1 /* 2 * Request reply cache. This is currently a global cache, but this may 3 * change in the future and be a per-client cache. 4 * 5 * This code is heavily inspired by the 44BSD implementation, although 6 * it does things a bit differently. 7 * 8 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 9 */ 10 11 #include <linux/slab.h> 12 #include <linux/sunrpc/addr.h> 13 #include <linux/highmem.h> 14 #include <linux/log2.h> 15 #include <linux/hash.h> 16 #include <net/checksum.h> 17 18 #include "nfsd.h" 19 #include "cache.h" 20 21 #define NFSDDBG_FACILITY NFSDDBG_REPCACHE 22 23 /* 24 * We use this value to determine the number of hash buckets from the max 25 * cache size, the idea being that when the cache is at its maximum number 26 * of entries, then this should be the average number of entries per bucket. 27 */ 28 #define TARGET_BUCKET_SIZE 64 29 30 static struct hlist_head * cache_hash; 31 static struct list_head lru_head; 32 static struct kmem_cache *drc_slab; 33 34 /* max number of entries allowed in the cache */ 35 static unsigned int max_drc_entries; 36 37 /* number of significant bits in the hash value */ 38 static unsigned int maskbits; 39 40 /* 41 * Stats and other tracking of on the duplicate reply cache. All of these and 42 * the "rc" fields in nfsdstats are protected by the cache_lock 43 */ 44 45 /* total number of entries */ 46 static unsigned int num_drc_entries; 47 48 /* cache misses due only to checksum comparison failures */ 49 static unsigned int payload_misses; 50 51 /* amount of memory (in bytes) currently consumed by the DRC */ 52 static unsigned int drc_mem_usage; 53 54 /* longest hash chain seen */ 55 static unsigned int longest_chain; 56 57 /* size of cache when we saw the longest hash chain */ 58 static unsigned int longest_chain_cachesize; 59 60 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); 61 static void cache_cleaner_func(struct work_struct *unused); 62 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink, 63 struct shrink_control *sc); 64 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink, 65 struct shrink_control *sc); 66 67 static struct shrinker nfsd_reply_cache_shrinker = { 68 .scan_objects = nfsd_reply_cache_scan, 69 .count_objects = nfsd_reply_cache_count, 70 .seeks = 1, 71 }; 72 73 /* 74 * locking for the reply cache: 75 * A cache entry is "single use" if c_state == RC_INPROG 76 * Otherwise, it when accessing _prev or _next, the lock must be held. 77 */ 78 static DEFINE_SPINLOCK(cache_lock); 79 static DECLARE_DELAYED_WORK(cache_cleaner, cache_cleaner_func); 80 81 /* 82 * Put a cap on the size of the DRC based on the amount of available 83 * low memory in the machine. 84 * 85 * 64MB: 8192 86 * 128MB: 11585 87 * 256MB: 16384 88 * 512MB: 23170 89 * 1GB: 32768 90 * 2GB: 46340 91 * 4GB: 65536 92 * 8GB: 92681 93 * 16GB: 131072 94 * 95 * ...with a hard cap of 256k entries. In the worst case, each entry will be 96 * ~1k, so the above numbers should give a rough max of the amount of memory 97 * used in k. 98 */ 99 static unsigned int 100 nfsd_cache_size_limit(void) 101 { 102 unsigned int limit; 103 unsigned long low_pages = totalram_pages - totalhigh_pages; 104 105 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); 106 return min_t(unsigned int, limit, 256*1024); 107 } 108 109 /* 110 * Compute the number of hash buckets we need. Divide the max cachesize by 111 * the "target" max bucket size, and round up to next power of two. 112 */ 113 static unsigned int 114 nfsd_hashsize(unsigned