1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/write.c 4 * 5 * Write file data over NFS. 6 * 7 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 8 */ 9 10 #include <linux/types.h> 11 #include <linux/slab.h> 12 #include <linux/mm.h> 13 #include <linux/pagemap.h> 14 #include <linux/file.h> 15 #include <linux/writeback.h> 16 #include <linux/swap.h> 17 #include <linux/migrate.h> 18 19 #include <linux/sunrpc/clnt.h> 20 #include <linux/nfs_fs.h> 21 #include <linux/nfs_mount.h> 22 #include <linux/nfs_page.h> 23 #include <linux/backing-dev.h> 24 #include <linux/export.h> 25 #include <linux/freezer.h> 26 #include <linux/wait.h> 27 #include <linux/iversion.h> 28 29 #include <linux/uaccess.h> 30 #include <linux/sched/mm.h> 31 32 #include "delegation.h" 33 #include "internal.h" 34 #include "iostat.h" 35 #include "nfs4_fs.h" 36 #include "fscache.h" 37 #include "pnfs.h" 38 39 #include "nfstrace.h" 40 41 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 42 43 #define MIN_POOL_WRITE (32) 44 #define MIN_POOL_COMMIT (4) 45 46 struct nfs_io_completion { 47 void (*complete)(void *data); 48 void *data; 49 struct kref refcount; 50 }; 51 52 /* 53 * Local function declarations 54 */ 55 static void nfs_redirty_request(struct nfs_page *req); 56 static const struct rpc_call_ops nfs_commit_ops; 57 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops; 58 static const struct nfs_commit_completion_ops nfs_commit_completion_ops; 59 static const struct nfs_rw_ops nfs_rw_write_ops; 60 static void nfs_inode_remove_request(struct nfs_page *req); 61 static void nfs_clear_request_commit(struct nfs_page *req); 62 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 63 struct inode *inode); 64 static struct nfs_page * 65 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi, 66 struct page *page); 67 68 static struct kmem_cache *nfs_wdata_cachep; 69 static mempool_t *nfs_wdata_mempool; 70 static struct kmem_cache *nfs_cdata_cachep; 71 static mempool_t *nfs_commit_mempool; 72 73 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail) 74 { 75 struct nfs_commit_data *p; 76 77 if (never_fail) 78 p = mempool_alloc(nfs_commit_mempool, GFP_NOIO); 79 else { 80 /* It is OK to do some reclaim, not no safe to wait 81 * for anything to be returned to the pool. 82 * mempool_alloc() cannot handle that particular combination, 83 * so we need two separate attempts. 84 */ 85 p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT); 86 if (!p) 87 p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO | 88 __GFP_NOWARN | __GFP_NORETRY); 89 if (!p) 90 return NULL; 91 } 92 93 memset(p, 0, sizeof(*p)); 94 INIT_LIST_HEAD(&p->pages); 95 return p; 96 } 97 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc); 98 99 void nfs_commit_free(struct nfs_commit_data *p) 100 { 101 mempool_free(p, nfs_commit_mempool); 102 } 103 EXPORT_SYMBOL_GPL(nfs_commit_free); 104 105 static struct nfs_pgio_header *nfs_writehdr_alloc(void) 106 { 107 struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_KERNEL); 108 109 memset(p, 0, sizeof(*p)); 110 p->rw_mode = FMODE_WRITE; 111 return p; 112 } 113 114 static void nfs_writehdr_free(struct nfs_pgio_header *hdr) 115 { 116 mempool_free(hdr, nfs_wdata_mempool); 117 } 118 119 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags) 120 { 121 return kmalloc(sizeof(struct nfs_io_completion), gfp_flags); 122 } 123 124 static void nfs_io_completion_init(struct nfs_io_completion *ioc, 125 void (*complete)(void *), void *data) 126 { 127 ioc->complete = complete; 128 ioc->data = data; 129 kref_init(&ioc->refcount); 130 } 131 132 static void nfs_io_completion_release(struct kref *kref) 133 { 134 struct nfs_io_completion *ioc = container_of(kref, 135 struct nfs_io_completion, refcount); 136 ioc->complete(ioc->data); 137 kfree(ioc); 138 } 139 140 static void nfs_io_completion_get(struct nfs_io_completion *ioc) 141 { 142 if (ioc != NULL) 143 kref_get(&ioc->refcount); 144 } 145 146 static void nfs_io_completion_put(struct nfs_io_completion *ioc) 147 { 148 if (ioc != NULL) 149 kref_put(&ioc->refcount, nfs_io_completion_release); 150 } 151 152 static struct nfs_page * 153 nfs_page_private_request(struct page *page) 154 { 155 if (!PagePrivate(page)) 156 return NULL; 157 return (struct nfs_page *)page_private(page); 158 } 159 160 /* 161 * nfs_page_find_head_request_locked - find head request associated with @page 162 * 163 * must be called while holding the inode lock. 164 * 165 * returns matching head request with reference held, or NULL if not found. 166 */ 167 static struct nfs_page * 168 nfs_page_find_private_request(struct page *page) 169 { 170 struct address_space *mapping = page_file_mapping(page); 171 struct nfs_page *req; 172 173 if (!PagePrivate(page)) 174 return NULL; 175 spin_lock(&mapping->private_lock); 176 req = nfs_page_private_request(page); 177 if (req) { 178 WARN_ON_ONCE(req->wb_head != req); 179 kref_get(&req->wb_kref); 180 } 181 spin_unlock(&mapping->private_lock); 182 return req; 183 } 184 185 static struct nfs_page * 186 nfs_page_find_swap_request(struct page *page) 187 { 188 struct inode *inode = page_file_mapping(page)->host; 189 struct nfs_inode *nfsi = NFS_I(inode); 190 struct nfs_page *req = NULL; 191 if (!PageSwapCache(page)) 192 return NULL; 193 mutex_lock(&nfsi->commit_mutex); 194 if (PageSwapCache(page)) { 195 req = nfs_page_search_commits_for_head_request_locked(nfsi, 196 page); 197 if (req) { 198 WARN_ON_ONCE(req->wb_head != req); 199 kref_get(&req->wb_kref); 200 } 201 } 202 mutex_unlock(&nfsi->commit_mutex); 203 return req; 204 } 205 206 /* 207 * nfs_page_find_head_request - find head request associated with @page 208 * 209 * returns matching head request with reference held, or NULL if not found. 210 */ 211 static struct nfs_page *nfs_page_find_head_request(struct page *page) 212 { 213 struct nfs_page *req; 214 215 req = nfs_page_find_private_request(page); 216 if (!req) 217 req = nfs_page_find_swap_request(page); 218 return req; 219 } 220 221 /* Adjust the file length if we're writing beyond the end */ 222 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 223 { 224 struct inode *inode = page_file_mapping(page)->host; 225 loff_t end, i_size; 226 pgoff_t end_index; 227 228 spin_lock(&inode->i_lock); 229 i_size = i_size_read(inode); 230 end_index = (i_size - 1) >> PAGE_SHIFT; 231 if (i_size > 0 && page_index(page) < end_index) 232 goto out; 233 end = page_file_offset(page) + ((loff_t)offset+count); 234 if (i_size >= end) 235 goto out; 236 i_size_write(inode, end); 237 NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE; 238 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 239 out: 240 spin_unlock(&inode->i_lock); 241 } 242 243 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 244 static void nfs_set_pageerror(struct address_space *mapping) 245 { 246 nfs_zap_mapping(mapping->host, mapping); 247 } 248 249 static void nfs_mapping_set_error(struct page *page, int error) 250 { 251 SetPageError(page); 252 mapping_set_error(page_file_mapping(page), error); 253 } 254 255 /* 256 * nfs_page_group_search_locked 257 * @head - head request of page group 258 * @page_offset - offset into page 259 * 260 * Search page group with head @head to find a request that contains the 261 * page offset @page_offset. 262 * 263 * Returns a pointer to the first matching nfs request, or NULL if no 264 * match is found. 