed in the cache */
39 static unsigned int		max_drc_entries;
40 
41 /* number of significant bits in the hash value */
42 static unsigned int		maskbits;
43 static unsigned int		drc_hashsize;
44 
45 /*
46  * Stats and other tracking of on the duplicate reply cache. All of these and
47  * the "rc" fields in nfsdstats are protected by the cache_lock
48  */
49 
50 /* total number of entries */
51 static atomic_t			num_drc_entries;
52 
53 /* cache misses due only to checksum comparison failures */
54 static unsigned int		payload_misses;
55 
56 /* amount of memory (in bytes) currently consumed by the DRC */
57 static unsigned int		drc_mem_usage;
58 
59 /* longest hash chain seen */
60 static unsigned int		longest_chain;
61 
62 /* size of cache when we saw the longest hash chain */
63 static unsigned int		longest_chain_cachesize;
64 
65 static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
66 static void	cache_cleaner_func(struct work_struct *unused);
67 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
68 					    struct shrink_control *sc);
69 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
70 					   struct shrink_control *sc);
71 
72 static struct shrinker nfsd_reply_cache_shrinker = {
73 	.scan_objects = nfsd_reply_cache_scan,
74 	.count_objects = nfsd_reply_cache_count,
75 	.seeks	= 1,
76 };
77 
78 /*
79  * locking for the reply cache:
80  * A cache entry is "single use" if c_state == RC_INPROG
81  * Otherwise, it when accessing _prev or _next, the lock must be held.
82  */
83 static DECLARE_DELAYED_WORK(cache_cleaner, cache_cleaner_func);
84 
85 /*
86  * Put a cap on the size of the DRC based on the amount of available
87  * low memory in the machine.
88  *
89  *  64MB:    8192
90  * 128MB:   11585
91  * 256MB:   16384
92  * 512MB:   23170
93  *   1GB:   32768
94  *   2GB:   46340
95  *   4GB:   65536
96  *   8GB:   92681
97  *  16GB:  131072
98  *
99  * ...with a hard cap of 256k entries. In the worst case, each entry will be
100  * ~1k, so the above numbers should give a rough max of the amount of memory
101  * used in k.
102  */
103 static unsigned int
104 nfsd_cache_size_limit(void)
105 {
106 	unsigned int limit;
107 	unsigned long low_pages = totalram_pages - totalhigh_pages;
108 
109 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
110 	return min_t(unsigned int, limit, 256*1024);
111 }
112 
113 /*
114  * Compute the number of hash buckets we need. Divide the max cachesize by
115  * the "target" max bucket size, and round up to next power of two.
116  */
117 static unsigned int
118 nfsd_hashsize(unsigned int limit)
119 {
120 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
121 }
122 
123 static u32
124 nfsd_cache_hash(__be32 xid)
125 {
126 	return hash_32(be32_to_cpu(xid), maskbits);
127 }
128 
129 static struct svc_cacherep *
130 nfsd_reply_cache_alloc(void)
131 {
132 	struct svc_cacherep	*rp;
133 
134 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
135 	if (rp) {
136 		rp->c_state = RC_UNUSED;
137 		rp->c_type = RC_NOCACHE;
138 		INIT_LIST_HEAD(&rp->c_lru);
139 	}
140 	return rp;
141 }
142 
143 static void
144 nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
145 {
146 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
147 		drc_mem_usage -= rp->c_replvec.iov_len;
148 		kfree(rp->c_replvec.iov_base);
149 	}
150 	list_del(&rp->c_lru);
151 	atomic_dec(&num_drc_entries);
152 	drc_mem_usage -= sizeof(*rp);
153 	kmem_cache_free(drc_slab, rp);
154 }
