xref: /openbmc/linux/fs/nfsd/filecache.c (revision faffb083)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The NFSD open file cache.
4  *
5  * (c) 2015 - Jeff Layton <jeff.layton@primarydata.com>
6  *
7  * An nfsd_file object is a per-file collection of open state that binds
8  * together:
9  *   - a struct file *
10  *   - a user credential
11  *   - a network namespace
12  *   - a read-ahead context
13  *   - monitoring for writeback errors
14  *
15  * nfsd_file objects are reference-counted. Consumers acquire a new
16  * object via the nfsd_file_acquire API. They manage their interest in
17  * the acquired object, and hence the object's reference count, via
18  * nfsd_file_get and nfsd_file_put. There are two varieties of nfsd_file
19  * object:
20  *
21  *  * non-garbage-collected: When a consumer wants to precisely control
22  *    the lifetime of a file's open state, it acquires a non-garbage-
23  *    collected nfsd_file. The final nfsd_file_put releases the open
24  *    state immediately.
25  *
26  *  * garbage-collected: When a consumer does not control the lifetime
27  *    of open state, it acquires a garbage-collected nfsd_file. The
28  *    final nfsd_file_put allows the open state to linger for a period
29  *    during which it may be re-used.
30  */
31 
32 #include <linux/hash.h>
33 #include <linux/slab.h>
34 #include <linux/file.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched.h>
37 #include <linux/list_lru.h>
38 #include <linux/fsnotify_backend.h>
39 #include <linux/fsnotify.h>
40 #include <linux/seq_file.h>
41 #include <linux/rhashtable.h>
42 
43 #include "vfs.h"
44 #include "nfsd.h"
45 #include "nfsfh.h"
46 #include "netns.h"
47 #include "filecache.h"
48 #include "trace.h"
49 
50 #define NFSD_LAUNDRETTE_DELAY		     (2 * HZ)
51 
52 #define NFSD_FILE_CACHE_UP		     (0)
53 
54 /* We only care about NFSD_MAY_READ/WRITE for this cache */
55 #define NFSD_FILE_MAY_MASK	(NFSD_MAY_READ|NFSD_MAY_WRITE)
56 
57 static DEFINE_PER_CPU(unsigned long, nfsd_file_cache_hits);
58 static DEFINE_PER_CPU(unsigned long, nfsd_file_acquisitions);
59 static DEFINE_PER_CPU(unsigned long, nfsd_file_releases);
60 static DEFINE_PER_CPU(unsigned long, nfsd_file_total_age);
61 static DEFINE_PER_CPU(unsigned long, nfsd_file_evictions);
62 
63 struct nfsd_fcache_disposal {
64 	struct work_struct work;
65 	spinlock_t lock;
66 	struct list_head freeme;
67 };
68 
69 static struct workqueue_struct *nfsd_filecache_wq __read_mostly;
70 
71 static struct kmem_cache		*nfsd_file_slab;
72 static struct kmem_cache		*nfsd_file_mark_slab;
73 static struct list_lru			nfsd_file_lru;
74 static unsigned long			nfsd_file_flags;
75 static struct fsnotify_group		*nfsd_file_fsnotify_group;
76 static struct delayed_work		nfsd_filecache_laundrette;
77 static struct rhashtable		nfsd_file_rhash_tbl
78 						____cacheline_aligned_in_smp;
79 
80 enum nfsd_file_lookup_type {
81 	NFSD_FILE_KEY_INODE,
82 	NFSD_FILE_KEY_FULL,
83 };
84 
85 struct nfsd_file_lookup_key {
86 	struct inode			*inode;
87 	struct net			*net;
88 	const struct cred		*cred;
89 	unsigned char			need;
90 	bool				gc;
91 	enum nfsd_file_lookup_type	type;
92 };
93 
94 /*
95  * The returned hash value is based solely on the address of an in-code
96  * inode, a pointer to a slab-allocated object. The entropy in such a
97  * pointer is concentrated in its middle bits.
98  */
99 static u32 nfsd_file_inode_hash(const struct inode *inode, u32 seed)
100 {
101 	unsigned long ptr = (unsigned long)inode;
102 	u32 k;
103 
104 	k = ptr >> L1_CACHE_SHIFT;
105 	k &= 0x00ffffff;
106 	return jhash2(&k, 1, seed);
107 }
108 
109 /**
110  * nfsd_file_key_hashfn - Compute the hash value of a lookup key
111  * @data: key on which to compute the hash value
112  * @len: rhash table's key_len parameter (unused)
113  * @seed: rhash table's random seed of the day
114  *
115  * Return value:
116  *   Computed 32-bit hash value
117  */
118 static u32 nfsd_file_key_hashfn(const void *data, u32 len, u32 seed)
119 {
120 	const struct nfsd_file_lookup_key *key = data;
121 
122 	return nfsd_file_inode_hash(key->inode, seed);
123 }
124 
125 /**
126  * nfsd_file_obj_hashfn - Compute the hash value of an nfsd_file
127  * @data: object on which to compute the hash value
128  * @len: rhash table's key_len parameter (unused)
129  * @seed: rhash table's random seed of the day
130  *
131  * Return value:
132  *   Computed 32-bit hash value
133  */
134 static u32 nfsd_file_obj_hashfn(const void *data, u32 len, u32 seed)
135 {
136 	const struct nfsd_file *nf = data;
137 
138 	return nfsd_file_inode_hash(nf->nf_inode, seed);
139 }
140 
141 static bool
142 nfsd_match_cred(const struct cred *c1, const struct cred *c2)
143 {
144 	int i;
145 
146 	if (!uid_eq(c1->fsuid, c2->fsuid))
147 		return false;
