xref: /openbmc/linux/fs/nfsd/nfscache.c (revision 1cac4f26)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Request reply cache. This is currently a global cache, but this may
4  * change in the future and be a per-client cache.
5  *
6  * This code is heavily inspired by the 44BSD implementation, although
7  * it does things a bit differently.
8  *
9  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sunrpc/addr.h>
15 #include <linux/highmem.h>
16 #include <linux/log2.h>
17 #include <linux/hash.h>
18 #include <net/checksum.h>
19 
20 #include "nfsd.h"
21 #include "cache.h"
22 
23 #define NFSDDBG_FACILITY	NFSDDBG_REPCACHE
24 
25 /*
26  * We use this value to determine the number of hash buckets from the max
27  * cache size, the idea being that when the cache is at its maximum number
28  * of entries, then this should be the average number of entries per bucket.
29  */
30 #define TARGET_BUCKET_SIZE	64
31 
32 struct nfsd_drc_bucket {
33 	struct rb_root rb_head;
34 	struct list_head lru_head;
35 	spinlock_t cache_lock;
36 };
37 
38 static struct nfsd_drc_bucket	*drc_hashtbl;
39 static struct kmem_cache	*drc_slab;
40 
41 /* max number of entries allowed in the cache */
42 static unsigned int		max_drc_entries;
43 
44 /* number of significant bits in the hash value */
45 static unsigned int		maskbits;
46 static unsigned int		drc_hashsize;
47 
48 /*
49  * Stats and other tracking of on the duplicate reply cache. All of these and
50  * the "rc" fields in nfsdstats are protected by the cache_lock
51  */
52 
53 /* total number of entries */
54 static atomic_t			num_drc_entries;
55 
56 /* cache misses due only to checksum comparison failures */
57 static unsigned int		payload_misses;
58 
59 /* amount of memory (in bytes) currently consumed by the DRC */
60 static unsigned int		drc_mem_usage;
61 
62 /* longest hash chain seen */
63 static unsigned int		longest_chain;
64 
65 /* size of cache when we saw the longest hash chain */
66 static unsigned int		longest_chain_cachesize;
67 
68 static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
69 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
70 					    struct shrink_control *sc);
71 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
72 					   struct shrink_control *sc);
73 
74 static struct shrinker nfsd_reply_cache_shrinker = {
75 	.scan_objects = nfsd_reply_cache_scan,
76 	.count_objects = nfsd_reply_cache_count,
77 	.seeks	= 1,
78 };
79 
80 /*
81  * Put a cap on the size of the DRC based on the amount of available
82  * low memory in the machine.
83  *
84  *  64MB:    8192
85  * 128MB:   11585
86  * 256MB:   16384
87  * 512MB:   23170
88  *   1GB:   32768
89  *   2GB:   46340
90  *   4GB:   65536
91  *   8GB:   92681
92  *  16GB:  131072
93  *
94  * ...with a hard cap of 256k entries. In the worst case, each entry will be
95  * ~1k, so the above numbers should give a rough max of the amount of memory
96  * used in k.
97  */
98 static unsigned int
99 nfsd_cache_size_limit(void)
100 {
101 	unsigned int limit;
102 	unsigned long low_pages = totalram_pages() - totalhigh_pages();
103 
104 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
105 	return min_t(unsigned int, limit, 256*1024);
106 }
107 
108 /*
109  * Compute the number of hash buckets we need. Divide the max cachesize by
110  * the "target" max bucket size, and round up to next power of two.
