1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 #include <linux/export.h> 24 #include <linux/freezer.h> 25 #include <linux/wait.h> 26 #include <linux/iversion.h> 27 28 #include <linux/uaccess.h> 29 30 #include "delegation.h" 31 #include "internal.h" 32 #include "iostat.h" 33 #include "nfs4_fs.h" 34 #include "fscache.h" 35 #include "pnfs.h" 36 37 #include "nfstrace.h" 38 39 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 40 41 #define MIN_POOL_WRITE (32) 42 #define MIN_POOL_COMMIT (4) 43 44 struct nfs_io_completion { 45 void (*complete)(void *data); 46 void *data; 47 struct kref refcount; 48 }; 49 50 /* 51 * Local function declarations 52 */ 53 static void nfs_redirty_request(struct nfs_page *req); 54 static const struct rpc_call_ops nfs_commit_ops; 55 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops; 56 static const struct nfs_commit_completion_ops nfs_commit_completion_ops; 57 static const struct nfs_rw_ops nfs_rw_write_ops; 58 static void nfs_clear_request_commit(struct nfs_page *req); 59 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 60 struct inode *inode); 61 static struct nfs_page * 62 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi, 63 struct page *page); 64 65 static struct kmem_cache *nfs_wdata_cachep; 66 static mempool_t *nfs_wdata_mempool; 67 static struct kmem_cache *nfs_cdata_cachep; 68 static mempool_t *nfs_commit_mempool; 69 70 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail) 71 { 72 struct nfs_commit_data *p; 73 74 if (never_fail) 75 p = mempool_alloc(nfs_commit_mempool, GFP_NOIO); 76 else { 77 /* It is OK to do some reclaim, not no safe to wait 78 * for anything to be returned to the pool. 79 * mempool_alloc() cannot handle that particular combination, 80 * so we need two separate attempts. 81 */ 82 p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT); 83 if (!p) 84 p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO | 85 __GFP_NOWARN | __GFP_NORETRY); 86 if (!p) 87 return NULL; 88 } 89 90 memset(p, 0, sizeof(*p)); 91 INIT_LIST_HEAD(&p->pages); 92 return p; 93 } 94 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc); 95 96 void nfs_commit_free(struct nfs_commit_data *p) 97 { 98 mempool_free(p, nfs_commit_mempool); 99 } 100 EXPORT_SYMBOL_GPL(nfs_commit_free); 101 102 static struct nfs_pgio_header *nfs_writehdr_alloc(void) 103 { 104 struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO); 105 106 memset(p, 0, sizeof(*p)); 107 p->rw_mode = FMODE_WRITE; 108 return p; 109 } 110 111 static void nfs_writehdr_free(struct nfs_pgio_header *hdr) 112 { 113 mempool_free(hdr, nfs_wdata_mempool); 114 } 115 116 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags) 117 { 118 return kmalloc(sizeof(struct nfs_io_completion), gfp_flags); 119 } 120 121 static void nfs_io_completion_init(struct nfs_io_completion *ioc, 122 void (*complete)(void *), void *data) 123 { 124 ioc->complete = complete; 125 ioc->data = data; 126 kref_init(&ioc->refcount); 127 } 128 129 static void nfs_io_completion_release(struct kref *kref) 130 { 131 struct nfs_io_completion *ioc = container_of(kref, 132 struct nfs_io_completion, refcount); 133 ioc->complete(ioc->data); 134 kfree(ioc); 135 } 136 137 static void nfs_io_completion_get(struct nfs_io_completion *ioc) 138 { 139 if (ioc != NULL) 140 kref_get(&ioc->refcount); 141 } 142 143 static void nfs_io_completion_put(struct nfs_io_completion *ioc) 144 { 145 if (ioc != NULL) 146 kref_put(&ioc->refcount, nfs_io_completion_release); 147 } 148 149 static struct nfs_page * 150 nfs_page_private_request(struct page *page) 151 { 152 if (!PagePrivate(page)) 153 return NULL; 154 return (struct nfs_page *)page_private(page); 155 } 156 157 /* 158 * nfs_page_find_head_request_locked - find head request associated with @page 159 * 160 * must be called while holding the inode lock. 161 * 162 * returns matching head request with reference held, or NULL if not found. 163 */ 164 static struct nfs_page * 165 nfs_page_find_private_request(struct page *page) 166 { 167 struct address_space *mapping = page_file_mapping(page); 168 struct nfs_page *req; 169 170 if (!PagePrivate(page)) 171 return NULL; 172 spin_lock(&mapping->private_lock); 173 req = nfs_page_private_request(page); 174 if (req) { 175 WARN_ON_ONCE(req->wb_head != req); 176 kref_get(&req->wb_kref); 177 } 178 spin_unlock(&mapping->private_lock); 179 return req; 180 } 181 182 static struct nfs_page * 183 nfs_page_find_swap_request(struct page *page) 184 { 185 struct inode *inode = page_file_mapping(page)->host; 186 struct nfs_inode *nfsi = NFS_I(inode); 187 struct nfs_page *req = NULL; 188 if (!PageSwapCache(page)) 189 return NULL; 190 mutex_lock(&nfsi->commit_mutex); 191 if (PageSwapCache(page)) { 192 req = nfs_page_search_commits_for_head_request_locked(nfsi, 193 page); 194 if (req) { 195 WARN_ON_ONCE(req->wb_head != req); 196 kref_get(&req->wb_kref); 197 } 198 } 199 mutex_unlock(&nfsi->commit_mutex); 200 return req; 201 } 202 203 /* 204 * nfs_page_find_head_request - find head request associated with @page 205 * 206 * returns matching head request with reference held, or NULL if not found. 207 */ 208 static struct nfs_page *nfs_page_find_head_request(struct page *page) 209 { 210 struct nfs_page *req; 211 212 req = nfs_page_find_private_request(page); 213 if (!req) 214 req = nfs_page_find_swap_request(page); 215 return req; 216 } 217 218 /* Adjust the file length if we're writing beyond the end */ 219 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 220 { 221 struct inode *inode = page_file_mapping(page)->host; 222 loff_t end, i_size; 223 pgoff_t end_index; 224 225 spin_lock(&inode->i_lock); 226 i_size = i_size_read(inode); 227 end_index = (i_size - 1) >> PAGE_SHIFT; 228 if (i_size > 0 && page_index(page) < end_index) 229 goto out; 230 end = page_file_offset(page) + ((loff_t)offset+count); 231 if (i_size >= end) 232 goto out; 233 i_size_write(inode, end); 234 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 235 out: 236 spin_unlock(&inode->i_lock); 237 } 238 239 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 240 static void nfs_set_pageerror(struct page *page) 241 { 242 nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page)); 243 } 244 245 /* 246 * nfs_page_group_search_locked 247 * @head - head request of page group 248 * @page_offset - offset into page 249 * 250 * Search page group with head @head to find a request that contains the 251 * page offset @page_offset. 252 * 253 * Returns a pointer to the first matching nfs request, or NULL if no 254 * match is found. 255 * 256 * Must be called with the page group lock held 257 */ 258 static struct nfs_page * 259 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset) 260 { 261 struct nfs_page *req; 262 263 req = head; 264 do { 265 if (page_offset >= req->wb_pgbase && 266 page_offset < (req->wb_pgbase + req->wb_bytes)) 267 return req; 268 269 req = req->wb_this_page; 270 } while (req != head); 271 272 return NULL; 273 } 274 275 /* 276 * nfs_page_group_covers_page 277 * @head - head request of page group 278 * 279 * Return true if the page group with head @head covers the whole page, 280 * returns false otherwise 281 */ 282 static bool nfs_page_group_covers_page(struct nfs_page *req) 283 { 284 struct nfs_page *tmp; 285 unsigned int pos = 0; 286 unsigned int len = nfs_page_length(req->wb_page); 287 288 nfs_page_group_lock(req); 289 290 for (;;) { 291 tmp = nfs_page_group_search_locked(req->wb_head, pos); 292 if (!tmp) 293 break; 294 pos = tmp->wb_pgbase + tmp->wb_bytes; 295 } 296 297 nfs_page_group_unlock(req); 298 return pos >= len; 299 } 300 301 /* We can set the PG_uptodate flag if we see that a write request 302 * covers the full page. 303 */ 304 static void nfs_mark_uptodate(struct nfs_page *req) 305 { 306 if (PageUptodate(req->wb_page)) 307 return; 308 if (!nfs_page_group_covers_page(req)) 309 return; 310 SetPageUptodate(req->wb_page); 311 } 