148 	if (!gid_eq(c1->fsgid, c2->fsgid))
149 		return false;
150 	if (c1->group_info == NULL || c2->group_info == NULL)
151 		return c1->group_info == c2->group_info;
152 	if (c1->group_info->ngroups != c2->group_info->ngroups)
153 		return false;
154 	for (i = 0; i < c1->group_info->ngroups; i++) {
155 		if (!gid_eq(c1->group_info->gid[i], c2->group_info->gid[i]))
156 			return false;
157 	}
158 	return true;
159 }
160 
161 /**
162  * nfsd_file_obj_cmpfn - Match a cache item against search criteria
163  * @arg: search criteria
164  * @ptr: cache item to check
165  *
166  * Return values:
167  *   %0 - Item matches search criteria
168  *   %1 - Item does not match search criteria
169  */
170 static int nfsd_file_obj_cmpfn(struct rhashtable_compare_arg *arg,
171 			       const void *ptr)
172 {
173 	const struct nfsd_file_lookup_key *key = arg->key;
174 	const struct nfsd_file *nf = ptr;
175 
176 	switch (key->type) {
177 	case NFSD_FILE_KEY_INODE:
178 		if (nf->nf_inode != key->inode)
179 			return 1;
180 		break;
181 	case NFSD_FILE_KEY_FULL:
182 		if (nf->nf_inode != key->inode)
183 			return 1;
184 		if (nf->nf_may != key->need)
185 			return 1;
186 		if (nf->nf_net != key->net)
187 			return 1;
188 		if (!nfsd_match_cred(nf->nf_cred, key->cred))
189 			return 1;
190 		if (!!test_bit(NFSD_FILE_GC, &nf->nf_flags) != key->gc)
191 			return 1;
192 		if (test_bit(NFSD_FILE_HASHED, &nf->nf_flags) == 0)
193 			return 1;
194 		break;
195 	}
196 	return 0;
197 }
198 
199 static const struct rhashtable_params nfsd_file_rhash_params = {
200 	.key_len		= sizeof_field(struct nfsd_file, nf_inode),
201 	.key_offset		= offsetof(struct nfsd_file, nf_inode),
202 	.head_offset		= offsetof(struct nfsd_file, nf_rhash),
203 	.hashfn			= nfsd_file_key_hashfn,
204 	.obj_hashfn		= nfsd_file_obj_hashfn,
205 	.obj_cmpfn		= nfsd_file_obj_cmpfn,
206 	/* Reduce resizing churn on light workloads */
207 	.min_size		= 512,		/* buckets */
208 	.automatic_shrinking	= true,
209 };
210 
211 static void
212 nfsd_file_schedule_laundrette(void)
213 {
214 	if (test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags))
215 		queue_delayed_work(system_wq, &nfsd_filecache_laundrette,
216 				   NFSD_LAUNDRETTE_DELAY);
217 }
218 
219 static void
220 nfsd_file_slab_free(struct rcu_head *rcu)
221 {
222 	struct nfsd_file *nf = container_of(rcu, struct nfsd_file, nf_rcu);
223 
224 	put_cred(nf->nf_cred);
225 	kmem_cache_free(nfsd_file_slab, nf);
226 }
227 
228 static void
229 nfsd_file_mark_free(struct fsnotify_mark *mark)
230 {
231 	struct nfsd_file_mark *nfm = container_of(mark, struct nfsd_file_mark,
232 						  nfm_mark);
233 
234 	kmem_cache_free(nfsd_file_mark_slab, nfm);
235 }
236 
237 static struct nfsd_file_mark *
238 nfsd_file_mark_get(struct nfsd_file_mark *nfm)
239 {
240 	if (!refcount_inc_not_zero(&nfm->nfm_ref))
241 		return NULL;
242 	return nfm;
243 }
244 
245 static void
246 nfsd_file_mark_put(struct nfsd_file_mark *nfm)
247 {
248 	if (refcount_dec_and_test(&nfm->nfm_ref)) {
249 		fsnotify_destroy_mark(&nfm->nfm_mark, nfsd_file_fsnotify_group);
250 		fsnotify_put_mark(&nfm->nfm_mark);
251 	}
252 }
253 
254 static struct nfsd_file_mark *
255 nfsd_file_mark_find_or_create(struct nfsd_file *nf, struct inode *inode)
256 {
257 	int			err;
258 	struct fsnotify_mark	*mark;
259 	struct nfsd_file_mark	*nfm = NULL, *new;
260 
261 	do {
262 		fsnotify_group_lock(nfsd_file_fsnotify_group);
263 		mark = fsnotify_find_mark(&inode->i_fsnotify_marks,
264 					  nfsd_file_fsnotify_group);
265 		if (mark) {
266 			nfm = nfsd_file_mark_get(container_of(mark,
267 						 struct nfsd_file_mark,
268 						 nfm_mark));
269 			fsnotify_group_unlock(nfsd_file_fsnotify_group);
270 			if (nfm) {
271 				fsnotify_put_mark(mark);
272 				break;
273 			}
274 			/* Avoid soft lockup race with nfsd_file_mark_put() */
275 			fsnotify_destroy_mark(mark, nfsd_file_fsnotify_group);
276 			fsnotify_put_mark(mark);
277 		} else {
278 			fsnotify_group_unlock(nfsd_file_fsnotify_group);
279 		}
280 
281 		/* allocate a new nfm */
282 		new = kmem_cache_alloc(nfsd_file_mark_slab, GFP_KERNEL);
283 		if (!new)
284 			return NULL;
285 		fsnotify_init_mark(&new->nfm_mark, nfsd_file_fsnotify_group);
286 		new->nfm_mark.mask = FS_ATTRIB|FS_DELETE_SELF;
287 		refcount_set(&new->nfm_ref, 1);
288 
289 		err = fsnotify_add_inode_mark(&new->nfm_mark, inode, 0);
290 
291 		/*
292 		 * If the add was successful, then return the object.
293 		 * Otherwise, we need to put the reference we hold on the
294 		 * nfm_mark. The fsnotify code will take a reference and put
295 		 * it on failure, so we can't just free it directly. It's also
296 		 * not safe to call fsnotify_destroy_mark on it as the
297 		 * mark->group will be NULL. Thus, we can't let the nfm_ref
298 		 * counter drive the destruction at this point.