111  */
112 static unsigned int
113 nfsd_hashsize(unsigned int limit)
114 {
115 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
116 }
117 
118 static u32
119 nfsd_cache_hash(__be32 xid)
120 {
121 	return hash_32(be32_to_cpu(xid), maskbits);
122 }
123 
124 static struct svc_cacherep *
125 nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum)
126 {
127 	struct svc_cacherep	*rp;
128 
129 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
130 	if (rp) {
131 		rp->c_state = RC_UNUSED;
132 		rp->c_type = RC_NOCACHE;
133 		RB_CLEAR_NODE(&rp->c_node);
134 		INIT_LIST_HEAD(&rp->c_lru);
135 
136 		memset(&rp->c_key, 0, sizeof(rp->c_key));
137 		rp->c_key.k_xid = rqstp->rq_xid;
138 		rp->c_key.k_proc = rqstp->rq_proc;
139 		rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
140 		rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
141 		rp->c_key.k_prot = rqstp->rq_prot;
142 		rp->c_key.k_vers = rqstp->rq_vers;
143 		rp->c_key.k_len = rqstp->rq_arg.len;
144 		rp->c_key.k_csum = csum;
145 	}
146 	return rp;
147 }
148 
149 static void
150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
151 {
152 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
153 		drc_mem_usage -= rp->c_replvec.iov_len;
154 		kfree(rp->c_replvec.iov_base);
155 	}
156 	if (rp->c_state != RC_UNUSED) {
157 		rb_erase(&rp->c_node, &b->rb_head);
158 		list_del(&rp->c_lru);
159 		atomic_dec(&num_drc_entries);
160 		drc_mem_usage -= sizeof(*rp);
161 	}
162 	kmem_cache_free(drc_slab, rp);
163 }
164 
165 static void
166 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
167 {
168 	spin_lock(&b->cache_lock);
169 	nfsd_reply_cache_free_locked(b, rp);
170 	spin_unlock(&b->cache_lock);
171 }
172 
173 int nfsd_reply_cache_init(void)
174 {
175 	unsigned int hashsize;
176 	unsigned int i;
177 	int status = 0;
178 
179 	max_drc_entries = nfsd_cache_size_limit();
180 	atomic_set(&num_drc_entries, 0);
181 	hashsize = nfsd_hashsize(max_drc_entries);
182 	maskbits = ilog2(hashsize);
183 
184 	status = register_shrinker(&nfsd_reply_cache_shrinker);
185 	if (status)
186 		return status;
187 
188 	drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
189 					0, 0, NULL);
190 	if (!drc_slab)
191 		goto out_nomem;
192 
193 	drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL);
194 	if (!drc_hashtbl) {
195 		drc_hashtbl = vzalloc(array_size(hashsize,
196 						 sizeof(*drc_hashtbl)));
197 		if (!drc_hashtbl)
198 			goto out_nomem;
199 	}
200 
201 	for (i = 0; i < hashsize; i++) {
202 		INIT_LIST_HEAD(&drc_hashtbl[i].lru_head);
203 		spin_lock_init(&drc_hashtbl[i].cache_lock);
204 	}
205 	drc_hashsize = hashsize;
206 
207 	return 0;
208 out_nomem:
209 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
210 	nfsd_reply_cache_shutdown();
211 	return -ENOMEM;
212 }
213 
214 void nfsd_reply_cache_shutdown(void)
215 {
216 	struct svc_cacherep	*rp;
217 	unsigned int i;
218 
219 	unregister_shrinker(&nfsd_reply_cache_shrinker);
220 
221 	for (i = 0; i < drc_hashsize; i++) {
222 		struct list_head *head = &drc_hashtbl[i].lru_head;
223 		while (!list_empty(head)) {
224 			rp = list_first_entry(head, struct svc_cacherep, c_lru);
225 			nfsd_reply_cache_free_locked(&drc_hashtbl[i], rp);
226 		}
227 	}
228 
229 	kvfree(drc_hashtbl);
230 	drc_hashtbl = NULL;
231 	drc_hashsize = 0;
232 
233 	kmem_cache_destroy(drc_slab);
234 	drc_slab = NULL;
235 }
236 
237 /*
238  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
239  * not already scheduled.
