1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 #include <linux/export.h> 24 #include <linux/freezer.h> 25 #include <linux/wait.h> 26 #include <linux/iversion.h> 27 28 #include <linux/uaccess.h> 29 30 #include "delegation.h" 31 #include "internal.h" 32 #include "iostat.h" 33 #include "nfs4_fs.h" 34 #include "fscache.h" 35 #include "pnfs.h" 36 37 #include "nfstrace.h" 38 39 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 40 41 #define MIN_POOL_WRITE (32) 42 #define MIN_POOL_COMMIT (4) 43 44 struct nfs_io_completion { 45 void (*complete)(void *data); 46 void *data; 47 struct kref refcount; 48 }; 49 50 /* 51 * Local function declarations 52 */ 53 static void nfs_redirty_request(struct nfs_page *req); 54 static const struct rpc_call_ops nfs_commit_ops; 55 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops; 56 static const struct nfs_commit_completion_ops nfs_commit_completion_ops; 57 static const struct nfs_rw_ops nfs_rw_write_ops; 58 static void nfs_clear_request_commit(struct nfs_page *req); 59 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 60 struct inode *inode); 61 static struct nfs_page * 62 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi, 63 struct page *page); 64 65 static struct kmem_cache *nfs_wdata_cachep; 66 static mempool_t *nfs_wdata_mempool; 67 static struct kmem_cache *nfs_cdata_cachep; 68 static mempool_t *nfs_commit_mempool; 69 70 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail) 71 { 72 struct nfs_commit_data *p; 73 74 if (never_fail) 75 p = mempool_alloc(nfs_commit_mempool, GFP_NOIO); 76 else { 77 /* It is OK to do some reclaim, not no safe to wait 78 * for anything to be returned to the pool. 79 * mempool_alloc() cannot handle that particular combination, 80 * so we need two separate attempts. 81 */ 82 p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT); 83 if (!p) 84 p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO | 85 __GFP_NOWARN | __GFP_NORETRY); 86 if (!p) 87 return NULL; 88 } 89 90 memset(p, 0, sizeof(*p)); 91 INIT_LIST_HEAD(&p->pages); 92 return p; 93 } 94 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc); 95 96 void nfs_commit_free(struct nfs_commit_data *p) 97 { 98 mempool_free(p, nfs_commit_mempool); 99 } 100 EXPORT_SYMBOL_GPL(nfs_commit_free); 101 102 static struct nfs_pgio_header *nfs_writehdr_alloc(void) 103 { 104 struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO); 105 106 memset(p, 0, sizeof(*p)); 107 p->rw_mode = FMODE_WRITE; 108 return p; 109 } 110 111 static void nfs_writehdr_free(struct nfs_pgio_header *hdr) 112 { 113 mempool_free(hdr, nfs_wdata_mempool); 114 } 115 116 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags) 117 { 118 return kmalloc(sizeof(struct nfs_io_completion), gfp_flags); 119 } 120 121 static void nfs_io_completion_init(struct nfs_io_completion *ioc, 122 void (*complete)(void *), void *data) 123 { 124 ioc->complete = complete; 125 ioc->data = data; 126 kref_init(&ioc->refcount); 127 } 128 129 static void nfs_io_completion_release(struct kref *kref) 130 { 131 struct nfs_io_completion *ioc = container_of(kref, 132 struct nfs_io_completion, refcount); 133 ioc->complete(ioc->data); 134 kfree(ioc); 135 } 136 137 static void nfs_io_completion_get(struct nfs_io_completion *ioc) 138 { 139 if (ioc != NULL) 140 kref_get(&ioc->refcount); 141 } 142 143 static void nfs_io_completion_put(struct nfs_io_completion *ioc) 144 { 145 if (ioc != NULL) 146 kref_put(&ioc->refcount, nfs_io_completion_release); 147 } 148 149 static struct nfs_page * 150 nfs_page_private_request(struct page *page) 151 { 152 if (!PagePrivate(page)) 153 return NULL; 154 return (struct nfs_page *)page_private(page); 155 } 156 157 /* 158 * nfs_page_find_head_request_locked - find head request associated with @page 159 * 160 * must be called while holding the inode lock. 161 * 162 * returns matching head request with reference held, or NULL if not found. 