299 		 */
300 		if (likely(!err))
301 			nfm = new;
302 		else
303 			fsnotify_put_mark(&new->nfm_mark);
304 	} while (unlikely(err == -EEXIST));
305 
306 	return nfm;
307 }
308 
309 static struct nfsd_file *
310 nfsd_file_alloc(struct nfsd_file_lookup_key *key, unsigned int may)
311 {
312 	struct nfsd_file *nf;
313 
314 	nf = kmem_cache_alloc(nfsd_file_slab, GFP_KERNEL);
315 	if (nf) {
316 		INIT_LIST_HEAD(&nf->nf_lru);
317 		nf->nf_birthtime = ktime_get();
318 		nf->nf_file = NULL;
319 		nf->nf_cred = get_current_cred();
320 		nf->nf_net = key->net;
321 		nf->nf_flags = 0;
322 		__set_bit(NFSD_FILE_HASHED, &nf->nf_flags);
323 		__set_bit(NFSD_FILE_PENDING, &nf->nf_flags);
324 		if (key->gc)
325 			__set_bit(NFSD_FILE_GC, &nf->nf_flags);
326 		nf->nf_inode = key->inode;
327 		refcount_set(&nf->nf_ref, 1);
328 		nf->nf_may = key->need;
329 		nf->nf_mark = NULL;
330 	}
331 	return nf;
332 }
333 
334 static void
335 nfsd_file_fsync(struct nfsd_file *nf)
336 {
337 	struct file *file = nf->nf_file;
338 	int ret;
339 
340 	if (!file || !(file->f_mode & FMODE_WRITE))
341 		return;
342 	ret = vfs_fsync(file, 1);
343 	trace_nfsd_file_fsync(nf, ret);
344 	if (ret)
345 		nfsd_reset_write_verifier(net_generic(nf->nf_net, nfsd_net_id));
346 }
347 
348 static int
349 nfsd_file_check_write_error(struct nfsd_file *nf)
350 {
351 	struct file *file = nf->nf_file;
352 
353 	if (!file || !(file->f_mode & FMODE_WRITE))
354 		return 0;
355 	return filemap_check_wb_err(file->f_mapping, READ_ONCE(file->f_wb_err));
356 }
357 
358 static void
359 nfsd_file_hash_remove(struct nfsd_file *nf)
360 {
361 	trace_nfsd_file_unhash(nf);
362 
363 	if (nfsd_file_check_write_error(nf))
364 		nfsd_reset_write_verifier(net_generic(nf->nf_net, nfsd_net_id));
365 	rhashtable_remove_fast(&nfsd_file_rhash_tbl, &nf->nf_rhash,
366 			       nfsd_file_rhash_params);
367 }
368 
369 static bool
370 nfsd_file_unhash(struct nfsd_file *nf)
371 {
372 	if (test_and_clear_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
373 		nfsd_file_hash_remove(nf);
374 		return true;
375 	}
376 	return false;
377 }
378 
379 static void
380 nfsd_file_free(struct nfsd_file *nf)
381 {
382 	s64 age = ktime_to_ms(ktime_sub(ktime_get(), nf->nf_birthtime));
383 
384 	trace_nfsd_file_free(nf);
385 
386 	this_cpu_inc(nfsd_file_releases);
387 	this_cpu_add(nfsd_file_total_age, age);
388 
389 	nfsd_file_unhash(nf);
390 
391 	/*
392 	 * We call fsync here in order to catch writeback errors. It's not
393 	 * strictly required by the protocol, but an nfsd_file could get
394 	 * evicted from the cache before a COMMIT comes in. If another
395 	 * task were to open that file in the interim and scrape the error,
396 	 * then the client may never see it. By calling fsync here, we ensure
397 	 * that writeback happens before the entry is freed, and that any
398 	 * errors reported result in the write verifier changing.
399 	 */
400 	nfsd_file_fsync(nf);
401 
402 	if (nf->nf_mark)
403 		nfsd_file_mark_put(nf->nf_mark);
404 	if (nf->nf_file) {
405 		get_file(nf->nf_file);
406 		filp_close(nf->nf_file, NULL);
407 		fput(nf->nf_file);
408 	}
409 
410 	/*
411 	 * If this item is still linked via nf_lru, that's a bug.
412 	 * WARN and leak it to preserve system stability.
413 	 */
414 	if (WARN_ON_ONCE(!list_empty(&nf->nf_lru)))
415 		return;
416 
417 	call_rcu(&nf->nf_rcu, nfsd_file_slab_free);
418 }
419 
420 static bool
421 nfsd_file_check_writeback(struct nfsd_file *nf)
422 {
423 	struct file *file = nf->nf_file;
424 	struct address_space *mapping;
425 
426 	if (!file || !(file->f_mode & FMODE_WRITE))
427 		return false;
428 	mapping = file->f_mapping;
429 	return mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) ||
430 		mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
431 }
432 
433 static bool nfsd_file_lru_add(struct nfsd_file *nf)
434 {
435 	set_bit(NFSD_FILE_REFERENCED, &nf->nf_flags);
436 	if (list_lru_add(&nfsd_file_lru, &nf->nf_lru)) {
437 		trace_nfsd_file_lru_add(nf);
438 		return true;
439 	}
440 	return false;
441 }
442 
443 static bool nfsd_file_lru_remove(struct nfsd_file *nf)
444 {
445 	if (list_lru_del(&nfsd_file_lru, &nf->nf_lru)) {
446 		trace_nfsd_file_lru_del(nf);
447 		return true;
448 	}
449 	return false;
450 }
451 
452 struct nfsd_file *
453 nfsd_file_get(struct nfsd_file *nf)
454 {
455 	if (likely(refcount_inc_not_zero(&nf->nf_ref)))
456 		return nf;
457 	return NULL;
458 }
459 
460 /**
461  * nfsd_file_put - put the reference to a nfsd_file
462  * @nf: nfsd_file of which to put the reference
463  *
464  * Put a reference to a nfsd_file. In the non-GC case, we just put the
465  * reference immediately. In the GC case, if the reference would be
466  * the last one, the put it on the LRU instead to be cleaned up later.
467  */
468 void
469 nfsd_file_put(struct nfsd_file *nf)
470 {
471 	might_sleep();
472 	trace_nfsd_file_put(nf);
473 
474 	if (test_bit(NFSD_FILE_GC, &nf->nf_flags) &&
475 	    test_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
476 		/*
477 		 * If this is the last reference (nf_ref == 1), then try to
478 		 * transfer it to the LRU.
479 		 */
480 		if (refcount_dec_not_one(&nf->nf_ref))
481 			return;
482 
483 		/* Try to add it to the LRU.  If that fails, decrement. */
484 		if (nfsd_file_lru_add(nf)) {
485 			/* If it's still hashed, we're done */
486 			if (test_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
487 				nfsd_file_schedule_laundrette();
488 				return;
489 			}
490 
491 			/*
492 			 * We're racing with unhashing, so try to remove it from
493 			 * the LRU. If removal fails, then someone else already
494 			 * has our reference.
