1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 #include <linux/export.h> 24 25 #include <asm/uaccess.h> 26 27 #include "delegation.h" 28 #include "internal.h" 29 #include "iostat.h" 30 #include "nfs4_fs.h" 31 #include "fscache.h" 32 #include "pnfs.h" 33 34 #include "nfstrace.h" 35 36 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 37 38 #define MIN_POOL_WRITE (32) 39 #define MIN_POOL_COMMIT (4) 40 41 /* 42 * Local function declarations 43 */ 44 static void nfs_redirty_request(struct nfs_page *req); 45 static const struct rpc_call_ops nfs_write_common_ops; 46 static const struct rpc_call_ops nfs_commit_ops; 47 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops; 48 static const struct nfs_commit_completion_ops nfs_commit_completion_ops; 49 50 static struct kmem_cache *nfs_wdata_cachep; 51 static mempool_t *nfs_wdata_mempool; 52 static struct kmem_cache *nfs_cdata_cachep; 53 static mempool_t *nfs_commit_mempool; 54 55 struct nfs_commit_data *nfs_commitdata_alloc(void) 56 { 57 struct nfs_commit_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOIO); 58 59 if (p) { 60 memset(p, 0, sizeof(*p)); 61 INIT_LIST_HEAD(&p->pages); 62 } 63 return p; 64 } 65 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc); 66 67 void nfs_commit_free(struct nfs_commit_data *p) 68 { 69 mempool_free(p, nfs_commit_mempool); 70 } 71 EXPORT_SYMBOL_GPL(nfs_commit_free); 72 73 struct nfs_write_header *nfs_writehdr_alloc(void) 74 { 75 struct nfs_write_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO); 76 77 if (p) { 78 struct nfs_pgio_header *hdr = &p->header; 79 80 memset(p, 0, sizeof(*p)); 81 INIT_LIST_HEAD(&hdr->pages); 82 INIT_LIST_HEAD(&hdr->rpc_list); 83 spin_lock_init(&hdr->lock); 84 atomic_set(&hdr->refcnt, 0); 85 hdr->verf = &p->verf; 86 } 87 return p; 88 } 89 EXPORT_SYMBOL_GPL(nfs_writehdr_alloc); 90 91 static struct nfs_write_data *nfs_writedata_alloc(struct nfs_pgio_header *hdr, 92 unsigned int pagecount) 93 { 94 struct nfs_write_data *data, *prealloc; 95 96 prealloc = &container_of(hdr, struct nfs_write_header, header)->rpc_data; 97 if (prealloc->header == NULL) 98 data = prealloc; 99 else 100 data = kzalloc(sizeof(*data), GFP_KERNEL); 101 if (!data) 102 goto out; 103 104 if (nfs_pgarray_set(&data->pages, pagecount)) { 105 data->header = hdr; 106 atomic_inc(&hdr->refcnt); 107 } else { 108 if (data != prealloc) 109 kfree(data); 110 data = NULL; 111 } 112 out: 113 return data; 114 } 115 116 void nfs_writehdr_free(struct nfs_pgio_header *hdr) 117 { 118 struct nfs_write_header *whdr = container_of(hdr, struct nfs_write_header, header); 119 mempool_free(whdr, nfs_wdata_mempool); 120 } 121 EXPORT_SYMBOL_GPL(nfs_writehdr_free); 122 123 void nfs_writedata_release(struct nfs_write_data *wdata) 124 { 125 struct nfs_pgio_header *hdr = wdata->header; 126 struct nfs_write_header *write_header = container_of(hdr, struct nfs_write_header, header); 127 128 put_nfs_open_context(wdata->args.context); 129 if (wdata->pages.pagevec != wdata->pages.page_array) 130 kfree(wdata->pages.pagevec); 131 if (wdata == &write_header->rpc_data) { 132 wdata->header = NULL; 133 wdata = NULL; 134 } 135 if (atomic_dec_and_test(&hdr->refcnt)) 136 hdr->completion_ops->completion(hdr); 137 /* Note: we only free the rpc_task after callbacks are done. 138 * See the comment in rpc_free_task() for why 139 */ 140 kfree(wdata); 141 } 142 EXPORT_SYMBOL_GPL(nfs_writedata_release); 143 144 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 145 { 146 ctx->error = error; 147 smp_wmb(); 148 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 149 } 150 151 static struct nfs_page * 152 nfs_page_find_request_locked(struct nfs_inode *nfsi, struct page *page) 153 { 154 struct nfs_page *req = NULL; 155 156 if (PagePrivate(page)) 157 req = (struct nfs_page *)page_private(page); 158 else if (unlikely(PageSwapCache(page))) { 159 struct nfs_page *freq, *t; 160 161 /* Linearly search the commit list for the correct req */ 162 list_for_each_entry_safe(freq, t, &nfsi->commit_info.list, wb_list) { 163 if (freq->wb_page == page) { 164 req = freq; 165 break; 166 } 167 } 168 } 169 170 if (req) 171 kref_get(&req->wb_kref); 172 173 return req; 174 } 175 176 static struct nfs_page *nfs_page_find_request(struct page *page) 177 { 178 struct inode *inode = page_file_mapping(page)->host; 179 struct nfs_page *req = NULL; 180 181 spin_lock(&inode->i_lock); 182 req = nfs_page_find_request_locked(NFS_I(inode), page); 183 spin_unlock(&inode->i_lock); 184 return req; 185 } 186 187 /* Adjust the file length if we're writing beyond the end */ 188 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 189 { 190 struct inode *inode = page_file_mapping(page)->host; 191 loff_t end, i_size; 192 pgoff_t end_index; 193 194 spin_lock(&inode->i_lock); 195 i_size = i_size_read(inode); 196 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 197 if (i_size > 0 && page_file_index(page) < end_index) 198 goto out; 199 end = page_file_offset(page) + ((loff_t)offset+count); 200 if (i_size >= end) 201 goto out; 202 i_size_write(inode, end); 203 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 204 out: 205 spin_unlock(&inode->i_lock); 206 } 207 208 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 209 static void nfs_set_pageerror(struct page *page) 210 { 211 nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page)); 212 } 213 214 /* We can set the PG_uptodate flag if we see that a write request 215 * covers the full page. 216 */ 217 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 218 { 219 if (PageUptodate(page)) 220 return; 221 if (base != 0) 222 return; 223 if (count != nfs_page_length(page)) 224 return; 225 SetPageUptodate(page); 226 } 227 228 static int wb_priority(struct writeback_control *wbc) 229 { 230 if (wbc->for_reclaim) 231 return FLUSH_HIGHPRI | FLUSH_STABLE; 232 if (wbc->for_kupdate || wbc->for_background) 233 return FLUSH_LOWPRI | FLUSH_COND_STABLE; 234 return FLUSH_COND_STABLE; 235 } 236 237 /* 238 * NFS congestion control 239 */ 240 241 int nfs_congestion_kb; 242 243 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 244 #define NFS_CONGESTION_OFF_THRESH \ 245 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 246 247 static void nfs_set_page_writeback(struct page *page) 248 { 249 struct nfs_server *nfss = NFS_SERVER(page_file_mapping(page)->host); 250 int ret = test_set_page_writeback(page); 251 252 WARN_ON_ONCE(ret != 0); 253 254 if (atomic_long_inc_return(&nfss->writeback) > 255 NFS_CONGESTION_ON_THRESH) { 256 set_bdi_congested(&nfss->backing_dev_info, 257 BLK_RW_ASYNC); 258 } 259 } 260 261 static void nfs_end_page_writeback(struct page *page) 262 { 263 struct inode *inode = page_file_mapping(page)->host; 264 struct nfs_server *nfss = NFS_SERVER(inode); 265 266 end_page_writeback(page); 267 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 268 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC); 269 } 270 271 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock) 272 { 273 struct inode *inode = page_file_mapping(page)->host; 274 struct nfs_page *req; 275 int ret; 276 277 spin_lock(&inode->i_lock); 278 for (;;) { 279 req = nfs_page_find_request_locked(NFS_I(inode), page); 280 if (req == NULL) 281 break; 282 if (nfs_lock_request(req)) 283 break; 284 /* Note: If we hold the page lock, as is the case in nfs_writepage, 285 * then the call to nfs_lock_request() will always 286 * succeed provided that someone hasn't already marked the 287 * request as dirty (in which case we don't care). 