312 313 static int wb_priority(struct writeback_control *wbc) 314 { 315 int ret = 0; 316 317 if (wbc->sync_mode == WB_SYNC_ALL) 318 ret = FLUSH_COND_STABLE; 319 return ret; 320 } 321 322 /* 323 * NFS congestion control 324 */ 325 326 int nfs_congestion_kb; 327 328 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 329 #define NFS_CONGESTION_OFF_THRESH \ 330 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 331 332 static void nfs_set_page_writeback(struct page *page) 333 { 334 struct inode *inode = page_file_mapping(page)->host; 335 struct nfs_server *nfss = NFS_SERVER(inode); 336 int ret = test_set_page_writeback(page); 337 338 WARN_ON_ONCE(ret != 0); 339 340 if (atomic_long_inc_return(&nfss->writeback) > 341 NFS_CONGESTION_ON_THRESH) 342 set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC); 343 } 344 345 static void nfs_end_page_writeback(struct nfs_page *req) 346 { 347 struct inode *inode = page_file_mapping(req->wb_page)->host; 348 struct nfs_server *nfss = NFS_SERVER(inode); 349 bool is_done; 350 351 is_done = nfs_page_group_sync_on_bit(req, PG_WB_END); 352 nfs_unlock_request(req); 353 if (!is_done) 354 return; 355 356 end_page_writeback(req->wb_page); 357 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 358 clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC); 359 } 360 361 /* 362 * nfs_unroll_locks_and_wait - unlock all newly locked reqs and wait on @req 363 * 364 * this is a helper function for nfs_lock_and_join_requests 365 * 366 * @inode - inode associated with request page group, must be holding inode lock 367 * @head - head request of page group, must be holding head lock 368 * @req - request that couldn't lock and needs to wait on the req bit lock 369 * 370 * NOTE: this must be called holding page_group bit lock 371 * which will be released before returning. 372 * 373 * returns 0 on success, < 0 on error. 374 */ 375 static void 376 nfs_unroll_locks(struct inode *inode, struct nfs_page *head, 377 struct nfs_page *req) 378 { 379 struct nfs_page *tmp; 380 381 /* relinquish all the locks successfully grabbed this run */ 382 for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) { 383 if (!kref_read(&tmp->wb_kref)) 384 continue; 385 nfs_unlock_and_release_request(tmp); 386 } 387 } 388 389 /* 390 * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests 391 * 392 * @destroy_list - request list (using wb_this_page) terminated by @old_head 393 * @old_head - the old head of the list 394 * 395 * All subrequests must be locked and removed from all lists, so at this point 396 * they are only "active" in this function, and possibly in nfs_wait_on_request 397 * with a reference held by some other context. 398 */ 399 static void 400 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list, 401 struct nfs_page *old_head, 402 struct inode *inode) 403 { 404 while (destroy_list) { 405 struct nfs_page *subreq = destroy_list; 406 407 destroy_list = (subreq->wb_this_page == old_head) ? 408 NULL : subreq->wb_this_page; 409 410 WARN_ON_ONCE(old_head != subreq->wb_head); 411 412 /* make sure old group is not used */ 413 subreq->wb_this_page = subreq; 414 415 clear_bit(PG_REMOVE, &subreq->wb_flags); 416 417 /* Note: races with nfs_page_group_destroy() */ 418 if (!kref_read(&subreq->wb_kref)) { 419 /* Check if we raced with nfs_page_group_destroy() */ 420 if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags)) 421 nfs_free_request(subreq); 422 continue; 423 } 424 425 subreq->wb_head = subreq; 426 427 if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) { 428 nfs_release_request(subreq); 429 atomic_long_dec(&NFS_I(inode)->nrequests); 430 } 431 432 /* subreq is now totally disconnected from page group or any 433 * write / commit lists. last chance to wake any waiters */ 434 nfs_unlock_and_release_request(subreq); 435 } 436 } 437 438 /* 439 * nfs_lock_and_join_requests - join all subreqs to the head req and return 440 * a locked reference, cancelling any pending 441 * operations for this page. 442 * 443 * @page - the page used to lookup the "page group" of nfs_page structures 444 * 445 * This function joins all sub requests to the head request by first 446 * locking all requests in the group, cancelling any pending operations 447 * and finally updating the head request to cover the whole range covered by 448 * the (former) group. All subrequests are removed from any write or commit 449 * lists, unlinked from the group and destroyed. 450 * 451 * Returns a locked, referenced pointer to the head request - which after 452 * this call is guaranteed to be the only request associated with the page. 453 * Returns NULL if no requests are found for @page, or a ERR_PTR if an 454 * error was encountered. 455 */ 456 static struct nfs_page * 457 nfs_lock_and_join_requests(struct page *page) 458 { 459 struct inode *inode = page_file_mapping(page)->host; 460 struct nfs_page *head, *subreq; 461 struct nfs_page *destroy_list = NULL; 462 unsigned int total_bytes; 463 int ret; 464 465 try_again: 466 /* 467 * A reference is taken only on the head request which acts as a 468 * reference to the whole page group - the group will not be destroyed 469 * until the head reference is released. 470 */ 471 head = nfs_page_find_head_request(page); 472 if (!head) 473 return NULL; 474 475 /* lock the page head first in order to avoid an ABBA inefficiency */ 476 if (!nfs_lock_request(head)) { 477 ret = nfs_wait_on_request(head); 478 nfs_release_request(head); 479 if (ret < 0) 480 return ERR_PTR(ret); 481 goto try_again; 482 } 483 484 /* Ensure that nobody removed the request before we locked it */ 485 if (head != nfs_page_private_request(page) && !PageSwapCache(page)) { 486 nfs_unlock_and_release_request(head); 487 goto try_again; 488 } 489 490 ret = nfs_page_group_lock(head); 491 if (ret < 0) 492 goto release_request; 493 494 /* lock each request in the page group */ 495 total_bytes = head->wb_bytes; 496 for (subreq = head->wb_this_page; subreq != head; 497 subreq = subreq->wb_this_page) { 498 499 if (!kref_get_unless_zero(&subreq->wb_kref)) { 500 if (subreq->wb_offset == head->wb_offset + total_bytes) 501 total_bytes += subreq->wb_bytes; 502 continue; 503 } 504 505 while (!nfs_lock_request(subreq)) { 506 /* 507 * Unlock page to allow nfs_page_group_sync_on_bit() 508 * to succeed 509 */ 510 nfs_page_group_unlock(head); 511 ret = nfs_wait_on_request(subreq); 512 if (!ret) 513 ret = nfs_page_group_lock(head); 514 if (ret < 0) { 515 nfs_unroll_locks(inode, head, subreq); 516 nfs_release_request(subreq); 517 goto release_request; 518 } 519 } 520 /* 521 * Subrequests are always contiguous, non overlapping 522 * and in order - but may be repeated (mirrored writes). 523 */ 524 if (subreq->wb_offset == (head->wb_offset + total_bytes)) { 525 /* keep track of how many bytes this group covers */ 526 total_bytes += subreq->wb_bytes; 527 } else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset || 528 ((subreq->wb_offset + subreq->wb_bytes) > 529 (head->wb_offset + total_bytes)))) { 530 nfs_page_group_unlock(head); 531 nfs_unroll_locks(inode, head, subreq); 532 nfs_unlock_and_release_request(subreq); 533 ret = -EIO; 534 goto release_request; 535 } 536 } 537 538 /* Now that all requests are locked, make sure they aren't on any list. 539 * Commit list removal accounting is done after locks are dropped */ 540 subreq = head; 541 do { 542 nfs_clear_request_commit(subreq); 543 subreq = subreq->wb_this_page; 544 } while (subreq != head); 545 546 /* unlink subrequests from head, destroy them later */ 547 if (head->wb_this_page != head) { 548 /* destroy list will be terminated by head */ 549 destroy_list = head->wb_this_page; 550 head->wb_this_page = head; 551 552 /* change head request to cover whole range that 553 * the former page group covered */ 554 head->wb_bytes = total_bytes; 555 } 556 557 /* Postpone destruction of this request */ 558 if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) { 559 set_bit(PG_INODE_REF, &head->wb_flags); 560 kref_get(&head->wb_kref); 561 atomic_long_inc(&NFS_I(inode)->nrequests); 562 } 563 564 nfs_page_group_unlock(head); 565 566 nfs_destroy_unlinked_subrequests(destroy_list, head, inode); 567 568 /* Did we lose a race with nfs_inode_remove_request()? */ 569 if (!