495 			 */
496 			if (!nfsd_file_lru_remove(nf))
497 				return;
498 		}
499 	}
500 	if (refcount_dec_and_test(&nf->nf_ref))
501 		nfsd_file_free(nf);
502 }
503 
504 static void
505 nfsd_file_dispose_list(struct list_head *dispose)
506 {
507 	struct nfsd_file *nf;
508 
509 	while (!list_empty(dispose)) {
510 		nf = list_first_entry(dispose, struct nfsd_file, nf_lru);
511 		list_del_init(&nf->nf_lru);
512 		nfsd_file_free(nf);
513 	}
514 }
515 
516 static void
517 nfsd_file_list_remove_disposal(struct list_head *dst,
518 		struct nfsd_fcache_disposal *l)
519 {
520 	spin_lock(&l->lock);
521 	list_splice_init(&l->freeme, dst);
522 	spin_unlock(&l->lock);
523 }
524 
525 static void
526 nfsd_file_list_add_disposal(struct list_head *files, struct net *net)
527 {
528 	struct nfsd_net *nn = net_generic(net, nfsd_net_id);
529 	struct nfsd_fcache_disposal *l = nn->fcache_disposal;
530 
531 	spin_lock(&l->lock);
532 	list_splice_tail_init(files, &l->freeme);
533 	spin_unlock(&l->lock);
534 	queue_work(nfsd_filecache_wq, &l->work);
535 }
536 
537 static void
538 nfsd_file_list_add_pernet(struct list_head *dst, struct list_head *src,
539 		struct net *net)
540 {
541 	struct nfsd_file *nf, *tmp;
542 
543 	list_for_each_entry_safe(nf, tmp, src, nf_lru) {
544 		if (nf->nf_net == net)
545 			list_move_tail(&nf->nf_lru, dst);
546 	}
547 }
548 
549 static void
550 nfsd_file_dispose_list_delayed(struct list_head *dispose)
551 {
552 	LIST_HEAD(list);
553 	struct nfsd_file *nf;
554 
555 	while(!list_empty(dispose)) {
556 		nf = list_first_entry(dispose, struct nfsd_file, nf_lru);
557 		nfsd_file_list_add_pernet(&list, dispose, nf->nf_net);
558 		nfsd_file_list_add_disposal(&list, nf->nf_net);
559 	}
560 }
561 
562 /**
563  * nfsd_file_lru_cb - Examine an entry on the LRU list
564  * @item: LRU entry to examine
565  * @lru: controlling LRU
566  * @lock: LRU list lock (unused)
567  * @arg: dispose list
568  *
569  * Return values:
570  *   %LRU_REMOVED: @item was removed from the LRU
571  *   %LRU_ROTATE: @item is to be moved to the LRU tail
572  *   %LRU_SKIP: @item cannot be evicted
573  */
574 static enum lru_status
575 nfsd_file_lru_cb(struct list_head *item, struct list_lru_one *lru,
576 		 spinlock_t *lock, void *arg)
577 	__releases(lock)
578 	__acquires(lock)
579 {
580 	struct list_head *head = arg;
581 	struct nfsd_file *nf = list_entry(item, struct nfsd_file, nf_lru);
582 
583 	/* We should only be dealing with GC entries here */
584 	WARN_ON_ONCE(!test_bit(NFSD_FILE_GC, &nf->nf_flags));
585 
586 	/*
587 	 * Don't throw out files that are still undergoing I/O or
588 	 * that have uncleared errors pending.
589 	 */
590 	if (nfsd_file_check_writeback(nf)) {
591 		trace_nfsd_file_gc_writeback(nf);
592 		return LRU_SKIP;
593 	}
594 
595 	/* If it was recently added to the list, skip it */
596 	if (test_and_clear_bit(NFSD_FILE_REFERENCED, &nf->nf_flags)) {
597 		trace_nfsd_file_gc_referenced(nf);
598 		return LRU_ROTATE;
599 	}
600 
601 	/*
602 	 * Put the reference held on behalf of the LRU. If it wasn't the last
603 	 * one, then just remove it from the LRU and ignore it.
604 	 */
605 	if (!refcount_dec_and_test(&nf->nf_ref)) {
606 		trace_nfsd_file_gc_in_use(nf);
607 		list_lru_isolate(lru, &nf->nf_lru);
608 		return LRU_REMOVED;
609 	}
610 
611 	/* Refcount went to zero. Unhash it and queue it to the dispose list */
612 	nfsd_file_unhash(nf);
613 	list_lru_isolate_move(lru, &nf->nf_lru, head);
614 	this_cpu_inc(nfsd_file_evictions);
615 	trace_nfsd_file_gc_disposed(nf);
616 	return LRU_REMOVED;
617 }
618 
619 static void
620 nfsd_file_gc(void)
621 {
622 	LIST_HEAD(dispose);
623 	unsigned long ret;
624 
625 	ret = list_lru_walk(&nfsd_file_lru, nfsd_file_lru_cb,
626 			    &dispose, list_lru_count(&nfsd_file_lru));
627 	trace_nfsd_file_gc_removed(ret, list_lru_count(&nfsd_file_lru));
628 	nfsd_file_dispose_list_delayed(&dispose);
629 }
630 
631 static void
632 nfsd_file_gc_worker(struct work_struct *work)
633 {
634 	nfsd_file_gc();
635 	if (list_lru_count(&nfsd_file_lru))
636 		nfsd_file_schedule_laundrette();
637 }
638 
639 static unsigned long
640 nfsd_file_lru_count(struct shrinker *s, struct shrink_control *sc)
641 {
642 	return list_lru_count(&nfsd_file_lru);
643 }
644 
645 static unsigned long
646 nfsd_file_lru_scan(struct shrinker *s, struct shrink_control *sc)
647 {
648 	LIST_HEAD(dispose);
649 	unsigned long ret;
650 
651 	ret = list_lru_shrink_walk(&nfsd_file_lru, sc,
652 				   nfsd_file_lru_cb, &dispose);
653 	trace_nfsd_file_shrinker_removed(ret, list_lru_count(&nfsd_file_lru));
654 	nfsd_file_dispose_list_delayed(&dispose);
655 	return ret;
656 }
657 
658 static struct shrinker	nfsd_file_shrinker = {
659 	.scan_objects = nfsd_file_lru_scan,
660 	.count_objects = nfsd_file_lru_count,
661 	.seeks = 1,
662 };
663 
664 /**
665  * nfsd_file_cond_queue - conditionally unhash and queue a nfsd_file
666  * @nf: nfsd_file to attempt to queue
667  * @dispose: private list to queue successfully-put objects
668  *
669  * Unhash an nfsd_file, try to get a reference to it, and then put that
670  * reference. If it's the last reference, queue it to the dispose list.