288 */ 289 spin_unlock(&inode->i_lock); 290 if (!nonblock) 291 ret = nfs_wait_on_request(req); 292 else 293 ret = -EAGAIN; 294 nfs_release_request(req); 295 if (ret != 0) 296 return ERR_PTR(ret); 297 spin_lock(&inode->i_lock); 298 } 299 spin_unlock(&inode->i_lock); 300 return req; 301 } 302 303 /* 304 * Find an associated nfs write request, and prepare to flush it out 305 * May return an error if the user signalled nfs_wait_on_request(). 306 */ 307 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 308 struct page *page, bool nonblock) 309 { 310 struct nfs_page *req; 311 int ret = 0; 312 313 req = nfs_find_and_lock_request(page, nonblock); 314 if (!req) 315 goto out; 316 ret = PTR_ERR(req); 317 if (IS_ERR(req)) 318 goto out; 319 320 nfs_set_page_writeback(page); 321 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags)); 322 323 ret = 0; 324 if (!nfs_pageio_add_request(pgio, req)) { 325 nfs_redirty_request(req); 326 ret = pgio->pg_error; 327 } 328 out: 329 return ret; 330 } 331 332 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 333 { 334 struct inode *inode = page_file_mapping(page)->host; 335 int ret; 336 337 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 338 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 339 340 nfs_pageio_cond_complete(pgio, page_file_index(page)); 341 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE); 342 if (ret == -EAGAIN) { 343 redirty_page_for_writepage(wbc, page); 344 ret = 0; 345 } 346 return ret; 347 } 348 349 /* 350 * Write an mmapped page to the server. 351 */ 352 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 353 { 354 struct nfs_pageio_descriptor pgio; 355 int err; 356 357 NFS_PROTO(page_file_mapping(page)->host)->write_pageio_init(&pgio, 358 page->mapping->host, 359 wb_priority(wbc), 360 &nfs_async_write_completion_ops); 361 err = nfs_do_writepage(page, wbc, &pgio); 362 nfs_pageio_complete(&pgio); 363 if (err < 0) 364 return err; 365 if (pgio.pg_error < 0) 366 return pgio.pg_error; 367 return 0; 368 } 369 370 int nfs_writepage(struct page *page, struct writeback_control *wbc) 371 { 372 int ret; 373 374 ret = nfs_writepage_locked(page, wbc); 375 unlock_page(page); 376 return ret; 377 } 378 379 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 380 { 381 int ret; 382 383 ret = nfs_do_writepage(page, wbc, data); 384 unlock_page(page); 385 return ret; 386 } 387 388 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 389 { 390 struct inode *inode = mapping->host; 391 unsigned long *bitlock = &NFS_I(inode)->flags; 392 struct nfs_pageio_descriptor pgio; 393 int err; 394 395 /* Stop dirtying of new pages while we sync */ 396 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING, 397 nfs_wait_bit_killable, TASK_KILLABLE); 398 if (err) 399 goto out_err; 400 401 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 402 403 NFS_PROTO(inode)->write_pageio_init(&pgio, inode, wb_priority(wbc), &nfs_async_write_completion_ops); 404 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 405 nfs_pageio_complete(&pgio); 406 407 clear_bit_unlock(NFS_INO_FLUSHING, bitlock); 408 smp_mb__after_clear_bit(); 409 wake_up_bit(bitlock, NFS_INO_FLUSHING); 410 411 if (err < 0) 412 goto out_err; 413 err = pgio.pg_error; 414 if (err < 0) 415 goto out_err; 416 return 0; 417 out_err: 418 return err; 419 } 420 421 /* 422 * Insert a write request into an inode 423 */ 424 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 425 { 426 struct nfs_inode *nfsi = NFS_I(inode); 427 428 /* Lock the request! */ 429 nfs_lock_request(req); 430 431 spin_lock(&inode->i_lock); 432 if (!nfsi->npages && NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 433 inode->i_version++; 434 /* 435 * Swap-space should not get truncated. Hence no need to plug the race 436 * with invalidate/truncate. 437 */ 438 if (likely(!PageSwapCache(req->wb_page))) { 439 set_bit(PG_MAPPED, &req->wb_flags); 440 SetPagePrivate(req->wb_page); 441 set_page_private(req->wb_page, (unsigned long)req); 442 } 443 nfsi->npages++; 444 kref_get(&req->wb_kref); 445 spin_unlock(&inode->i_lock); 446 } 447 448 /* 449 * Remove a write request from an inode 450 */ 451 static void nfs_inode_remove_request(struct nfs_page *req) 452 { 453 struct inode *inode = req->wb_context->dentry->d_inode; 454 struct nfs_inode *nfsi = NFS_I(inode); 455 456 spin_lock(&inode->i_lock); 457 if (likely(!PageSwapCache(req->wb_page))) { 458 set_page_private(req->wb_page, 0); 459 ClearPagePrivate(req->wb_page); 460 clear_bit(PG_MAPPED, &req->wb_flags); 461 } 462 nfsi->npages--; 463 spin_unlock(&inode->i_lock); 464 nfs_release_request(req); 465 } 466 467 static void 468 nfs_mark_request_dirty(struct nfs_page *req) 469 { 470 __set_page_dirty_nobuffers(req->wb_page); 471 } 472 473 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 474 /** 475 * nfs_request_add_commit_list - add request to a commit list 476 * @req: pointer to a struct nfs_page 477 * @dst: commit list head 478 * @cinfo: holds list lock and accounting info 479 * 480 * This sets the PG_CLEAN bit, updates the cinfo count of 481 * number of outstanding requests requiring a commit as well as 482 * the MM page stats. 483 * 484 * The caller must _not_ hold the cinfo->lock, but must be 485 * holding the nfs_page lock. 486 */ 487 void 488 nfs_request_add_commit_list(struct nfs_page *req, struct list_head *dst, 489 struct nfs_commit_info *cinfo) 490 { 491 set_bit(PG_CLEAN, &(req)->wb_flags); 492 spin_lock(cinfo->lock); 493 nfs_list_add_request(req, dst); 494 cinfo->mds->ncommit++; 495 spin_unlock(cinfo->lock); 496 if (!cinfo->dreq) { 497 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 498 inc_bdi_stat(page_file_mapping(req->wb_page)->backing_dev_info, 499 BDI_RECLAIMABLE); 500 __mark_inode_dirty(req->wb_context->dentry->d_inode, 501 I_DIRTY_DATASYNC); 502 } 503 } 504 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list); 505 506 /** 507 * nfs_request_remove_commit_list - Remove request from a commit list 508 * @req: pointer to a nfs_page 509 * @cinfo: holds list lock and accounting info 510 * 511 * This clears the PG_CLEAN bit, and updates the cinfo's count of 512 * number of outstanding requests requiring a commit 513 * It does not update the MM page stats. 