163 */ 164 static struct nfs_page * 165 nfs_page_find_private_request(struct page *page) 166 { 167 struct address_space *mapping = page_file_mapping(page); 168 struct nfs_page *req; 169 170 if (!PagePrivate(page)) 171 return NULL; 172 spin_lock(&mapping->private_lock); 173 req = nfs_page_private_request(page); 174 if (req) { 175 WARN_ON_ONCE(req->wb_head != req); 176 kref_get(&req->wb_kref); 177 } 178 spin_unlock(&mapping->private_lock); 179 return req; 180 } 181 182 static struct nfs_page * 183 nfs_page_find_swap_request(struct page *page) 184 { 185 struct inode *inode = page_file_mapping(page)->host; 186 struct nfs_inode *nfsi = NFS_I(inode); 187 struct nfs_page *req = NULL; 188 if (!PageSwapCache(page)) 189 return NULL; 190 mutex_lock(&nfsi->commit_mutex); 191 if (PageSwapCache(page)) { 192 req = nfs_page_search_commits_for_head_request_locked(nfsi, 193 page); 194 if (req) { 195 WARN_ON_ONCE(req->wb_head != req); 196 kref_get(&req->wb_kref); 197 } 198 } 199 mutex_unlock(&nfsi->commit_mutex); 200 return req; 201 } 202 203 /* 204 * nfs_page_find_head_request - find head request associated with @page 205 * 206 * returns matching head request with reference held, or NULL if not found. 207 */ 208 static struct nfs_page *nfs_page_find_head_request(struct page *page) 209 { 210 struct nfs_page *req; 211 212 req = nfs_page_find_private_request(page); 213 if (!req) 214 req = nfs_page_find_swap_request(page); 215 return req; 216 } 217 218 /* Adjust the file length if we're writing beyond the end */ 219 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 220 { 221 struct inode *inode = page_file_mapping(page)->host; 222 loff_t end, i_size; 223 pgoff_t end_index; 224 225 spin_lock(&inode->i_lock); 226 i_size = i_size_read(inode); 227 end_index = (i_size - 1) >> PAGE_SHIFT; 228 if (i_size > 0 && page_index(page) < end_index) 229 goto out; 230 end = page_file_offset(page) + ((loff_t)offset+count); 231 if (i_size >= end) 232 goto out; 233 i_size_write(inode, end); 234 NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE; 235 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 236 out: 237 spin_unlock(&inode->i_lock); 238 } 239 240 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 241 static void nfs_set_pageerror(struct page *page) 242 { 243 nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page)); 244 } 245 246 /* 247 * nfs_page_group_search_locked 248 * @head - head request of page group 249 * @page_offset - offset into page 250 * 251 * Search page group with head @head to find a request that contains the 252 * page offset @page_offset. 253 * 254 * Returns a pointer to the first matching nfs request, or NULL if no 255 * match is found. 256 * 257 * Must be called with the page group lock held 258 */ 259 static struct nfs_page * 260 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset) 261 { 262 struct nfs_page *req; 263 264 req = head; 265 do { 266 if (page_offset >= req->wb_pgbase && 267 page_offset < (req->wb_pgbase + req->wb_bytes)) 268 return req; 269 270 req = req->wb_this_page; 271 } while (req != head); 272 273 return NULL; 274 } 275 276 /* 277 * nfs_page_group_covers_page 278 * @head - head request of page group 279 * 280 * Return true if the page group with head @head covers the whole page, 281 * returns false otherwise 282 */ 283 static bool nfs_page_group_covers_page(struct nfs_page *req) 284 { 285 struct nfs_page *tmp; 286 unsigned int pos = 0; 287 unsigned int len = nfs_page_length(req->wb_page); 288 289 nfs_page_group_lock(req); 290 291 for (;;) { 292 tmp = nfs_page_group_search_locked(req->wb_head, pos); 293 if (!tmp) 294 break; 295 pos = tmp->wb_pgbase + tmp->wb_bytes; 296 } 297 298 nfs_page_group_unlock(req); 299 return pos >= len; 300 } 301 302 /* We can set the PG_uptodate flag if we see that a write request 303 * covers the full page. 304 */ 305 static void nfs_mark_uptodate(struct