int limit) 115 { 116 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE); 117 } 118 119 static struct svc_cacherep * 120 nfsd_reply_cache_alloc(void) 121 { 122 struct svc_cacherep *rp; 123 124 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); 125 if (rp) { 126 rp->c_state = RC_UNUSED; 127 rp->c_type = RC_NOCACHE; 128 INIT_LIST_HEAD(&rp->c_lru); 129 INIT_HLIST_NODE(&rp->c_hash); 130 } 131 return rp; 132 } 133 134 static void 135 nfsd_reply_cache_free_locked(struct svc_cacherep *rp) 136 { 137 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) { 138 drc_mem_usage -= rp->c_replvec.iov_len; 139 kfree(rp->c_replvec.iov_base); 140 } 141 if (!hlist_unhashed(&rp->c_hash)) 142 hlist_del(&rp->c_hash); 143 list_del(&rp->c_lru); 144 --num_drc_entries; 145 drc_mem_usage -= sizeof(*rp); 146 kmem_cache_free(drc_slab, rp); 147 } 148 149 static void 150 nfsd_reply_cache_free(struct svc_cacherep *rp) 151 { 152 spin_lock(&cache_lock); 153 nfsd_reply_cache_free_locked(rp); 154 spin_unlock(&cache_lock); 155 } 156 157 int nfsd_reply_cache_init(void) 158 { 159 unsigned int hashsize; 160 161 INIT_LIST_HEAD(&lru_head); 162 max_drc_entries = nfsd_cache_size_limit(); 163 num_drc_entries = 0; 164 hashsize = nfsd_hashsize(max_drc_entries); 165 maskbits = ilog2(hashsize); 166 167 register_shrinker(&nfsd_reply_cache_shrinker); 168 drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep), 169 0, 0, NULL); 170 if (!drc_slab) 171 goto out_nomem; 172 173 cache_hash = kcalloc(hashsize, sizeof(struct hlist_head), GFP_KERNEL); 174 if (!cache_hash) 175 goto out_nomem; 176 177 return 0; 178 out_nomem: 179 printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); 180 nfsd_reply_cache_shutdown(); 181 return -ENOMEM; 182 } 183 184 void nfsd_reply_cache_shutdown(void) 185 { 186 struct svc_cacherep *rp; 187 188 unregister_shrinker(&nfsd_reply_cache_shrinker); 189 cancel_delayed_work_sync(&cache_cleaner); 190 191 while (!list_empty(&lru_head)) { 192 rp = list_entry(lru_head.next, struct svc_cacherep, c_lru); 193 nfsd_reply_cache_free_locked(rp); 194 } 195 196 kfree (cache_hash); 197 cache_hash = NULL; 198 199 if (drc_slab) { 200 kmem_cache_destroy(drc_slab); 201 drc_slab = NULL; 202 } 203 } 204 205 /* 206 * Move cache entry to end of LRU list, and queue the cleaner to run if it's 207 * not already scheduled. 208 */ 209 static void 210 lru_put_end(struct svc_cacherep *rp) 211 { 212 rp->c_timestamp = jiffies; 213 list_move_tail(&rp->c_lru, &lru_head); 214 schedule_delayed_work(&cache_cleaner, RC_EXPIRE); 215 } 216 217 /* 218 * Move a cache entry from one hash list to another 219 */ 220 static void 221 hash_refile(struct svc_cacherep *rp) 222 { 223 hlist_del_init(&rp->c_hash); 224 /* 225 * No point in byte swapping c_xid since we're just using it to pick 226 * a hash bucket. 227 */ 228 hlist_add_head(&rp->c_hash, cache_hash + 229 hash_32((__force u32)rp->c_xid, maskbits)); 230 } 231 232 /* 233 * Walk the LRU list and prune off entries that are older than RC_EXPIRE. 234 * Also prune the oldest ones when the total exceeds the max number of entries. 235 */ 236 static long 237 prune_cache_entries(void) 238 { 239 struct svc_cacherep *rp, *tmp; 240 long freed = 0; 241 242 list_for_each_entry_safe(rp, tmp, &lru_head, c_lru) { 243 /* 244 * Don't free entries attached to calls that are still 245 * in-progress, but do keep scanning the list. 246 */ 247 if (rp->c_state == RC_INPROG) 248 continue; 249 if (num_drc_entries <= max_drc_entries && 250 time_before(jiffies, rp->c_timestamp + RC_EXPIRE)) 251 break; 252 nfsd_reply_cache_free_locked(rp); 253 freed++; 254 } 255 256 /* 257 * Conditionally rearm the job. If we cleaned out the list, then 258 * cancel any pending run (since there won't be any work to do). 