265 * 266 * Must be called with the page group lock held 267 */ 268 static struct nfs_page * 269 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset) 270 { 271 struct nfs_page *req; 272 273 req = head; 274 do { 275 if (page_offset >= req->wb_pgbase && 276 page_offset < (req->wb_pgbase + req->wb_bytes)) 277 return req; 278 279 req = req->wb_this_page; 280 } while (req != head); 281 282 return NULL; 283 } 284 285 /* 286 * nfs_page_group_covers_page 287 * @head - head request of page group 288 * 289 * Return true if the page group with head @head covers the whole page, 290 * returns false otherwise 291 */ 292 static bool nfs_page_group_covers_page(struct nfs_page *req) 293 { 294 struct nfs_page *tmp; 295 unsigned int pos = 0; 296 unsigned int len = nfs_page_length(req->wb_page); 297 298 nfs_page_group_lock(req); 299 300 for (;;) { 301 tmp = nfs_page_group_search_locked(req->wb_head, pos); 302 if (!tmp) 303 break; 304 pos = tmp->wb_pgbase + tmp->wb_bytes; 305 } 306 307 nfs_page_group_unlock(req); 308 return pos >= len; 309 } 310 311 /* We can set the PG_uptodate flag if we see that a write request 312 * covers the full page. 313 */ 314 static void nfs_mark_uptodate(struct nfs_page *req) 315 { 316 if (PageUptodate(req->wb_page)) 317 return; 318 if (!nfs_page_group_covers_page(req)) 319 return; 320 SetPageUptodate(req->wb_page); 321 } 322 323 static int wb_priority(struct writeback_control *wbc) 324 { 325 int ret = 0; 326 327 if (wbc->sync_mode == WB_SYNC_ALL) 328 ret = FLUSH_COND_STABLE; 329 return ret; 330 } 331 332 /* 333 * NFS congestion control 334 */ 335 336 int nfs_congestion_kb; 337 338 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 339 #define NFS_CONGESTION_OFF_THRESH \ 340 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 341 342 static void nfs_set_page_writeback(struct page *page) 343 { 344 struct inode *inode = page_file_mapping(page)->host; 345 struct nfs_server *nfss = NFS_SERVER(inode); 346 int ret = test_set_page_writeback(page); 347 348 WARN_ON_ONCE(ret != 0); 349 350 if (atomic_long_inc_return(&nfss->writeback) > 351 NFS_CONGESTION_ON_THRESH) 352 set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC); 353 } 354 355 static void nfs_end_page_writeback(struct nfs_page *req) 356 { 357 struct inode *inode = page_file_mapping(req->wb_page)->host; 358 struct nfs_server *nfss = NFS_SERVER(inode); 359 bool is_done; 360 361 is_done = nfs_page_group_sync_on_bit(req, PG_WB_END); 362 nfs_unlock_request(req); 363 if (!is_done) 364 return; 365 366 end_page_writeback(req->wb_page); 367 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 368 clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC); 369 } 370 371 /* 372 * nfs_unroll_locks_and_wait - unlock all newly locked reqs and wait on @req 373 * 374 * this is a helper function for nfs_lock_and_join_requests 375 * 376 * @inode - inode associated with request page group, must be holding inode lock 377 * @head - head request of page group, must be holding head lock 378 * @req - request that couldn't lock and needs to wait on the req bit lock 379 * 380 * NOTE: this must be called holding page_group bit lock 381 * which will be released before returning. 382 * 383 * returns 0 on success, < 0 on error. 384 */ 385 static void 386 nfs_unroll_locks(struct inode *inode, struct nfs_page *head, 387 struct nfs_page *req) 388 { 389 struct nfs_page *tmp; 390 391 /* relinquish all the locks successfully grabbed this run */ 392 for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) { 393 if (!kref_read(&tmp->wb_kref)) 394 continue; 395 nfs_unlock_and_release_request(tmp); 396 } 397 } 398 399 /* 400 * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests 401 * 402 * @destroy_list - request list (using wb_this_page) terminated by @old_head 403 * @old_head - the old head of the list 404 * 405 * All subrequests must be locked and removed from all lists, so at this point 406 * they are only "active" in this function, and possibly in nfs_wait_on_request 407 * with a reference held by some other context. 408 */ 409 static void 410 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list, 411 struct nfs_page *old_head, 412 struct inode *inode) 413 { 414 while (destroy_list) { 415 struct nfs_page *subreq = destroy_list; 416 417 destroy_list = (subreq->wb_this_page == old_head) ? 418 NULL : subreq->wb_this_page; 419 420 WARN_ON_ONCE(old_head != subreq->wb_head); 421 422 /* make sure old group is not used */ 423 subreq->wb_this_page = subreq; 424 425 clear_bit(PG_REMOVE, &subreq->wb_flags); 426 427 /* Note: races with nfs_page_group_destroy() */ 428 if (!kref_read(&subreq->wb_kref)) { 429 /* Check if we raced with nfs_page_group_destroy() */ 430 if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags)) 431 nfs_free_request(subreq); 432 continue; 433 } 434 435 subreq->wb_head = subreq; 436 437 if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) { 438 nfs_release_request(subreq); 439 atomic_long_dec(&NFS_I(inode)->nrequests); 440 } 441 442 /* subreq is now totally disconnected from page group or any 443 * write / commit lists. last chance to wake any waiters */ 444 nfs_unlock_and_release_request(subreq); 445 } 446 } 447 448 /* 449 * nfs_lock_and_join_requests - join all subreqs to the head req and return 450 * a locked reference, cancelling any pending 451 * operations for this page. 452 * 453 * @page - the page used to lookup the "page group" of nfs_page structures 454 * 455 * This function joins all sub requests to the head request by first 456 * locking all requests in the group, cancelling any pending operations 457 * and finally updating the head request to cover the whole range covered by 458 * the (former) group. All subrequests are removed from any write or commit 459 * lists, unlinked from the group and destroyed. 460 * 461 * Returns a locked, referenced pointer to the head request - which after 462 * this call is guaranteed to be the only request associated with the page. 463 * Returns NULL if no requests are found for @page, or a ERR_PTR if an 464 * error was encountered. 465 */ 466 static struct nfs_page * 467 nfs_lock_and_join_requests(struct page *page) 468 { 469 struct inode *inode = page_file_mapping(page)->host; 470 struct nfs_page *head, *subreq; 471 struct nfs_page *destroy_list = NULL; 472 unsigned int total_bytes; 473 int ret; 474 475 try_again: 476 /* 477 * A reference is taken only on the head request which acts as a 478 * reference to the whole page group - the group will not be destroyed 479 * until the head reference is released. 480 */ 481 head = nfs_page_find_head_request(page); 482 if (!head) 483 return NULL; 484 485 /* lock the page head first in order to avoid an ABBA inefficiency */ 486 if (!nfs_lock_request(head)) { 487 ret = nfs_wait_on_request(head); 488 nfs_release_request(head); 489 if (ret < 0) 490 return ERR_PTR(ret); 491 goto try_again; 492 } 493 494 /* Ensure that nobody removed the request before we locked it */ 495 if (head != nfs_page_private_request(page) && !PageSwapCache(page)) { 496 nfs_unlock_and_release_request(head); 497 goto try_again; 498 } 499 500 ret = nfs_page_group_lock(head); 501 if (ret < 0) 502 goto release_request; 503 504 /* lock each request in the page group */ 505 total_bytes = head->wb_bytes; 506 for (subreq = head->wb_this_page; subreq != head; 507 subreq = subreq->wb_this_page) { 508 509 if (!kref_get_unless_zero(&subreq->wb_kref)) { 510 if (subreq->wb_offset == head->wb_offset + total_bytes) 511 total_bytes += subreq->wb_bytes; 512 continue; 513 } 514 515 while (!nfs_lock_request(subreq)) { 516 /* 517 * Unlock page to allow nfs_page_group_sync_on_bit() 518 * to succeed 519 */ 520 nfs_page_group_unlock(head); 521 ret = nfs_wait_on_request(subreq); 522 if (!ret) 523 ret = nfs_page_group_lock(head); 524 if (ret < 0) { 525 nfs_unroll_locks(inode, head, subreq); 526 nfs_release_request(subreq); 527 goto release_request; 528 } 529 } 530 /* 531 * Subrequests are always contiguous, non overlapping 532 * and in order - but may be repeated (mirrored writes). 533 */ 534 if (subreq->wb_offset == (head->wb_offset + total_bytes)) { 535 /* keep track of how many bytes this group covers */ 536 total_bytes += subreq->wb_bytes; 537 } else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset || 538 ((subreq->wb_offset + subreq->wb_bytes) > 539 (head->wb_offset + total_bytes)))) { 540 nfs_page_group_unlock(head); 541 nfs_unroll_locks(inode, head, subreq); 542 nfs_unlock_and_release_request(subreq); 543 ret = -EIO; 544 goto release_request; 545 } 546 } 547 548 /* Now that all requests are locked, make sure they aren't on any list. 549 * Commit list removal accounting is done after locks are dropped */ 550 subreq = head; 551 do { 552 nfs_clear_request_commit(subreq); 553 subreq = subreq->wb_this_page; 554 } while (subreq != head); 555 556 /* unlink subrequests from head, destroy them later */ 557 if (head->wb_this_page != head) { 558 /* destroy list will be terminated by head */ 559 destroy_list = head->wb_this_page; 560 head->wb_this_page = head; 561 562 /* change head request to cover whole range that 563 * the former page group covered */ 564 head->wb_bytes = total_bytes; 565 } 566 567 /* Postpone destruction of this request */ 568 if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) { 569 set_bit(PG_INODE_REF, &head->wb_flags); 570 kref_get(&head->wb_kref); 571 atomic_long_inc(&NFS_I(inode)->nrequests); 572 } 573 574 nfs_page_group_unlock(head); 575 576 nfs_destroy_unlinked_subrequests(destroy_list, head, inode); 577 578 /* Did we lose a race with nfs_inode_remove_request()? */ 579 if (!