671  */
672 static void
673 nfsd_file_cond_queue(struct nfsd_file *nf, struct list_head *dispose)
674 	__must_hold(RCU)
675 {
676 	int decrement = 1;
677 
678 	/* If we raced with someone else unhashing, ignore it */
679 	if (!nfsd_file_unhash(nf))
680 		return;
681 
682 	/* If we can't get a reference, ignore it */
683 	if (!nfsd_file_get(nf))
684 		return;
685 
686 	/* Extra decrement if we remove from the LRU */
687 	if (nfsd_file_lru_remove(nf))
688 		++decrement;
689 
690 	/* If refcount goes to 0, then put on the dispose list */
691 	if (refcount_sub_and_test(decrement, &nf->nf_ref)) {
692 		list_add(&nf->nf_lru, dispose);
693 		trace_nfsd_file_closing(nf);
694 	}
695 }
696 
697 /**
698  * nfsd_file_queue_for_close: try to close out any open nfsd_files for an inode
699  * @inode:   inode on which to close out nfsd_files
700  * @dispose: list on which to gather nfsd_files to close out
701  *
702  * An nfsd_file represents a struct file being held open on behalf of nfsd. An
703  * open file however can block other activity (such as leases), or cause
704  * undesirable behavior (e.g. spurious silly-renames when reexporting NFS).
705  *
706  * This function is intended to find open nfsd_files when this sort of
707  * conflicting access occurs and then attempt to close those files out.
708  *
709  * Populates the dispose list with entries that have already had their
710  * refcounts go to zero. The actual free of an nfsd_file can be expensive,
711  * so we leave it up to the caller whether it wants to wait or not.
712  */
713 static void
714 nfsd_file_queue_for_close(struct inode *inode, struct list_head *dispose)
715 {
716 	struct nfsd_file_lookup_key key = {
717 		.type	= NFSD_FILE_KEY_INODE,
718 		.inode	= inode,
719 	};
720 	struct nfsd_file *nf;
721 
722 	rcu_read_lock();
723 	do {
724 		nf = rhashtable_lookup(&nfsd_file_rhash_tbl, &key,
725 				       nfsd_file_rhash_params);
726 		if (!nf)
727 			break;
728 		nfsd_file_cond_queue(nf, dispose);
729 	} while (1);
730 	rcu_read_unlock();
731 }
732 
733 /**
734  * nfsd_file_close_inode - attempt a delayed close of a nfsd_file
735  * @inode: inode of the file to attempt to remove
736  *
737  * Close out any open nfsd_files that can be reaped for @inode. The
738  * actual freeing is deferred to the dispose_list_delayed infrastructure.
739  *
740  * This is used by the fsnotify callbacks and setlease notifier.
741  */
742 static void
743 nfsd_file_close_inode(struct inode *inode)
744 {
745 	LIST_HEAD(dispose);
746 
747 	nfsd_file_queue_for_close(inode, &dispose);
748 	nfsd_file_dispose_list_delayed(&dispose);
749 }
750 
751 /**
752  * nfsd_file_close_inode_sync - attempt to forcibly close a nfsd_file
753  * @inode: inode of the file to attempt to remove
754  *
755  * Close out any open nfsd_files that can be reaped for @inode. The
756  * nfsd_files are closed out synchronously.
757  *
758  * This is called from nfsd_rename and nfsd_unlink to avoid silly-renames
759  * when reexporting NFS.
760  */
761 void
762 nfsd_file_close_inode_sync(struct inode *inode)
763 {
764 	struct nfsd_file *nf;
765 	LIST_HEAD(dispose);
766 
767 	trace_nfsd_file_close(inode);
768 
769 	nfsd_file_queue_for_close(inode, &dispose);
770 	while (!list_empty(&dispose)) {
771 		nf = list_first_entry(&dispose, struct nfsd_file, nf_lru);
772 		list_del_init(&nf->nf_lru);
773 		nfsd_file_free(nf);
774 	}
775 	flush_delayed_fput();
776 }
777 
778 /**
779  * nfsd_file_delayed_close - close unused nfsd_files
780  * @work: dummy
781  *
782  * Walk the LRU list and destroy any entries that have not been used since
783  * the last scan.
784  */
785 static void
786 nfsd_file_delayed_close(struct work_struct *work)
787 {
788 	LIST_HEAD(head);
789 	struct nfsd_fcache_disposal *l = container_of(work,
790 			struct nfsd_fcache_disposal, work);
791 
792 	nfsd_file_list_remove_disposal(&head, l);
793 	nfsd_file_dispose_list(&head);
794 }
795 
796 static int
797 nfsd_file_lease_notifier_call(struct notifier_block *nb, unsigned long arg,
798 			    void *data)
799 {
800 	struct file_lock *fl = data;
801 
802 	/* Only close files for F_SETLEASE leases */
803 	if (fl->fl_flags & FL_LEASE)
804 		nfsd_file_close_inode(file_inode(fl->fl_file));
805 	return 0;
806 }
807 
808 static struct notifier_block nfsd_file_lease_notifier = {
809 	.notifier_call = nfsd_file_lease_notifier_call,
810 };
811 
812 static int
813 nfsd_file_fsnotify_handle_event(struct fsnotify_mark *mark, u32 mask,
814 				struct inode *inode, struct inode *dir,
815 				const struct qstr *name, u32 cookie)
816 {
817 	if (WARN_ON_ONCE(!inode))
818 		return 0;
819 
820 	trace_nfsd_file_fsnotify_handle_event(inode, mask);
821 
822 	/* Should be no marks on non-regular files */
823 	if (!S_ISREG(inode->i_mode)) {
824 		WARN_ON_ONCE(1);
825 		return 0;
826 	}
827 
828 	/* don't close files if this was not the last link */
829 	if (mask & FS_ATTRIB) {
830 		if (inode->i_nlink)
831 			return 0;
832 	}
833 
834 	nfsd_file_close_inode(inode);
835 	return 0;
836 }
837 
838 
839 static const struct fsnotify_ops nfsd_file_fsnotify_ops = {
840 	.handle_inode_event = nfsd_file_fsnotify_handle_event,
841 	.free_mark = nfsd_file_mark_free,
842 };
843 
844 int
845 nfsd_file_cache_init(void)
846 {
847 	int ret;
848 
849 	lockdep_assert_held(&nfsd_mutex);
850 	if (test_and_set_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1)
851 		return 0;
852 
853 	ret = rhashtable_init(&nfsd_file_rhash_tbl, &nfsd_file_rhash_params);
854 	if (ret)
855 		return ret;
856 
857 	ret = -ENOMEM;
858 	nfsd_filecache_wq = alloc_workqueue("nfsd_filecache", 0, 0);
859 	if (!nfsd_filecache_wq)
860 		goto out;
861 
862 	nfsd_file_slab = kmem_cache_create("nfsd_file",
863 				sizeof(struct nfsd_file), 0, 0, NULL);