259 * Otherwise, we rearm the job or modify the existing one to run in 260 * RC_EXPIRE since we just ran the pruner. 261 */ 262 if (list_empty(&lru_head)) 263 cancel_delayed_work(&cache_cleaner); 264 else 265 mod_delayed_work(system_wq, &cache_cleaner, RC_EXPIRE); 266 return freed; 267 } 268 269 static void 270 cache_cleaner_func(struct work_struct *unused) 271 { 272 spin_lock(&cache_lock); 273 prune_cache_entries(); 274 spin_unlock(&cache_lock); 275 } 276 277 static unsigned long 278 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc) 279 { 280 unsigned long num; 281 282 spin_lock(&cache_lock); 283 num = num_drc_entries; 284 spin_unlock(&cache_lock); 285 286 return num; 287 } 288 289 static unsigned long 290 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 291 { 292 unsigned long freed; 293 294 spin_lock(&cache_lock); 295 freed = prune_cache_entries(); 296 spin_unlock(&cache_lock); 297 return freed; 298 } 299 /* 300 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes 301 */ 302 static __wsum 303 nfsd_cache_csum(struct svc_rqst *rqstp) 304 { 305 int idx; 306 unsigned int base; 307 __wsum csum; 308 struct xdr_buf *buf = &rqstp->rq_arg; 309 const unsigned char *p = buf->head[0].iov_base; 310 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len, 311 RC_CSUMLEN); 312 size_t len = min(buf->head[0].iov_len, csum_len); 313 314 /* rq_arg.head first */ 315 csum = csum_partial(p, len, 0); 316 csum_len -= len; 317 318 /* Continue into page array */ 319 idx = buf->page_base / PAGE_SIZE; 320 base = buf->page_base & ~PAGE_MASK; 321 while (csum_len) { 322 p = page_address(buf->pages[idx]) + base; 323 len = min_t(size_t, PAGE_SIZE - base, csum_len); 324 csum = csum_partial(p, len, csum); 325 csum_len -= len; 326 base = 0; 327 ++idx; 328 } 329 return csum; 330 } 331 332 static bool 333 nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp) 334 { 335 /* Check RPC header info first */ 336 if (rqstp->rq_xid != rp->c_xid || rqstp->rq_proc != rp->c_proc || 337 rqstp->rq_prot != rp->c_prot || rqstp->rq_vers != rp->c_vers || 338 rqstp->rq_arg.len != rp->c_len || 339 !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) || 340 rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr)) 341 return false; 342 343 /* compare checksum of NFS data */ 344 if (csum != rp->c_csum) { 345 ++payload_misses; 346 return false; 347 } 348 349 return true; 350 } 351 352 /* 353 * Search the request hash for an entry that matches the given rqstp. 354 * Must be called with cache_lock held. Returns the found entry or 355 * NULL on failure. 356 */ 357 static struct svc_cacherep * 358 nfsd_cache_search(struct svc_rqst *rqstp, __wsum csum) 359 { 360 struct svc_cacherep *rp, *ret = NULL; 361 struct hlist_head *rh; 362 unsigned int entries = 0; 363 364 /* 365 * No point in byte swapping rq_xid since we're just using it to pick 366 * a hash bucket. 