xref: /openbmc/linux/fs/nfsd/nfscache.c (revision 48c926cd)
1 /*
2  * Request reply cache. This is currently a global cache, but this may
3  * change in the future and be a per-client cache.
4  *
5  * This code is heavily inspired by the 44BSD implementation, although
6  * it does things a bit differently.
7  *
8  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
9  */
10 
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/highmem.h>
15 #include <linux/log2.h>
16 #include <linux/hash.h>
17 #include <net/checksum.h>
18 
19 #include "nfsd.h"
20 #include "cache.h"
21 
22 #define NFSDDBG_FACILITY	NFSDDBG_REPCACHE
23 
24 /*
25  * We use this value to determine the number of hash buckets from the max
26  * cache size, the idea being that when the cache is at its maximum number
27  * of entries, then this should be the average number of entries per bucket.
28  */
29 #define TARGET_BUCKET_SIZE	64
30 
31 struct nfsd_drc_bucket {
32 	struct list_head lru_head;
33 	spinlock_t cache_lock;
34 };
35 
36 static struct nfsd_drc_bucket	*drc_hashtbl;
37 static struct kmem_cache	*drc_slab;
38 
39 /* max number of entries allowed in the cache */
40 static unsigned int		max_drc_entries;
41 
42 /* number of significant bits in the hash value */
43 static unsigned int		maskbits;
44 static unsigned int		drc_hashsize;
45 
46 /*
47  * Stats and other tracking of on the duplicate reply cache. All of these and
48  * the "rc" fields in nfsdstats are protected by the cache_lock
49  */
50 
51 /* total number of entries */
52 static atomic_t			num_drc_entries;
53 
54 /* cache misses due only to checksum comparison failures */
55 static unsigned int		payload_misses;
56 
57 /* amount of memory (in bytes) currently consumed by the DRC */
58 static unsigned int		drc_mem_usage;
59 
60 /* longest hash chain seen */
61 static unsigned int		longest_chain;
62 
63 /* size of cache when we saw the longest hash chain */
64 static unsigned int		longest_chain_cachesize;
65 
66 static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
67 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
68 					    struct shrink_control *sc);
69 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
70 					   struct shrink_control *sc);
71 
72 static struct shrinker nfsd_reply_cache_shrinker = {
73 	.scan_objects = nfsd_reply_cache_scan,
74 	.count_objects = nfsd_reply_cache_count,
75 	.seeks	= 1,
76 };
77 
78 /*
79  * Put a cap on the size of the DRC based on the amount of available
80  * low memory in the machine.
81  *
82  *  64MB:    8192
83  * 128MB:   11585
84  * 256MB:   16384
85  * 512MB:   23170
86  *   1GB:   32768
87  *   2GB:   46340
88  *   4GB:   65536
89  *   8GB:   92681
90  *  16GB:  131072
91  *
92  * ...with a hard cap of 256k entries. In the worst case, each entry will be
93  * ~1k, so the above numbers should give a rough max of the amount of memory
94  * used in k.
95  */
96 static unsigned int
97 nfsd_cache_size_limit(void)
98 {
99 	unsigned int limit;
100 	unsigned long low_pages = totalram_pages - totalhigh_pages;
101 
102 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
103 	return min_t(unsigned int, limit, 256*1024);
104 }
105 
106 /*
107  * Compute the number of hash buckets we need. Divide the max cachesize by
108  * the "target" max bucket size, and round up to next power of two.