864 	if (!nfsd_file_slab) {
865 		pr_err("nfsd: unable to create nfsd_file_slab\n");
866 		goto out_err;
867 	}
868 
869 	nfsd_file_mark_slab = kmem_cache_create("nfsd_file_mark",
870 					sizeof(struct nfsd_file_mark), 0, 0, NULL);
871 	if (!nfsd_file_mark_slab) {
872 		pr_err("nfsd: unable to create nfsd_file_mark_slab\n");
873 		goto out_err;
874 	}
875 
876 
877 	ret = list_lru_init(&nfsd_file_lru);
878 	if (ret) {
879 		pr_err("nfsd: failed to init nfsd_file_lru: %d\n", ret);
880 		goto out_err;
881 	}
882 
883 	ret = register_shrinker(&nfsd_file_shrinker, "nfsd-filecache");
884 	if (ret) {
885 		pr_err("nfsd: failed to register nfsd_file_shrinker: %d\n", ret);
886 		goto out_lru;
887 	}
888 
889 	ret = lease_register_notifier(&nfsd_file_lease_notifier);
890 	if (ret) {
891 		pr_err("nfsd: unable to register lease notifier: %d\n", ret);
892 		goto out_shrinker;
893 	}
894 
895 	nfsd_file_fsnotify_group = fsnotify_alloc_group(&nfsd_file_fsnotify_ops,
896 							FSNOTIFY_GROUP_NOFS);
897 	if (IS_ERR(nfsd_file_fsnotify_group)) {
898 		pr_err("nfsd: unable to create fsnotify group: %ld\n",
899 			PTR_ERR(nfsd_file_fsnotify_group));
900 		ret = PTR_ERR(nfsd_file_fsnotify_group);
901 		nfsd_file_fsnotify_group = NULL;
902 		goto out_notifier;
903 	}
904 
905 	INIT_DELAYED_WORK(&nfsd_filecache_laundrette, nfsd_file_gc_worker);
906 out:
907 	return ret;
908 out_notifier:
909 	lease_unregister_notifier(&nfsd_file_lease_notifier);
910 out_shrinker:
911 	unregister_shrinker(&nfsd_file_shrinker);
912 out_lru:
913 	list_lru_destroy(&nfsd_file_lru);
914 out_err:
915 	kmem_cache_destroy(nfsd_file_slab);
916 	nfsd_file_slab = NULL;
917 	kmem_cache_destroy(nfsd_file_mark_slab);
918 	nfsd_file_mark_slab = NULL;
919 	destroy_workqueue(nfsd_filecache_wq);
920 	nfsd_filecache_wq = NULL;
921 	rhashtable_destroy(&nfsd_file_rhash_tbl);
922 	goto out;
923 }
924 
925 /**
926  * __nfsd_file_cache_purge: clean out the cache for shutdown
927  * @net: net-namespace to shut down the cache (may be NULL)
928  *
929  * Walk the nfsd_file cache and close out any that match @net. If @net is NULL,
930  * then close out everything. Called when an nfsd instance is being shut down.
931  */
932 static void
933 __nfsd_file_cache_purge(struct net *net)
934 {
935 	struct rhashtable_iter iter;
936 	struct nfsd_file *nf;
937 	LIST_HEAD(dispose);
938 
939 	rhashtable_walk_enter(&nfsd_file_rhash_tbl, &iter);
940 	do {
941 		rhashtable_walk_start(&iter);
942 
943 		nf = rhashtable_walk_next(&iter);
944 		while (!IS_ERR_OR_NULL(nf)) {
945 			if (!net || nf->nf_net == net)
946 				nfsd_file_cond_queue(nf, &dispose);
947 			nf = rhashtable_walk_next(&iter);
948 		}
949 
950 		rhashtable_walk_stop(&iter);
951 	} while (nf == ERR_PTR(-EAGAIN));
952 	rhashtable_walk_exit(&iter);
953 
954 	nfsd_file_dispose_list(&dispose);
955 }
956 
957 static struct nfsd_fcache_disposal *
958 nfsd_alloc_fcache_disposal(void)
959 {
960 	struct nfsd_fcache_disposal *l;
961 
962 	l = kmalloc(sizeof(*l), GFP_KERNEL);
963 	if (!l)
964 		return NULL;
965 	INIT_WORK(&l->work, nfsd_file_delayed_close);
966 	spin_lock_init(&l->lock);
967 	INIT_LIST_HEAD(&l->freeme);
968 	return l;
969 }
970 
971 static void
972 nfsd_free_fcache_disposal(struct nfsd_fcache_disposal *l)
973 {
974 	cancel_work_sync(&l->work);
975 	nfsd_file_dispose_list(&l->freeme);
976 	kfree(l);
977 }
978 
979 static void
980 nfsd_free_fcache_disposal_net(struct net *net)
981 {
982 	struct nfsd_net *nn = net_generic(net, nfsd_net_id);
983 	struct nfsd_fcache_disposal *l = nn->fcache_disposal;
984 
985 	nfsd_free_fcache_disposal(l);
986 }
987 
988 int
989 nfsd_file_cache_start_net(struct net *net)
990 {
991 	struct nfsd_net *nn = net_generic(net, nfsd_net_id);
992 
993 	nn->fcache_disposal = nfsd_alloc_fcache_disposal();
994 	return nn->fcache_disposal ? 0 : -ENOMEM;
995 }
996 
997 /**
998  * nfsd_file_cache_purge - Remove all cache items associated with @net
999  * @net: target net namespace
1000  *
1001  */
1002 void
1003 nfsd_file_cache_purge(struct net *net)
1004 {
1005 	lockdep_assert_held(&nfsd_mutex);
1006 	if (test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1)
1007 		__nfsd_file_cache_purge(net);
1008 }
1009 
1010 void
1011 nfsd_file_cache_shutdown_net(struct net *net)
1012 {
1013 	nfsd_file_cache_purge(net);
1014 	nfsd_free_fcache_disposal_net(net);
1015 }
1016 
1017 void
1018 nfsd_file_cache_shutdown(void)
1019 {
1020 	int i;
1021 
1022 	lockdep_assert_held(&nfsd_mutex);
1023 	if (test_and_clear_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 0)
1024 		return;
1025 
1026 	lease_unregister_notifier(&nfsd_file_lease_notifier);
1027 	unregister_shrinker(&nfsd_file_shrinker);
1028 	/*
1029 	 * make sure all callers of nfsd_file_lru_cb are done before
1030 	 * calling nfsd_file_cache_purge
1031 	 */
1032 	cancel_delayed_work_sync(&nfsd_filecache_laundrette);
1033 	__nfsd_file_cache_purge(NULL);
1034 	list_lru_destroy(&nfsd_file_lru);
1035 	rcu_barrier();
1036 	fsnotify_put_group(nfsd_file_fsnotify_group);
1037 	nfsd_file_fsnotify_group = NULL;
1038 	kmem_cache_destroy(nfsd_file_slab);
1039 	nfsd_file_slab = NULL;
1040 	fsnotify_wait_marks_destroyed();
1041 	kmem_cache_destroy(nfsd_file_mark_slab);
1042 	nfsd_file_mark_slab = NULL;
1043 	destroy_workqueue(nfsd_filecache_wq);
1044 	nfsd_filecache_wq = NULL;
1045 	rhashtable_destroy(&nfsd_file_rhash_tbl);
1046 
1047 	for_each_possible_cpu(i) {
1048 		per_cpu(nfsd_file_cache_hits, i) = 0;
1049 		per_cpu(nfsd_file_acquisitions, i) = 0;
1050 		per_cpu(nfsd_file_releases, i) = 0;
1051 		per_cpu(nfsd_file_total_age, i) = 0;
1052 		per_cpu(nfsd_file_evictions, i) = 0;
1053 	}
1054 }
1055 
1056 /**
1057  * nfsd_file_is_cached - are there any cached open files for this inode?