(PagePrivate(page) || PageSwapCache(page))) { 580 nfs_unlock_and_release_request(head); 581 return NULL; 582 } 583 584 /* still holds ref on head from nfs_page_find_head_request 585 * and still has lock on head from lock loop */ 586 return head; 587 588 release_request: 589 nfs_unlock_and_release_request(head); 590 return ERR_PTR(ret); 591 } 592 593 static void nfs_write_error(struct nfs_page *req, int error) 594 { 595 nfs_set_pageerror(page_file_mapping(req->wb_page)); 596 nfs_mapping_set_error(req->wb_page, error); 597 nfs_inode_remove_request(req); 598 nfs_end_page_writeback(req); 599 nfs_release_request(req); 600 } 601 602 /* 603 * Find an associated nfs write request, and prepare to flush it out 604 * May return an error if the user signalled nfs_wait_on_request(). 605 */ 606 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 607 struct page *page) 608 { 609 struct nfs_page *req; 610 int ret = 0; 611 612 req = nfs_lock_and_join_requests(page); 613 if (!req) 614 goto out; 615 ret = PTR_ERR(req); 616 if (IS_ERR(req)) 617 goto out; 618 619 nfs_set_page_writeback(page); 620 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags)); 621 622 /* If there is a fatal error that covers this write, just exit */ 623 ret = pgio->pg_error; 624 if (nfs_error_is_fatal_on_server(ret)) 625 goto out_launder; 626 627 ret = 0; 628 if (!nfs_pageio_add_request(pgio, req)) { 629 ret = pgio->pg_error; 630 /* 631 * Remove the problematic req upon fatal errors on the server 632 */ 633 if (nfs_error_is_fatal(ret)) { 634 if (nfs_error_is_fatal_on_server(ret)) 635 goto out_launder; 636 } else 637 ret = -EAGAIN; 638 nfs_redirty_request(req); 639 pgio->pg_error = 0; 640 } else 641 nfs_add_stats(page_file_mapping(page)->host, 642 NFSIOS_WRITEPAGES, 1); 643 out: 644 return ret; 645 out_launder: 646 nfs_write_error(req, ret); 647 return 0; 648 } 649 650 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, 651 struct nfs_pageio_descriptor *pgio) 652 { 653 int ret; 654 655 nfs_pageio_cond_complete(pgio, page_index(page)); 656 ret = nfs_page_async_flush(pgio, page); 657 if (ret == -EAGAIN) { 658 redirty_page_for_writepage(wbc, page); 659 ret = AOP_WRITEPAGE_ACTIVATE; 660 } 661 return ret; 662 } 663 664 /* 665 * Write an mmapped page to the server. 666 */ 667 static int nfs_writepage_locked(struct page *page, 668 struct writeback_control *wbc) 669 { 670 struct nfs_pageio_descriptor pgio; 671 struct inode *inode = page_file_mapping(page)->host; 672 int err; 673 674 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 675 nfs_pageio_init_write(&pgio, inode, 0, 676 false, &nfs_async_write_completion_ops); 677 err = nfs_do_writepage(page, wbc, &pgio); 678 pgio.pg_error = 0; 679 nfs_pageio_complete(&pgio); 680 if (err < 0) 681 return err; 682 if (nfs_error_is_fatal(pgio.pg_error)) 683 return pgio.pg_error; 684 return 0; 685 } 686 687 int nfs_writepage(struct page *page, struct writeback_control *wbc) 688 { 689 int ret; 690 691 ret = nfs_writepage_locked(page, wbc); 692 if (ret != AOP_WRITEPAGE_ACTIVATE) 693 unlock_page(page); 694 return ret; 695 } 696 697 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 698 { 699 int ret; 700 701 ret = nfs_do_writepage(page, wbc, data); 702 if (ret != AOP_WRITEPAGE_ACTIVATE) 703 unlock_page(page); 704 return ret; 705 } 706 707 static void nfs_io_completion_commit(void *inode) 708 { 709 nfs_commit_inode(inode, 0); 710 } 711 712 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 713 { 714 struct inode *inode = mapping->host; 715 struct nfs_pageio_descriptor pgio; 716 struct nfs_io_completion *ioc; 717 int err; 718 719 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 720 721 ioc = nfs_io_completion_alloc(GFP_KERNEL); 722 if (ioc) 723 nfs_io_completion_init(ioc, nfs_io_completion_commit, inode); 724 725 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false, 726 &nfs_async_write_completion_ops); 727 pgio.pg_io_completion = ioc; 728 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 729 pgio.pg_error = 0; 730 nfs_pageio_complete(&pgio); 731 nfs_io_completion_put(ioc); 732 733 if (err < 0) 734 goto out_err; 735 err = pgio.pg_error; 736 if (nfs_error_is_fatal(err)) 737 goto out_err; 738 return 0; 739 out_err: 740 return err; 741 } 742 743 /* 744 * Insert a write request into an inode 745 */ 746 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 747 { 748 struct address_space *mapping = page_file_mapping(req->wb_page); 749 struct nfs_inode *nfsi = NFS_I(inode); 750 751 WARN_ON_ONCE(req->wb_this_page != req); 752 753 /* Lock the request! */ 754 nfs_lock_request(req); 755 756 /* 757 * Swap-space should not get truncated. Hence no need to plug the race 758 * with invalidate/truncate. 759 */ 760 spin_lock(&mapping->private_lock); 761 if (!nfs_have_writebacks(inode) && 762 NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 763 inode_inc_iversion_raw(inode); 764 if (likely(!PageSwapCache(req->wb_page))) { 765 set_bit(PG_MAPPED, &req->wb_flags); 766 SetPagePrivate(req->wb_page); 767 set_page_private(req->wb_page, (unsigned long)req); 768 } 769 spin_unlock(&mapping->private_lock); 770 atomic_long_inc(&nfsi->nrequests); 771 /* this a head request for a page group - mark it as having an 772 * extra reference so sub groups can follow suit. 773 * This flag also informs pgio layer when to bump nrequests when 774 * adding subrequests. */ 775 WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags)); 776 kref_get(&req->wb_kref); 777 } 778 779 /* 780 * Remove a write request from an inode 781 */ 782 static void nfs_inode_remove_request(struct nfs_page *req) 783 { 784 struct address_space *mapping = page_file_mapping(req->wb_page); 785 struct inode *inode = mapping->host; 786 struct nfs_inode *nfsi = NFS_I(inode); 787 struct nfs_page *head; 788 789 atomic_long_dec(&nfsi->nrequests); 790 if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) { 791 head = req->wb_head; 792 793 spin_lock(&mapping->private_lock); 794 if (likely(head->wb_page && !PageSwapCache(head->wb_page))) { 795 set_page_private(head->wb_page, 0); 796 ClearPagePrivate(head->wb_page); 797 clear_bit(PG_MAPPED, &head->wb_flags); 798 } 799 spin_unlock(&mapping->private_lock); 800 } 801 802 if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) 803 nfs_release_request(req); 804 } 805 806 static void 807 nfs_mark_request_dirty(struct nfs_page *req) 808 { 809 if (req->wb_page) 810 __set_page_dirty_nobuffers(req->wb_page); 811 } 812 813 /* 814 * nfs_page_search_commits_for_head_request_locked 815 * 816 * Search through commit lists on @inode for the head request for @page. 817 * Must be called while holding the inode (which is cinfo) lock. 818 * 819 * Returns the head request if found, or NULL if not found. 820 */ 821 static struct nfs_page * 822 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi, 823 struct page *page) 824 { 825 struct nfs_page *freq, *t; 826 struct nfs_commit_info cinfo; 827 struct inode *inode = &nfsi->vfs_inode; 828 829 nfs_init_cinfo_from_inode(&cinfo, inode); 830 831 /* search through pnfs commit lists */ 832 freq = pnfs_search_commit_reqs(inode, &cinfo, page); 833 if (freq) 834 return freq->wb_head; 835 836 /* Linearly search the commit list for the correct request */ 837 list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) { 838 if (freq->wb_page == page) 839 return freq->wb_head; 840 } 841 842 return NULL; 843 } 844 845 /** 846 * nfs_request_add_commit_list_locked - add request to a commit list 847 * @req: pointer to a struct nfs_page 848 * @dst: commit list head 849 * @cinfo: holds list lock and accounting info 850 * 851 * This sets the PG_CLEAN bit, updates the cinfo count of 852 * number of outstanding requests requiring a commit as well as 853 * the MM page stats. 