240  */
241 static void
242 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
243 {
244 	rp->c_timestamp = jiffies;
245 	list_move_tail(&rp->c_lru, &b->lru_head);
246 }
247 
248 static long
249 prune_bucket(struct nfsd_drc_bucket *b)
250 {
251 	struct svc_cacherep *rp, *tmp;
252 	long freed = 0;
253 
254 	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
255 		/*
256 		 * Don't free entries attached to calls that are still
257 		 * in-progress, but do keep scanning the list.
258 		 */
259 		if (rp->c_state == RC_INPROG)
260 			continue;
261 		if (atomic_read(&num_drc_entries) <= max_drc_entries &&
262 		    time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
263 			break;
264 		nfsd_reply_cache_free_locked(b, rp);
265 		freed++;
266 	}
267 	return freed;
268 }
269 
270 /*
271  * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
272  * Also prune the oldest ones when the total exceeds the max number of entries.
273  */
274 static long
275 prune_cache_entries(void)
276 {
277 	unsigned int i;
278 	long freed = 0;
279 
280 	for (i = 0; i < drc_hashsize; i++) {
281 		struct nfsd_drc_bucket *b = &drc_hashtbl[i];
282 
283 		if (list_empty(&b->lru_head))
284 			continue;
285 		spin_lock(&b->cache_lock);
286 		freed += prune_bucket(b);
287 		spin_unlock(&b->cache_lock);
288 	}
289 	return freed;
290 }
291 
292 static unsigned long
293 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
294 {
295 	return atomic_read(&num_drc_entries);
296 }
297 
298 static unsigned long
299 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
300 {
301 	return prune_cache_entries();
302 }
303 /*
304  * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
305  */
306 static __wsum
307 nfsd_cache_csum(struct svc_rqst *rqstp)
308 {
309 	int idx;
310 	unsigned int base;
311 	__wsum csum;
312 	struct xdr_buf *buf = &rqstp->rq_arg;
313 	const unsigned char *p = buf->head[0].iov_base;
314 	size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
315 				RC_CSUMLEN);
316 	size_t len = min(buf->head[0].iov_len, csum_len);
317 
318 	/* rq_arg.head first */
319 	csum = csum_partial(p, len, 0);
320 	csum_len -= len;
321 
322 	/* Continue into page array */
323 	idx = buf->page_base / PAGE_SIZE;
324 	base = buf->page_base & ~PAGE_MASK;
325 	while (csum_len) {
326 		p = page_address(buf->pages[idx]) + base;
327 		len = min_t(size_t, PAGE_SIZE - base, csum_len);
328 		csum = csum_partial(p, len, csum);
329 		csum_len -= len;
330 		base = 0;
331 		++idx;
332 	}
333 	return csum;
334 }
335 
336 static int
337 nfsd_cache_key_cmp(const struct svc_cacherep *key, const struct svc_cacherep *rp)
338 {
339 	if (key->c_key.k_xid == rp->c_key.k_xid &&
340 	    key->c_key.k_csum != rp->c_key.k_csum)
341 		++payload_misses;
342 
343 	return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
344 }
345 
346 /*
347  * Search the request hash for an entry that matches the given rqstp.
348  * Must be called with cache_lock held. Returns the found entry or
349  * inserts an empty key on failure.