(PagePrivate(page) || PageSwapCache(page))) { 570 nfs_unlock_and_release_request(head); 571 return NULL; 572 } 573 574 /* still holds ref on head from nfs_page_find_head_request 575 * and still has lock on head from lock loop */ 576 return head; 577 578 release_request: 579 nfs_unlock_and_release_request(head); 580 return ERR_PTR(ret); 581 } 582 583 static void nfs_write_error_remove_page(struct nfs_page *req) 584 { 585 nfs_end_page_writeback(req); 586 generic_error_remove_page(page_file_mapping(req->wb_page), 587 req->wb_page); 588 nfs_release_request(req); 589 } 590 591 static bool 592 nfs_error_is_fatal_on_server(int err) 593 { 594 switch (err) { 595 case 0: 596 case -ERESTARTSYS: 597 case -EINTR: 598 return false; 599 } 600 return nfs_error_is_fatal(err); 601 } 602 603 /* 604 * Find an associated nfs write request, and prepare to flush it out 605 * May return an error if the user signalled nfs_wait_on_request(). 606 */ 607 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 608 struct page *page) 609 { 610 struct nfs_page *req; 611 int ret = 0; 612 613 req = nfs_lock_and_join_requests(page); 614 if (!req) 615 goto out; 616 ret = PTR_ERR(req); 617 if (IS_ERR(req)) 618 goto out; 619 620 nfs_set_page_writeback(page); 621 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags)); 622 623 ret = 0; 624 /* If there is a fatal error that covers this write, just exit */ 625 if (nfs_error_is_fatal_on_server(req->wb_context->error)) 626 goto out_launder; 627 628 if (!nfs_pageio_add_request(pgio, req)) { 629 ret = pgio->pg_error; 630 /* 631 * Remove the problematic req upon fatal errors on the server 632 */ 633 if (nfs_error_is_fatal(ret)) { 634 nfs_context_set_write_error(req->wb_context, ret); 635 if (nfs_error_is_fatal_on_server(ret)) 636 goto out_launder; 637 } 638 nfs_redirty_request(req); 639 ret = -EAGAIN; 640 } else 641 nfs_add_stats(page_file_mapping(page)->host, 642 NFSIOS_WRITEPAGES, 1); 643 out: 644 return ret; 645 out_launder: 646 nfs_write_error_remove_page(req); 647 return ret; 648 } 649 650 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, 651 struct nfs_pageio_descriptor *pgio) 652 { 653 int ret; 654 655 nfs_pageio_cond_complete(pgio, page_index(page)); 656 ret = nfs_page_async_flush(pgio, page); 657 if (ret == -EAGAIN) { 658 redirty_page_for_writepage(wbc, page); 659 ret = 0; 660 } 661 return ret; 662 } 663 664 /* 665 * Write an mmapped page to the server. 666 */ 667 static int nfs_writepage_locked(struct page *page, 668 struct writeback_control *wbc) 669 { 670 struct nfs_pageio_descriptor pgio; 671 struct inode *inode = page_file_mapping(page)->host; 672 int err; 673 674 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 675 nfs_pageio_init_write(&pgio, inode, 0, 676 false, &nfs_async_write_completion_ops); 677 err = nfs_do_writepage(page, wbc, &pgio); 678 nfs_pageio_complete(&pgio); 679 if (err < 0) 680 return err; 681 if (pgio.pg_error < 0) 682 return pgio.pg_error; 683 return 0; 684 } 685 686 int nfs_writepage(struct page *page, struct writeback_control *wbc) 687 { 688 int ret; 689 690 ret = nfs_writepage_locked(page, wbc); 691 unlock_page(page); 692 return ret; 693 } 694 695 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 696 { 697 int ret; 698 699 ret = nfs_do_writepage(page, wbc, data); 700 unlock_page(page); 701 return ret; 702 } 703 704 static void nfs_io_completion_commit(void *inode) 705 { 706 nfs_commit_inode(inode, 0); 707 } 708 709 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 710 { 711 struct inode *inode = mapping->host; 712 struct nfs_pageio_descriptor pgio; 713 struct nfs_io_completion *ioc = nfs_io_completion_alloc(GFP_NOFS); 714 int err; 715 716 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 717 718 if (ioc) 719 nfs_io_completion_init(ioc, nfs_io_completion_commit, inode); 720 721 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false, 722 &nfs_async_write_completion_ops); 723 pgio.pg_io_completion = ioc; 724 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 725 nfs_pageio_complete(&pgio); 726 nfs_io_completion_put(ioc); 727 728 if (err < 0) 729 goto out_err; 730 err = pgio.pg_error; 731 if (err < 0) 732 goto out_err; 733 return 0; 734 out_err: 735 return err; 736 } 737 738 /* 739 * Insert a write request into an inode 740 */ 741 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 742 { 743 struct address_space *mapping = page_file_mapping(req->wb_page); 744 struct nfs_inode *nfsi = NFS_I(inode); 745 746 WARN_ON_ONCE(req->wb_this_page != req); 747 748 /* Lock the request! */ 749 nfs_lock_request(req); 750 751 /* 752 * Swap-space should not get truncated. Hence no need to plug the race 753 * with invalidate/truncate. 754 */ 755 spin_lock(&mapping->private_lock); 756 if (!nfs_have_writebacks(inode) && 757 NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 758 inode_inc_iversion_raw(inode); 759 if (likely(!PageSwapCache(req->wb_page))) { 760 set_bit(PG_MAPPED, &req->wb_flags); 761 SetPagePrivate(req->wb_page); 762 set_page_private(req->wb_page, (unsigned long)req); 763 } 764 spin_unlock(&mapping->private_lock); 765 atomic_long_inc(&nfsi->nrequests); 766 /* this a head request for a page group - mark it as having an 767 * extra reference so sub groups can follow suit. 768 * This flag also informs pgio layer when to bump nrequests when 769 * adding subrequests. */ 770 WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags)); 771 kref_get(&req->wb_kref); 772 } 773 774 /* 775 * Remove a write request from an inode 776 */ 777 static void nfs_inode_remove_request(struct nfs_page *req) 778 { 779 struct address_space *mapping = page_file_mapping(req->wb_page); 780 struct inode *inode = mapping->host; 781 struct nfs_inode *nfsi = NFS_I(inode); 782 struct nfs_page *head; 783 784 atomic_long_dec(&nfsi->nrequests); 785 if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) { 786 head = req->wb_head; 787 788 spin_lock(&mapping->private_lock); 789 if (likely(head->wb_page && !PageSwapCache(head->wb_page))) { 790 set_page_private(head->wb_page, 0); 791 ClearPagePrivate(head->wb_page); 792 clear_bit(PG_MAPPED, &head->wb_flags); 793 } 794 spin_unlock(&mapping->private_lock); 795 } 796 797 if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) 798 nfs_release_request(req); 799 } 800 801 static void 802 nfs_mark_request_dirty(struct nfs_page *req) 803 { 804 if (req->wb_page) 805 __set_page_dirty_nobuffers(req->wb_page); 806 } 807 808 /* 809 * nfs_page_search_commits_for_head_request_locked 810 * 811 * Search through commit lists on @inode for the head request for @page. 812 * Must be called while holding the inode (which is cinfo) lock. 813 * 814 * Returns the head request if found, or NULL if not found. 815 */ 816 static struct nfs_page * 817 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi, 818 struct page *page) 819 { 820 struct nfs_page *freq, *t; 821 struct nfs_commit_info cinfo; 822 struct inode *inode = &nfsi->vfs_inode; 823 824 nfs_init_cinfo_from_inode(&cinfo, inode); 825 826 /* search through pnfs commit lists */ 827 freq = pnfs_search_commit_reqs(inode, &cinfo, page); 828 if (freq) 829 return freq->wb_head; 830 831 /* Linearly search the commit list for the correct request */ 832 list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) { 833 if (freq->wb_page == page) 834 return freq->wb_head; 835 } 836 837 return NULL; 838 } 839 840 /** 841 * nfs_request_add_commit_list_locked - add request to a commit list 842 * @req: pointer to a struct nfs_page 843 * @dst: commit list head 844 * @cinfo: holds list lock and accounting info 845 * 846 * This sets the PG_CLEAN bit, updates the cinfo count of 847 * number of outstanding requests requiring a commit as well as 848 * the MM page stats. 