514 * 515 * The caller _must_ hold the cinfo->lock and the nfs_page lock. 516 */ 517 void 518 nfs_request_remove_commit_list(struct nfs_page *req, 519 struct nfs_commit_info *cinfo) 520 { 521 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) 522 return; 523 nfs_list_remove_request(req); 524 cinfo->mds->ncommit--; 525 } 526 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list); 527 528 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 529 struct inode *inode) 530 { 531 cinfo->lock = &inode->i_lock; 532 cinfo->mds = &NFS_I(inode)->commit_info; 533 cinfo->ds = pnfs_get_ds_info(inode); 534 cinfo->dreq = NULL; 535 cinfo->completion_ops = &nfs_commit_completion_ops; 536 } 537 538 void nfs_init_cinfo(struct nfs_commit_info *cinfo, 539 struct inode *inode, 540 struct nfs_direct_req *dreq) 541 { 542 if (dreq) 543 nfs_init_cinfo_from_dreq(cinfo, dreq); 544 else 545 nfs_init_cinfo_from_inode(cinfo, inode); 546 } 547 EXPORT_SYMBOL_GPL(nfs_init_cinfo); 548 549 /* 550 * Add a request to the inode's commit list. 551 */ 552 void 553 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, 554 struct nfs_commit_info *cinfo) 555 { 556 if (pnfs_mark_request_commit(req, lseg, cinfo)) 557 return; 558 nfs_request_add_commit_list(req, &cinfo->mds->list, cinfo); 559 } 560 561 static void 562 nfs_clear_page_commit(struct page *page) 563 { 564 dec_zone_page_state(page, NR_UNSTABLE_NFS); 565 dec_bdi_stat(page_file_mapping(page)->backing_dev_info, BDI_RECLAIMABLE); 566 } 567 568 static void 569 nfs_clear_request_commit(struct nfs_page *req) 570 { 571 if (test_bit(PG_CLEAN, &req->wb_flags)) { 572 struct inode *inode = req->wb_context->dentry->d_inode; 573 struct nfs_commit_info cinfo; 574 575 nfs_init_cinfo_from_inode(&cinfo, inode); 576 if (!pnfs_clear_request_commit(req, &cinfo)) { 577 spin_lock(cinfo.lock); 578 nfs_request_remove_commit_list(req, &cinfo); 579 spin_unlock(cinfo.lock); 580 } 581 nfs_clear_page_commit(req->wb_page); 582 } 583 } 584 585 static inline 586 int nfs_write_need_commit(struct nfs_write_data *data) 587 { 588 if (data->verf.committed == NFS_DATA_SYNC) 589 return data->header->lseg == NULL; 590 return data->verf.committed != NFS_FILE_SYNC; 591 } 592 593 #else 594 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 595 struct inode *inode) 596 { 597 } 598 599 void nfs_init_cinfo(struct nfs_commit_info *cinfo, 600 struct inode *inode, 601 struct nfs_direct_req *dreq) 602 { 603 } 604 605 void 606 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, 607 struct nfs_commit_info *cinfo) 608 { 609 } 610 611 static void 612 nfs_clear_request_commit(struct nfs_page *req) 613 { 614 } 615 616 static inline 617 int nfs_write_need_commit(struct nfs_write_data *data) 618 { 619 return 0; 620 } 621 622 #endif 623 624 static void nfs_write_completion(struct nfs_pgio_header *hdr) 625 { 626 struct nfs_commit_info cinfo; 627 unsigned long bytes = 0; 628 629 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 630 goto out; 631 nfs_init_cinfo_from_inode(&cinfo, hdr->inode); 632 while (!list_empty(&hdr->pages)) { 633 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 634 635 bytes += req->wb_bytes; 636 nfs_list_remove_request(req); 637 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && 638 (hdr->good_bytes < bytes)) { 639 nfs_set_pageerror(req->wb_page); 640 nfs_context_set_write_error(req->wb_context, hdr->error); 641 goto remove_req; 642 } 643 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) { 644 nfs_mark_request_dirty(req); 645 goto next; 646 } 647 if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) { 648 memcpy(&req->wb_verf, &hdr->verf->verifier, sizeof(req->wb_verf)); 649 nfs_mark_request_commit(req, hdr->lseg, &cinfo); 650 goto next; 651 } 652 remove_req: 653 nfs_inode_remove_request(req); 654 next: 655 nfs_unlock_request(req); 656 nfs_end_page_writeback(req->wb_page); 657 nfs_release_request(req); 658 } 659 out: 660 hdr->release(hdr); 661 } 662 663 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 664 static unsigned long 665 nfs_reqs_to_commit(struct nfs_commit_info *cinfo) 666 { 667 return cinfo->mds->ncommit; 668 } 669 670 /* cinfo->lock held by caller */ 671 int 672 nfs_scan_commit_list(struct list_head *src, struct list_head *dst, 673 struct nfs_commit_info *cinfo, int max) 674 { 675 struct nfs_page *req, *tmp; 676 int ret = 0; 677 678 list_for_each_entry_safe(req, tmp, src, wb_list) { 679 if (!nfs_lock_request(req)) 680 continue; 681 kref_get(&req->wb_kref); 682 if (cond_resched_lock(cinfo->lock)) 683 list_safe_reset_next(req, tmp, wb_list); 684 nfs_request_remove_commit_list(req, cinfo); 685 nfs_list_add_request(req, dst); 686 ret++; 687 if ((ret == max) && !cinfo->dreq) 688 break; 689 } 690 return ret; 691 } 692 693 /* 694 * nfs_scan_commit - Scan an inode for commit requests 695 * @inode: NFS inode to scan 696 * @dst: mds destination list 697 * @cinfo: mds and ds lists of reqs ready to commit 698 * 699 * Moves requests from the inode's 'commit' request list. 700 * The requests are *not* checked to ensure that they form a contiguous set. 701 */ 702 int 703 nfs_scan_commit(struct inode *inode, struct list_head *dst, 704 struct nfs_commit_info *cinfo) 705 { 706 int ret = 0; 707 708 spin_lock(cinfo->lock); 709 if (cinfo->mds->ncommit > 0) { 710 const int max = INT_MAX; 711 712 ret = nfs_scan_commit_list(&cinfo->mds->list, dst, 713 cinfo, max); 714 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret); 715 } 716 spin_unlock(cinfo->lock); 717 return ret; 718 } 719 720 #else 721 static unsigned long nfs_reqs_to_commit(struct nfs_commit_info *cinfo) 722 { 723 return 0; 724 } 725 726 int nfs_scan_commit(struct inode *inode, struct list_head *dst, 727 struct nfs_commit_info *cinfo) 728 { 729 return 0; 730 } 731 #endif 732 733 /* 734 * Search for an existing write request, and attempt to update 735 * it to reflect a new dirty region on a given page. 736 * 737 * If the attempt fails, then the existing request is flushed out 738 * to disk. 739 */ 740 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 741 struct page *page, 742 unsigned int offset, 743 unsigned int bytes) 744 { 745 struct nfs_page *req; 746 unsigned int rqend; 747 unsigned int end; 748 int error; 749 750 if (!PagePrivate(page)) 751 return NULL; 752 753 end = offset + bytes; 754 spin_lock(&inode->i_lock); 755 756 for (;;) { 757 req = nfs_page_find_request_locked(NFS_I(inode), page); 758 if (req == NULL) 759 goto out_unlock; 760 761 rqend = req->wb_offset + req->wb_bytes; 762 /* 763 * Tell the caller to flush out the request if 764 * the offsets are non-contiguous. 765 * Note: nfs_flush_incompatible() will already 766 * have flushed out requests having wrong owners. 