350  */
351 static struct svc_cacherep *
352 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key)
353 {
354 	struct svc_cacherep	*rp, *ret = key;
355 	struct rb_node		**p = &b->rb_head.rb_node,
356 				*parent = NULL;
357 	unsigned int		entries = 0;
358 	int cmp;
359 
360 	while (*p != NULL) {
361 		++entries;
362 		parent = *p;
363 		rp = rb_entry(parent, struct svc_cacherep, c_node);
364 
365 		cmp = nfsd_cache_key_cmp(key, rp);
366 		if (cmp < 0)
367 			p = &parent->rb_left;
368 		else if (cmp > 0)
369 			p = &parent->rb_right;
370 		else {
371 			ret = rp;
372 			goto out;
373 		}
374 	}
375 	rb_link_node(&key->c_node, parent, p);
376 	rb_insert_color(&key->c_node, &b->rb_head);
377 out:
378 	/* tally hash chain length stats */
379 	if (entries > longest_chain) {
380 		longest_chain = entries;
381 		longest_chain_cachesize = atomic_read(&num_drc_entries);
382 	} else if (entries == longest_chain) {
383 		/* prefer to keep the smallest cachesize possible here */
384 		longest_chain_cachesize = min_t(unsigned int,
385 				longest_chain_cachesize,
386 				atomic_read(&num_drc_entries));
387 	}
388 
389 	lru_put_end(b, ret);
390 	return ret;
391 }
392 
393 /*
394  * Try to find an entry matching the current call in the cache. When none
395  * is found, we try to grab the oldest expired entry off the LRU list. If
396  * a suitable one isn't there, then drop the cache_lock and allocate a
397  * new one, then search again in case one got inserted while this thread
398  * didn't hold the lock.
399  */
400 int
401 nfsd_cache_lookup(struct svc_rqst *rqstp)
402 {
403 	struct svc_cacherep	*rp, *found;
404 	__be32			xid = rqstp->rq_xid;
405 	__wsum			csum;
406 	u32 hash = nfsd_cache_hash(xid);
407 	struct nfsd_drc_bucket *b = &drc_hashtbl[hash];
408 	int type = rqstp->rq_cachetype;
409 	int rtn = RC_DOIT;
410 
411 	rqstp->rq_cacherep = NULL;
412 	if (type == RC_NOCACHE) {
413 		nfsdstats.rcnocache++;
414 		return rtn;
415 	}
416 
417 	csum = nfsd_cache_csum(rqstp);
418 
419 	/*
420 	 * Since the common case is a cache miss followed by an insert,
421 	 * preallocate an entry.
422 	 */
423 	rp = nfsd_reply_cache_alloc(rqstp, csum);
424 	if (!rp) {
425 		dprintk("nfsd: unable to allocate DRC entry!\n");
426 		return rtn;
427 	}
428 
429 	spin_lock(&b->cache_lock);
430 	found = nfsd_cache_insert(b, rp);
431 	if (found != rp) {
432 		nfsd_reply_cache_free_locked(NULL, rp);
433 		rp = found;
434 		goto found_entry;
435 	}
436 
437 	nfsdstats.rcmisses++;
438 	rqstp->rq_cacherep = rp;
439 	rp->c_state = RC_INPROG;
440 
441 	atomic_inc(&num_drc_entries);
442 	drc_mem_usage += sizeof(*rp);
443 
444 	/* go ahead and prune the cache */
445 	prune_bucket(b);
446  out:
447 	spin_unlock(&b->cache_lock);
448 	return rtn;
449 
450 found_entry:
451 	/* We found a matching entry which is either in progress or done. */
452 	nfsdstats.rchits++;
453 	rtn = RC_DROPIT;
454 
455 	/* Request being processed */
456 	if (rp->c_state == RC_INPROG)
457 		goto out;
458 
459 	/* From the hall of fame of impractical attacks:
460 	 * Is this a user who tries to snoop on the cache? */
461 	rtn = RC_DOIT;
462 	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
463 		goto out;
464 
465 	/* Compose RPC reply header */
466 	switch (rp->c_type) {
467 	case RC_NOCACHE:
468 		break;
469 	case RC_REPLSTAT:
470 		svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
471 		rtn = RC_REPLY;
472 		break;
473 	case RC_REPLBUFF:
474 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
475 			goto out;	/* should not happen */
476 		rtn = RC_REPLY;
477 		break;
478 	default:
479 		printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
480 		nfsd_reply_cache_free_locked(b, rp);
481 	}
482 
483 	goto out;
484 }
485 
486 /*
487  * Update a cache entry. This is called from nfsd_dispatch when
488  * the procedure has been executed and the complete reply is in
489  * rqstp->rq_res.