109  */
110 static unsigned int
111 nfsd_hashsize(unsigned int limit)
112 {
113 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
114 }
115 
116 static u32
117 nfsd_cache_hash(__be32 xid)
118 {
119 	return hash_32(be32_to_cpu(xid), maskbits);
120 }
121 
122 static struct svc_cacherep *
123 nfsd_reply_cache_alloc(void)
124 {
125 	struct svc_cacherep	*rp;
126 
127 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
128 	if (rp) {
129 		rp->c_state = RC_UNUSED;
130 		rp->c_type = RC_NOCACHE;
131 		INIT_LIST_HEAD(&rp->c_lru);
132 	}
133 	return rp;
134 }
135 
136 static void
137 nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
138 {
139 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
140 		drc_mem_usage -= rp->c_replvec.iov_len;
141 		kfree(rp->c_replvec.iov_base);
142 	}
143 	list_del(&rp->c_lru);
144 	atomic_dec(&num_drc_entries);
145 	drc_mem_usage -= sizeof(*rp);
146 	kmem_cache_free(drc_slab, rp);
147 }
148 
149 static void
150 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
151 {
152 	spin_lock(&b->cache_lock);
153 	nfsd_reply_cache_free_locked(rp);
154 	spin_unlock(&b->cache_lock);
155 }
156 
157 int nfsd_reply_cache_init(void)
158 {
159 	unsigned int hashsize;
160 	unsigned int i;
161 	int status = 0;
162 
163 	max_drc_entries = nfsd_cache_size_limit();
164 	atomic_set(&num_drc_entries, 0);
165 	hashsize = nfsd_hashsize(max_drc_entries);
166 	maskbits = ilog2(hashsize);
167 
168 	status = register_shrinker(&nfsd_reply_cache_shrinker);
169 	if (status)
170 		return status;
171 
172 	drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
173 					0, 0, NULL);
174 	if (!drc_slab)
175 		goto out_nomem;
176 
177 	drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL);
178 	if (!drc_hashtbl) {
179 		drc_hashtbl = vzalloc(hashsize * sizeof(*drc_hashtbl));
180 		if (!drc_hashtbl)
181 			goto out_nomem;
182 	}
183 
184 	for (i = 0; i < hashsize; i++) {
185 		INIT_LIST_HEAD(&drc_hashtbl[i].lru_head);
186 		spin_lock_init(&drc_hashtbl[i].cache_lock);
187 	}
188 	drc_hashsize = hashsize;
189 
190 	return 0;
191 out_nomem:
192 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
193 	nfsd_reply_cache_shutdown();
194 	return -ENOMEM;
195 }
196 
197 void nfsd_reply_cache_shutdown(void)
198 {
199 	struct svc_cacherep	*rp;
200 	unsigned int i;
201 
202 	unregister_shrinker(&nfsd_reply_cache_shrinker);
203 
204 	for (i = 0; i < drc_hashsize; i++) {
205 		struct list_head *head = &drc_hashtbl[i].lru_head;
206 		while (!list_empty(head)) {
207 			rp = list_first_entry(head, struct svc_cacherep, c_lru);
208 			nfsd_reply_cache_free_locked(rp);
209 		}
210 	}
211 
212 	kvfree(drc_hashtbl);
213 	drc_hashtbl = NULL;
214 	drc_hashsize = 0;
215 
216 	kmem_cache_destroy(drc_slab);
217 	drc_slab = NULL;
218 }
219 
220 /*
221  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
222  * not already scheduled.
223  */
224 static void
225 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
226 {
227 	rp->c_timestamp = jiffies;
228 	list_move_tail(&rp->c_lru, &b->lru_head);
229 }
230 
231 static long
232 prune_bucket(struct nfsd_drc_bucket *b)
233 {
234 	struct svc_cacherep *rp, *tmp;
235 	long freed = 0;
236 
237 	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
238 		/*
239 		 * Don't free entries attached to calls that are still
240 		 * in-progress, but do keep scanning the list.
241 		 */
242 		if (rp->c_state == RC_INPROG)
243 			continue;
244 		if (atomic_read(&num_drc_entries) <= max_drc_entries &&
245 		    time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
246 			break;
247 		nfsd_reply_cache_free_locked(rp);
248 		freed++;
249 	}
250 	return freed;
251 }
252 
253 /*
254  * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
255  * Also prune the oldest ones when the total exceeds the max number of entries.