367 */ 368 rh = &cache_hash[hash_32((__force u32)rqstp->rq_xid, maskbits)]; 369 hlist_for_each_entry(rp, rh, c_hash) { 370 ++entries; 371 if (nfsd_cache_match(rqstp, csum, rp)) { 372 ret = rp; 373 break; 374 } 375 } 376 377 /* tally hash chain length stats */ 378 if (entries > longest_chain) { 379 longest_chain = entries; 380 longest_chain_cachesize = num_drc_entries; 381 } else if (entries == longest_chain) { 382 /* prefer to keep the smallest cachesize possible here */ 383 longest_chain_cachesize = min(longest_chain_cachesize, 384 num_drc_entries); 385 } 386 387 return ret; 388 } 389 390 /* 391 * Try to find an entry matching the current call in the cache. When none 392 * is found, we try to grab the oldest expired entry off the LRU list. If 393 * a suitable one isn't there, then drop the cache_lock and allocate a 394 * new one, then search again in case one got inserted while this thread 395 * didn't hold the lock. 396 */ 397 int 398 nfsd_cache_lookup(struct svc_rqst *rqstp) 399 { 400 struct svc_cacherep *rp, *found; 401 __be32 xid = rqstp->rq_xid; 402 u32 proto = rqstp->rq_prot, 403 vers = rqstp->rq_vers, 404 proc = rqstp->rq_proc; 405 __wsum csum; 406 unsigned long age; 407 int type = rqstp->rq_cachetype; 408 int rtn = RC_DOIT; 409 410 rqstp->rq_cacherep = NULL; 411 if (type == RC_NOCACHE) { 412 nfsdstats.rcnocache++; 413 return rtn; 414 } 415 416 csum = nfsd_cache_csum(rqstp); 417 418 /* 419 * Since the common case is a cache miss followed by an insert, 420 * preallocate an entry. 421 */ 422 rp = nfsd_reply_cache_alloc(); 423 spin_lock(&cache_lock); 424 if (likely(rp)) { 425 ++num_drc_entries; 426 drc_mem_usage += sizeof(*rp); 427 } 428 429 /* go ahead and prune the cache */ 430 prune_cache_entries(); 431 432 found = nfsd_cache_search(rqstp, csum); 433 if (found) { 434 if (likely(rp)) 435 nfsd_reply_cache_free_locked(rp); 436 rp = found; 437 goto found_entry; 438 } 439 440 if (!rp) { 441 dprintk("nfsd: unable to allocate DRC entry!\n"); 442 goto out; 443 } 444 445 nfsdstats.rcmisses++; 446 rqstp->rq_cacherep = rp; 447 rp->c_state = RC_INPROG; 448 rp->c_xid = xid; 449 rp->c_proc = proc; 450 rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp)); 451 rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp))); 452 rp->c_prot = proto; 453 rp->c_vers = vers; 454 rp->c_len = rqstp->rq_arg.len; 455 rp->c_csum = csum; 456 457 hash_refile(rp); 458 lru_put_end(rp); 459 460 /* release any buffer */ 461 if (rp->c_type == RC_REPLBUFF) { 462 drc_mem_usage -= rp->c_replvec.iov_len; 463 kfree(rp->c_replvec.iov_base); 464 rp->c_replvec.iov_base = NULL; 465 } 466 rp->c_type = RC_NOCACHE; 467 out: 468 spin_unlock(&cache_lock); 469 return rtn; 470 471 found_entry: 472 nfsdstats.rchits++; 473 /* We found a matching entry which is either in progress or done. */ 474 age = jiffies - rp->c_timestamp; 475 lru_put_end(rp); 476 477 rtn = RC_DROPIT; 478 /* Request being processed or excessive rexmits */ 479 if (rp->c_state == RC_INPROG || age < RC_DELAY) 480 goto out; 481 482 /* From the hall of fame of impractical attacks: 483 * Is this a user who tries to snoop on the cache? */ 484 rtn = RC_DOIT; 485 if (!rqstp->rq_secure && rp->c_secure) 486 goto out; 487 488 /* Compose RPC reply header */ 489 switch (rp->c_type) { 490 case RC_NOCACHE: 491 break; 492 case RC_REPLSTAT: 493 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat); 494 rtn = RC_REPLY; 495 break; 496 case RC_REPLBUFF: 497 if (!nfsd_cache_append(rqstp, &rp->c_replvec)) 498 goto out; /* should not happen */ 499 rtn = RC_REPLY; 500 break; 501 default: 502 printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type); 503 nfsd_reply_cache_free_locked(rp); 504 } 505 506 goto out; 507 } 508 509 /* 510 * Update a cache entry. This is called from nfsd_dispatch when 511 * the procedure has been executed and the complete reply is in 512 * rqstp->rq_res. 513 * 514 * We're copying around data here rather than swapping buffers because 515 * the toplevel loop requires max-sized buffers, which would be a waste 516 * of memory for a cache with a max reply size of 100 bytes (diropokres). 