854 * 855 * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the 856 * nfs_page lock. 857 */ 858 void 859 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst, 860 struct nfs_commit_info *cinfo) 861 { 862 set_bit(PG_CLEAN, &req->wb_flags); 863 nfs_list_add_request(req, dst); 864 atomic_long_inc(&cinfo->mds->ncommit); 865 } 866 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked); 867 868 /** 869 * nfs_request_add_commit_list - add request to a commit list 870 * @req: pointer to a struct nfs_page 871 * @cinfo: holds list lock and accounting info 872 * 873 * This sets the PG_CLEAN bit, updates the cinfo count of 874 * number of outstanding requests requiring a commit as well as 875 * the MM page stats. 876 * 877 * The caller must _not_ hold the cinfo->lock, but must be 878 * holding the nfs_page lock. 879 */ 880 void 881 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo) 882 { 883 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 884 nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo); 885 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 886 if (req->wb_page) 887 nfs_mark_page_unstable(req->wb_page, cinfo); 888 } 889 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list); 890 891 /** 892 * nfs_request_remove_commit_list - Remove request from a commit list 893 * @req: pointer to a nfs_page 894 * @cinfo: holds list lock and accounting info 895 * 896 * This clears the PG_CLEAN bit, and updates the cinfo's count of 897 * number of outstanding requests requiring a commit 898 * It does not update the MM page stats. 899 * 900 * The caller _must_ hold the cinfo->lock and the nfs_page lock. 901 */ 902 void 903 nfs_request_remove_commit_list(struct nfs_page *req, 904 struct nfs_commit_info *cinfo) 905 { 906 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) 907 return; 908 nfs_list_remove_request(req); 909 atomic_long_dec(&cinfo->mds->ncommit); 910 } 911 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list); 912 913 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 914 struct inode *inode) 915 { 916 cinfo->inode = inode; 917 cinfo->mds = &NFS_I(inode)->commit_info; 918 cinfo->ds = pnfs_get_ds_info(inode); 919 cinfo->dreq = NULL; 920 cinfo->completion_ops = &nfs_commit_completion_ops; 921 } 922 923 void nfs_init_cinfo(struct nfs_commit_info *cinfo, 924 struct inode *inode, 925 struct nfs_direct_req *dreq) 926 { 927 if (dreq) 928 nfs_init_cinfo_from_dreq(cinfo, dreq); 929 else 930 nfs_init_cinfo_from_inode(cinfo, inode); 931 } 932 EXPORT_SYMBOL_GPL(nfs_init_cinfo); 933 934 /* 935 * Add a request to the inode's commit list. 936 */ 937 void 938 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, 939 struct nfs_commit_info *cinfo, u32 ds_commit_idx) 940 { 941 if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx)) 942 return; 943 nfs_request_add_commit_list(req, cinfo); 944 } 945 946 static void 947 nfs_clear_page_commit(struct page *page) 948 { 949 dec_node_page_state(page, NR_UNSTABLE_NFS); 950 dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb, 951 WB_RECLAIMABLE); 952 } 953 954 /* Called holding the request lock on @req */ 955 static void 956 nfs_clear_request_commit(struct nfs_page *req) 957 { 958 if (test_bit(PG_CLEAN, &req->wb_flags)) { 959 struct nfs_open_context *ctx = nfs_req_openctx(req); 960 struct inode *inode = d_inode(ctx->dentry); 961 struct nfs_commit_info cinfo; 962 963 nfs_init_cinfo_from_inode(&cinfo, inode); 964 mutex_lock(&NFS_I(inode)->commit_mutex); 965 if (!pnfs_clear_request_commit(req, &cinfo)) { 966 nfs_request_remove_commit_list(req, &cinfo); 967 } 968 mutex_unlock(&NFS_I(inode)->commit_mutex); 969 nfs_clear_page_commit(req->wb_page); 970 } 971 } 972 973 int nfs_write_need_commit(struct nfs_pgio_header *hdr) 974 { 975 if (hdr->verf.committed == NFS_DATA_SYNC) 976 return hdr->lseg == NULL; 977 return hdr->verf.committed != NFS_FILE_SYNC; 978 } 979 980 static void nfs_async_write_init(struct nfs_pgio_header *hdr) 981 { 982 nfs_io_completion_get(hdr->io_completion); 983 } 984 985 static void nfs_write_completion(struct nfs_pgio_header *hdr) 986 { 987 struct nfs_commit_info cinfo; 988 unsigned long bytes = 0; 989 990 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 991 goto out; 992 nfs_init_cinfo_from_inode(&cinfo, hdr->inode); 993 while (!list_empty(&hdr->pages)) { 994 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 995 996 bytes += req->wb_bytes; 997 nfs_list_remove_request(req); 998 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && 999 (hdr->good_bytes < bytes)) { 1000 nfs_set_pageerror(page_file_mapping(req->wb_page)); 1001 nfs_mapping_set_error(req->wb_page, hdr->error); 1002 goto remove_req; 1003 } 1004 if (nfs_write_need_commit(hdr)) { 1005 /* Reset wb_nio, since the write was successful. */ 1006 req->wb_nio = 0; 1007 memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf)); 1008 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 1009 hdr->pgio_mirror_idx); 1010 goto next; 1011 } 1012 remove_req: 1013 nfs_inode_remove_request(req); 1014 next: 1015 nfs_end_page_writeback(req); 1016 nfs_release_request(req); 1017 } 1018 out: 1019 nfs_io_completion_put(hdr->io_completion); 1020 hdr->release(hdr); 1021 } 1022 1023 unsigned long 1024 nfs_reqs_to_commit(struct nfs_commit_info *cinfo) 1025 { 1026 return atomic_long_read(&cinfo->mds->ncommit); 1027 } 1028 1029 /* NFS_I(cinfo->inode)->commit_mutex held by caller */ 1030 int 1031 nfs_scan_commit_list(struct list_head *src, struct list_head *dst, 1032 struct nfs_commit_info *cinfo, int max) 1033 { 1034 struct nfs_page *req, *tmp; 1035 int ret = 0; 1036 1037 restart: 1038 list_for_each_entry_safe(req, tmp, src, wb_list) { 1039 kref_get(&req->wb_kref); 1040 if (!nfs_lock_request(req)) { 1041 int status; 1042 1043 /* Prevent deadlock with nfs_lock_and_join_requests */ 1044 if (!list_empty(dst)) { 1045 nfs_release_request(req); 1046 continue; 1047 } 1048 /* Ensure we make progress to prevent livelock */ 1049 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 1050 status = nfs_wait_on_request(req); 1051 nfs_release_request(req); 1052 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 1053 if (status < 0) 1054 break; 1055 goto restart; 1056 } 1057 nfs_request_remove_commit_list(req, cinfo); 1058 clear_bit(PG_COMMIT_TO_DS, &req->wb_flags); 1059 nfs_list_add_request(req, dst); 1060 ret++; 1061 if ((ret == max) && !cinfo->dreq) 1062 break; 1063 cond_resched(); 1064 } 1065 return ret; 1066 } 1067 EXPORT_SYMBOL_GPL(nfs_scan_commit_list); 1068 1069 /* 1070 * nfs_scan_commit - Scan an inode for commit requests 1071 * @inode: NFS inode to scan 1072 * @dst: mds destination list 1073 * @cinfo: mds and ds lists of reqs ready to commit 1074 * 1075 * Moves requests from the inode's 'commit' request list. 1076 * The requests are *not* checked to ensure that they form a contiguous set. 1077 */ 1078 int 1079 nfs_scan_commit(struct inode *inode, struct list_head *dst, 1080 struct nfs_commit_info *cinfo) 1081 { 1082 int ret = 0; 1083 1084 if (!atomic_long_read(&cinfo->mds->ncommit)) 1085 return 0; 1086 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 1087 if (atomic_long_read(&cinfo->mds->ncommit) > 0) { 1088 const int max = INT_MAX; 1089 1090 ret = nfs_scan_commit_list(&cinfo->mds->list, dst, 1091 cinfo, max); 1092 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret); 1093 } 1094 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 1095 return ret; 1096 } 1097 1098 /* 1099 * Search for an existing write request, and attempt to update 1100 * it to reflect a new dirty region on a given page. 1101 * 1102 * If the attempt fails, then the existing request is flushed out 1103 * to disk. 1104 */ 1105 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 1106 struct page *page, 1107 unsigned int offset, 1108 unsigned int bytes) 1109 { 1110 struct nfs_page *req; 1111 unsigned int rqend; 1112 unsigned int end; 1113 int error; 1114 1115 end = offset + bytes; 1116 1117 req = nfs_lock_and_join_requests(page); 1118 if (IS_ERR_OR_NULL(req)) 1119 return req; 1120 1121 rqend = req->wb_offset + req->wb_bytes; 1122 /* 1123 * Tell the caller to flush out the request if 1124 * the offsets are non-contiguous. 