1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Request reply cache. This is currently a global cache, but this may 4 * change in the future and be a per-client cache. 5 * 6 * This code is heavily inspired by the 44BSD implementation, although 7 * it does things a bit differently. 8 * 9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 10 */ 11 12 #include <linux/sunrpc/svc_xprt.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/sunrpc/addr.h> 16 #include <linux/highmem.h> 17 #include <linux/log2.h> 18 #include <linux/hash.h> 19 #include <net/checksum.h> 20 21 #include "nfsd.h" 22 #include "cache.h" 23 #include "trace.h" 24 25 /* 26 * We use this value to determine the number of hash buckets from the max 27 * cache size, the idea being that when the cache is at its maximum number 28 * of entries, then this should be the average number of entries per bucket. 29 */ 30 #define TARGET_BUCKET_SIZE 64 31 32 struct nfsd_drc_bucket { 33 struct rb_root rb_head; 34 struct list_head lru_head; 35 spinlock_t cache_lock; 36 }; 37 38 static struct kmem_cache *drc_slab; 39 40 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); 41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink, 42 struct shrink_control *sc); 43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink, 44 struct shrink_control *sc); 45 46 /* 47 * Put a cap on the size of the DRC based on the amount of available 48 * low memory in the machine. 49 * 50 * 64MB: 8192 51 * 128MB: 11585 52 * 256MB: 16384 53 * 512MB: 23170 54 * 1GB: 32768 55 * 2GB: 46340 56 * 4GB: 65536 57 * 8GB: 92681 58 * 16GB: 131072 59 * 60 * ...with a hard cap of 256k entries. In the worst case, each entry will be 61 * ~1k, so the above numbers should give a rough max of the amount of memory 62 * used in k. 63 * 64 * XXX: these limits are per-container, so memory used will increase 65 * linearly with number of containers. Maybe that's OK. 66 */ 67 static unsigned int 68 nfsd_cache_size_limit(void) 69 { 70 unsigned int limit; 71 unsigned long low_pages = totalram_pages() - totalhigh_pages(); 72 73 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); 74 return min_t(unsigned int, limit, 256*1024); 75 } 76 77 /* 78 * Compute the number of hash buckets we need. Divide the max cachesize by 79 * the "target" max bucket size, and round up to next power of two. 80 */ 81 static unsigned int 82 nfsd_hashsize(unsigned int limit) 83 { 84 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE); 85 } 86 87 static u32 88 nfsd_cache_hash(__be32 xid, struct nfsd_net *nn) 89 { 90 return hash_32(be32_to_cpu(xid), nn->maskbits); 91 } 92 93 static struct svc_cacherep * 94 nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum, 95 struct nfsd_net *nn) 96 { 97 struct svc_cacherep *rp; 98 99 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); 100 if (rp) { 101 rp->c_state = RC_UNUSED; 102 rp->c_type = RC_NOCACHE; 103 RB_CLEAR_NODE(&rp->c_node); 104 INIT_LIST_HEAD(&rp->c_lru); 105 106 memset(&rp->c_key, 0, sizeof(rp->c_key)); 107 rp->c_key.k_xid = rqstp->rq_xid; 108 rp->c_key.k_proc = rqstp->rq_proc; 109 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp)); 110 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp))); 111 rp->c_key.k_prot = rqstp->rq_prot; 112 rp->c_key.k_vers = rqstp->rq_vers; 113 rp->c_key.k_len = rqstp->rq_arg.len; 114 rp->c_key.k_csum = csum; 115 } 116 return rp; 117 } 118 119 static void 120 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp, 121 struct nfsd_net *nn) 122 { 123 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) { 