155 
156 static void
157 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
158 {
159 	spin_lock(&b->cache_lock);
160 	nfsd_reply_cache_free_locked(rp);
161 	spin_unlock(&b->cache_lock);
162 }
163 
164 int nfsd_reply_cache_init(void)
165 {
166 	unsigned int hashsize;
167 	unsigned int i;
168 	int status = 0;
169 
170 	max_drc_entries = nfsd_cache_size_limit();
171 	atomic_set(&num_drc_entries, 0);
172 	hashsize = nfsd_hashsize(max_drc_entries);
173 	maskbits = ilog2(hashsize);
174 
175 	status = register_shrinker(&nfsd_reply_cache_shrinker);
176 	if (status)
177 		return status;
178 
179 	drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
180 					0, 0, NULL);
181 	if (!drc_slab)
182 		goto out_nomem;
183 
184 	drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL);
185 	if (!drc_hashtbl)
186 		goto out_nomem;
187 	for (i = 0; i < hashsize; i++) {
188 		INIT_LIST_HEAD(&drc_hashtbl[i].lru_head);
189 		spin_lock_init(&drc_hashtbl[i].cache_lock);
190 	}
191 	drc_hashsize = hashsize;
192 
193 	return 0;
194 out_nomem:
195 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
196 	nfsd_reply_cache_shutdown();
197 	return -ENOMEM;
198 }
199 
200 void nfsd_reply_cache_shutdown(void)
201 {
202 	struct svc_cacherep	*rp;
203 	unsigned int i;
204 
205 	unregister_shrinker(&nfsd_reply_cache_shrinker);
206 	cancel_delayed_work_sync(&cache_cleaner);
207 
208 	for (i = 0; i < drc_hashsize; i++) {
209 		struct list_head *head = &drc_hashtbl[i].lru_head;
210 		while (!list_empty(head)) {
211 			rp = list_first_entry(head, struct svc_cacherep, c_lru);
212 			nfsd_reply_cache_free_locked(rp);
213 		}
214 	}
215 
216 	kfree (drc_hashtbl);
217 	drc_hashtbl = NULL;
218 	drc_hashsize = 0;
219 
220 	if (drc_slab) {
221 		kmem_cache_destroy(drc_slab);
222 		drc_slab = NULL;
223 	}
224 }
225 
226 /*
227  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
228  * not already scheduled.
229  */
230 static void
231 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
232 {
233 	rp->c_timestamp = jiffies;
234 	list_move_tail(&rp->c_lru, &b->lru_head);
235 	schedule_delayed_work(&cache_cleaner, RC_EXPIRE);
236 }
237 
238 static long
239 prune_bucket(struct nfsd_drc_bucket *b)
240 {
241 	struct svc_cacherep *rp, *tmp;
242 	long freed = 0;
243 
244 	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
245 		/*
246 		 * Don't free entries attached to calls that are still
247 		 * in-progress, but do keep scanning the list.
248 		 */
249 		if (rp->c_state == RC_INPROG)
250 			continue;
251 		if (atomic_read(&num_drc_entries) <= max_drc_entries &&
252 		    time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
253 			break;
254 		nfsd_reply_cache_free_locked(rp);
255 		freed++;
256 	}
257 	return freed;
258 }
259 
260 /*
261  * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
262  * Also prune the oldest ones when the total exceeds the max number of entries.
263  */
264 static long
265 prune_cache_entries(void)
266 {
267 	unsigned int i;
268 	long freed = 0;
269 	bool cancel = true;
270 
271 	for (i = 0; i < drc_hashsize; i++) {
272 		struct nfsd_drc_bucket *b = &drc_hashtbl[i];
273 
274 		if (list_empty(&b->lru_head))
275 			continue;
276 		spin_lock(&b->cache_lock);
277 		freed += prune_bucket(b);
278 		if (!list_empty(&b->lru_head))
279 			cancel = false;
280 		spin_unlock(&b->cache_lock);
281 	}
282 
283 	/*
284 	 * Conditionally rearm the job to run in RC_EXPIRE since we just
285 	 * ran the pruner.