1125 * Note: nfs_flush_incompatible() will already 1126 * have flushed out requests having wrong owners. 1127 */ 1128 if (offset > rqend || end < req->wb_offset) 1129 goto out_flushme; 1130 1131 /* Okay, the request matches. Update the region */ 1132 if (offset < req->wb_offset) { 1133 req->wb_offset = offset; 1134 req->wb_pgbase = offset; 1135 } 1136 if (end > rqend) 1137 req->wb_bytes = end - req->wb_offset; 1138 else 1139 req->wb_bytes = rqend - req->wb_offset; 1140 req->wb_nio = 0; 1141 return req; 1142 out_flushme: 1143 /* 1144 * Note: we mark the request dirty here because 1145 * nfs_lock_and_join_requests() cannot preserve 1146 * commit flags, so we have to replay the write. 1147 */ 1148 nfs_mark_request_dirty(req); 1149 nfs_unlock_and_release_request(req); 1150 error = nfs_wb_page(inode, page); 1151 return (error < 0) ? ERR_PTR(error) : NULL; 1152 } 1153 1154 /* 1155 * Try to update an existing write request, or create one if there is none. 1156 * 1157 * Note: Should always be called with the Page Lock held to prevent races 1158 * if we have to add a new request. Also assumes that the caller has 1159 * already called nfs_flush_incompatible() if necessary. 1160 */ 1161 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 1162 struct page *page, unsigned int offset, unsigned int bytes) 1163 { 1164 struct inode *inode = page_file_mapping(page)->host; 1165 struct nfs_page *req; 1166 1167 req = nfs_try_to_update_request(inode, page, offset, bytes); 1168 if (req != NULL) 1169 goto out; 1170 req = nfs_create_request(ctx, page, offset, bytes); 1171 if (IS_ERR(req)) 1172 goto out; 1173 nfs_inode_add_request(inode, req); 1174 out: 1175 return req; 1176 } 1177 1178 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 1179 unsigned int offset, unsigned int count) 1180 { 1181 struct nfs_page *req; 1182 1183 req = nfs_setup_write_request(ctx, page, offset, count); 1184 if (IS_ERR(req)) 1185 return PTR_ERR(req); 1186 /* Update file length */ 1187 nfs_grow_file(page, offset, count); 1188 nfs_mark_uptodate(req); 1189 nfs_mark_request_dirty(req); 1190 nfs_unlock_and_release_request(req); 1191 return 0; 1192 } 1193 1194 int nfs_flush_incompatible(struct file *file, struct page *page) 1195 { 1196 struct nfs_open_context *ctx = nfs_file_open_context(file); 1197 struct nfs_lock_context *l_ctx; 1198 struct file_lock_context *flctx = file_inode(file)->i_flctx; 1199 struct nfs_page *req; 1200 int do_flush, status; 1201 /* 1202 * Look for a request corresponding to this page. If there 1203 * is one, and it belongs to another file, we flush it out 1204 * before we try to copy anything into the page. Do this 1205 * due to the lack of an ACCESS-type call in NFSv2. 1206 * Also do the same if we find a request from an existing 1207 * dropped page. 1208 */ 1209 do { 1210 req = nfs_page_find_head_request(page); 1211 if (req == NULL) 1212 return 0; 1213 l_ctx = req->wb_lock_context; 1214 do_flush = req->wb_page != page || 1215 !nfs_match_open_context(nfs_req_openctx(req), ctx); 1216 if (l_ctx && flctx && 1217 !(list_empty_careful(&flctx->flc_posix) && 1218 list_empty_careful(&flctx->flc_flock))) { 1219 do_flush |= l_ctx->lockowner != current->files; 1220 } 1221 nfs_release_request(req); 1222 if (!do_flush) 1223 return 0; 1224 status = nfs_wb_page(page_file_mapping(page)->host, page); 1225 } while (status == 0); 1226 return status; 1227 } 1228 1229 /* 1230 * Avoid buffered writes when a open context credential's key would 1231 * expire soon. 1232 * 1233 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL. 1234 * 1235 * Return 0 and set a credential flag which triggers the inode to flush 1236 * and performs NFS_FILE_SYNC writes if the key will expired within 1237 * RPC_KEY_EXPIRE_TIMEO. 1238 */ 1239 int 1240 nfs_key_timeout_notify(struct file *filp, struct inode *inode) 1241 { 1242 struct nfs_open_context *ctx = nfs_file_open_context(filp); 1243 1244 if (nfs_ctx_key_to_expire(ctx, inode) && 1245 !ctx->ll_cred) 1246 /* Already expired! */ 1247 return -EACCES; 1248 return 0; 1249 } 1250 1251 /* 1252 * Test if the open context credential key is marked to expire soon. 1253 */ 1254 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode) 1255 { 1256 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth; 1257 struct rpc_cred *cred = ctx->ll_cred; 1258 struct auth_cred acred = { 1259 .cred = ctx->cred, 1260 }; 1261 1262 if (cred && !cred->cr_ops->crmatch(&acred, cred, 0)) { 1263 put_rpccred(cred); 1264 ctx->ll_cred = NULL; 1265 cred = NULL; 1266 } 1267 if (!cred) 1268 cred = auth->au_ops->lookup_cred(auth, &acred, 0); 1269 if (!cred || IS_ERR(cred)) 1270 return true; 1271 ctx->ll_cred = cred; 1272 return !!(cred->cr_ops->crkey_timeout && 1273 cred->cr_ops->crkey_timeout(cred)); 1274 } 1275 1276 /* 1277 * If the page cache is marked as unsafe or invalid, then we can't rely on 1278 * the PageUptodate() flag. In this case, we will need to turn off 1279 * write optimisations that depend on the page contents being correct. 1280 */ 1281 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode) 1282 { 1283 struct nfs_inode *nfsi = NFS_I(inode); 1284 1285 if (nfs_have_delegated_attributes(inode)) 1286 goto out; 1287 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 1288 return false; 1289 smp_rmb(); 1290 if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags)) 1291 return false; 1292 out: 1293 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 1294 return false; 1295 return PageUptodate(page) != 0; 1296 } 1297 1298 static bool 1299 is_whole_file_wrlock(struct file_lock *fl) 1300 { 1301 return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX && 1302 fl->fl_type == F_WRLCK; 1303 } 1304 1305 /* If we know the page is up to date, and we're not using byte range locks (or 1306 * if we have the whole file locked for writing), it may be more efficient to 1307 * extend the write to cover the entire page in order to avoid fragmentation 1308 * inefficiencies. 1309 * 1310 * If the file is opened for synchronous writes then we can just skip the rest 1311 * of the checks. 1312 */ 1313 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode) 1314 { 1315 int ret; 1316 struct file_lock_context *flctx = inode->i_flctx; 1317 struct file_lock *fl; 1318 1319 if (file->f_flags & O_DSYNC) 1320 return 0; 1321 if (!nfs_write_pageuptodate(page, inode)) 1322 return 0; 1323 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 1324 return 1; 1325 if (!flctx || (list_empty_careful(&flctx->flc_flock) && 1326 list_empty_careful(&flctx->flc_posix))) 1327 return 1; 1328 1329 /* Check to see if there are whole file write locks */ 1330 ret = 0; 1331 spin_lock(&flctx->flc_lock); 1332 if (!list_empty(&flctx->flc_posix)) { 1333 fl = list_first_entry(&flctx->flc_posix, struct file_lock, 1334 fl_list); 1335 if (is_whole_file_wrlock(fl)) 1336 ret = 1; 1337 } else if (!list_empty(&flctx->flc_flock)) { 1338 fl = list_first_entry(&flctx->flc_flock, struct file_lock, 1339 fl_list); 1340 if (fl->fl_type == F_WRLCK) 1341 ret = 1; 1342 } 1343 spin_unlock(&flctx->flc_lock); 1344 return ret; 1345 } 1346 1347 /* 1348 * Update and possibly write a cached page of an NFS file. 1349 * 1350 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 1351 * things with a page scheduled for an RPC call (e.g. invalidate it). 