1058  * @inode: inode to check
1059  *
1060  * The lookup matches inodes in all net namespaces and is atomic wrt
1061  * nfsd_file_acquire().
1062  *
1063  * Return values:
1064  *   %true: filecache contains at least one file matching this inode
1065  *   %false: filecache contains no files matching this inode
1066  */
1067 bool
1068 nfsd_file_is_cached(struct inode *inode)
1069 {
1070 	struct nfsd_file_lookup_key key = {
1071 		.type	= NFSD_FILE_KEY_INODE,
1072 		.inode	= inode,
1073 	};
1074 	bool ret = false;
1075 
1076 	if (rhashtable_lookup_fast(&nfsd_file_rhash_tbl, &key,
1077 				   nfsd_file_rhash_params) != NULL)
1078 		ret = true;
1079 	trace_nfsd_file_is_cached(inode, (int)ret);
1080 	return ret;
1081 }
1082 
1083 static __be32
1084 nfsd_file_do_acquire(struct svc_rqst *rqstp, struct svc_fh *fhp,
1085 		     unsigned int may_flags, struct file *file,
1086 		     struct nfsd_file **pnf, bool want_gc)
1087 {
1088 	struct nfsd_file_lookup_key key = {
1089 		.type	= NFSD_FILE_KEY_FULL,
1090 		.need	= may_flags & NFSD_FILE_MAY_MASK,
1091 		.net	= SVC_NET(rqstp),
1092 		.gc	= want_gc,
1093 	};
1094 	bool open_retry = true;
1095 	struct nfsd_file *nf;
1096 	__be32 status;
1097 	int ret;
1098 
1099 	status = fh_verify(rqstp, fhp, S_IFREG,
1100 				may_flags|NFSD_MAY_OWNER_OVERRIDE);
1101 	if (status != nfs_ok)
1102 		return status;
1103 	key.inode = d_inode(fhp->fh_dentry);
1104 	key.cred = get_current_cred();
1105 
1106 retry:
1107 	rcu_read_lock();
1108 	nf = rhashtable_lookup(&nfsd_file_rhash_tbl, &key,
1109 			       nfsd_file_rhash_params);
1110 	if (nf)
1111 		nf = nfsd_file_get(nf);
1112 	rcu_read_unlock();
1113 
1114 	if (nf) {
1115 		if (nfsd_file_lru_remove(nf))
1116 			WARN_ON_ONCE(refcount_dec_and_test(&nf->nf_ref));
1117 		goto wait_for_construction;
1118 	}
1119 
1120 	nf = nfsd_file_alloc(&key, may_flags);
1121 	if (!nf) {
1122 		status = nfserr_jukebox;
1123 		goto out_status;
1124 	}
1125 
1126 	ret = rhashtable_lookup_insert_key(&nfsd_file_rhash_tbl,
1127 					   &key, &nf->nf_rhash,
1128 					   nfsd_file_rhash_params);
1129 	if (likely(ret == 0))
1130 		goto open_file;
1131 
1132 	nfsd_file_slab_free(&nf->nf_rcu);
1133 	nf = NULL;
1134 	if (ret == -EEXIST)
1135 		goto retry;
1136 	trace_nfsd_file_insert_err(rqstp, key.inode, may_flags, ret);
1137 	status = nfserr_jukebox;
1138 	goto out_status;
1139 
1140 wait_for_construction:
1141 	wait_on_bit(&nf->nf_flags, NFSD_FILE_PENDING, TASK_UNINTERRUPTIBLE);
1142 
1143 	/* Did construction of this file fail? */
1144 	if (!test_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
1145 		trace_nfsd_file_cons_err(rqstp, key.inode, may_flags, nf);
1146 		if (!open_retry) {
1147 			status = nfserr_jukebox;
1148 			goto out;
1149 		}
1150 		open_retry = false;
1151 		if (refcount_dec_and_test(&nf->nf_ref))
1152 			nfsd_file_free(nf);
1153 		goto retry;
1154 	}
1155 
1156 	this_cpu_inc(nfsd_file_cache_hits);
1157 
1158 	status = nfserrno(nfsd_open_break_lease(file_inode(nf->nf_file), may_flags));
1159 out:
1160 	if (status == nfs_ok) {
1161 		this_cpu_inc(nfsd_file_acquisitions);
1162 		*pnf = nf;
1163 	} else {
1164 		if (refcount_dec_and_test(&nf->nf_ref))
1165 			nfsd_file_free(nf);
1166 		nf = NULL;
1167 	}
1168 
1169 out_status:
1170 	put_cred(key.cred);
1171 	trace_nfsd_file_acquire(rqstp, key.inode, may_flags, nf, status);
1172 	return status;
1173 
1174 open_file:
1175 	trace_nfsd_file_alloc(nf);
1176 	nf->nf_mark = nfsd_file_mark_find_or_create(nf, key.inode);
1177 	if (nf->nf_mark) {
1178 		if (file) {
1179 			get_file(file);
1180 			nf->nf_file = file;
1181 			status = nfs_ok;
1182 			trace_nfsd_file_opened(nf, status);
1183 		} else {
1184 			status = nfsd_open_verified(rqstp, fhp, may_flags,
1185 						    &nf->nf_file);
1186 			trace_nfsd_file_open(nf, status);
1187 		}
1188 	} else
1189 		status = nfserr_jukebox;
1190 	/*
1191 	 * If construction failed, or we raced with a call to unlink()
1192 	 * then unhash.