286 	 */
287 	if (!cancel)
288 		mod_delayed_work(system_wq, &cache_cleaner, RC_EXPIRE);
289 	return freed;
290 }
291 
292 static void
293 cache_cleaner_func(struct work_struct *unused)
294 {
295 	prune_cache_entries();
296 }
297 
298 static unsigned long
299 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
300 {
301 	return atomic_read(&num_drc_entries);
302 }
303 
304 static unsigned long
305 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
306 {
307 	return prune_cache_entries();
308 }
309 /*
310  * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
311  */
312 static __wsum
313 nfsd_cache_csum(struct svc_rqst *rqstp)
314 {
315 	int idx;
316 	unsigned int base;
317 	__wsum csum;
318 	struct xdr_buf *buf = &rqstp->rq_arg;
319 	const unsigned char *p = buf->head[0].iov_base;
320 	size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
321 				RC_CSUMLEN);
322 	size_t len = min(buf->head[0].iov_len, csum_len);
323 
324 	/* rq_arg.head first */
325 	csum = csum_partial(p, len, 0);
326 	csum_len -= len;
327 
328 	/* Continue into page array */
329 	idx = buf->page_base / PAGE_SIZE;
330 	base = buf->page_base & ~PAGE_MASK;
331 	while (csum_len) {
332 		p = page_address(buf->pages[idx]) + base;
333 		len = min_t(size_t, PAGE_SIZE - base, csum_len);
334 		csum = csum_partial(p, len, csum);
335 		csum_len -= len;
336 		base = 0;
337 		++idx;
338 	}
339 	return csum;
340 }
341 
342 static bool
343 nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
344 {
345 	/* Check RPC XID first */
346 	if (rqstp->rq_xid != rp->c_xid)
347 		return false;
348 	/* compare checksum of NFS data */
349 	if (csum != rp->c_csum) {
350 		++payload_misses;
351 		return false;
352 	}
353 
354 	/* Other discriminators */
355 	if (rqstp->rq_proc != rp->c_proc ||
356 	    rqstp->rq_prot != rp->c_prot ||
357 	    rqstp->rq_vers != rp->c_vers ||
358 	    rqstp->rq_arg.len != rp->c_len ||
359 	    !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
360 	    rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
361 		return false;
362 
363 	return true;
364 }
365 
366 /*
367  * Search the request hash for an entry that matches the given rqstp.
368  * Must be called with cache_lock held. Returns the found entry or
369  * NULL on failure.
370  */
371 static struct svc_cacherep *
372 nfsd_cache_search(struct nfsd_drc_bucket *b, struct svc_rqst *rqstp,
373 		__wsum csum)
374 {
375 	struct svc_cacherep	*rp, *ret = NULL;
376 	struct list_head 	*rh = &b->lru_head;
377 	unsigned int		entries = 0;
378 
379 	list_for_each_entry(rp, rh, c_lru) {
380 		++entries;
381 		if (nfsd_cache_match(rqstp, csum, rp)) {
382 			ret = rp;
383 			break;
384 		}
385 	}
386 
387 	/* tally hash chain length stats */
388 	if (entries > longest_chain) {
389 		longest_chain = entries;
390 		longest_chain_cachesize = atomic_read(&num_drc_entries);
391 	} else if (entries == longest_chain) {
392 		/* prefer to keep the smallest cachesize possible here */
393 		longest_chain_cachesize = min_t(unsigned int,
394 				longest_chain_cachesize,
395 				atomic_read(&num_drc_entries));
396 	}
397 
398 	return ret;
399 }
400 
401 /*
402  * Try to find an entry matching the current call in the cache. When none
403  * is found, we try to grab the oldest expired entry off the LRU list. If
404  * a suitable one isn't there, then drop the cache_lock and allocate a
405  * new one, then search again in case one got inserted while this thread
406  * didn't hold the lock.