517 * 518 * If we should start to use different types of cache entries tailored 519 * specifically for attrstat and fh's, we may save even more space. 520 * 521 * Also note that a cachetype of RC_NOCACHE can legally be passed when 522 * nfsd failed to encode a reply that otherwise would have been cached. 523 * In this case, nfsd_cache_update is called with statp == NULL. 524 */ 525 void 526 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp) 527 { 528 struct svc_cacherep *rp = rqstp->rq_cacherep; 529 struct kvec *resv = &rqstp->rq_res.head[0], *cachv; 530 int len; 531 size_t bufsize = 0; 532 533 if (!rp) 534 return; 535 536 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); 537 len >>= 2; 538 539 /* Don't cache excessive amounts of data and XDR failures */ 540 if (!statp || len > (256 >> 2)) { 541 nfsd_reply_cache_free(rp); 542 return; 543 } 544 545 switch (cachetype) { 546 case RC_REPLSTAT: 547 if (len != 1) 548 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); 549 rp->c_replstat = *statp; 550 break; 551 case RC_REPLBUFF: 552 cachv = &rp->c_replvec; 553 bufsize = len << 2; 554 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL); 555 if (!cachv->iov_base) { 556 nfsd_reply_cache_free(rp); 557 return; 558 } 559 cachv->iov_len = bufsize; 560 memcpy(cachv->iov_base, statp, bufsize); 561 break; 562 case RC_NOCACHE: 563 nfsd_reply_cache_free(rp); 564 return; 565 } 566 spin_lock(&cache_lock); 567 drc_mem_usage += bufsize; 568 lru_put_end(rp); 569 rp->c_secure = rqstp->rq_secure; 570 rp->c_type = cachetype; 571 rp->c_state = RC_DONE; 572 spin_unlock(&cache_lock); 573 return; 574 } 575 576 /* 577 * Copy cached reply to current reply buffer. Should always fit. 578 * FIXME as reply is in a page, we should just attach the page, and 579 * keep a refcount.... 580 */ 581 static int 582 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) 583 { 584 struct kvec *vec = &rqstp->rq_res.head[0]; 585 586 if (vec->iov_len + data->iov_len > PAGE_SIZE) { 587 printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n", 588 data->iov_len); 589 return 0; 590 } 591 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len); 592 vec->iov_len += data->iov_len; 593 return 1; 594 } 595 596 /* 597 * Note that fields may be added, removed or reordered in the future. Programs 598 * scraping this file for info should test the labels to ensure they're 599 * getting the correct field. 600 */ 601 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v) 602 { 603 spin_lock(&cache_lock); 604 seq_printf(m, "max entries: %u\n", max_drc_entries); 605 seq_printf(m, "num entries: %u\n", num_drc_entries); 606 seq_printf(m, "hash buckets: %u\n", 1 << maskbits); 607 seq_printf(m, "mem usage: %u\n", drc_mem_usage); 608 seq_printf(m, "cache hits: %u\n", nfsdstats.rchits); 609 seq_printf(m, "cache misses: %u\n", nfsdstats.rcmisses); 610 seq_printf(m, "not cached: %u\n", nfsdstats.rcnocache); 611 seq_printf(m, "payload misses: %u\n", payload_misses); 612 seq_printf(m, "longest chain len: %u\n", longest_chain); 613 seq_printf(m, "cachesize at longest: %u\n", longest_chain_cachesize); 614 spin_unlock(&cache_lock); 615 return 0; 616 } 617 618 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file) 619 { 620 return single_open(file, nfsd_reply_cache_stats_show, NULL); 621 } 622