124 nn->drc_mem_usage -= rp->c_replvec.iov_len; 125 kfree(rp->c_replvec.iov_base); 126 } 127 if (rp->c_state != RC_UNUSED) { 128 rb_erase(&rp->c_node, &b->rb_head); 129 list_del(&rp->c_lru); 130 atomic_dec(&nn->num_drc_entries); 131 nn->drc_mem_usage -= sizeof(*rp); 132 } 133 kmem_cache_free(drc_slab, rp); 134 } 135 136 static void 137 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp, 138 struct nfsd_net *nn) 139 { 140 spin_lock(&b->cache_lock); 141 nfsd_reply_cache_free_locked(b, rp, nn); 142 spin_unlock(&b->cache_lock); 143 } 144 145 int nfsd_drc_slab_create(void) 146 { 147 drc_slab = kmem_cache_create("nfsd_drc", 148 sizeof(struct svc_cacherep), 0, 0, NULL); 149 return drc_slab ? 0: -ENOMEM; 150 } 151 152 void nfsd_drc_slab_free(void) 153 { 154 kmem_cache_destroy(drc_slab); 155 } 156 157 int nfsd_reply_cache_init(struct nfsd_net *nn) 158 { 159 unsigned int hashsize; 160 unsigned int i; 161 int status = 0; 162 163 nn->max_drc_entries = nfsd_cache_size_limit(); 164 atomic_set(&nn->num_drc_entries, 0); 165 hashsize = nfsd_hashsize(nn->max_drc_entries); 166 nn->maskbits = ilog2(hashsize); 167 168 nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan; 169 nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count; 170 nn->nfsd_reply_cache_shrinker.seeks = 1; 171 status = register_shrinker(&nn->nfsd_reply_cache_shrinker); 172 if (status) 173 goto out_nomem; 174 175 nn->drc_hashtbl = kvzalloc(array_size(hashsize, 176 sizeof(*nn->drc_hashtbl)), GFP_KERNEL); 177 if (!nn->drc_hashtbl) 178 goto out_shrinker; 179 180 for (i = 0; i < hashsize; i++) { 181 INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head); 182 spin_lock_init(&nn->drc_hashtbl[i].cache_lock); 183 } 184 nn->drc_hashsize = hashsize; 185 186 return 0; 187 out_shrinker: 188 unregister_shrinker(&nn->nfsd_reply_cache_shrinker); 189 out_nomem: 190 printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); 191 return -ENOMEM; 192 } 193 194 void nfsd_reply_cache_shutdown(struct nfsd_net *nn) 195 { 196 struct svc_cacherep *rp; 197 unsigned int i; 198 199 unregister_shrinker(&nn->nfsd_reply_cache_shrinker); 200 201 for (i = 0; i < nn->drc_hashsize; i++) { 202 struct list_head *head = &nn->drc_hashtbl[i].lru_head; 203 while (!list_empty(head)) { 204 rp = list_first_entry(head, struct svc_cacherep, c_lru); 205 nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i], 206 rp, nn); 207 } 208 } 209 210 kvfree(nn->drc_hashtbl); 211 nn->drc_hashtbl = NULL; 212 nn->drc_hashsize = 0; 213 214 } 215 216 /* 217 * Move cache entry to end of LRU list, and queue the cleaner to run if it's 218 * not already scheduled. 219 */ 220 static void 221 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp) 222 { 223 rp->c_timestamp = jiffies; 224 list_move_tail(&rp->c_lru, &b->lru_head); 225 } 226 227 static long 228 prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn) 229 { 230 struct svc_cacherep *rp, *tmp; 231 long freed = 0; 232 233 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) { 234 /* 235 * Don't free entries attached to calls that are still 236 * in-progress, but do keep scanning the list. 237 */ 238 if (rp->c_state == RC_INPROG) 239 continue; 240 if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries && 241 time_before(jiffies, rp->c_timestamp + RC_EXPIRE)) 242 break; 243 nfsd_reply_cache_free_locked(b, rp, nn); 244 freed++; 245 } 246 return freed; 247 } 248 249 /* 250 * Walk the LRU list and prune off entries that are older than RC_EXPIRE. 