849 * 850 * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the 851 * nfs_page lock. 852 */ 853 void 854 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst, 855 struct nfs_commit_info *cinfo) 856 { 857 set_bit(PG_CLEAN, &req->wb_flags); 858 nfs_list_add_request(req, dst); 859 atomic_long_inc(&cinfo->mds->ncommit); 860 } 861 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked); 862 863 /** 864 * nfs_request_add_commit_list - add request to a commit list 865 * @req: pointer to a struct nfs_page 866 * @dst: commit list head 867 * @cinfo: holds list lock and accounting info 868 * 869 * This sets the PG_CLEAN bit, updates the cinfo count of 870 * number of outstanding requests requiring a commit as well as 871 * the MM page stats. 872 * 873 * The caller must _not_ hold the cinfo->lock, but must be 874 * holding the nfs_page lock. 875 */ 876 void 877 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo) 878 { 879 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 880 nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo); 881 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 882 if (req->wb_page) 883 nfs_mark_page_unstable(req->wb_page, cinfo); 884 } 885 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list); 886 887 /** 888 * nfs_request_remove_commit_list - Remove request from a commit list 889 * @req: pointer to a nfs_page 890 * @cinfo: holds list lock and accounting info 891 * 892 * This clears the PG_CLEAN bit, and updates the cinfo's count of 893 * number of outstanding requests requiring a commit 894 * It does not update the MM page stats. 895 * 896 * The caller _must_ hold the cinfo->lock and the nfs_page lock. 897 */ 898 void 899 nfs_request_remove_commit_list(struct nfs_page *req, 900 struct nfs_commit_info *cinfo) 901 { 902 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) 903 return; 904 nfs_list_remove_request(req); 905 atomic_long_dec(&cinfo->mds->ncommit); 906 } 907 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list); 908 909 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 910 struct inode *inode) 911 { 912 cinfo->inode = inode; 913 cinfo->mds = &NFS_I(inode)->commit_info; 914 cinfo->ds = pnfs_get_ds_info(inode); 915 cinfo->dreq = NULL; 916 cinfo->completion_ops = &nfs_commit_completion_ops; 917 } 918 919 void nfs_init_cinfo(struct nfs_commit_info *cinfo, 920 struct inode *inode, 921 struct nfs_direct_req *dreq) 922 { 923 if (dreq) 924 nfs_init_cinfo_from_dreq(cinfo, dreq); 925 else 926 nfs_init_cinfo_from_inode(cinfo, inode); 927 } 928 EXPORT_SYMBOL_GPL(nfs_init_cinfo); 929 930 /* 931 * Add a request to the inode's commit list. 932 */ 933 void 934 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, 935 struct nfs_commit_info *cinfo, u32 ds_commit_idx) 936 { 937 if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx)) 938 return; 939 nfs_request_add_commit_list(req, cinfo); 940 } 941 942 static void 943 nfs_clear_page_commit(struct page *page) 944 { 945 dec_node_page_state(page, NR_UNSTABLE_NFS); 946 dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb, 947 WB_RECLAIMABLE); 948 } 949 950 /* Called holding the request lock on @req */ 951 static void 952 nfs_clear_request_commit(struct nfs_page *req) 953 { 954 if (test_bit(PG_CLEAN, &req->wb_flags)) { 955 struct inode *inode = d_inode(req->wb_context->dentry); 956 struct nfs_commit_info cinfo; 957 958 nfs_init_cinfo_from_inode(&cinfo, inode); 959 mutex_lock(&NFS_I(inode)->commit_mutex); 960 if (!pnfs_clear_request_commit(req, &cinfo)) { 961 nfs_request_remove_commit_list(req, &cinfo); 962 } 963 mutex_unlock(&NFS_I(inode)->commit_mutex); 964 nfs_clear_page_commit(req->wb_page); 965 } 966 } 967 968 int nfs_write_need_commit(struct nfs_pgio_header *hdr) 969 { 970 if (hdr->verf.committed == NFS_DATA_SYNC) 971 return hdr->lseg == NULL; 972 return hdr->verf.committed != NFS_FILE_SYNC; 973 } 974 975 static void nfs_async_write_init(struct nfs_pgio_header *hdr) 976 { 977 nfs_io_completion_get(hdr->io_completion); 978 } 979 980 static void nfs_write_completion(struct nfs_pgio_header *hdr) 981 { 982 struct nfs_commit_info cinfo; 983 unsigned long bytes = 0; 984 985 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 986 goto out; 987 nfs_init_cinfo_from_inode(&cinfo, hdr->inode); 988 while (!list_empty(&hdr->pages)) { 989 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 990 991 bytes += req->wb_bytes; 992 nfs_list_remove_request(req); 993 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && 994 (hdr->good_bytes < bytes)) { 995 nfs_set_pageerror(req->wb_page); 996 nfs_context_set_write_error(req->wb_context, hdr->error); 997 goto remove_req; 998 } 999 if (nfs_write_need_commit(hdr)) { 1000 memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf)); 1001 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 1002 hdr->pgio_mirror_idx); 1003 goto next; 1004 } 1005 remove_req: 1006 nfs_inode_remove_request(req); 1007 next: 1008 nfs_end_page_writeback(req); 1009 nfs_release_request(req); 1010 } 1011 out: 1012 nfs_io_completion_put(hdr->io_completion); 1013 hdr->release(hdr); 1014 } 1015 1016 unsigned long 1017 nfs_reqs_to_commit(struct nfs_commit_info *cinfo) 1018 { 1019 return atomic_long_read(&cinfo->mds->ncommit); 1020 } 1021 1022 /* NFS_I(cinfo->inode)->commit_mutex held by caller */ 1023 int 1024 nfs_scan_commit_list(struct list_head *src, struct list_head *dst, 1025 struct nfs_commit_info *cinfo, int max) 1026 { 1027 struct nfs_page *req, *tmp; 1028 int ret = 0; 1029 1030 restart: 1031 list_for_each_entry_safe(req, tmp, src, wb_list) { 1032 kref_get(&req->wb_kref); 1033 if (!nfs_lock_request(req)) { 1034 int status; 1035 1036 /* Prevent deadlock with nfs_lock_and_join_requests */ 1037 if (!list_empty(dst)) { 1038 nfs_release_request(req); 1039 continue; 1040 } 1041 /* Ensure we make progress to prevent livelock */ 1042 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 1043 status = nfs_wait_on_request(req); 1044 nfs_release_request(req); 1045 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 1046 if (status < 0) 1047 break; 1048 goto restart; 1049 } 1050 nfs_request_remove_commit_list(req, cinfo); 1051 clear_bit(PG_COMMIT_TO_DS, &req->wb_flags); 1052 nfs_list_add_request(req, dst); 1053 ret++; 1054 if ((ret == max) && !cinfo->dreq) 1055 break; 1056 cond_resched(); 1057 } 1058 return ret; 1059 } 1060 EXPORT_SYMBOL_GPL(nfs_scan_commit_list); 1061 1062 /* 1063 * nfs_scan_commit - Scan an inode for commit requests 1064 * @inode: NFS inode to scan 1065 * @dst: mds destination list 1066 * @cinfo: mds and ds lists of reqs ready to commit 1067 * 1068 * Moves requests from the inode's 'commit' request list. 1069 * The requests are *not* checked to ensure that they form a contiguous set. 1070 */ 1071 int 1072 nfs_scan_commit(struct inode *inode, struct list_head *dst, 1073 struct nfs_commit_info *cinfo) 1074 { 1075 int ret = 0; 1076 1077 if (!atomic_long_read(&cinfo->mds->ncommit)) 1078 return 0; 1079 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 1080 if (atomic_long_read(&cinfo->mds->ncommit) > 0) { 1081 const int max = INT_MAX; 1082 1083 ret = nfs_scan_commit_list(&cinfo->mds->list, dst, 1084 cinfo, max); 1085 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret); 1086 } 1087 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 1088 return ret; 1089 } 1090 1091 /* 1092 * Search for an existing write request, and attempt to update 1093 * it to reflect a new dirty region on a given page. 1094 * 1095 * If the attempt fails, then the existing request is flushed out 1096 * to disk. 1097 */ 1098 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 1099 struct page *page, 1100 unsigned int offset, 1101 unsigned int bytes) 1102 { 1103 struct nfs_page *req; 1104 unsigned int rqend; 1105 unsigned int end; 1106 int error; 1107 1108 end = offset + bytes; 1109 1110 req = nfs_lock_and_join_requests(page); 1111 if (IS_ERR_OR_NULL(req)) 1112 return req; 1113 1114 rqend = req->wb_offset + req->wb_bytes; 1115 /* 1116 * Tell the caller to flush out the request if 1117 * the offsets are non-contiguous. 