767 */ 768 if (offset > rqend 769 || end < req->wb_offset) 770 goto out_flushme; 771 772 if (nfs_lock_request(req)) 773 break; 774 775 /* The request is locked, so wait and then retry */ 776 spin_unlock(&inode->i_lock); 777 error = nfs_wait_on_request(req); 778 nfs_release_request(req); 779 if (error != 0) 780 goto out_err; 781 spin_lock(&inode->i_lock); 782 } 783 784 /* Okay, the request matches. Update the region */ 785 if (offset < req->wb_offset) { 786 req->wb_offset = offset; 787 req->wb_pgbase = offset; 788 } 789 if (end > rqend) 790 req->wb_bytes = end - req->wb_offset; 791 else 792 req->wb_bytes = rqend - req->wb_offset; 793 out_unlock: 794 spin_unlock(&inode->i_lock); 795 if (req) 796 nfs_clear_request_commit(req); 797 return req; 798 out_flushme: 799 spin_unlock(&inode->i_lock); 800 nfs_release_request(req); 801 error = nfs_wb_page(inode, page); 802 out_err: 803 return ERR_PTR(error); 804 } 805 806 /* 807 * Try to update an existing write request, or create one if there is none. 808 * 809 * Note: Should always be called with the Page Lock held to prevent races 810 * if we have to add a new request. Also assumes that the caller has 811 * already called nfs_flush_incompatible() if necessary. 812 */ 813 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 814 struct page *page, unsigned int offset, unsigned int bytes) 815 { 816 struct inode *inode = page_file_mapping(page)->host; 817 struct nfs_page *req; 818 819 req = nfs_try_to_update_request(inode, page, offset, bytes); 820 if (req != NULL) 821 goto out; 822 req = nfs_create_request(ctx, inode, page, offset, bytes); 823 if (IS_ERR(req)) 824 goto out; 825 nfs_inode_add_request(inode, req); 826 out: 827 return req; 828 } 829 830 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 831 unsigned int offset, unsigned int count) 832 { 833 struct nfs_page *req; 834 835 req = nfs_setup_write_request(ctx, page, offset, count); 836 if (IS_ERR(req)) 837 return PTR_ERR(req); 838 /* Update file length */ 839 nfs_grow_file(page, offset, count); 840 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 841 nfs_mark_request_dirty(req); 842 nfs_unlock_and_release_request(req); 843 return 0; 844 } 845 846 int nfs_flush_incompatible(struct file *file, struct page *page) 847 { 848 struct nfs_open_context *ctx = nfs_file_open_context(file); 849 struct nfs_lock_context *l_ctx; 850 struct nfs_page *req; 851 int do_flush, status; 852 /* 853 * Look for a request corresponding to this page. If there 854 * is one, and it belongs to another file, we flush it out 855 * before we try to copy anything into the page. Do this 856 * due to the lack of an ACCESS-type call in NFSv2. 857 * Also do the same if we find a request from an existing 858 * dropped page. 859 */ 860 do { 861 req = nfs_page_find_request(page); 862 if (req == NULL) 863 return 0; 864 l_ctx = req->wb_lock_context; 865 do_flush = req->wb_page != page || req->wb_context != ctx; 866 if (l_ctx && ctx->dentry->d_inode->i_flock != NULL) { 867 do_flush |= l_ctx->lockowner.l_owner != current->files 868 || l_ctx->lockowner.l_pid != current->tgid; 869 } 870 nfs_release_request(req); 871 if (!do_flush) 872 return 0; 873 status = nfs_wb_page(page_file_mapping(page)->host, page); 874 } while (status == 0); 875 return status; 876 } 877 878 /* 879 * Avoid buffered writes when a open context credential's key would 880 * expire soon. 881 * 882 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL. 883 * 884 * Return 0 and set a credential flag which triggers the inode to flush 885 * and performs NFS_FILE_SYNC writes if the key will expired within 886 * RPC_KEY_EXPIRE_TIMEO. 887 */ 888 int 889 nfs_key_timeout_notify(struct file *filp, struct inode *inode) 890 { 891 struct nfs_open_context *ctx = nfs_file_open_context(filp); 892 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth; 893 894 return rpcauth_key_timeout_notify(auth, ctx->cred); 895 } 896 897 /* 898 * Test if the open context credential key is marked to expire soon. 899 */ 900 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx) 901 { 902 return rpcauth_cred_key_to_expire(ctx->cred); 903 } 904 905 /* 906 * If the page cache is marked as unsafe or invalid, then we can't rely on 907 * the PageUptodate() flag. In this case, we will need to turn off 908 * write optimisations that depend on the page contents being correct. 909 */ 910 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode) 911 { 912 if (nfs_have_delegated_attributes(inode)) 913 goto out; 914 if (NFS_I(inode)->cache_validity & (NFS_INO_INVALID_DATA|NFS_INO_REVAL_PAGECACHE)) 915 return false; 916 out: 917 return PageUptodate(page) != 0; 918 } 919 920 /* If we know the page is up to date, and we're not using byte range locks (or 921 * if we have the whole file locked for writing), it may be more efficient to 922 * extend the write to cover the entire page in order to avoid fragmentation 923 * inefficiencies. 924 * 925 * If the file is opened for synchronous writes or if we have a write delegation 926 * from the server then we can just skip the rest of the checks. 927 */ 928 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode) 929 { 930 if (file->f_flags & O_DSYNC) 931 return 0; 932 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 933 return 1; 934 if (nfs_write_pageuptodate(page, inode) && (inode->i_flock == NULL || 935 (inode->i_flock->fl_start == 0 && 936 inode->i_flock->fl_end == OFFSET_MAX && 937 inode->i_flock->fl_type != F_RDLCK))) 938 return 1; 939 return 0; 940 } 941 942 /* 943 * Update and possibly write a cached page of an NFS file. 944 * 945 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 946 * things with a page scheduled for an RPC call (e.g. invalidate it). 947 */ 948 int nfs_updatepage(struct file *file, struct page *page, 949 unsigned int offset, unsigned int count) 950 { 951 struct nfs_open_context *ctx = nfs_file_open_context(file); 952 struct inode *inode = page_file_mapping(page)->host; 953 int status = 0; 954 955 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 956 957 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n", 958 file->f_path.dentry->d_parent->d_name.name, 959 file->f_path.dentry->d_name.name, count, 960 (long long)(page_file_offset(page) + offset)); 961 962 if (nfs_can_extend_write(file, page, inode)) { 963 count = max(count + offset, nfs_page_length(page)); 964 offset = 0; 965 } 966 967 status = nfs_writepage_setup(ctx, page, offset, count); 968 if (status < 0) 969 nfs_set_pageerror(page); 970 else 971 __set_page_dirty_nobuffers(page); 972 973 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 974 status, (long long)i_size_read(inode)); 975 return status; 976 } 977 978 static int flush_task_priority(int how) 979 { 980 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 981 case FLUSH_HIGHPRI: 982 return RPC_PRIORITY_HIGH; 983 case FLUSH_LOWPRI: 984 return RPC_PRIORITY_LOW; 985 } 986 return RPC_PRIORITY_NORMAL; 987 } 988 989 int nfs_initiate_write(struct rpc_clnt *clnt, 990 struct nfs_write_data *data, 991 const struct rpc_call_ops *call_ops, 992 int how, int flags) 993 { 994 struct inode *inode = data->header->inode; 995 int priority = flush_task_priority(how); 996 struct rpc_task *task; 997 struct rpc_message msg = { 998 .rpc_argp = &data->args, 999 .rpc_resp = &data->res, 1000 .rpc_cred = data->header->cred, 1001 }; 1002 struct rpc_task_setup task_setup_data = { 1003 .rpc_client = clnt, 1004 .task = &data->task, 1005 .rpc_message = &msg, 1006 .callback_ops = call_ops, 1007 .callback_data = data, 1008 .workqueue = nfsiod_workqueue, 1009 .flags = RPC_TASK_ASYNC | flags, 1010 .priority = priority, 1011 }; 1012 int ret = 0; 1013 1014 /* Set up the initial task struct. */ 1015 NFS_PROTO(inode)->write_setup(data, &msg); 1016 1017 dprintk("NFS: %5u initiated write call " 1018 "(req %s/%lld, %u bytes @ offset %llu)\n", 1019 data->task.tk_pid, 1020 inode->i_sb->s_id, 1021 (long long)NFS_FILEID(inode), 1022 data->args.count, 1023 (unsigned long long)data->args.offset); 1024 1025 nfs4_state_protect_write(NFS_SERVER(inode)->nfs_client, 1026 &task_setup_data.rpc_client, &msg, data); 1027 1028 task = rpc_run_task(&task_setup_data); 1029 if (IS_ERR(task)) { 1030 ret = PTR_ERR(task); 1031 goto out; 1032 } 1033 if (how & FLUSH_SYNC) { 1034 ret = rpc_wait_for_completion_task(task); 1035 if (ret == 0) 1036 ret = task->tk_status; 1037 } 1038 rpc_put_task(task); 1039 out: 1040 return ret; 1041 } 1042 EXPORT_SYMBOL_GPL(nfs_initiate_write); 1043 1044 /* 1045 * Set up the argument/result storage required for the RPC call. 1046 */ 1047 static void nfs_write_rpcsetup(struct nfs_write_data *data, 1048 unsigned int count, unsigned int offset, 1049 int how, struct nfs_commit_info *cinfo) 1050 { 1051 struct nfs_page *req = data->header->req; 1052 1053 /* Set up the RPC argument and reply structs 1054 * NB: take care not to mess about with data->commit et al. */ 1055 1056 data->args.fh = NFS_FH(data->header->inode); 1057 data->args.offset = req_offset(req) + offset; 1058 /* pnfs_set_layoutcommit needs this */ 1059 data->mds_offset = data->args.offset; 1060 data->args.pgbase = req->wb_pgbase + offset; 1061 data->args.pages = data->pages.pagevec; 1062 data->args.count = count; 1063 data->args.context = get_nfs_open_context(req->wb_context); 1064 data->args.lock_context = req->wb_lock_context; 1065 data->args.stable = NFS_UNSTABLE; 1066 switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) { 1067 case 0: 1068 break; 1069 case FLUSH_COND_STABLE: 1070 if (nfs_reqs_to_commit(cinfo)) 1071 break; 1072 default: 1073 data->args.stable = NFS_FILE_SYNC; 1074 } 1075 1076 data->res.fattr = &data->fattr; 1077 data->res.count = count; 1078 data->res.verf = &data->verf; 1079 nfs_fattr_init(&data->fattr); 1080 } 1081 1082 static int nfs_do_write(struct nfs_write_data *data, 1083 const struct rpc_call_ops *call_ops, 1084 int how) 1085 { 1086 struct inode *inode = data->header->inode; 1087 1088 return nfs_initiate_write(NFS_CLIENT(inode), data, call_ops, how, 0); 1089 } 1090 1091 static int nfs_do_multiple_writes(struct list_head *head, 1092 const struct rpc_call_ops *call_ops, 1093 int how) 1094 { 1095 struct nfs_write_data *data; 1096 int ret = 0; 1097 1098 while (!list_empty(head)) { 1099 int ret2; 1100 1101 data = list_first_entry(head, struct nfs_write_data, list); 1102 list_del_init(&data->list); 1103 1104 ret2 = nfs_do_write(data, call_ops, how); 1105 if (ret == 0) 1106 ret = ret2; 1107 } 1108 return ret; 1109 } 1110 1111 /* If a nfs_flush_* function fails, it should remove reqs from @head and 1112 * call this on each, which will prepare them to be retried on next 1113 * writeback using standard nfs. 1114 */ 1115 static void nfs_redirty_request(struct nfs_page *req) 1116 { 1117 nfs_mark_request_dirty(req); 1118 nfs_unlock_request(req); 1119 nfs_end_page_writeback(req->wb_page); 1120 nfs_release_request(req); 1121 } 1122 1123 static void nfs_async_write_error(struct list_head *head) 1124 { 1125 struct nfs_page *req; 1126 1127 while (!list_empty(head)) { 1128 req = nfs_list_entry(head->next); 1129 nfs_list_remove_request(req); 1130 nfs_redirty_request(req); 1131 } 1132 } 1133 1134 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = { 1135 .error_cleanup = nfs_async_write_error, 1136 .completion = nfs_write_completion, 1137 }; 1138 1139 static void nfs_flush_error(struct nfs_pageio_descriptor *desc, 1140 struct nfs_pgio_header *hdr) 1141 { 1142 set_bit(NFS_IOHDR_REDO, &hdr->flags); 1143 while (!list_empty(&hdr->rpc_list)) { 1144 struct nfs_write_data *data = list_first_entry(&hdr->rpc_list, 1145 struct nfs_write_data, list); 1146 list_del(&data->list); 1147 nfs_writedata_release(data); 1148 } 1149 desc->pg_completion_ops->error_cleanup(&desc->pg_list); 1150 } 1151 1152 /* 1153 * Generate multiple small requests to write out a single 1154 * contiguous dirty area on one page. 1155 */ 1156 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, 1157 struct nfs_pgio_header *hdr) 1158 { 1159 struct nfs_page *req = hdr->req; 1160 struct page *page = req->wb_page; 1161 struct nfs_write_data *data; 1162 size_t wsize = desc->pg_bsize, nbytes; 1163 unsigned int offset; 1164 int requests = 0; 1165 struct nfs_commit_info cinfo; 1166 1167 nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq); 1168 1169 if ((desc->pg_ioflags & FLUSH_COND_STABLE) && 1170 (desc->pg_moreio || nfs_reqs_to_commit(&cinfo) || 1171 desc->pg_count > wsize)) 1172 desc->pg_ioflags &= ~FLUSH_COND_STABLE; 1173 1174 1175 offset = 0; 1176 nbytes = desc->pg_count; 1177 do { 1178 size_t len = min(nbytes, wsize); 1179 1180 data = nfs_writedata_alloc(hdr, 1); 1181 if (!data) { 1182 nfs_flush_error(desc, hdr); 1183 return -ENOMEM; 1184 } 1185 data->pages.pagevec[0] = page; 1186 nfs_write_rpcsetup(data, len, offset, desc->pg_ioflags, &cinfo); 1187 list_add(&data->list, &hdr->rpc_list); 1188 requests++; 1189 nbytes -= len; 1190 offset += len; 1191 } while (nbytes != 0); 1192 nfs_list_remove_request(req); 1193 nfs_list_add_request(req, &hdr->pages); 1194 desc->pg_rpc_callops = &nfs_write_common_ops; 1195 return 0; 1196 } 1197 1198 /* 1199 * Create an RPC task for the given write request and kick it. 1200 * The page must have been locked by the caller. 1201 * 1202 * It may happen that the page we're passed is not marked dirty. 1203 * This is the case if nfs_updatepage detects a conflicting request 1204 * that has been written but not committed. 