251 * Also prune the oldest ones when the total exceeds the max number of entries. 252 */ 253 static long 254 prune_cache_entries(struct nfsd_net *nn) 255 { 256 unsigned int i; 257 long freed = 0; 258 259 for (i = 0; i < nn->drc_hashsize; i++) { 260 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i]; 261 262 if (list_empty(&b->lru_head)) 263 continue; 264 spin_lock(&b->cache_lock); 265 freed += prune_bucket(b, nn); 266 spin_unlock(&b->cache_lock); 267 } 268 return freed; 269 } 270 271 static unsigned long 272 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc) 273 { 274 struct nfsd_net *nn = container_of(shrink, 275 struct nfsd_net, nfsd_reply_cache_shrinker); 276 277 return atomic_read(&nn->num_drc_entries); 278 } 279 280 static unsigned long 281 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 282 { 283 struct nfsd_net *nn = container_of(shrink, 284 struct nfsd_net, nfsd_reply_cache_shrinker); 285 286 return prune_cache_entries(nn); 287 } 288 /* 289 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes 290 */ 291 static __wsum 292 nfsd_cache_csum(struct svc_rqst *rqstp) 293 { 294 int idx; 295 unsigned int base; 296 __wsum csum; 297 struct xdr_buf *buf = &rqstp->rq_arg; 298 const unsigned char *p = buf->head[0].iov_base; 299 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len, 300 RC_CSUMLEN); 301 size_t len = min(buf->head[0].iov_len, csum_len); 302 303 /* rq_arg.head first */ 304 csum = csum_partial(p, len, 0); 305 csum_len -= len; 306 307 /* Continue into page array */ 308 idx = buf->page_base / PAGE_SIZE; 309 base = buf->page_base & ~PAGE_MASK; 310 while (csum_len) { 311 p = page_address(buf->pages[idx]) + base; 312 len = min_t(size_t, PAGE_SIZE - base, csum_len); 313 csum = csum_partial(p, len, csum); 314 csum_len -= len; 315 base = 0; 316 ++idx; 317 } 318 return csum; 319 } 320 321 static int 322 nfsd_cache_key_cmp(const struct svc_cacherep *key, 323 const struct svc_cacherep *rp, struct nfsd_net *nn) 324 { 325 if (key->c_key.k_xid == rp->c_key.k_xid && 326 key->c_key.k_csum != rp->c_key.k_csum) { 327 ++nn->payload_misses; 328 trace_nfsd_drc_mismatch(nn, key, rp); 329 } 330 331 return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key)); 332 } 333 334 /* 335 * Search the request hash for an entry that matches the given rqstp. 336 * Must be called with cache_lock held. Returns the found entry or 337 * inserts an empty key on failure. 338 */ 339 static struct svc_cacherep * 340 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key, 341 struct nfsd_net *nn) 342 { 343 struct svc_cacherep *rp, *ret = key; 344 struct rb_node **p = &b->rb_head.rb_node, 345 *parent = NULL; 346 unsigned int entries = 0; 347 int cmp; 348 349 while (*p != NULL) { 350 ++entries; 351 parent = *p; 352 rp = rb_entry(parent, struct svc_cacherep, c_node); 353 354 cmp = nfsd_cache_key_cmp(key, rp, nn); 355 if (cmp < 0) 356 p = &parent->rb_left; 357 else if (cmp > 0) 358 p = &parent->rb_right; 359 else { 360 ret = rp; 361 goto out; 362 } 363 } 364 rb_link_node(&key->c_node, parent, p); 365 rb_insert_color(&key->c_node, &b->rb_head); 366 out: 367 /* tally hash chain length stats */ 368 if (entries > nn->longest_chain) { 369 nn->longest_chain = entries; 370 nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries); 371 } else if (entries == nn->longest_chain) { 372 /* prefer to keep the smallest cachesize possible here */ 373 nn->longest_chain_cachesize = min_t(unsigned int, 374 nn->longest_chain_cachesize, 375 atomic_read(&nn->num_drc_entries)); 376 } 377 378 lru_put_end(b, ret); 379 return ret; 