490  *
491  * We're copying around data here rather than swapping buffers because
492  * the toplevel loop requires max-sized buffers, which would be a waste
493  * of memory for a cache with a max reply size of 100 bytes (diropokres).
494  *
495  * If we should start to use different types of cache entries tailored
496  * specifically for attrstat and fh's, we may save even more space.
497  *
498  * Also note that a cachetype of RC_NOCACHE can legally be passed when
499  * nfsd failed to encode a reply that otherwise would have been cached.
500  * In this case, nfsd_cache_update is called with statp == NULL.
501  */
502 void
503 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
504 {
505 	struct svc_cacherep *rp = rqstp->rq_cacherep;
506 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
507 	u32		hash;
508 	struct nfsd_drc_bucket *b;
509 	int		len;
510 	size_t		bufsize = 0;
511 
512 	if (!rp)
513 		return;
514 
515 	hash = nfsd_cache_hash(rp->c_key.k_xid);
516 	b = &drc_hashtbl[hash];
517 
518 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
519 	len >>= 2;
520 
521 	/* Don't cache excessive amounts of data and XDR failures */
522 	if (!statp || len > (256 >> 2)) {
523 		nfsd_reply_cache_free(b, rp);
524 		return;
525 	}
526 
527 	switch (cachetype) {
528 	case RC_REPLSTAT:
529 		if (len != 1)
530 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
531 		rp->c_replstat = *statp;
532 		break;
533 	case RC_REPLBUFF:
534 		cachv = &rp->c_replvec;
535 		bufsize = len << 2;
536 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
537 		if (!cachv->iov_base) {
538 			nfsd_reply_cache_free(b, rp);
539 			return;
540 		}
541 		cachv->iov_len = bufsize;
542 		memcpy(cachv->iov_base, statp, bufsize);
543 		break;
544 	case RC_NOCACHE:
545 		nfsd_reply_cache_free(b, rp);
546 		return;
547 	}
548 	spin_lock(&b->cache_lock);
549 	drc_mem_usage += bufsize;
550 	lru_put_end(b, rp);
551 	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
552 	rp->c_type = cachetype;
553 	rp->c_state = RC_DONE;
554 	spin_unlock(&b->cache_lock);
555 	return;
556 }
557 
558 /*
559  * Copy cached reply to current reply buffer. Should always fit.
560  * FIXME as reply is in a page, we should just attach the page, and
561  * keep a refcount....
562  */
563 static int
564 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
565 {
566 	struct kvec	*vec = &rqstp->rq_res.head[0];
567 
568 	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
569 		printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
570 				data->iov_len);
571 		return 0;
572 	}
573 	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
574 	vec->iov_len += data->iov_len;
575 	return 1;
576 }
577 
578 /*
579  * Note that fields may be added, removed or reordered in the future. Programs
580  * scraping this file for info should test the labels to ensure they're
581  * getting the correct field.
582  */
583 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
584 {
585 	seq_printf(m, "max entries:           %u\n", max_drc_entries);
586 	seq_printf(m, "num entries:           %u\n",
587 			atomic_read(&num_drc_entries));
588 	seq_printf(m, "hash buckets:          %u\n", 1 << maskbits);
589 	seq_printf(m, "mem usage:             %u\n", drc_mem_usage);
590 	seq_printf(m, "cache hits:            %u\n", nfsdstats.rchits);
591 	seq_printf(m, "cache misses:          %u\n", nfsdstats.rcmisses);
592 	seq_printf(m, "not cached:            %u\n", nfsdstats.rcnocache);
593 	seq_printf(m, "payload misses:        %u\n", payload_misses);
594 	seq_printf(m, "longest chain len:     %u\n", longest_chain);
595 	seq_printf(m, "cachesize at longest:  %u\n", longest_chain_cachesize);
596 	return 0;
597 }
598 
599 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
600 {
601 	return single_open(file, nfsd_reply_cache_stats_show, NULL);
602 }
603