1205 */ 1206 static int nfs_flush_one(struct nfs_pageio_descriptor *desc, 1207 struct nfs_pgio_header *hdr) 1208 { 1209 struct nfs_page *req; 1210 struct page **pages; 1211 struct nfs_write_data *data; 1212 struct list_head *head = &desc->pg_list; 1213 struct nfs_commit_info cinfo; 1214 1215 data = nfs_writedata_alloc(hdr, nfs_page_array_len(desc->pg_base, 1216 desc->pg_count)); 1217 if (!data) { 1218 nfs_flush_error(desc, hdr); 1219 return -ENOMEM; 1220 } 1221 1222 nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq); 1223 pages = data->pages.pagevec; 1224 while (!list_empty(head)) { 1225 req = nfs_list_entry(head->next); 1226 nfs_list_remove_request(req); 1227 nfs_list_add_request(req, &hdr->pages); 1228 *pages++ = req->wb_page; 1229 } 1230 1231 if ((desc->pg_ioflags & FLUSH_COND_STABLE) && 1232 (desc->pg_moreio || nfs_reqs_to_commit(&cinfo))) 1233 desc->pg_ioflags &= ~FLUSH_COND_STABLE; 1234 1235 /* Set up the argument struct */ 1236 nfs_write_rpcsetup(data, desc->pg_count, 0, desc->pg_ioflags, &cinfo); 1237 list_add(&data->list, &hdr->rpc_list); 1238 desc->pg_rpc_callops = &nfs_write_common_ops; 1239 return 0; 1240 } 1241 1242 int nfs_generic_flush(struct nfs_pageio_descriptor *desc, 1243 struct nfs_pgio_header *hdr) 1244 { 1245 if (desc->pg_bsize < PAGE_CACHE_SIZE) 1246 return nfs_flush_multi(desc, hdr); 1247 return nfs_flush_one(desc, hdr); 1248 } 1249 EXPORT_SYMBOL_GPL(nfs_generic_flush); 1250 1251 static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc) 1252 { 1253 struct nfs_write_header *whdr; 1254 struct nfs_pgio_header *hdr; 1255 int ret; 1256 1257 whdr = nfs_writehdr_alloc(); 1258 if (!whdr) { 1259 desc->pg_completion_ops->error_cleanup(&desc->pg_list); 1260 return -ENOMEM; 1261 } 1262 hdr = &whdr->header; 1263 nfs_pgheader_init(desc, hdr, nfs_writehdr_free); 1264 atomic_inc(&hdr->refcnt); 1265 ret = nfs_generic_flush(desc, hdr); 1266 if (ret == 0) 1267 ret = nfs_do_multiple_writes(&hdr->rpc_list, 1268 desc->pg_rpc_callops, 1269 desc->pg_ioflags); 1270 if (atomic_dec_and_test(&hdr->refcnt)) 1271 hdr->completion_ops->completion(hdr); 1272 return ret; 1273 } 1274 1275 static const struct nfs_pageio_ops nfs_pageio_write_ops = { 1276 .pg_test = nfs_generic_pg_test, 1277 .pg_doio = nfs_generic_pg_writepages, 1278 }; 1279 1280 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 1281 struct inode *inode, int ioflags, 1282 const struct nfs_pgio_completion_ops *compl_ops) 1283 { 1284 nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops, compl_ops, 1285 NFS_SERVER(inode)->wsize, ioflags); 1286 } 1287 EXPORT_SYMBOL_GPL(nfs_pageio_init_write); 1288 1289 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio) 1290 { 1291 pgio->pg_ops = &nfs_pageio_write_ops; 1292 pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize; 1293 } 1294 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds); 1295 1296 1297 void nfs_write_prepare(struct rpc_task *task, void *calldata) 1298 { 1299 struct nfs_write_data *data = calldata; 1300 int err; 1301 err = NFS_PROTO(data->header->inode)->write_rpc_prepare(task, data); 1302 if (err) 1303 rpc_exit(task, err); 1304 } 1305 1306 void nfs_commit_prepare(struct rpc_task *task, void *calldata) 1307 { 1308 struct nfs_commit_data *data = calldata; 1309 1310 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data); 1311 } 1312 1313 /* 1314 * Handle a write reply that flushes a whole page. 1315 * 1316 * FIXME: There is an inherent race with invalidate_inode_pages and 1317 * writebacks since the page->count is kept > 1 for as long 1318 * as the page has a write request pending. 1319 */ 1320 static void nfs_writeback_done_common(struct rpc_task *task, void *calldata) 1321 { 1322 struct nfs_write_data *data = calldata; 1323 1324 nfs_writeback_done(task, data); 1325 } 1326 1327 static void nfs_writeback_release_common(void *calldata) 1328 { 1329 struct nfs_write_data *data = calldata; 1330 struct nfs_pgio_header *hdr = data->header; 1331 int status = data->task.tk_status; 1332 1333 if ((status >= 0) && nfs_write_need_commit(data)) { 1334 spin_lock(&hdr->lock); 1335 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) 1336 ; /* Do nothing */ 1337 else if (!test_and_set_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) 1338 memcpy(hdr->verf, &data->verf, sizeof(*hdr->verf)); 1339 else if (memcmp(hdr->verf, &data->verf, sizeof(*hdr->verf))) 1340 set_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags); 1341 spin_unlock(&hdr->lock); 1342 } 1343 nfs_writedata_release(data); 1344 } 1345 1346 static const struct rpc_call_ops nfs_write_common_ops = { 1347 .rpc_call_prepare = nfs_write_prepare, 1348 .rpc_call_done = nfs_writeback_done_common, 1349 .rpc_release = nfs_writeback_release_common, 1350 }; 1351 1352 1353 /* 1354 * This function is called when the WRITE call is complete. 1355 */ 1356 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1357 { 1358 struct nfs_writeargs *argp = &data->args; 1359 struct nfs_writeres *resp = &data->res; 1360 struct inode *inode = data->header->inode; 1361 int status; 1362 1363 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1364 task->tk_pid, task->tk_status); 1365 1366 /* 1367 * ->write_done will attempt to use post-op attributes to detect 1368 * conflicting writes by other clients. A strict interpretation 1369 * of close-to-open would allow us to continue caching even if 1370 * another writer had changed the file, but some applications 1371 * depend on tighter cache coherency when writing. 1372 */ 1373 status = NFS_PROTO(inode)->write_done(task, data); 1374 if (status != 0) 1375 return; 1376 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1377 1378 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 1379 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1380 /* We tried a write call, but the server did not 1381 * commit data to stable storage even though we 1382 * requested it. 1383 * Note: There is a known bug in Tru64 < 5.0 in which 1384 * the server reports NFS_DATA_SYNC, but performs 1385 * NFS_FILE_SYNC. We therefore implement this checking 1386 * as a dprintk() in order to avoid filling syslog. 1387 */ 1388 static unsigned long complain; 1389 1390 /* Note this will print the MDS for a DS write */ 1391 if (time_before(complain, jiffies)) { 1392 dprintk("NFS: faulty NFS server %s:" 1393 " (committed = %d) != (stable = %d)\n", 1394 NFS_SERVER(inode)->nfs_client->cl_hostname, 1395 resp->verf->committed, argp->stable); 1396 complain = jiffies + 300 * HZ; 1397 } 1398 } 1399 #endif 1400 if (task->tk_status < 0) 1401 nfs_set_pgio_error(data->header, task->tk_status, argp->offset); 1402 else if (resp->count < argp->count) { 1403 static unsigned long complain; 1404 1405 /* This a short write! */ 1406 nfs_inc_stats(inode, NFSIOS_SHORTWRITE); 1407 1408 /* Has the server at least made some progress? */ 1409 if (resp->count == 0) { 1410 if (time_before(complain, jiffies)) { 1411 printk(KERN_WARNING 1412 "NFS: Server wrote zero bytes, expected %u.\n", 1413 argp->count); 1414 complain = jiffies + 300 * HZ; 1415 } 1416 nfs_set_pgio_error(data->header, -EIO, argp->offset); 1417 task->tk_status = -EIO; 1418 return; 1419 } 1420 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1421 if (resp->verf->committed != NFS_UNSTABLE) { 1422 /* Resend from where the server left off */ 1423 data->mds_offset += resp->count; 1424 argp->offset += resp->count; 1425 argp->pgbase += resp->count; 1426 argp->count -= resp->count; 1427 } else { 1428 /* Resend as a stable write in order to avoid 1429 * headaches in the case of a server crash. 