407  */
408 int
409 nfsd_cache_lookup(struct svc_rqst *rqstp)
410 {
411 	struct svc_cacherep	*rp, *found;
412 	__be32			xid = rqstp->rq_xid;
413 	u32			proto =  rqstp->rq_prot,
414 				vers = rqstp->rq_vers,
415 				proc = rqstp->rq_proc;
416 	__wsum			csum;
417 	u32 hash = nfsd_cache_hash(xid);
418 	struct nfsd_drc_bucket *b = &drc_hashtbl[hash];
419 	unsigned long		age;
420 	int type = rqstp->rq_cachetype;
421 	int rtn = RC_DOIT;
422 
423 	rqstp->rq_cacherep = NULL;
424 	if (type == RC_NOCACHE) {
425 		nfsdstats.rcnocache++;
426 		return rtn;
427 	}
428 
429 	csum = nfsd_cache_csum(rqstp);
430 
431 	/*
432 	 * Since the common case is a cache miss followed by an insert,
433 	 * preallocate an entry.
434 	 */
435 	rp = nfsd_reply_cache_alloc();
436 	spin_lock(&b->cache_lock);
437 	if (likely(rp)) {
438 		atomic_inc(&num_drc_entries);
439 		drc_mem_usage += sizeof(*rp);
440 	}
441 
442 	/* go ahead and prune the cache */
443 	prune_bucket(b);
444 
445 	found = nfsd_cache_search(b, rqstp, csum);
446 	if (found) {
447 		if (likely(rp))
448 			nfsd_reply_cache_free_locked(rp);
449 		rp = found;
450 		goto found_entry;
451 	}
452 
453 	if (!rp) {
454 		dprintk("nfsd: unable to allocate DRC entry!\n");
455 		goto out;
456 	}
457 
458 	nfsdstats.rcmisses++;
459 	rqstp->rq_cacherep = rp;
460 	rp->c_state = RC_INPROG;
461 	rp->c_xid = xid;
462 	rp->c_proc = proc;
463 	rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
464 	rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
465 	rp->c_prot = proto;
466 	rp->c_vers = vers;
467 	rp->c_len = rqstp->rq_arg.len;
468 	rp->c_csum = csum;
469 
470 	lru_put_end(b, rp);
471 
472 	/* release any buffer */
473 	if (rp->c_type == RC_REPLBUFF) {
474 		drc_mem_usage -= rp->c_replvec.iov_len;
475 		kfree(rp->c_replvec.iov_base);
476 		rp->c_replvec.iov_base = NULL;
477 	}
478 	rp->c_type = RC_NOCACHE;
479  out:
480 	spin_unlock(&b->cache_lock);
481 	return rtn;
482 
483 found_entry:
484 	nfsdstats.rchits++;
485 	/* We found a matching entry which is either in progress or done. */
486 	age = jiffies - rp->c_timestamp;
487 	lru_put_end(b, rp);
488 
489 	rtn = RC_DROPIT;
490 	/* Request being processed or excessive rexmits */
491 	if (rp->c_state == RC_INPROG || age < RC_DELAY)
492 		goto out;
493 
494 	/* From the hall of fame of impractical attacks:
495 	 * Is this a user who tries to snoop on the cache? */
496 	rtn = RC_DOIT;
497 	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
498 		goto out;
499 
500 	/* Compose RPC reply header */
501 	switch (rp->c_type) {
502 	case RC_NOCACHE:
503 		break;
504 	case RC_REPLSTAT:
505 		svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
506 		rtn = RC_REPLY;
507 		break;
508 	case RC_REPLBUFF:
509 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
510 			goto out;	/* should not happen */
511 		rtn = RC_REPLY;
512 		break;
513 	default:
514 		printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
515 		nfsd_reply_cache_free_locked(rp);
516 	}
517 
518 	goto out;
519 }
520 
521 /*
522  * Update a cache entry. This is called from nfsd_dispatch when
523  * the procedure has been executed and the complete reply is in
524  * rqstp->rq_res.