380 } 381 382 /** 383 * nfsd_cache_lookup - Find an entry in the duplicate reply cache 384 * @rqstp: Incoming Call to find 385 * 386 * Try to find an entry matching the current call in the cache. When none 387 * is found, we try to grab the oldest expired entry off the LRU list. If 388 * a suitable one isn't there, then drop the cache_lock and allocate a 389 * new one, then search again in case one got inserted while this thread 390 * didn't hold the lock. 391 * 392 * Return values: 393 * %RC_DOIT: Process the request normally 394 * %RC_REPLY: Reply from cache 395 * %RC_DROPIT: Do not process the request further 396 */ 397 int nfsd_cache_lookup(struct svc_rqst *rqstp) 398 { 399 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 400 struct svc_cacherep *rp, *found; 401 __be32 xid = rqstp->rq_xid; 402 __wsum csum; 403 u32 hash = nfsd_cache_hash(xid, nn); 404 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[hash]; 405 int type = rqstp->rq_cachetype; 406 int rtn = RC_DOIT; 407 408 rqstp->rq_cacherep = NULL; 409 if (type == RC_NOCACHE) { 410 nfsdstats.rcnocache++; 411 goto out; 412 } 413 414 csum = nfsd_cache_csum(rqstp); 415 416 /* 417 * Since the common case is a cache miss followed by an insert, 418 * preallocate an entry. 419 */ 420 rp = nfsd_reply_cache_alloc(rqstp, csum, nn); 421 if (!rp) 422 goto out; 423 424 spin_lock(&b->cache_lock); 425 found = nfsd_cache_insert(b, rp, nn); 426 if (found != rp) { 427 nfsd_reply_cache_free_locked(NULL, rp, nn); 428 rp = found; 429 goto found_entry; 430 } 431 432 nfsdstats.rcmisses++; 433 rqstp->rq_cacherep = rp; 434 rp->c_state = RC_INPROG; 435 436 atomic_inc(&nn->num_drc_entries); 437 nn->drc_mem_usage += sizeof(*rp); 438 439 /* go ahead and prune the cache */ 440 prune_bucket(b, nn); 441 442 out_unlock: 443 spin_unlock(&b->cache_lock); 444 out: 445 return rtn; 446 447 found_entry: 448 /* We found a matching entry which is either in progress or done. */ 449 nfsdstats.rchits++; 450 rtn = RC_DROPIT; 451 452 /* Request being processed */ 453 if (rp->c_state == RC_INPROG) 454 goto out_trace; 455 456 /* From the hall of fame of impractical attacks: 457 * Is this a user who tries to snoop on the cache? */ 458 rtn = RC_DOIT; 459 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure) 460 goto out_trace; 461 462 /* Compose RPC reply header */ 463 switch (rp->c_type) { 464 case RC_NOCACHE: 465 break; 466 case RC_REPLSTAT: 467 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat); 468 rtn = RC_REPLY; 469 break; 470 case RC_REPLBUFF: 471 if (!nfsd_cache_append(rqstp, &rp->c_replvec)) 472 goto out_unlock; /* should not happen */ 473 rtn = RC_REPLY; 474 break; 475 default: 476 WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type); 477 } 478 479 out_trace: 480 trace_nfsd_drc_found(nn, rqstp, rtn); 481 goto out_unlock; 482 } 483 484 /** 485 * nfsd_cache_update - Update an entry in the duplicate reply cache. 486 * @rqstp: svc_rqst with a finished Reply 487 * @cachetype: which cache to update 488 * @statp: Reply's status code 489 * 490 * This is called from nfsd_dispatch when the procedure has been 491 * executed and the complete reply is in rqstp->rq_res. 492 * 493 * We're copying around data here rather than swapping buffers because 494 * the toplevel loop requires max-sized buffers, which would be a waste 495 * of memory for a cache with a max reply size of 100 bytes (diropokres). 496 * 497 * If we should start to use different types of cache entries tailored 498 * specifically for attrstat and fh's, we may save even more space. 