1430 */ 1431 argp->stable = NFS_FILE_SYNC; 1432 } 1433 rpc_restart_call_prepare(task); 1434 } 1435 } 1436 1437 1438 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 1439 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait) 1440 { 1441 int ret; 1442 1443 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags)) 1444 return 1; 1445 if (!may_wait) 1446 return 0; 1447 ret = out_of_line_wait_on_bit_lock(&nfsi->flags, 1448 NFS_INO_COMMIT, 1449 nfs_wait_bit_killable, 1450 TASK_KILLABLE); 1451 return (ret < 0) ? ret : 1; 1452 } 1453 1454 static void nfs_commit_clear_lock(struct nfs_inode *nfsi) 1455 { 1456 clear_bit(NFS_INO_COMMIT, &nfsi->flags); 1457 smp_mb__after_clear_bit(); 1458 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT); 1459 } 1460 1461 void nfs_commitdata_release(struct nfs_commit_data *data) 1462 { 1463 put_nfs_open_context(data->context); 1464 nfs_commit_free(data); 1465 } 1466 EXPORT_SYMBOL_GPL(nfs_commitdata_release); 1467 1468 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data, 1469 const struct rpc_call_ops *call_ops, 1470 int how, int flags) 1471 { 1472 struct rpc_task *task; 1473 int priority = flush_task_priority(how); 1474 struct rpc_message msg = { 1475 .rpc_argp = &data->args, 1476 .rpc_resp = &data->res, 1477 .rpc_cred = data->cred, 1478 }; 1479 struct rpc_task_setup task_setup_data = { 1480 .task = &data->task, 1481 .rpc_client = clnt, 1482 .rpc_message = &msg, 1483 .callback_ops = call_ops, 1484 .callback_data = data, 1485 .workqueue = nfsiod_workqueue, 1486 .flags = RPC_TASK_ASYNC | flags, 1487 .priority = priority, 1488 }; 1489 /* Set up the initial task struct. */ 1490 NFS_PROTO(data->inode)->commit_setup(data, &msg); 1491 1492 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1493 1494 nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client, 1495 NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg); 1496 1497 task = rpc_run_task(&task_setup_data); 1498 if (IS_ERR(task)) 1499 return PTR_ERR(task); 1500 if (how & FLUSH_SYNC) 1501 rpc_wait_for_completion_task(task); 1502 rpc_put_task(task); 1503 return 0; 1504 } 1505 EXPORT_SYMBOL_GPL(nfs_initiate_commit); 1506 1507 /* 1508 * Set up the argument/result storage required for the RPC call. 1509 */ 1510 void nfs_init_commit(struct nfs_commit_data *data, 1511 struct list_head *head, 1512 struct pnfs_layout_segment *lseg, 1513 struct nfs_commit_info *cinfo) 1514 { 1515 struct nfs_page *first = nfs_list_entry(head->next); 1516 struct inode *inode = first->wb_context->dentry->d_inode; 1517 1518 /* Set up the RPC argument and reply structs 1519 * NB: take care not to mess about with data->commit et al. */ 1520 1521 list_splice_init(head, &data->pages); 1522 1523 data->inode = inode; 1524 data->cred = first->wb_context->cred; 1525 data->lseg = lseg; /* reference transferred */ 1526 data->mds_ops = &nfs_commit_ops; 1527 data->completion_ops = cinfo->completion_ops; 1528 data->dreq = cinfo->dreq; 1529 1530 data->args.fh = NFS_FH(data->inode); 1531 /* Note: we always request a commit of the entire inode */ 1532 data->args.offset = 0; 1533 data->args.count = 0; 1534 data->context = get_nfs_open_context(first->wb_context); 1535 data->res.fattr = &data->fattr; 1536 data->res.verf = &data->verf; 1537 nfs_fattr_init(&data->fattr); 1538 } 1539 EXPORT_SYMBOL_GPL(nfs_init_commit); 1540 1541 void nfs_retry_commit(struct list_head *page_list, 1542 struct pnfs_layout_segment *lseg, 1543 struct nfs_commit_info *cinfo) 1544 { 1545 struct nfs_page *req; 1546 1547 while (!list_empty(page_list)) { 1548 req = nfs_list_entry(page_list->next); 1549 nfs_list_remove_request(req); 1550 nfs_mark_request_commit(req, lseg, cinfo); 1551 if (!cinfo->dreq) { 1552 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1553 dec_bdi_stat(page_file_mapping(req->wb_page)->backing_dev_info, 1554 BDI_RECLAIMABLE); 1555 } 1556 nfs_unlock_and_release_request(req); 1557 } 1558 } 1559 EXPORT_SYMBOL_GPL(nfs_retry_commit); 1560 1561 /* 1562 * Commit dirty pages 1563 */ 1564 static int 1565 nfs_commit_list(struct inode *inode, struct list_head *head, int how, 1566 struct nfs_commit_info *cinfo) 1567 { 1568 struct nfs_commit_data *data; 1569 1570 data = nfs_commitdata_alloc(); 1571 1572 if (!data) 1573 goto out_bad; 1574 1575 /* Set up the argument struct */ 1576 nfs_init_commit(data, head, NULL, cinfo); 1577 atomic_inc(&cinfo->mds->rpcs_out); 1578 return nfs_initiate_commit(NFS_CLIENT(inode), data, data->mds_ops, 1579 how, 0); 1580 out_bad: 1581 nfs_retry_commit(head, NULL, cinfo); 1582 cinfo->completion_ops->error_cleanup(NFS_I(inode)); 1583 return -ENOMEM; 1584 } 1585 1586 /* 1587 * COMMIT call returned 1588 */ 1589 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1590 { 1591 struct nfs_commit_data *data = calldata; 1592 1593 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1594 task->tk_pid, task->tk_status); 1595 1596 /* Call the NFS version-specific code */ 1597 NFS_PROTO(data->inode)->commit_done(task, data); 1598 } 1599 1600 static void nfs_commit_release_pages(struct nfs_commit_data *data) 1601 { 1602 struct nfs_page *req; 1603 int status = data->task.tk_status; 1604 struct nfs_commit_info cinfo; 1605 1606 while (!list_empty(&data->pages)) { 1607 req = nfs_list_entry(data->pages.next); 1608 nfs_list_remove_request(req); 1609 nfs_clear_page_commit(req->wb_page); 1610 1611 dprintk("NFS: commit (%s/%lld %d@%lld)", 1612 req->wb_context->dentry->d_sb->s_id, 1613 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1614 req->wb_bytes, 1615 (long long)req_offset(req)); 1616 if (status < 0) { 1617 nfs_context_set_write_error(req->wb_context, status); 1618 nfs_inode_remove_request(req); 1619 dprintk(", error = %d\n", status); 1620 goto next; 1621 } 1622 1623 /* Okay, COMMIT succeeded, apparently. Check the verifier 1624 * returned by the server against all stored verfs. */ 1625 if (!memcmp(&req->wb_verf, &data->verf.verifier, sizeof(req->wb_verf))) { 1626 /* We have a match */ 1627 nfs_inode_remove_request(req); 1628 dprintk(" OK\n"); 1629 goto next; 1630 } 1631 /* We have a mismatch. Write the page again */ 1632 dprintk(" mismatch\n"); 1633 nfs_mark_request_dirty(req); 1634 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags); 1635 next: 1636 nfs_unlock_and_release_request(req); 1637 } 1638 nfs_init_cinfo(&cinfo, data->inode, data->dreq); 1639 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 1640 nfs_commit_clear_lock(NFS_I(data->inode)); 1641 } 1642 1643 static void nfs_commit_release(void *calldata) 1644 { 1645 struct nfs_commit_data *data = calldata; 1646 1647 data->completion_ops->completion(data); 1648 nfs_commitdata_release(calldata); 1649 } 1650 1651 static const struct rpc_call_ops nfs_commit_ops = { 1652 .rpc_call_prepare = nfs_commit_prepare, 1653 .rpc_call_done = nfs_commit_done, 1654 .rpc_release = nfs_commit_release, 1655 }; 1656 1657 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = { 1658 .completion = nfs_commit_release_pages, 1659 .error_cleanup = nfs_commit_clear_lock, 1660 }; 1661 1662 int nfs_generic_commit_list(struct inode *inode, struct list_head *head, 1663 int how, struct nfs_commit_info *cinfo) 1664 { 1665 int status; 1666 1667 status = pnfs_commit_list(inode, head, how, cinfo); 1668 if (status == PNFS_NOT_ATTEMPTED) 1669 status = nfs_commit_list(inode, head, how, cinfo); 1670 return status; 1671 } 1672 1673 int nfs_commit_inode(struct