525  *
526  * We're copying around data here rather than swapping buffers because
527  * the toplevel loop requires max-sized buffers, which would be a waste
528  * of memory for a cache with a max reply size of 100 bytes (diropokres).
529  *
530  * If we should start to use different types of cache entries tailored
531  * specifically for attrstat and fh's, we may save even more space.
532  *
533  * Also note that a cachetype of RC_NOCACHE can legally be passed when
534  * nfsd failed to encode a reply that otherwise would have been cached.
535  * In this case, nfsd_cache_update is called with statp == NULL.
536  */
537 void
538 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
539 {
540 	struct svc_cacherep *rp = rqstp->rq_cacherep;
541 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
542 	u32		hash;
543 	struct nfsd_drc_bucket *b;
544 	int		len;
545 	size_t		bufsize = 0;
546 
547 	if (!rp)
548 		return;
549 
550 	hash = nfsd_cache_hash(rp->c_xid);
551 	b = &drc_hashtbl[hash];
552 
553 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
554 	len >>= 2;
555 
556 	/* Don't cache excessive amounts of data and XDR failures */
557 	if (!statp || len > (256 >> 2)) {
558 		nfsd_reply_cache_free(b, rp);
559 		return;
560 	}
561 
562 	switch (cachetype) {
563 	case RC_REPLSTAT:
564 		if (len != 1)
565 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
566 		rp->c_replstat = *statp;
567 		break;
568 	case RC_REPLBUFF:
569 		cachv = &rp->c_replvec;
570 		bufsize = len << 2;
571 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
572 		if (!cachv->iov_base) {
573 			nfsd_reply_cache_free(b, rp);
574 			return;
575 		}
576 		cachv->iov_len = bufsize;
577 		memcpy(cachv->iov_base, statp, bufsize);
578 		break;
579 	case RC_NOCACHE:
580 		nfsd_reply_cache_free(b, rp);
581 		return;
582 	}
583 	spin_lock(&b->cache_lock);
584 	drc_mem_usage += bufsize;
585 	lru_put_end(b, rp);
586 	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
587 	rp->c_type = cachetype;
588 	rp->c_state = RC_DONE;
589 	spin_unlock(&b->cache_lock);
590 	return;
591 }
592 
593 /*
594  * Copy cached reply to current reply buffer. Should always fit.
595  * FIXME as reply is in a page, we should just attach the page, and
596  * keep a refcount....
597  */
598 static int
599 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
600 {
601 	struct kvec	*vec = &rqstp->rq_res.head[0];
602 
603 	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
604 		printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n",
605 				data->iov_len);
606 		return 0;
607 	}
608 	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
609 	vec->iov_len += data->iov_len;
610 	return 1;
611 }
612 
613 /*
614  * Note that fields may be added, removed or reordered in the future. Programs
615  * scraping this file for info should test the labels to ensure they're
616  * getting the correct field.
617  */
618 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
619 {
620 	seq_printf(m, "max entries:           %u\n", max_drc_entries);
621 	seq_printf(m, "num entries:           %u\n",
622 			atomic_read(&num_drc_entries));
623 	seq_printf(m, "hash buckets:          %u\n", 1 << maskbits);
624 	seq_printf(m, "mem usage:             %u\n", drc_mem_usage);
625 	seq_printf(m, "cache hits:            %u\n", nfsdstats.rchits);
626 	seq_printf(m, "cache misses:          %u\n", nfsdstats.rcmisses);
627 	seq_printf(m, "not cached:            %u\n", nfsdstats.rcnocache);
628 	seq_printf(m, "payload misses:        %u\n", payload_misses);
629 	seq_printf(m, "longest chain len:     %u\n", longest_chain);
630 	seq_printf(m, "cachesize at longest:  %u\n", longest_chain_cachesize);
631 	return 0;
632 }
633 
634 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
635 {
636 	return single_open(file, nfsd_reply_cache_stats_show, NULL);
637 }
638