1352 */ 1353 int nfs_updatepage(struct file *file, struct page *page, 1354 unsigned int offset, unsigned int count) 1355 { 1356 struct nfs_open_context *ctx = nfs_file_open_context(file); 1357 struct address_space *mapping = page_file_mapping(page); 1358 struct inode *inode = mapping->host; 1359 int status = 0; 1360 1361 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 1362 1363 dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n", 1364 file, count, (long long)(page_file_offset(page) + offset)); 1365 1366 if (!count) 1367 goto out; 1368 1369 if (nfs_can_extend_write(file, page, inode)) { 1370 count = max(count + offset, nfs_page_length(page)); 1371 offset = 0; 1372 } 1373 1374 status = nfs_writepage_setup(ctx, page, offset, count); 1375 if (status < 0) 1376 nfs_set_pageerror(mapping); 1377 else 1378 __set_page_dirty_nobuffers(page); 1379 out: 1380 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 1381 status, (long long)i_size_read(inode)); 1382 return status; 1383 } 1384 1385 static int flush_task_priority(int how) 1386 { 1387 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 1388 case FLUSH_HIGHPRI: 1389 return RPC_PRIORITY_HIGH; 1390 case FLUSH_LOWPRI: 1391 return RPC_PRIORITY_LOW; 1392 } 1393 return RPC_PRIORITY_NORMAL; 1394 } 1395 1396 static void nfs_initiate_write(struct nfs_pgio_header *hdr, 1397 struct rpc_message *msg, 1398 const struct nfs_rpc_ops *rpc_ops, 1399 struct rpc_task_setup *task_setup_data, int how) 1400 { 1401 int priority = flush_task_priority(how); 1402 1403 task_setup_data->priority = priority; 1404 rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client); 1405 trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes, 1406 hdr->args.stable); 1407 } 1408 1409 /* If a nfs_flush_* function fails, it should remove reqs from @head and 1410 * call this on each, which will prepare them to be retried on next 1411 * writeback using standard nfs. 1412 */ 1413 static void nfs_redirty_request(struct nfs_page *req) 1414 { 1415 /* Bump the transmission count */ 1416 req->wb_nio++; 1417 nfs_mark_request_dirty(req); 1418 set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags); 1419 nfs_end_page_writeback(req); 1420 nfs_release_request(req); 1421 } 1422 1423 static void nfs_async_write_error(struct list_head *head, int error) 1424 { 1425 struct nfs_page *req; 1426 1427 while (!list_empty(head)) { 1428 req = nfs_list_entry(head->next); 1429 nfs_list_remove_request(req); 1430 if (nfs_error_is_fatal(error)) 1431 nfs_write_error(req, error); 1432 else 1433 nfs_redirty_request(req); 1434 } 1435 } 1436 1437 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr) 1438 { 1439 nfs_async_write_error(&hdr->pages, 0); 1440 filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset, 1441 hdr->args.offset + hdr->args.count - 1); 1442 } 1443 1444 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = { 1445 .init_hdr = nfs_async_write_init, 1446 .error_cleanup = nfs_async_write_error, 1447 .completion = nfs_write_completion, 1448 .reschedule_io = nfs_async_write_reschedule_io, 1449 }; 1450 1451 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 1452 struct inode *inode, int ioflags, bool force_mds, 1453 const struct nfs_pgio_completion_ops *compl_ops) 1454 { 1455 struct nfs_server *server = NFS_SERVER(inode); 1456 const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops; 1457 1458 #ifdef CONFIG_NFS_V4_1 1459 if (server->pnfs_curr_ld && !force_mds) 1460 pg_ops = server->pnfs_curr_ld->pg_write_ops; 1461 #endif 1462 nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops, 1463 server->wsize, ioflags); 1464 } 1465 EXPORT_SYMBOL_GPL(nfs_pageio_init_write); 1466 1467 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio) 1468 { 1469 struct nfs_pgio_mirror *mirror; 1470 1471 if (pgio->pg_ops && pgio->pg_ops->pg_cleanup) 1472 pgio->pg_ops->pg_cleanup(pgio); 1473 1474 pgio->pg_ops = &nfs_pgio_rw_ops; 1475 1476 nfs_pageio_stop_mirroring(pgio); 1477 1478 mirror = &pgio->pg_mirrors[0]; 1479 mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize; 1480 } 1481 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds); 1482 1483 1484 void nfs_commit_prepare(struct rpc_task *task, void *calldata) 1485 { 1486 struct nfs_commit_data *data = calldata; 1487 1488 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data); 1489 } 1490 1491 /* 1492 * Special version of should_remove_suid() that ignores capabilities. 1493 */ 1494 static int nfs_should_remove_suid(const struct inode *inode) 1495 { 1496 umode_t mode = inode->i_mode; 1497 int kill = 0; 1498 1499 /* suid always must be killed */ 1500 if (unlikely(mode & S_ISUID)) 1501 kill = ATTR_KILL_SUID; 1502 1503 /* 1504 * sgid without any exec bits is just a mandatory locking mark; leave 1505 * it alone. If some exec bits are set, it's a real sgid; kill it. 1506 */ 1507 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1508 kill |= ATTR_KILL_SGID; 1509 1510 if (unlikely(kill && S_ISREG(mode))) 1511 return kill; 1512 1513 return 0; 1514 } 1515 1516 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr, 1517 struct nfs_fattr *fattr) 1518 { 1519 struct nfs_pgio_args *argp = &hdr->args; 1520 struct nfs_pgio_res *resp = &hdr->res; 1521 u64 size = argp->offset + resp->count; 1522 1523 if (!(fattr->valid & NFS_ATTR_FATTR_SIZE)) 1524 fattr->size = size; 1525 if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) { 1526 fattr->valid &= ~NFS_ATTR_FATTR_SIZE; 1527 return; 1528 } 1529 if (size != fattr->size) 1530 return; 1531 /* Set attribute barrier */ 1532 nfs_fattr_set_barrier(fattr); 1533 /* ...and update size */ 1534 fattr->valid |= NFS_ATTR_FATTR_SIZE; 1535 } 1536 1537 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr) 1538 { 1539 struct nfs_fattr *fattr = &hdr->fattr; 1540 struct inode *inode = hdr->inode; 1541 1542 spin_lock(&inode->i_lock); 1543 nfs_writeback_check_extend(hdr, fattr); 1544 nfs_post_op_update_inode_force_wcc_locked(inode, fattr); 1545 spin_unlock(&inode->i_lock); 1546 } 1547 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode); 1548 1549 /* 1550 * This function is called when the WRITE call is complete. 1551 */ 1552 static int nfs_writeback_done(struct rpc_task *task, 1553 struct nfs_pgio_header *hdr, 1554 struct inode *inode) 1555 { 1556 int status; 1557 1558 /* 1559 * ->write_done will attempt to use post-op attributes to detect 1560 * conflicting writes by other clients. A strict interpretation 1561 * of close-to-open would allow us to continue caching even if 1562 * another writer had changed the file, but some applications 1563 * depend on tighter cache coherency when writing. 1564 */ 1565 status = NFS_PROTO(inode)->write_done(task, hdr); 1566 if (status != 0) 1567 return status; 1568 1569 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count); 1570 trace_nfs_writeback_done(inode, task->tk_status, 1571 hdr->args.offset, hdr->res.verf); 1572 1573 if (hdr->res.verf->committed < hdr->args.stable && 1574 task->tk_status >= 0) { 1575 /* We tried a write call, but the server did not 1576 * commit data to stable storage even though we 1577 * requested it. 1578 * Note: There is a known bug in Tru64 < 5.0 in which 1579 * the server reports NFS_DATA_SYNC, but performs 1580 * NFS_FILE_SYNC. We therefore implement this checking 1581 * as a dprintk() in order to avoid filling syslog. 1582 */ 1583 static unsigned long complain; 1584 1585 /* Note this will print the MDS for a DS write */ 1586 if (time_before(complain, jiffies)) { 1587 dprintk("NFS: faulty NFS server %s:" 1588 " (committed = %d) != (stable = %d)\n", 1589 NFS_SERVER(inode)->nfs_client->cl_hostname, 1590 hdr->res.verf->committed, hdr->args.stable); 1591 complain = jiffies + 300 * HZ; 1592 } 1593 } 1594 1595 /* Deal with the suid/sgid bit corner case */ 1596 if (nfs_should_remove_suid(inode)) { 1597 spin_lock(&inode->i_lock); 1598 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_OTHER; 1599 spin_unlock(&inode->i_lock); 1600 } 1601 return 0; 1602 } 1603 1604 /* 1605 * This function is called when the WRITE call is complete. 1606 */ 1607 static void nfs_writeback_result(struct rpc_task *task, 1608 struct nfs_pgio_header *hdr) 1609 { 1610 struct nfs_pgio_args *argp = &hdr->args; 1611 struct nfs_pgio_res *resp = &hdr->res; 1612 1613 if (resp->count < argp->count) { 1614 static unsigned long complain; 1615 1616 /* This a short write! */ 1617 nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE); 1618 1619 /* Has the server at least made some progress? */ 1620 if (resp->count == 0) { 1621 if (time_before(complain, jiffies)) { 1622 printk(KERN_WARNING 1623 "NFS: Server wrote zero bytes, expected %u.