1193 	 */
1194 	if (status == nfs_ok && key.inode->i_nlink == 0)
1195 		status = nfserr_jukebox;
1196 	if (status != nfs_ok)
1197 		nfsd_file_unhash(nf);
1198 	clear_bit_unlock(NFSD_FILE_PENDING, &nf->nf_flags);
1199 	smp_mb__after_atomic();
1200 	wake_up_bit(&nf->nf_flags, NFSD_FILE_PENDING);
1201 	goto out;
1202 }
1203 
1204 /**
1205  * nfsd_file_acquire_gc - Get a struct nfsd_file with an open file
1206  * @rqstp: the RPC transaction being executed
1207  * @fhp: the NFS filehandle of the file to be opened
1208  * @may_flags: NFSD_MAY_ settings for the file
1209  * @pnf: OUT: new or found "struct nfsd_file" object
1210  *
1211  * The nfsd_file object returned by this API is reference-counted
1212  * and garbage-collected. The object is retained for a few
1213  * seconds after the final nfsd_file_put() in case the caller
1214  * wants to re-use it.
1215  *
1216  * Returns nfs_ok and sets @pnf on success; otherwise an nfsstat in
1217  * network byte order is returned.
1218  */
1219 __be32
1220 nfsd_file_acquire_gc(struct svc_rqst *rqstp, struct svc_fh *fhp,
1221 		     unsigned int may_flags, struct nfsd_file **pnf)
1222 {
1223 	return nfsd_file_do_acquire(rqstp, fhp, may_flags, NULL, pnf, true);
1224 }
1225 
1226 /**
1227  * nfsd_file_acquire - Get a struct nfsd_file with an open file
1228  * @rqstp: the RPC transaction being executed
1229  * @fhp: the NFS filehandle of the file to be opened
1230  * @may_flags: NFSD_MAY_ settings for the file
1231  * @pnf: OUT: new or found "struct nfsd_file" object
1232  *
1233  * The nfsd_file_object returned by this API is reference-counted
1234  * but not garbage-collected. The object is unhashed after the
1235  * final nfsd_file_put().
1236  *
1237  * Returns nfs_ok and sets @pnf on success; otherwise an nfsstat in
1238  * network byte order is returned.
1239  */
1240 __be32
1241 nfsd_file_acquire(struct svc_rqst *rqstp, struct svc_fh *fhp,
1242 		  unsigned int may_flags, struct nfsd_file **pnf)
1243 {
1244 	return nfsd_file_do_acquire(rqstp, fhp, may_flags, NULL, pnf, false);
1245 }
1246 
1247 /**
1248  * nfsd_file_acquire_opened - Get a struct nfsd_file using existing open file
1249  * @rqstp: the RPC transaction being executed
1250  * @fhp: the NFS filehandle of the file just created
1251  * @may_flags: NFSD_MAY_ settings for the file
1252  * @file: cached, already-open file (may be NULL)
1253  * @pnf: OUT: new or found "struct nfsd_file" object
1254  *
1255  * Acquire a nfsd_file object that is not GC'ed. If one doesn't already exist,
1256  * and @file is non-NULL, use it to instantiate a new nfsd_file instead of
1257  * opening a new one.
1258  *
1259  * Returns nfs_ok and sets @pnf on success; otherwise an nfsstat in
1260  * network byte order is returned.
1261  */
1262 __be32
1263 nfsd_file_acquire_opened(struct svc_rqst *rqstp, struct svc_fh *fhp,
1264 			 unsigned int may_flags, struct file *file,
1265 			 struct nfsd_file **pnf)
1266 {
1267 	return nfsd_file_do_acquire(rqstp, fhp, may_flags, file, pnf, false);
1268 }
1269 
1270 /*
1271  * Note that fields may be added, removed or reordered in the future. Programs
1272  * scraping this file for info should test the labels to ensure they're
1273  * getting the correct field.
1274  */
1275 int nfsd_file_cache_stats_show(struct seq_file *m, void *v)
1276 {
1277 	unsigned long releases = 0, evictions = 0;
1278 	unsigned long hits = 0, acquisitions = 0;
1279 	unsigned int i, count = 0, buckets = 0;
1280 	unsigned long lru = 0, total_age = 0;
1281 
1282 	/* Serialize with server shutdown */
1283 	mutex_lock(&nfsd_mutex);
1284 	if (test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1) {
1285 		struct bucket_table *tbl;
1286 		struct rhashtable *ht;
1287 
1288 		lru = list_lru_count(&nfsd_file_lru);
1289 
1290 		rcu_read_lock();
1291 		ht = &nfsd_file_rhash_tbl;
1292 		count = atomic_read(&ht->nelems);
1293 		tbl = rht_dereference_rcu(ht->tbl, ht);
1294 		buckets = tbl->size;
1295 		rcu_read_unlock();
1296 	}
1297 	mutex_unlock(&nfsd_mutex);
1298 
1299 	for_each_possible_cpu(i) {
1300 		hits += per_cpu(nfsd_file_cache_hits, i);
1301 		acquisitions += per_cpu(nfsd_file_acquisitions, i);
1302 		releases += per_cpu(nfsd_file_releases, i);
1303 		total_age += per_cpu(nfsd_file_total_age, i);
1304 		evictions += per_cpu(nfsd_file_evictions, i);
1305 	}
1306 
1307 	seq_printf(m, "total entries: %u\n", count);
1308 	seq_printf(m, "hash buckets:  %u\n", buckets);
1309 	seq_printf(m, "lru entries:   %lu\n", lru);
1310 	seq_printf(m, "cache hits:    %lu\n", hits);
1311 	seq_printf(m, "acquisitions:  %lu\n", acquisitions);
1312 	seq_printf(m, "releases:      %lu\n", releases);
1313 	seq_printf(m, "evictions:     %lu\n", evictions);
1314 	if (releases)
1315 		seq_printf(m, "mean age (ms): %ld\n", total_age / releases);
1316 	else
1317 		seq_printf(m, "mean age (ms): -\n");
1318 	return 0;
1319 }
1320