499 * 500 * Also note that a cachetype of RC_NOCACHE can legally be passed when 501 * nfsd failed to encode a reply that otherwise would have been cached. 502 * In this case, nfsd_cache_update is called with statp == NULL. 503 */ 504 void nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp) 505 { 506 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 507 struct svc_cacherep *rp = rqstp->rq_cacherep; 508 struct kvec *resv = &rqstp->rq_res.head[0], *cachv; 509 u32 hash; 510 struct nfsd_drc_bucket *b; 511 int len; 512 size_t bufsize = 0; 513 514 if (!rp) 515 return; 516 517 hash = nfsd_cache_hash(rp->c_key.k_xid, nn); 518 b = &nn->drc_hashtbl[hash]; 519 520 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); 521 len >>= 2; 522 523 /* Don't cache excessive amounts of data and XDR failures */ 524 if (!statp || len > (256 >> 2)) { 525 nfsd_reply_cache_free(b, rp, nn); 526 return; 527 } 528 529 switch (cachetype) { 530 case RC_REPLSTAT: 531 if (len != 1) 532 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); 533 rp->c_replstat = *statp; 534 break; 535 case RC_REPLBUFF: 536 cachv = &rp->c_replvec; 537 bufsize = len << 2; 538 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL); 539 if (!cachv->iov_base) { 540 nfsd_reply_cache_free(b, rp, nn); 541 return; 542 } 543 cachv->iov_len = bufsize; 544 memcpy(cachv->iov_base, statp, bufsize); 545 break; 546 case RC_NOCACHE: 547 nfsd_reply_cache_free(b, rp, nn); 548 return; 549 } 550 spin_lock(&b->cache_lock); 551 nn->drc_mem_usage += bufsize; 552 lru_put_end(b, rp); 553 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags); 554 rp->c_type = cachetype; 555 rp->c_state = RC_DONE; 556 spin_unlock(&b->cache_lock); 557 return; 558 } 559 560 /* 561 * Copy cached reply to current reply buffer. Should always fit. 562 * FIXME as reply is in a page, we should just attach the page, and 563 * keep a refcount.... 564 */ 565 static int 566 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) 567 { 568 struct kvec *vec = &rqstp->rq_res.head[0]; 569 570 if (vec->iov_len + data->iov_len > PAGE_SIZE) { 571 printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n", 572 data->iov_len); 573 return 0; 574 } 575 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len); 576 vec->iov_len += data->iov_len; 577 return 1; 578 } 579 580 /* 581 * Note that fields may be added, removed or reordered in the future. Programs 582 * scraping this file for info should test the labels to ensure they're 583 * getting the correct field. 584 */ 585 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v) 586 { 587 struct nfsd_net *nn = m->private; 588 589 seq_printf(m, "max entries: %u\n", nn->max_drc_entries); 590 seq_printf(m, "num entries: %u\n", 591 atomic_read(&nn->num_drc_entries)); 592 seq_printf(m, "hash buckets: %u\n", 1 << nn->maskbits); 593 seq_printf(m, "mem usage: %u\n", nn->drc_mem_usage); 594 seq_printf(m, "cache hits: %u\n", nfsdstats.rchits); 595 seq_printf(m, "cache misses: %u\n", nfsdstats.rcmisses); 596 seq_printf(m, "not cached: %u\n", nfsdstats.rcnocache); 597 seq_printf(m, "payload misses: %u\n", nn->payload_misses); 598 seq_printf(m, "longest chain len: %u\n", nn->longest_chain); 599 seq_printf(m, "cachesize at longest: %u\n", nn->longest_chain_cachesize); 600 return 0; 601 } 602 603 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file) 604 { 605 struct nfsd_net *nn = net_generic(file_inode(file)->i_sb->s_fs_info, 606 nfsd_net_id); 607 608 return single_open(file, nfsd_reply_cache_stats_show, nn); 609 } 610