1118 * Note: nfs_flush_incompatible() will already 1119 * have flushed out requests having wrong owners. 1120 */ 1121 if (offset > rqend || end < req->wb_offset) 1122 goto out_flushme; 1123 1124 /* Okay, the request matches. Update the region */ 1125 if (offset < req->wb_offset) { 1126 req->wb_offset = offset; 1127 req->wb_pgbase = offset; 1128 } 1129 if (end > rqend) 1130 req->wb_bytes = end - req->wb_offset; 1131 else 1132 req->wb_bytes = rqend - req->wb_offset; 1133 return req; 1134 out_flushme: 1135 /* 1136 * Note: we mark the request dirty here because 1137 * nfs_lock_and_join_requests() cannot preserve 1138 * commit flags, so we have to replay the write. 1139 */ 1140 nfs_mark_request_dirty(req); 1141 nfs_unlock_and_release_request(req); 1142 error = nfs_wb_page(inode, page); 1143 return (error < 0) ? ERR_PTR(error) : NULL; 1144 } 1145 1146 /* 1147 * Try to update an existing write request, or create one if there is none. 1148 * 1149 * Note: Should always be called with the Page Lock held to prevent races 1150 * if we have to add a new request. Also assumes that the caller has 1151 * already called nfs_flush_incompatible() if necessary. 1152 */ 1153 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 1154 struct page *page, unsigned int offset, unsigned int bytes) 1155 { 1156 struct inode *inode = page_file_mapping(page)->host; 1157 struct nfs_page *req; 1158 1159 req = nfs_try_to_update_request(inode, page, offset, bytes); 1160 if (req != NULL) 1161 goto out; 1162 req = nfs_create_request(ctx, page, NULL, offset, bytes); 1163 if (IS_ERR(req)) 1164 goto out; 1165 nfs_inode_add_request(inode, req); 1166 out: 1167 return req; 1168 } 1169 1170 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 1171 unsigned int offset, unsigned int count) 1172 { 1173 struct nfs_page *req; 1174 1175 req = nfs_setup_write_request(ctx, page, offset, count); 1176 if (IS_ERR(req)) 1177 return PTR_ERR(req); 1178 /* Update file length */ 1179 nfs_grow_file(page, offset, count); 1180 nfs_mark_uptodate(req); 1181 nfs_mark_request_dirty(req); 1182 nfs_unlock_and_release_request(req); 1183 return 0; 1184 } 1185 1186 int nfs_flush_incompatible(struct file *file, struct page *page) 1187 { 1188 struct nfs_open_context *ctx = nfs_file_open_context(file); 1189 struct nfs_lock_context *l_ctx; 1190 struct file_lock_context *flctx = file_inode(file)->i_flctx; 1191 struct nfs_page *req; 1192 int do_flush, status; 1193 /* 1194 * Look for a request corresponding to this page. If there 1195 * is one, and it belongs to another file, we flush it out 1196 * before we try to copy anything into the page. Do this 1197 * due to the lack of an ACCESS-type call in NFSv2. 1198 * Also do the same if we find a request from an existing 1199 * dropped page. 1200 */ 1201 do { 1202 req = nfs_page_find_head_request(page); 1203 if (req == NULL) 1204 return 0; 1205 l_ctx = req->wb_lock_context; 1206 do_flush = req->wb_page != page || 1207 !nfs_match_open_context(req->wb_context, ctx); 1208 if (l_ctx && flctx && 1209 !(list_empty_careful(&flctx->flc_posix) && 1210 list_empty_careful(&flctx->flc_flock))) { 1211 do_flush |= l_ctx->lockowner != current->files; 1212 } 1213 nfs_release_request(req); 1214 if (!do_flush) 1215 return 0; 1216 status = nfs_wb_page(page_file_mapping(page)->host, page); 1217 } while (status == 0); 1218 return status; 1219 } 1220 1221 /* 1222 * Avoid buffered writes when a open context credential's key would 1223 * expire soon. 1224 * 1225 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL. 1226 * 1227 * Return 0 and set a credential flag which triggers the inode to flush 1228 * and performs NFS_FILE_SYNC writes if the key will expired within 1229 * RPC_KEY_EXPIRE_TIMEO. 1230 */ 1231 int 1232 nfs_key_timeout_notify(struct file *filp, struct inode *inode) 1233 { 1234 struct nfs_open_context *ctx = nfs_file_open_context(filp); 1235 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth; 1236 1237 return rpcauth_key_timeout_notify(auth, ctx->cred); 1238 } 1239 1240 /* 1241 * Test if the open context credential key is marked to expire soon. 1242 */ 1243 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode) 1244 { 1245 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth; 1246 1247 return rpcauth_cred_key_to_expire(auth, ctx->cred); 1248 } 1249 1250 /* 1251 * If the page cache is marked as unsafe or invalid, then we can't rely on 1252 * the PageUptodate() flag. In this case, we will need to turn off 1253 * write optimisations that depend on the page contents being correct. 1254 */ 1255 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode) 1256 { 1257 struct nfs_inode *nfsi = NFS_I(inode); 1258 1259 if (nfs_have_delegated_attributes(inode)) 1260 goto out; 1261 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 1262 return false; 1263 smp_rmb(); 1264 if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags)) 1265 return false; 1266 out: 1267 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 1268 return false; 1269 return PageUptodate(page) != 0; 1270 } 1271 1272 static bool 1273 is_whole_file_wrlock(struct file_lock *fl) 1274 { 1275 return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX && 1276 fl->fl_type == F_WRLCK; 1277 } 1278 1279 /* If we know the page is up to date, and we're not using byte range locks (or 1280 * if we have the whole file locked for writing), it may be more efficient to 1281 * extend the write to cover the entire page in order to avoid fragmentation 1282 * inefficiencies. 1283 * 1284 * If the file is opened for synchronous writes then we can just skip the rest 1285 * of the checks. 1286 */ 1287 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode) 1288 { 1289 int ret; 1290 struct file_lock_context *flctx = inode->i_flctx; 1291 struct file_lock *fl; 1292 1293 if (file->f_flags & O_DSYNC) 1294 return 0; 1295 if (!nfs_write_pageuptodate(page, inode)) 1296 return 0; 1297 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 1298 return 1; 1299 if (!flctx || (list_empty_careful(&flctx->flc_flock) && 1300 list_empty_careful(&flctx->flc_posix))) 1301 return 1; 1302 1303 /* Check to see if there are whole file write locks */ 1304 ret = 0; 1305 spin_lock(&flctx->flc_lock); 1306 if (!list_empty(&flctx->flc_posix)) { 1307 fl = list_first_entry(&flctx->flc_posix, struct file_lock, 1308 fl_list); 1309 if (is_whole_file_wrlock(fl)) 1310 ret = 1; 1311 } else if (!list_empty(&flctx->flc_flock)) { 1312 fl = list_first_entry(&flctx->flc_flock, struct file_lock, 1313 fl_list); 1314 if (fl->fl_type == F_WRLCK) 1315 ret = 1; 1316 } 1317 spin_unlock(&flctx->flc_lock); 1318 return ret; 1319 } 1320 1321 /* 1322 * Update and possibly write a cached page of an NFS file. 1323 * 1324 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 1325 * things with a page scheduled for an RPC call (e.g. invalidate it). 