256  */
257 static long
258 prune_cache_entries(void)
259 {
260 	unsigned int i;
261 	long freed = 0;
262 
263 	for (i = 0; i < drc_hashsize; i++) {
264 		struct nfsd_drc_bucket *b = &drc_hashtbl[i];
265 
266 		if (list_empty(&b->lru_head))
267 			continue;
268 		spin_lock(&b->cache_lock);
269 		freed += prune_bucket(b);
270 		spin_unlock(&b->cache_lock);
271 	}
272 	return freed;
273 }
274 
275 static unsigned long
276 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
277 {
278 	return atomic_read(&num_drc_entries);
279 }
280 
281 static unsigned long
282 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
283 {
284 	return prune_cache_entries();
285 }
286 /*
287  * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
288  */
289 static __wsum
290 nfsd_cache_csum(struct svc_rqst *rqstp)
291 {
292 	int idx;
293 	unsigned int base;
294 	__wsum csum;
295 	struct xdr_buf *buf = &rqstp->rq_arg;
296 	const unsigned char *p = buf->head[0].iov_base;
297 	size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
298 				RC_CSUMLEN);
299 	size_t len = min(buf->head[0].iov_len, csum_len);
300 
301 	/* rq_arg.head first */
302 	csum = csum_partial(p, len, 0);
303 	csum_len -= len;
304 
305 	/* Continue into page array */
306 	idx = buf->page_base / PAGE_SIZE;
307 	base = buf->page_base & ~PAGE_MASK;
308 	while (csum_len) {
309 		p = page_address(buf->pages[idx]) + base;
310 		len = min_t(size_t, PAGE_SIZE - base, csum_len);
311 		csum = csum_partial(p, len, csum);
312 		csum_len -= len;
313 		base = 0;
314 		++idx;
315 	}
316 	return csum;
317 }
318 
319 static bool
320 nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
321 {
322 	/* Check RPC XID first */
323 	if (rqstp->rq_xid != rp->c_xid)
324 		return false;
325 	/* compare checksum of NFS data */
326 	if (csum != rp->c_csum) {
327 		++payload_misses;
328 		return false;
329 	}
330 
331 	/* Other discriminators */
332 	if (rqstp->rq_proc != rp->c_proc ||
333 	    rqstp->rq_prot != rp->c_prot ||
334 	    rqstp->rq_vers != rp->c_vers ||
335 	    rqstp->rq_arg.len != rp->c_len ||
336 	    !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
337 	    rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
338 		return false;
339 
340 	return true;
341 }
342 
343 /*
344  * Search the request hash for an entry that matches the given rqstp.
345  * Must be called with cache_lock held. Returns the found entry or
346  * NULL on failure.
347  */
348 static struct svc_cacherep *
349 nfsd_cache_search(struct nfsd_drc_bucket *b, struct svc_rqst *rqstp,
350 		__wsum csum)
351 {
352 	struct svc_cacherep	*rp, *ret = NULL;
353 	struct list_head 	*rh = &b->lru_head;
354 	unsigned int		entries = 0;
355 
356 	list_for_each_entry(rp, rh, c_lru) {
357 		++entries;
358 		if (nfsd_cache_match(rqstp, csum, rp)) {
359 			ret = rp;
360 			break;
361 		}
362 	}
363 
364 	/* tally hash chain length stats */
365 	if (entries > longest_chain) {
366 		longest_chain = entries;
367 		longest_chain_cachesize = atomic_read(&num_drc_entries);
368 	} else if (entries == longest_chain) {
369 		/* prefer to keep the smallest cachesize possible here */
370 		longest_chain_cachesize = min_t(unsigned int,
371 				longest_chain_cachesize,
372 				atomic_read(&num_drc_entries));
373 	}
374 
375 	return ret;
376 }
377 
378 /*
379  * Try to find an entry matching the current call in the cache. When none
380  * is found, we try to grab the oldest expired entry off the LRU list. If
381  * a suitable one isn't there, then drop the cache_lock and allocate a
382  * new one, then search again in case one got inserted while this thread
383  * didn't hold the lock.