inode *inode, int how) 1674 { 1675 LIST_HEAD(head); 1676 struct nfs_commit_info cinfo; 1677 int may_wait = how & FLUSH_SYNC; 1678 int res; 1679 1680 res = nfs_commit_set_lock(NFS_I(inode), may_wait); 1681 if (res <= 0) 1682 goto out_mark_dirty; 1683 nfs_init_cinfo_from_inode(&cinfo, inode); 1684 res = nfs_scan_commit(inode, &head, &cinfo); 1685 if (res) { 1686 int error; 1687 1688 error = nfs_generic_commit_list(inode, &head, how, &cinfo); 1689 if (error < 0) 1690 return error; 1691 if (!may_wait) 1692 goto out_mark_dirty; 1693 error = wait_on_bit(&NFS_I(inode)->flags, 1694 NFS_INO_COMMIT, 1695 nfs_wait_bit_killable, 1696 TASK_KILLABLE); 1697 if (error < 0) 1698 return error; 1699 } else 1700 nfs_commit_clear_lock(NFS_I(inode)); 1701 return res; 1702 /* Note: If we exit without ensuring that the commit is complete, 1703 * we must mark the inode as dirty. Otherwise, future calls to 1704 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure 1705 * that the data is on the disk. 1706 */ 1707 out_mark_dirty: 1708 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1709 return res; 1710 } 1711 1712 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1713 { 1714 struct nfs_inode *nfsi = NFS_I(inode); 1715 int flags = FLUSH_SYNC; 1716 int ret = 0; 1717 1718 /* no commits means nothing needs to be done */ 1719 if (!nfsi->commit_info.ncommit) 1720 return ret; 1721 1722 if (wbc->sync_mode == WB_SYNC_NONE) { 1723 /* Don't commit yet if this is a non-blocking flush and there 1724 * are a lot of outstanding writes for this mapping. 1725 */ 1726 if (nfsi->commit_info.ncommit <= (nfsi->npages >> 1)) 1727 goto out_mark_dirty; 1728 1729 /* don't wait for the COMMIT response */ 1730 flags = 0; 1731 } 1732 1733 ret = nfs_commit_inode(inode, flags); 1734 if (ret >= 0) { 1735 if (wbc->sync_mode == WB_SYNC_NONE) { 1736 if (ret < wbc->nr_to_write) 1737 wbc->nr_to_write -= ret; 1738 else 1739 wbc->nr_to_write = 0; 1740 } 1741 return 0; 1742 } 1743 out_mark_dirty: 1744 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1745 return ret; 1746 } 1747 #else 1748 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1749 { 1750 return 0; 1751 } 1752 #endif 1753 1754 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1755 { 1756 return nfs_commit_unstable_pages(inode, wbc); 1757 } 1758 EXPORT_SYMBOL_GPL(nfs_write_inode); 1759 1760 /* 1761 * flush the inode to disk. 1762 */ 1763 int nfs_wb_all(struct inode *inode) 1764 { 1765 struct writeback_control wbc = { 1766 .sync_mode = WB_SYNC_ALL, 1767 .nr_to_write = LONG_MAX, 1768 .range_start = 0, 1769 .range_end = LLONG_MAX, 1770 }; 1771 int ret; 1772 1773 trace_nfs_writeback_inode_enter(inode); 1774 1775 ret = sync_inode(inode, &wbc); 1776 1777 trace_nfs_writeback_inode_exit(inode, ret); 1778 return ret; 1779 } 1780 EXPORT_SYMBOL_GPL(nfs_wb_all); 1781 1782 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1783 { 1784 struct nfs_page *req; 1785 int ret = 0; 1786 1787 for (;;) { 1788 wait_on_page_writeback(page); 1789 req = nfs_page_find_request(page); 1790 if (req == NULL) 1791 break; 1792 if (nfs_lock_request(req)) { 1793 nfs_clear_request_commit(req); 1794 nfs_inode_remove_request(req); 1795 /* 1796 * In case nfs_inode_remove_request has marked the 1797 * page as being dirty 1798 */ 1799 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1800 nfs_unlock_and_release_request(req); 1801 break; 1802 } 1803 ret = nfs_wait_on_request(req); 1804 nfs_release_request(req); 1805 if (ret < 0) 1806 break; 1807 } 1808 return ret; 1809 } 1810 1811 /* 1812 * Write back all requests on one page - we do this before reading it. 1813 */ 1814 int nfs_wb_page(struct inode *inode, struct page *page) 1815 { 1816 loff_t range_start = page_file_offset(page); 1817 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1818 struct writeback_control wbc = { 1819 .sync_mode = WB_SYNC_ALL, 1820 .nr_to_write = 0, 1821 .range_start = range_start, 1822 .range_end = range_end, 1823 }; 1824 int ret; 1825 1826 trace_nfs_writeback_page_enter(inode); 1827 1828 for (;;) { 1829 wait_on_page_writeback(page); 1830 if (clear_page_dirty_for_io(page)) { 1831 ret = nfs_writepage_locked(page, &wbc); 1832 if (ret < 0) 1833 goto out_error; 1834 continue; 1835 } 1836 ret = 0; 1837 if (!PagePrivate(page)) 1838 break; 1839 ret = nfs_commit_inode(inode, FLUSH_SYNC); 1840 if (ret < 0) 1841 goto out_error; 1842 } 1843 out_error: 1844 trace_nfs_writeback_page_exit(inode, ret); 1845 return ret; 1846 } 1847 1848 #ifdef CONFIG_MIGRATION 1849 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 1850 struct page *page, enum migrate_mode mode) 1851 { 1852 /* 1853 * If PagePrivate is set, then the page is currently associated with 1854 * an in-progress read or write request. Don't try to migrate it. 1855 * 1856 * FIXME: we could do this in principle, but we'll need a way to ensure 1857 * that we can safely release the inode reference while holding 1858 * the page lock. 1859 */ 1860 if (PagePrivate(page)) 1861 return -EBUSY; 1862 1863 if (!nfs_fscache_release_page(page, GFP_KERNEL)) 1864 return -EBUSY; 1865 1866 return migrate_page(mapping, newpage, page, mode); 1867 } 1868 #endif 1869 1870 int __init nfs_init_writepagecache(void) 1871 { 1872 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1873 sizeof(struct nfs_write_header), 1874 0, SLAB_HWCACHE_ALIGN, 1875 NULL); 1876 if (nfs_wdata_cachep == NULL) 1877 return -ENOMEM; 1878 1879 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1880 nfs_wdata_cachep); 1881 if (nfs_wdata_mempool == NULL) 1882 goto out_destroy_write_cache; 1883 1884 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data", 1885 sizeof(struct nfs_commit_data), 1886 0, SLAB_HWCACHE_ALIGN, 1887 NULL); 1888 if (nfs_cdata_cachep == NULL) 1889 goto out_destroy_write_mempool; 1890 1891 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1892 nfs_cdata_cachep); 1893 if (nfs_commit_mempool == NULL) 1894 goto out_destroy_commit_cache; 1895 1896 /* 1897 * NFS congestion size, scale with available memory. 1898 * 1899 * 64MB: 8192k 1900 * 128MB: 11585k 1901 * 256MB: 16384k 1902 * 512MB: 23170k 1903 * 1GB: 32768k 1904 * 2GB: 46340k 1905 * 4GB: 65536k 1906 * 8GB: 92681k 1907 * 16GB: 131072k 1908 * 1909 * This allows larger machines to have larger/more transfers. 1910 * Limit the default to 256M 1911 */ 1912 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1913 if (nfs_congestion_kb > 256*1024) 1914 nfs_congestion_kb = 256*1024; 1915 1916 return 0; 1917 1918 out_destroy_commit_cache: 1919 kmem_cache_destroy(nfs_cdata_cachep); 1920 out_destroy_write_mempool: 1921 mempool_destroy(nfs_wdata_mempool); 1922 out_destroy_write_cache: 1923 kmem_cache_destroy(nfs_wdata_cachep); 1924 return -ENOMEM; 1925 } 1926 1927 void nfs_destroy_writepagecache(void) 1928 { 1929 mempool_destroy(nfs_commit_mempool); 1930 kmem_cache_destroy(nfs_cdata_cachep); 1931 mempool_destroy(nfs_wdata_mempool); 1932 kmem_cache_destroy(nfs_wdata_cachep); 1933 } 1934 1935