\n", 1624 argp->count); 1625 complain = jiffies + 300 * HZ; 1626 } 1627 nfs_set_pgio_error(hdr, -EIO, argp->offset); 1628 task->tk_status = -EIO; 1629 return; 1630 } 1631 1632 /* For non rpc-based layout drivers, retry-through-MDS */ 1633 if (!task->tk_ops) { 1634 hdr->pnfs_error = -EAGAIN; 1635 return; 1636 } 1637 1638 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1639 if (resp->verf->committed != NFS_UNSTABLE) { 1640 /* Resend from where the server left off */ 1641 hdr->mds_offset += resp->count; 1642 argp->offset += resp->count; 1643 argp->pgbase += resp->count; 1644 argp->count -= resp->count; 1645 } else { 1646 /* Resend as a stable write in order to avoid 1647 * headaches in the case of a server crash. 1648 */ 1649 argp->stable = NFS_FILE_SYNC; 1650 } 1651 rpc_restart_call_prepare(task); 1652 } 1653 } 1654 1655 static int wait_on_commit(struct nfs_mds_commit_info *cinfo) 1656 { 1657 return wait_var_event_killable(&cinfo->rpcs_out, 1658 !atomic_read(&cinfo->rpcs_out)); 1659 } 1660 1661 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo) 1662 { 1663 atomic_inc(&cinfo->rpcs_out); 1664 } 1665 1666 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo) 1667 { 1668 if (atomic_dec_and_test(&cinfo->rpcs_out)) 1669 wake_up_var(&cinfo->rpcs_out); 1670 } 1671 1672 void nfs_commitdata_release(struct nfs_commit_data *data) 1673 { 1674 put_nfs_open_context(data->context); 1675 nfs_commit_free(data); 1676 } 1677 EXPORT_SYMBOL_GPL(nfs_commitdata_release); 1678 1679 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data, 1680 const struct nfs_rpc_ops *nfs_ops, 1681 const struct rpc_call_ops *call_ops, 1682 int how, int flags) 1683 { 1684 struct rpc_task *task; 1685 int priority = flush_task_priority(how); 1686 struct rpc_message msg = { 1687 .rpc_argp = &data->args, 1688 .rpc_resp = &data->res, 1689 .rpc_cred = data->cred, 1690 }; 1691 struct rpc_task_setup task_setup_data = { 1692 .task = &data->task, 1693 .rpc_client = clnt, 1694 .rpc_message = &msg, 1695 .callback_ops = call_ops, 1696 .callback_data = data, 1697 .workqueue = nfsiod_workqueue, 1698 .flags = RPC_TASK_ASYNC | flags, 1699 .priority = priority, 1700 }; 1701 /* Set up the initial task struct. */ 1702 nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client); 1703 trace_nfs_initiate_commit(data); 1704 1705 dprintk("NFS: initiated commit call\n"); 1706 1707 task = rpc_run_task(&task_setup_data); 1708 if (IS_ERR(task)) 1709 return PTR_ERR(task); 1710 if (how & FLUSH_SYNC) 1711 rpc_wait_for_completion_task(task); 1712 rpc_put_task(task); 1713 return 0; 1714 } 1715 EXPORT_SYMBOL_GPL(nfs_initiate_commit); 1716 1717 static loff_t nfs_get_lwb(struct list_head *head) 1718 { 1719 loff_t lwb = 0; 1720 struct nfs_page *req; 1721 1722 list_for_each_entry(req, head, wb_list) 1723 if (lwb < (req_offset(req) + req->wb_bytes)) 1724 lwb = req_offset(req) + req->wb_bytes; 1725 1726 return lwb; 1727 } 1728 1729 /* 1730 * Set up the argument/result storage required for the RPC call. 1731 */ 1732 void nfs_init_commit(struct nfs_commit_data *data, 1733 struct list_head *head, 1734 struct pnfs_layout_segment *lseg, 1735 struct nfs_commit_info *cinfo) 1736 { 1737 struct nfs_page *first = nfs_list_entry(head->next); 1738 struct nfs_open_context *ctx = nfs_req_openctx(first); 1739 struct inode *inode = d_inode(ctx->dentry); 1740 1741 /* Set up the RPC argument and reply structs 1742 * NB: take care not to mess about with data->commit et al. */ 1743 1744 list_splice_init(head, &data->pages); 1745 1746 data->inode = inode; 1747 data->cred = ctx->cred; 1748 data->lseg = lseg; /* reference transferred */ 1749 /* only set lwb for pnfs commit */ 1750 if (lseg) 1751 data->lwb = nfs_get_lwb(&data->pages); 1752 data->mds_ops = &nfs_commit_ops; 1753 data->completion_ops = cinfo->completion_ops; 1754 data->dreq = cinfo->dreq; 1755 1756 data->args.fh = NFS_FH(data->inode); 1757 /* Note: we always request a commit of the entire inode */ 1758 data->args.offset = 0; 1759 data->args.count = 0; 1760 data->context = get_nfs_open_context(ctx); 1761 data->res.fattr = &data->fattr; 1762 data->res.verf = &data->verf; 1763 nfs_fattr_init(&data->fattr); 1764 } 1765 EXPORT_SYMBOL_GPL(nfs_init_commit); 1766 1767 void nfs_retry_commit(struct list_head *page_list, 1768 struct pnfs_layout_segment *lseg, 1769 struct nfs_commit_info *cinfo, 1770 u32 ds_commit_idx) 1771 { 1772 struct nfs_page *req; 1773 1774 while (!list_empty(page_list)) { 1775 req = nfs_list_entry(page_list->next); 1776 nfs_list_remove_request(req); 1777 nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx); 1778 if (!cinfo->dreq) 1779 nfs_clear_page_commit(req->wb_page); 1780 nfs_unlock_and_release_request(req); 1781 } 1782 } 1783 EXPORT_SYMBOL_GPL(nfs_retry_commit); 1784 1785 static void 1786 nfs_commit_resched_write(struct nfs_commit_info *cinfo, 1787 struct nfs_page *req) 1788 { 1789 __set_page_dirty_nobuffers(req->wb_page); 1790 } 1791 1792 /* 1793 * Commit dirty pages 1794 */ 1795 static int 1796 nfs_commit_list(struct inode *inode, struct list_head *head, int how, 1797 struct nfs_commit_info *cinfo) 1798 { 1799 struct nfs_commit_data *data; 1800 1801 /* another commit raced with us */ 1802 if (list_empty(head)) 1803 return 0; 1804 1805 data = nfs_commitdata_alloc(true); 1806 1807 /* Set up the argument struct */ 1808 nfs_init_commit(data, head, NULL, cinfo); 1809 atomic_inc(&cinfo->mds->rpcs_out); 1810 return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode), 1811 data->mds_ops, how, 0); 1812 } 1813 1814 /* 1815 * COMMIT call returned 1816 */ 1817 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1818 { 1819 struct nfs_commit_data *data = calldata; 1820 1821 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1822 task->tk_pid, task->tk_status); 1823 1824 /* Call the NFS version-specific code */ 1825 NFS_PROTO(data->inode)->commit_done(task, data); 1826 trace_nfs_commit_done(data); 1827 } 1828 1829 static void nfs_commit_release_pages(struct nfs_commit_data *data) 1830 { 1831 struct nfs_page *req; 1832 int status = data->task.tk_status; 1833 struct nfs_commit_info cinfo; 1834 struct nfs_server *nfss; 1835 1836 while (!list_empty(&data->pages)) { 1837 req = nfs_list_entry(data->pages.next); 1838 nfs_list_remove_request(req); 1839 if (req->wb_page) 1840 nfs_clear_page_commit(req->wb_page); 1841 1842 dprintk("NFS: commit (%s/%llu %d@%lld)", 1843 nfs_req_openctx(req)->dentry->d_sb->s_id, 1844 (unsigned long long)NFS_FILEID(d_inode(nfs_req_openctx(req)->dentry)), 1845 req->wb_bytes, 1846 (long long)req_offset(req)); 1847 if (status < 0) { 1848 if (req->wb_page) { 1849 nfs_mapping_set_error(req->wb_page, status); 1850 nfs_inode_remove_request(req); 1851 } 1852 dprintk_cont(", error = %d\n", status); 1853 goto next; 1854 } 1855 1856 /* Okay, COMMIT succeeded, apparently. Check the verifier 1857 * returned by the server against all stored verfs. */ 1858 if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) { 1859 /* We have a match */ 1860 if (req->wb_page) 1861 nfs_inode_remove_request(req); 1862 dprintk_cont(" OK\n"); 1863 goto next; 1864 } 1865 /* We have a mismatch. Write the page again */ 1866 dprintk_cont(" mismatch\n"); 1867 nfs_mark_request_dirty(req); 1868 set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags); 1869 next: 1870 nfs_unlock_and_release_request(req); 1871 /* Latency breaker */ 1872 cond_resched(); 1873 } 1874 nfss = NFS_SERVER(data->inode); 1875 if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 1876 clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC); 1877 1878 nfs_init_cinfo(&cinfo, data->inode, data->dreq); 1879 nfs_commit_end(cinfo.mds); 1880 } 1881 1882 static void nfs_commit_release(void *calldata) 1883 { 1884 struct nfs_commit_data *data = calldata; 1885 1886 data->completion_ops->completion(data); 1887 nfs_commitdata_release(calldata); 1888 } 1889 1890 static const struct rpc_call_ops nfs_commit_ops = { 1891 .rpc_call_prepare = nfs_commit_prepare, 1892 .rpc_call_done = nfs_commit_done, 1893 .rpc_release = nfs_commit_release, 1894 }; 1895 1896 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = { 1897 .completion = nfs_commit_release_pages, 1898 .resched_write = nfs_commit_resched_write, 1899 }; 1900 1901 int nfs_generic_commit_list(struct inode *inode, struct list_head *head, 1902 int how, struct nfs_commit_info *cinfo) 1903 { 1904 int status; 1905 1906 status = pnfs_commit_list(inode, head, how, cinfo); 1907 if (status == PNFS_NOT_ATTEMPTED) 1908 status = nfs_commit_list(inode, head, how, cinfo); 1909 return status; 1910 } 1911 1912 static int __nfs_commit_inode(struct inode *inode, int how, 1913 struct writeback_control *wbc) 1914 { 1915 LIST_HEAD(head); 1916 struct nfs_commit_info cinfo; 1917 int may_wait = how & FLUSH_SYNC; 1918 int ret, nscan; 1919 1920 nfs_init_cinfo_from_inode(&cinfo, inode); 1921 nfs_commit_begin(cinfo.mds); 1922 for (;;) { 1923 ret = nscan = nfs_scan_commit(inode, &head, &cinfo); 1924 if (ret <= 0) 1925 break; 1926 ret = nfs_generic_commit_list(inode, &head, how, &cinfo); 1927 if (ret < 0) 1928 break; 1929 ret = 0; 1930 if (wbc && wbc->sync_mode == WB_SYNC_NONE) { 1931 if (nscan < wbc->nr_to_write) 1932 wbc->nr_to_write -= nscan; 1933 else 1934 wbc->nr_to_write = 0; 1935 } 1936 if (nscan < INT_MAX) 1937 break; 1938 cond_resched(); 1939 } 1940 nfs_commit_end(cinfo.mds); 1941 if (ret || !may_wait) 1942 return ret; 1943 return wait_on_commit(cinfo.mds); 1944 } 1945 1946 int nfs_commit_inode(struct inode *inode, int how) 1947 { 1948 return __nfs_commit_inode(inode, how, NULL); 1949 } 1950 EXPORT_SYMBOL_GPL(nfs_commit_inode); 1951 1952 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1953 { 1954 struct nfs_inode *nfsi = NFS_I(inode); 1955 int flags = FLUSH_SYNC; 1956 int ret = 0; 1957 1958 if (wbc->sync_mode == WB_SYNC_NONE) { 1959 /* no commits means nothing needs to be done */ 1960 if (!atomic_long_read(&nfsi->commit_info.ncommit)) 1961 goto check_requests_outstanding; 1962 1963 /* Don't commit yet if this is a non-blocking flush and there 1964 * are a lot of outstanding writes for this mapping. 1965 */ 1966 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)) 1967 goto out_mark_dirty; 1968 1969 /* don't wait for the COMMIT response */ 1970 flags = 0; 1971 } 1972 1973 ret = __nfs_commit_inode(inode, flags, wbc); 1974 if (!ret) { 1975 if (flags & FLUSH_SYNC) 1976 return 0; 1977 } else if (atomic_long_read(&nfsi->commit_info.ncommit)) 1978 goto out_mark_dirty; 1979 1980 check_requests_outstanding: 1981 if (!atomic_read(&nfsi->commit_info.rpcs_out)) 1982 return ret; 1983 out_mark_dirty: 1984 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1985 return ret; 1986 } 1987 EXPORT_SYMBOL_GPL(nfs_write_inode); 1988 1989 /* 1990 * Wrapper for filemap_write_and_wait_range() 1991 * 1992 * Needed for pNFS in order to ensure data becomes visible to the 1993 * client. 1994 */ 1995 int nfs_filemap_write_and_wait_range(struct address_space *mapping, 1996 loff_t lstart, loff_t lend) 1997 { 1998 int ret; 1999 2000 ret = filemap_write_and_wait_range(mapping, lstart, lend); 2001 if (ret == 0) 2002 ret = pnfs_sync_inode(mapping->host, true); 2003 return ret; 2004 } 2005 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range); 2006 2007 /* 2008 * flush the inode to disk. 2009 */ 2010 int nfs_wb_all(struct inode *inode) 2011 { 2012 int ret; 2013 2014 trace_nfs_writeback_inode_enter(inode); 2015 2016 ret = filemap_write_and_wait(inode->i_mapping); 2017 if (ret) 2018 goto out; 2019 ret = nfs_commit_inode(inode, FLUSH_SYNC); 2020 if (ret < 0) 2021 goto out; 2022 pnfs_sync_inode(inode, true); 2023 ret = 0; 2024 2025 out: 2026 trace_nfs_writeback_inode_exit(inode, ret); 2027 return ret; 2028 } 2029 EXPORT_SYMBOL_GPL(nfs_wb_all); 2030 2031 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 2032 { 2033 struct nfs_page *req; 2034 int ret = 0; 2035 2036 wait_on_page_writeback(page); 2037 2038 /* blocking call to cancel all requests and join to a single (head) 2039 * request */ 2040 req = nfs_lock_and_join_requests(page); 2041 2042 if (IS_ERR(req)) { 2043 ret = PTR_ERR(req); 2044 } else if (req) { 2045 /* all requests from this page have been cancelled by 2046 * nfs_lock_and_join_requests, so just remove the head 2047 * request from the inode / page_private pointer and 2048 * release it */ 2049 nfs_inode_remove_request(req); 2050 nfs_unlock_and_release_request(req); 2051 } 2052 2053 return ret; 2054 } 2055 2056 /* 2057 * Write back all requests on one page - we do this before reading it. 2058 */ 2059 int nfs_wb_page(struct inode *inode, struct page *page) 2060 { 2061 loff_t range_start = page_file_offset(page); 2062 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1); 2063 struct writeback_control wbc = { 2064 .sync_mode = WB_SYNC_ALL, 2065 .nr_to_write = 0, 2066 .range_start = range_start, 2067 .range_end = range_end, 2068 }; 2069 int ret; 2070 2071 trace_nfs_writeback_page_enter(inode); 2072 2073 for (;;) { 2074 wait_on_page_writeback(page); 2075 if (clear_page_dirty_for_io(page)) { 2076 ret = nfs_writepage_locked(page, &wbc); 2077 if (ret < 0) 2078 goto out_error; 2079 continue; 2080 } 2081 ret = 0; 2082 if (!PagePrivate(page)) 2083 break; 2084 ret = nfs_commit_inode(inode, FLUSH_SYNC); 2085 if (ret < 0) 2086 goto out_error; 2087 } 2088 out_error: 2089 trace_nfs_writeback_page_exit(inode, ret); 2090 return ret; 2091 } 2092 2093 #ifdef CONFIG_MIGRATION 2094 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 2095 struct page *page, enum migrate_mode mode) 2096 { 2097 /* 2098 * If PagePrivate is set, then the page is currently associated with 2099 * an in-progress read or write request. Don't try to migrate it. 2100 * 2101 * FIXME: we could do this in principle, but we'll need a way to ensure 2102 * that we can safely release the inode reference while holding 2103 * the page lock. 2104 */ 2105 if (PagePrivate(page)) 2106 return -EBUSY; 2107 2108 if (!nfs_fscache_release_page(page, GFP_KERNEL)) 2109 return -EBUSY; 2110 2111 return migrate_page(mapping, newpage, page, mode); 2112 } 2113 #endif 2114 2115 int __init nfs_init_writepagecache(void) 2116 { 2117 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 2118 sizeof(struct nfs_pgio_header), 2119 0, SLAB_HWCACHE_ALIGN, 2120 NULL); 2121 if (nfs_wdata_cachep == NULL) 2122 return -ENOMEM; 2123 2124 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 2125 nfs_wdata_cachep); 2126 if (nfs_wdata_mempool == NULL) 2127 goto out_destroy_write_cache; 2128 2129 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data", 2130 sizeof(struct nfs_commit_data), 2131 0, SLAB_HWCACHE_ALIGN, 2132 NULL); 2133 if (nfs_cdata_cachep == NULL) 2134 goto out_destroy_write_mempool; 2135 2136 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 2137 nfs_cdata_cachep); 2138 if (nfs_commit_mempool == NULL) 2139 goto out_destroy_commit_cache; 2140 2141 /* 2142 * NFS congestion size, scale with available memory. 2143 * 2144 * 64MB: 8192k 2145 * 128MB: 11585k 2146 * 256MB: 16384k 2147 * 512MB: 23170k 2148 * 1GB: 32768k 2149 * 2GB: 46340k 2150 * 4GB: 65536k 2151 * 8GB: 92681k 2152 * 16GB: 131072k 2153 * 2154 * This allows larger machines to have larger/more transfers. 2155 * Limit the default to 256M 2156 */ 2157 nfs_congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10); 2158 if (nfs_congestion_kb > 256*1024) 2159 nfs_congestion_kb = 256*1024; 2160 2161 return 0; 2162 2163 out_destroy_commit_cache: 2164 kmem_cache_destroy(nfs_cdata_cachep); 2165 out_destroy_write_mempool: 2166 mempool_destroy(nfs_wdata_mempool); 2167 out_destroy_write_cache: 2168 kmem_cache_destroy(nfs_wdata_cachep); 2169 return -ENOMEM; 2170 } 2171 2172 void nfs_destroy_writepagecache(void) 2173 { 2174 mempool_destroy(nfs_commit_mempool); 2175 kmem_cache_destroy(nfs_cdata_cachep); 2176 mempool_destroy(nfs_wdata_mempool); 2177 kmem_cache_destroy(nfs_wdata_cachep); 2178 } 2179 2180 static const struct nfs_rw_ops nfs_rw_write_ops = { 2181 .rw_alloc_header = nfs_writehdr_alloc, 2182 .rw_free_header = nfs_writehdr_free, 2183 .rw_done = nfs_writeback_done, 2184 .rw_result = nfs_writeback_result, 2185 .rw_initiate = nfs_initiate_write, 2186 }; 2187