384  */
385 int
386 nfsd_cache_lookup(struct svc_rqst *rqstp)
387 {
388 	struct svc_cacherep	*rp, *found;
389 	__be32			xid = rqstp->rq_xid;
390 	u32			proto =  rqstp->rq_prot,
391 				vers = rqstp->rq_vers,
392 				proc = rqstp->rq_proc;
393 	__wsum			csum;
394 	u32 hash = nfsd_cache_hash(xid);
395 	struct nfsd_drc_bucket *b = &drc_hashtbl[hash];
396 	unsigned long		age;
397 	int type = rqstp->rq_cachetype;
398 	int rtn = RC_DOIT;
399 
400 	rqstp->rq_cacherep = NULL;
401 	if (type == RC_NOCACHE) {
402 		nfsdstats.rcnocache++;
403 		return rtn;
404 	}
405 
406 	csum = nfsd_cache_csum(rqstp);
407 
408 	/*
409 	 * Since the common case is a cache miss followed by an insert,
410 	 * preallocate an entry.
411 	 */
412 	rp = nfsd_reply_cache_alloc();
413 	spin_lock(&b->cache_lock);
414 	if (likely(rp)) {
415 		atomic_inc(&num_drc_entries);
416 		drc_mem_usage += sizeof(*rp);
417 	}
418 
419 	/* go ahead and prune the cache */
420 	prune_bucket(b);
421 
422 	found = nfsd_cache_search(b, rqstp, csum);
423 	if (found) {
424 		if (likely(rp))
425 			nfsd_reply_cache_free_locked(rp);
426 		rp = found;
427 		goto found_entry;
428 	}
429 
430 	if (!rp) {
431 		dprintk("nfsd: unable to allocate DRC entry!\n");
432 		goto out;
433 	}
434 
435 	nfsdstats.rcmisses++;
436 	rqstp->rq_cacherep = rp;
437 	rp->c_state = RC_INPROG;
438 	rp->c_xid = xid;
439 	rp->c_proc = proc;
440 	rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
441 	rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
442 	rp->c_prot = proto;
443 	rp->c_vers = vers;
444 	rp->c_len = rqstp->rq_arg.len;
445 	rp->c_csum = csum;
446 
447 	lru_put_end(b, rp);
448 
449 	/* release any buffer */
450 	if (rp->c_type == RC_REPLBUFF) {
451 		drc_mem_usage -= rp->c_replvec.iov_len;
452 		kfree(rp->c_replvec.iov_base);
453 		rp->c_replvec.iov_base = NULL;
454 	}
455 	rp->c_type = RC_NOCACHE;
456  out:
457 	spin_unlock(&b->cache_lock);
458 	return rtn;
459 
460 found_entry:
461 	nfsdstats.rchits++;
462 	/* We found a matching entry which is either in progress or done. */
463 	age = jiffies - rp->c_timestamp;
464 	lru_put_end(b, rp);
465 
466 	rtn = RC_DROPIT;
467 	/* Request being processed or excessive rexmits */
468 	if (rp->c_state == RC_INPROG || age < RC_DELAY)
469 		goto out;
470 
471 	/* From the hall of fame of impractical attacks:
472 	 * Is this a user who tries to snoop on the cache? */
473 	rtn = RC_DOIT;
474 	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
475 		goto out;
476 
477 	/* Compose RPC reply header */
478 	switch (rp->c_type) {
479 	case RC_NOCACHE:
480 		break;
481 	case RC_REPLSTAT:
482 		svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
483 		rtn = RC_REPLY;
484 		break;
485 	case RC_REPLBUFF:
486 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
487 			goto out;	/* should not happen */
488 		rtn = RC_REPLY;
489 		break;
490 	default:
491 		printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
492 		nfsd_reply_cache_free_locked(rp);
493 	}
494 
495 	goto out;
496 }
497 
498 /*
499  * Update a cache entry. This is called from nfsd_dispatch when
500  * the procedure has been executed and the complete reply is in
501  * rqstp->rq_res.