1326 */ 1327 int nfs_updatepage(struct file *file, struct page *page, 1328 unsigned int offset, unsigned int count) 1329 { 1330 struct nfs_open_context *ctx = nfs_file_open_context(file); 1331 struct inode *inode = page_file_mapping(page)->host; 1332 int status = 0; 1333 1334 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 1335 1336 dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n", 1337 file, count, (long long)(page_file_offset(page) + offset)); 1338 1339 if (!count) 1340 goto out; 1341 1342 if (nfs_can_extend_write(file, page, inode)) { 1343 count = max(count + offset, nfs_page_length(page)); 1344 offset = 0; 1345 } 1346 1347 status = nfs_writepage_setup(ctx, page, offset, count); 1348 if (status < 0) 1349 nfs_set_pageerror(page); 1350 else 1351 __set_page_dirty_nobuffers(page); 1352 out: 1353 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 1354 status, (long long)i_size_read(inode)); 1355 return status; 1356 } 1357 1358 static int flush_task_priority(int how) 1359 { 1360 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 1361 case FLUSH_HIGHPRI: 1362 return RPC_PRIORITY_HIGH; 1363 case FLUSH_LOWPRI: 1364 return RPC_PRIORITY_LOW; 1365 } 1366 return RPC_PRIORITY_NORMAL; 1367 } 1368 1369 static void nfs_initiate_write(struct nfs_pgio_header *hdr, 1370 struct rpc_message *msg, 1371 const struct nfs_rpc_ops *rpc_ops, 1372 struct rpc_task_setup *task_setup_data, int how) 1373 { 1374 int priority = flush_task_priority(how); 1375 1376 task_setup_data->priority = priority; 1377 rpc_ops->write_setup(hdr, msg); 1378 trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes, 1379 hdr->args.stable); 1380 1381 nfs4_state_protect_write(NFS_SERVER(hdr->inode)->nfs_client, 1382 &task_setup_data->rpc_client, msg, hdr); 1383 } 1384 1385 /* If a nfs_flush_* function fails, it should remove reqs from @head and 1386 * call this on each, which will prepare them to be retried on next 1387 * writeback using standard nfs. 1388 */ 1389 static void nfs_redirty_request(struct nfs_page *req) 1390 { 1391 nfs_mark_request_dirty(req); 1392 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags); 1393 nfs_end_page_writeback(req); 1394 nfs_release_request(req); 1395 } 1396 1397 static void nfs_async_write_error(struct list_head *head) 1398 { 1399 struct nfs_page *req; 1400 1401 while (!list_empty(head)) { 1402 req = nfs_list_entry(head->next); 1403 nfs_list_remove_request(req); 1404 nfs_redirty_request(req); 1405 } 1406 } 1407 1408 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr) 1409 { 1410 nfs_async_write_error(&hdr->pages); 1411 } 1412 1413 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = { 1414 .init_hdr = nfs_async_write_init, 1415 .error_cleanup = nfs_async_write_error, 1416 .completion = nfs_write_completion, 1417 .reschedule_io = nfs_async_write_reschedule_io, 1418 }; 1419 1420 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 1421 struct inode *inode, int ioflags, bool force_mds, 1422 const struct nfs_pgio_completion_ops *compl_ops) 1423 { 1424 struct nfs_server *server = NFS_SERVER(inode); 1425 const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops; 1426 1427 #ifdef CONFIG_NFS_V4_1 1428 if (server->pnfs_curr_ld && !force_mds) 1429 pg_ops = server->pnfs_curr_ld->pg_write_ops; 1430 #endif 1431 nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops, 1432 server->wsize, ioflags); 1433 } 1434 EXPORT_SYMBOL_GPL(nfs_pageio_init_write); 1435 1436 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio) 1437 { 1438 struct nfs_pgio_mirror *mirror; 1439 1440 if (pgio->pg_ops && pgio->pg_ops->pg_cleanup) 1441 pgio->pg_ops->pg_cleanup(pgio); 1442 1443 pgio->pg_ops = &nfs_pgio_rw_ops; 1444 1445 nfs_pageio_stop_mirroring(pgio); 1446 1447 mirror = &pgio->pg_mirrors[0]; 1448 mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize; 1449 } 1450 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds); 1451 1452 1453 void nfs_commit_prepare(struct rpc_task *task, void *calldata) 1454 { 1455 struct nfs_commit_data *data = calldata; 1456 1457 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data); 1458 } 1459 1460 /* 1461 * Special version of should_remove_suid() that ignores capabilities. 1462 */ 1463 static int nfs_should_remove_suid(const struct inode *inode) 1464 { 1465 umode_t mode = inode->i_mode; 1466 int kill = 0; 1467 1468 /* suid always must be killed */ 1469 if (unlikely(mode & S_ISUID)) 1470 kill = ATTR_KILL_SUID; 1471 1472 /* 1473 * sgid without any exec bits is just a mandatory locking mark; leave 1474 * it alone. If some exec bits are set, it's a real sgid; kill it. 1475 */ 1476 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1477 kill |= ATTR_KILL_SGID; 1478 1479 if (unlikely(kill && S_ISREG(mode))) 1480 return kill; 1481 1482 return 0; 1483 } 1484 1485 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr, 1486 struct nfs_fattr *fattr) 1487 { 1488 struct nfs_pgio_args *argp = &hdr->args; 1489 struct nfs_pgio_res *resp = &hdr->res; 1490 u64 size = argp->offset + resp->count; 1491 1492 if (!(fattr->valid & NFS_ATTR_FATTR_SIZE)) 1493 fattr->size = size; 1494 if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) { 1495 fattr->valid &= ~NFS_ATTR_FATTR_SIZE; 1496 return; 1497 } 1498 if (size != fattr->size) 1499 return; 1500 /* Set attribute barrier */ 1501 nfs_fattr_set_barrier(fattr); 1502 /* ...and update size */ 1503 fattr->valid |= NFS_ATTR_FATTR_SIZE; 1504 } 1505 1506 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr) 1507 { 1508 struct nfs_fattr *fattr = &hdr->fattr; 1509 struct inode *inode = hdr->inode; 1510 1511 spin_lock(&inode->i_lock); 1512 nfs_writeback_check_extend(hdr, fattr); 1513 nfs_post_op_update_inode_force_wcc_locked(inode, fattr); 1514 spin_unlock(&inode->i_lock); 1515 } 1516 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode); 1517 1518 /* 1519 * This function is called when the WRITE call is complete. 1520 */ 1521 static int nfs_writeback_done(struct rpc_task *task, 1522 struct nfs_pgio_header *hdr, 1523 struct inode *inode) 1524 { 1525 int status; 1526 1527 /* 1528 * ->write_done will attempt to use post-op attributes to detect 1529 * conflicting writes by other clients. A strict interpretation 1530 * of close-to-open would allow us to continue caching even if 1531 * another writer had changed the file, but some applications 1532 * depend on tighter cache coherency when writing. 1533 */ 1534 status = NFS_PROTO(inode)->write_done(task, hdr); 1535 if (status != 0) 1536 return status; 1537 1538 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count); 1539 trace_nfs_writeback_done(inode, task->tk_status, 1540 hdr->args.offset, hdr->res.verf); 1541 1542 if (hdr->res.verf->committed < hdr->args.stable && 1543 task->tk_status >= 0) { 1544 /* We tried a write call, but the server did not 1545 * commit data to stable storage even though we 1546 * requested it. 1547 * Note: There is a known bug in Tru64 < 5.0 in which 1548 * the server reports NFS_DATA_SYNC, but performs 1549 * NFS_FILE_SYNC. We therefore implement this checking 1550 * as a dprintk() in order to avoid filling syslog. 1551 */ 1552 static unsigned long complain; 1553 1554 /* Note this will print the MDS for a DS write */ 1555 if (time_before(complain, jiffies)) { 1556 dprintk("NFS: faulty NFS server %s:" 1557 " (committed = %d) != (stable = %d)\n", 1558 NFS_SERVER(inode)->nfs_client->cl_hostname, 1559 hdr->res.verf->committed, hdr->args.stable); 1560 complain = jiffies + 300 * HZ; 1561 } 1562 } 1563 1564 /* Deal with the suid/sgid bit corner case */ 1565 if (nfs_should_remove_suid(inode)) 1566 nfs_mark_for_revalidate(inode); 1567 return 0; 1568 } 1569 1570 /* 1571 * This function is called when the WRITE call is complete. 1572 */ 1573 static void nfs_writeback_result(struct rpc_task *task, 1574 struct nfs_pgio_header *hdr) 1575 { 1576 struct nfs_pgio_args *argp = &hdr->args; 1577 struct nfs_pgio_res *resp = &hdr->res; 1578 1579 if (resp->count < argp->count) { 1580 static unsigned long complain; 1581 1582 /* This a short write! */ 1583 nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE); 1584 1585 /* Has the server at least made some progress? */ 1586 if (resp->count == 0) { 1587 if (time_before(complain, jiffies)) { 1588 printk(KERN_WARNING 1589 "NFS: Server wrote zero bytes, expected %u.