502  *
503  * We're copying around data here rather than swapping buffers because
504  * the toplevel loop requires max-sized buffers, which would be a waste
505  * of memory for a cache with a max reply size of 100 bytes (diropokres).
506  *
507  * If we should start to use different types of cache entries tailored
508  * specifically for attrstat and fh's, we may save even more space.
509  *
510  * Also note that a cachetype of RC_NOCACHE can legally be passed when
511  * nfsd failed to encode a reply that otherwise would have been cached.
512  * In this case, nfsd_cache_update is called with statp == NULL.
513  */
514 void
515 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
516 {
517 	struct svc_cacherep *rp = rqstp->rq_cacherep;
518 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
519 	u32		hash;
520 	struct nfsd_drc_bucket *b;
521 	int		len;
522 	size_t		bufsize = 0;
523 
524 	if (!rp)
525 		return;
526 
527 	hash = nfsd_cache_hash(rp->c_xid);
528 	b = &drc_hashtbl[hash];
529 
530 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
531 	len >>= 2;
532 
533 	/* Don't cache excessive amounts of data and XDR failures */
534 	if (!statp || len > (256 >> 2)) {
535 		nfsd_reply_cache_free(b, rp);
536 		return;
537 	}
538 
539 	switch (cachetype) {
540 	case RC_REPLSTAT:
541 		if (len != 1)
542 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
543 		rp->c_replstat = *statp;
544 		break;
545 	case RC_REPLBUFF:
546 		cachv = &rp->c_replvec;
547 		bufsize = len << 2;
548 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
549 		if (!cachv->iov_base) {
550 			nfsd_reply_cache_free(b, rp);
551 			return;
552 		}
553 		cachv->iov_len = bufsize;
554 		memcpy(cachv->iov_base, statp, bufsize);
555 		break;
556 	case RC_NOCACHE:
557 		nfsd_reply_cache_free(b, rp);
558 		return;
559 	}
560 	spin_lock(&b->cache_lock);
561 	drc_mem_usage += bufsize;
562 	lru_put_end(b, rp);
563 	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
564 	rp->c_type = cachetype;
565 	rp->c_state = RC_DONE;
566 	spin_unlock(&b->cache_lock);
567 	return;
568 }
569 
570 /*
571  * Copy cached reply to current reply buffer. Should always fit.
572  * FIXME as reply is in a page, we should just attach the page, and
573  * keep a refcount....
574  */
575 static int
576 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
577 {
578 	struct kvec	*vec = &rqstp->rq_res.head[0];
579 
580 	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
581 		printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
582 				data->iov_len);
583 		return 0;
584 	}
585 	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
586 	vec->iov_len += data->iov_len;
587 	return 1;
588 }
589 
590 /*
591  * Note that fields may be added, removed or reordered in the future. Programs
592  * scraping this file for info should test the labels to ensure they're
593  * getting the correct field.
594  */
595 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
596 {
597 	seq_printf(m, "max entries:           %u\n", max_drc_entries);
598 	seq_printf(m, "num entries:           %u\n",
599 			atomic_read(&num_drc_entries));
600 	seq_printf(m, "hash buckets:          %u\n", 1 << maskbits);
601 	seq_printf(m, "mem usage:             %u\n", drc_mem_usage);
602 	seq_printf(m, "cache hits:            %u\n", nfsdstats.rchits);
603 	seq_printf(m, "cache misses:          %u\n", nfsdstats.rcmisses);
604 	seq_printf(m, "not cached:            %u\n", nfsdstats.rcnocache);
605 	seq_printf(m, "payload misses:        %u\n", payload_misses);
606 	seq_printf(m, "longest chain len:     %u\n", longest_chain);
607 	seq_printf(m, "cachesize at longest:  %u\n", longest_chain_cachesize);
608 	return 0;
609 }
610 
611 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
612 {
613 	return single_open(file, nfsd_reply_cache_stats_show, NULL);
614 }
615