\n", 1590 argp->count); 1591 complain = jiffies + 300 * HZ; 1592 } 1593 nfs_set_pgio_error(hdr, -EIO, argp->offset); 1594 task->tk_status = -EIO; 1595 return; 1596 } 1597 1598 /* For non rpc-based layout drivers, retry-through-MDS */ 1599 if (!task->tk_ops) { 1600 hdr->pnfs_error = -EAGAIN; 1601 return; 1602 } 1603 1604 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1605 if (resp->verf->committed != NFS_UNSTABLE) { 1606 /* Resend from where the server left off */ 1607 hdr->mds_offset += resp->count; 1608 argp->offset += resp->count; 1609 argp->pgbase += resp->count; 1610 argp->count -= resp->count; 1611 } else { 1612 /* Resend as a stable write in order to avoid 1613 * headaches in the case of a server crash. 1614 */ 1615 argp->stable = NFS_FILE_SYNC; 1616 } 1617 rpc_restart_call_prepare(task); 1618 } 1619 } 1620 1621 static int wait_on_commit(struct nfs_mds_commit_info *cinfo) 1622 { 1623 return wait_on_atomic_t(&cinfo->rpcs_out, 1624 nfs_wait_atomic_killable, TASK_KILLABLE); 1625 } 1626 1627 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo) 1628 { 1629 atomic_inc(&cinfo->rpcs_out); 1630 } 1631 1632 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo) 1633 { 1634 if (atomic_dec_and_test(&cinfo->rpcs_out)) 1635 wake_up_atomic_t(&cinfo->rpcs_out); 1636 } 1637 1638 void nfs_commitdata_release(struct nfs_commit_data *data) 1639 { 1640 put_nfs_open_context(data->context); 1641 nfs_commit_free(data); 1642 } 1643 EXPORT_SYMBOL_GPL(nfs_commitdata_release); 1644 1645 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data, 1646 const struct nfs_rpc_ops *nfs_ops, 1647 const struct rpc_call_ops *call_ops, 1648 int how, int flags) 1649 { 1650 struct rpc_task *task; 1651 int priority = flush_task_priority(how); 1652 struct rpc_message msg = { 1653 .rpc_argp = &data->args, 1654 .rpc_resp = &data->res, 1655 .rpc_cred = data->cred, 1656 }; 1657 struct rpc_task_setup task_setup_data = { 1658 .task = &data->task, 1659 .rpc_client = clnt, 1660 .rpc_message = &msg, 1661 .callback_ops = call_ops, 1662 .callback_data = data, 1663 .workqueue = nfsiod_workqueue, 1664 .flags = RPC_TASK_ASYNC | flags, 1665 .priority = priority, 1666 }; 1667 /* Set up the initial task struct. */ 1668 nfs_ops->commit_setup(data, &msg); 1669 trace_nfs_initiate_commit(data); 1670 1671 dprintk("NFS: initiated commit call\n"); 1672 1673 nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client, 1674 NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg); 1675 1676 task = rpc_run_task(&task_setup_data); 1677 if (IS_ERR(task)) 1678 return PTR_ERR(task); 1679 if (how & FLUSH_SYNC) 1680 rpc_wait_for_completion_task(task); 1681 rpc_put_task(task); 1682 return 0; 1683 } 1684 EXPORT_SYMBOL_GPL(nfs_initiate_commit); 1685 1686 static loff_t nfs_get_lwb(struct list_head *head) 1687 { 1688 loff_t lwb = 0; 1689 struct nfs_page *req; 1690 1691 list_for_each_entry(req, head, wb_list) 1692 if (lwb < (req_offset(req) + req->wb_bytes)) 1693 lwb = req_offset(req) + req->wb_bytes; 1694 1695 return lwb; 1696 } 1697 1698 /* 1699 * Set up the argument/result storage required for the RPC call. 1700 */ 1701 void nfs_init_commit(struct nfs_commit_data *data, 1702 struct list_head *head, 1703 struct pnfs_layout_segment *lseg, 1704 struct nfs_commit_info *cinfo) 1705 { 1706 struct nfs_page *first = nfs_list_entry(head->next); 1707 struct inode *inode = d_inode(first->wb_context->dentry); 1708 1709 /* Set up the RPC argument and reply structs 1710 * NB: take care not to mess about with data->commit et al. */ 1711 1712 list_splice_init(head, &data->pages); 1713 1714 data->inode = inode; 1715 data->cred = first->wb_context->cred; 1716 data->lseg = lseg; /* reference transferred */ 1717 /* only set lwb for pnfs commit */ 1718 if (lseg) 1719 data->lwb = nfs_get_lwb(&data->pages); 1720 data->mds_ops = &nfs_commit_ops; 1721 data->completion_ops = cinfo->completion_ops; 1722 data->dreq = cinfo->dreq; 1723 1724 data->args.fh = NFS_FH(data->inode); 1725 /* Note: we always request a commit of the entire inode */ 1726 data->args.offset = 0; 1727 data->args.count = 0; 1728 data->context = get_nfs_open_context(first->wb_context); 1729 data->res.fattr = &data->fattr; 1730 data->res.verf = &data->verf; 1731 nfs_fattr_init(&data->fattr); 1732 } 1733 EXPORT_SYMBOL_GPL(nfs_init_commit); 1734 1735 void nfs_retry_commit(struct list_head *page_list, 1736 struct pnfs_layout_segment *lseg, 1737 struct nfs_commit_info *cinfo, 1738 u32 ds_commit_idx) 1739 { 1740 struct nfs_page *req; 1741 1742 while (!list_empty(page_list)) { 1743 req = nfs_list_entry(page_list->next); 1744 nfs_list_remove_request(req); 1745 nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx); 1746 if (!cinfo->dreq) 1747 nfs_clear_page_commit(req->wb_page); 1748 nfs_unlock_and_release_request(req); 1749 } 1750 } 1751 EXPORT_SYMBOL_GPL(nfs_retry_commit); 1752 1753 static void 1754 nfs_commit_resched_write(struct nfs_commit_info *cinfo, 1755 struct nfs_page *req) 1756 { 1757 __set_page_dirty_nobuffers(req->wb_page); 1758 } 1759 1760 /* 1761 * Commit dirty pages 1762 */ 1763 static int 1764 nfs_commit_list(struct inode *inode, struct list_head *head, int how, 1765 struct nfs_commit_info *cinfo) 1766 { 1767 struct nfs_commit_data *data; 1768 1769 /* another commit raced with us */ 1770 if (list_empty(head)) 1771 return 0; 1772 1773 data = nfs_commitdata_alloc(true); 1774 1775 /* Set up the argument struct */ 1776 nfs_init_commit(data, head, NULL, cinfo); 1777 atomic_inc(&cinfo->mds->rpcs_out); 1778 return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode), 1779 data->mds_ops, how, 0); 1780 } 1781 1782 /* 1783 * COMMIT call returned 1784 */ 1785 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1786 { 1787 struct nfs_commit_data *data = calldata; 1788 1789 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1790 task->tk_pid, task->tk_status); 1791 1792 /* Call the NFS version-specific code */ 1793 NFS_PROTO(data->inode)->commit_done(task, data); 1794 trace_nfs_commit_done(data); 1795 } 1796 1797 static void nfs_commit_release_pages(struct nfs_commit_data *data) 1798 { 1799 struct nfs_page *req; 1800 int status = data->task.tk_status; 1801 struct nfs_commit_info cinfo; 1802 struct nfs_server *nfss; 1803 1804 while (!list_empty(&data->pages)) { 1805 req = nfs_list_entry(data->pages.next); 1806 nfs_list_remove_request(req); 1807 if (req->wb_page) 1808 nfs_clear_page_commit(req->wb_page); 1809 1810 dprintk("NFS: commit (%s/%llu %d@%lld)", 1811 req->wb_context->dentry->d_sb->s_id, 1812 (unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)), 1813 req->wb_bytes, 1814 (long long)req_offset(req)); 1815 if (status < 0) { 1816 nfs_context_set_write_error(req->wb_context, status); 1817 if (req->wb_page) 1818 nfs_inode_remove_request(req); 1819 dprintk_cont(", error = %d\n", status); 1820 goto next; 1821 } 1822 1823 /* Okay, COMMIT succeeded, apparently. Check the verifier 1824 * returned by the server against all stored verfs. */ 1825 if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) { 1826 /* We have a match */ 1827 if (req->wb_page) 1828 nfs_inode_remove_request(req); 1829 dprintk_cont(" OK\n"); 1830 goto next; 1831 } 1832 /* We have a mismatch. Write the page again */ 1833 dprintk_cont(" mismatch\n"); 1834 nfs_mark_request_dirty(req); 1835 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags); 1836 next: 1837 nfs_unlock_and_release_request(req); 1838 /* Latency breaker */ 1839 cond_resched(); 1840 } 1841 nfss = NFS_SERVER(data->inode); 1842 if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 1843 clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC); 1844 1845 nfs_init_cinfo(&cinfo, data->inode, data->dreq); 1846 nfs_commit_end(cinfo.mds); 1847 } 1848 1849 static void nfs_commit_release(void *calldata) 1850 { 1851 struct nfs_commit_data *data = calldata; 1852 1853 data->completion_ops->completion(data); 1854 nfs_commitdata_release(calldata); 1855 } 1856 1857 static const struct rpc_call_ops nfs_commit_ops = { 1858 .rpc_call_prepare = nfs_commit_prepare, 1859 .rpc_call_done = nfs_commit_done, 1860 .rpc_release = nfs_commit_release, 1861 }; 1862 1863 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = { 1864 .completion = nfs_commit_release_pages, 1865 .resched_write = nfs_commit_resched_write, 1866 }; 1867 1868 int nfs_generic_commit_list(struct inode *inode, struct list_head *head, 1869 int how, struct nfs_commit_info *cinfo) 1870 { 1871 int status; 1872 1873 status = pnfs_commit_list(inode, head, how, cinfo); 1874 if (status == PNFS_NOT_ATTEMPTED) 1875 status = nfs_commit_list(inode, head, how, cinfo); 1876 return status; 1877 } 1878 1879 int nfs_commit_inode(struct inode *inode, int how) 1880 { 1881 LIST_HEAD(head); 1882 struct nfs_commit_info cinfo; 1883 int may_wait = how & FLUSH_SYNC; 1884 int error = 0; 1885 int res; 1886 1887 nfs_init_cinfo_from_inode(&cinfo, inode); 1888 nfs_commit_begin(cinfo.mds); 1889 res = nfs_scan_commit(inode, &head, &cinfo); 1890 if (res) 1891 error = nfs_generic_commit_list(inode, &head, how, &cinfo); 1892 nfs_commit_end(cinfo.mds); 1893 if (res == 0) 1894 return res; 1895 if (error < 0) 1896 goto out_error; 1897 if (!may_wait) 1898 goto out_mark_dirty; 1899 error = wait_on_commit(cinfo.mds); 1900 if (error < 0) 1901 return error; 1902 return res; 1903 out_error: 1904 res = error; 1905 /* Note: If we exit without ensuring that the commit is complete, 1906 * we must mark the inode as dirty. Otherwise, future calls to 1907 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure 1908 * that the data is on the disk. 1909 */ 1910 out_mark_dirty: 1911 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1912 return res; 1913 } 1914 EXPORT_SYMBOL_GPL(nfs_commit_inode); 1915 1916 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1917 { 1918 struct nfs_inode *nfsi = NFS_I(inode); 1919 int flags = FLUSH_SYNC; 1920 int ret = 0; 1921 1922 /* no commits means nothing needs to be done */ 1923 if (!atomic_long_read(&nfsi->commit_info.ncommit)) 1924 return ret; 1925 1926 if (wbc->sync_mode == WB_SYNC_NONE) { 1927 /* Don't commit yet if this is a non-blocking flush and there 1928 * are a lot of outstanding writes for this mapping. 1929 */ 1930 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)) 1931 goto out_mark_dirty; 1932 1933 /* don't wait for the COMMIT response */ 1934 flags = 0; 1935 } 1936 1937 ret = nfs_commit_inode(inode, flags); 1938 if (ret >= 0) { 1939 if (wbc->sync_mode == WB_SYNC_NONE) { 1940 if (ret < wbc->nr_to_write) 1941 wbc->nr_to_write -= ret; 1942 else 1943 wbc->nr_to_write = 0; 1944 } 1945 return 0; 1946 } 1947 out_mark_dirty: 1948 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1949 return ret; 1950 } 1951 EXPORT_SYMBOL_GPL(nfs_write_inode); 1952 1953 /* 1954 * Wrapper for filemap_write_and_wait_range() 1955 * 1956 * Needed for pNFS in order to ensure data becomes visible to the 1957 * client. 1958 */ 1959 int nfs_filemap_write_and_wait_range(struct address_space *mapping, 1960 loff_t lstart, loff_t lend) 1961 { 1962 int ret; 1963 1964 ret = filemap_write_and_wait_range(mapping, lstart, lend); 1965 if (ret == 0) 1966 ret = pnfs_sync_inode(mapping->host, true); 1967 return ret; 1968 } 1969 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range); 1970 1971 /* 1972 * flush the inode to disk. 1973 */ 1974 int nfs_wb_all(struct inode *inode) 1975 { 1976 int ret; 1977 1978 trace_nfs_writeback_inode_enter(inode); 1979 1980 ret = filemap_write_and_wait(inode->i_mapping); 1981 if (ret) 1982 goto out; 1983 ret = nfs_commit_inode(inode, FLUSH_SYNC); 1984 if (ret < 0) 1985 goto out; 1986 pnfs_sync_inode(inode, true); 1987 ret = 0; 1988 1989 out: 1990 trace_nfs_writeback_inode_exit(inode, ret); 1991 return ret; 1992 } 1993 EXPORT_SYMBOL_GPL(nfs_wb_all); 1994 1995 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1996 { 1997 struct nfs_page *req; 1998 int ret = 0; 1999 2000 wait_on_page_writeback(page); 2001 2002 /* blocking call to cancel all requests and join to a single (head) 2003 * request */ 2004 req = nfs_lock_and_join_requests(page); 2005 2006 if (IS_ERR(req)) { 2007 ret = PTR_ERR(req); 2008 } else if (req) { 2009 /* all requests from this page have been cancelled by 2010 * nfs_lock_and_join_requests, so just remove the head 2011 * request from the inode / page_private pointer and 2012 * release it */ 2013 nfs_inode_remove_request(req); 2014 nfs_unlock_and_release_request(req); 2015 } 2016 2017 return ret; 2018 } 2019 2020 /* 2021 * Write back all requests on one page - we do this before reading it. 2022 */ 2023 int nfs_wb_page(struct inode *inode, struct page *page) 2024 { 2025 loff_t range_start = page_file_offset(page); 2026 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1); 2027 struct writeback_control wbc = { 2028 .sync_mode = WB_SYNC_ALL, 2029 .nr_to_write = 0, 2030 .range_start = range_start, 2031 .range_end = range_end, 2032 }; 2033 int ret; 2034 2035 trace_nfs_writeback_page_enter(inode); 2036 2037 for (;;) { 2038 wait_on_page_writeback(page); 2039 if (clear_page_dirty_for_io(page)) { 2040 ret = nfs_writepage_locked(page, &wbc); 2041 if (ret < 0) 2042 goto out_error; 2043 continue; 2044 } 2045 ret = 0; 2046 if (!PagePrivate(page)) 2047 break; 2048 ret = nfs_commit_inode(inode, FLUSH_SYNC); 2049 if (ret < 0) 2050 goto out_error; 2051 } 2052 out_error: 2053 trace_nfs_writeback_page_exit(inode, ret); 2054 return ret; 2055 } 2056 2057 #ifdef CONFIG_MIGRATION 2058 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 2059 struct page *page, enum migrate_mode mode) 2060 { 2061 /* 2062 * If PagePrivate is set, then the page is currently associated with 2063 * an in-progress read or write request. Don't try to migrate it. 2064 * 2065 * FIXME: we could do this in principle, but we'll need a way to ensure 2066 * that we can safely release the inode reference while holding 2067 * the page lock. 2068 */ 2069 if (PagePrivate(page)) 2070 return -EBUSY; 2071 2072 if (!nfs_fscache_release_page(page, GFP_KERNEL)) 2073 return -EBUSY; 2074 2075 return migrate_page(mapping, newpage, page, mode); 2076 } 2077 #endif 2078 2079 int __init nfs_init_writepagecache(void) 2080 { 2081 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 2082 sizeof(struct nfs_pgio_header), 2083 0, SLAB_HWCACHE_ALIGN, 2084 NULL); 2085 if (nfs_wdata_cachep == NULL) 2086 return -ENOMEM; 2087 2088 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 2089 nfs_wdata_cachep); 2090 if (nfs_wdata_mempool == NULL) 2091 goto out_destroy_write_cache; 2092 2093 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data", 2094 sizeof(struct nfs_commit_data), 2095 0, SLAB_HWCACHE_ALIGN, 2096 NULL); 2097 if (nfs_cdata_cachep == NULL) 2098 goto out_destroy_write_mempool; 2099 2100 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 2101 nfs_cdata_cachep); 2102 if (nfs_commit_mempool == NULL) 2103 goto out_destroy_commit_cache; 2104 2105 /* 2106 * NFS congestion size, scale with available memory. 2107 * 2108 * 64MB: 8192k 2109 * 128MB: 11585k 2110 * 256MB: 16384k 2111 * 512MB: 23170k 2112 * 1GB: 32768k 2113 * 2GB: 46340k 2114 * 4GB: 65536k 2115 * 8GB: 92681k 2116 * 16GB: 131072k 2117 * 2118 * This allows larger machines to have larger/more transfers. 2119 * Limit the default to 256M 2120 */ 2121 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 2122 if (nfs_congestion_kb > 256*1024) 2123 nfs_congestion_kb = 256*1024; 2124 2125 return 0; 2126 2127 out_destroy_commit_cache: 2128 kmem_cache_destroy(nfs_cdata_cachep); 2129 out_destroy_write_mempool: 2130 mempool_destroy(nfs_wdata_mempool); 2131 out_destroy_write_cache: 2132 kmem_cache_destroy(nfs_wdata_cachep); 2133 return -ENOMEM; 2134 } 2135 2136 void nfs_destroy_writepagecache(void) 2137 { 2138 mempool_destroy(nfs_commit_mempool); 2139 kmem_cache_destroy(nfs_cdata_cachep); 2140 mempool_destroy(nfs_wdata_mempool); 2141 kmem_cache_destroy(nfs_wdata_cachep); 2142 } 2143 2144 static const struct nfs_rw_ops nfs_rw_write_ops = { 2145 .rw_alloc_header = nfs_writehdr_alloc, 2146 .rw_free_header = nfs_writehdr_free, 2147 .rw_done = nfs_writeback_done, 2148 .rw_result = nfs_writeback_result, 2149 .rw_initiate = nfs_initiate_write, 2150 }; 2151