nfs_page *req) 306 { 307 if (PageUptodate(req->wb_page)) 308 return; 309 if (!nfs_page_group_covers_page(req)) 310 return; 311 SetPageUptodate(req->wb_page); 312 } 313 314 static int wb_priority(struct writeback_control *wbc) 315 { 316 int ret = 0; 317 318 if (wbc->sync_mode == WB_SYNC_ALL) 319 ret = FLUSH_COND_STABLE; 320 return ret; 321 } 322 323 /* 324 * NFS congestion control 325 */ 326 327 int nfs_congestion_kb; 328 329 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 330 #define NFS_CONGESTION_OFF_THRESH \ 331 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 332 333 static void nfs_set_page_writeback(struct page *page) 334 { 335 struct inode *inode = page_file_mapping(page)->host; 336 struct nfs_server *nfss = NFS_SERVER(inode); 337 int ret = test_set_page_writeback(page); 338 339 WARN_ON_ONCE(ret != 0); 340 341 if (atomic_long_inc_return(&nfss->writeback) > 342 NFS_CONGESTION_ON_THRESH) 343 set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC); 344 } 345 346 static void nfs_end_page_writeback(struct nfs_page *req) 347 { 348 struct inode *inode = page_file_mapping(req->wb_page)->host; 349 struct nfs_server *nfss = NFS_SERVER(inode); 350 bool is_done; 351 352 is_done = nfs_page_group_sync_on_bit(req, PG_WB_END); 353 nfs_unlock_request(req); 354 if (!is_done) 355 return; 356 357 end_page_writeback(req->wb_page); 358 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 359 clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC); 360 } 361 362 /* 363 * nfs_unroll_locks_and_wait - unlock all newly locked reqs and wait on @req 364 * 365 * this is a helper function for nfs_lock_and_join_requests 366 * 367 * @inode - inode associated with request page group, must be holding inode lock 368 * @head - head request of page group, must be holding head lock 369 * @req - request that couldn't lock and needs to wait on the req bit lock 370 * 371 * NOTE: this must be called holding page_group bit lock 372 * which will be released before returning. 373 * 374 * returns 0 on success, < 0 on error. 375 */ 376 static void 377 nfs_unroll_locks(struct inode *inode, struct nfs_page *head, 378 struct nfs_page *req) 379 { 380 struct nfs_page *tmp; 381 382 /* relinquish all the locks successfully grabbed this run */ 383 for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) { 384 if (!kref_read(&tmp->wb_kref)) 385 continue; 386 nfs_unlock_and_release_request(tmp); 387 } 388 } 389 390 /* 391 * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests 392 * 393 * @destroy_list - request list (using wb_this_page) terminated by @old_head 394 * @old_head - the old head of the list 395 * 396 * All subrequests must be locked and removed from all lists, so at this point 397 * they are only "active" in this function, and possibly in nfs_wait_on_request 398 * with a reference held by some other context. 399 */ 400 static void 401 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list, 402 struct nfs_page *old_head, 403 struct inode *inode) 404 { 405 while (destroy_list) { 406 struct nfs_page *subreq = destroy_list; 407 408 destroy_list = (subreq->wb_this_page == old_head) ? 409 NULL : subreq->wb_this_page; 410 411 WARN_ON_ONCE(old_head != subreq->wb_head); 412 413 /* make sure old group is not used */ 414 subreq->wb_this_page = subreq; 415 416 clear_bit(PG_REMOVE, &subreq->wb_flags); 417 418 /* Note: races with nfs_page_group_destroy() */ 419 if (!kref_read(&subreq->wb_kref)) { 420 /* Check if we raced with nfs_page_group_destroy() */ 421 if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags)) 422 nfs_free_request(subreq); 423 continue; 424 } 425 426 subreq->wb_head = subreq; 427 428 if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) { 429 nfs_release_request(subreq); 430 atomic_long_dec(&NFS_I(inode)->nrequests); 431 } 432 433 /* subreq is now totally disconnected from page group or any 434 * write / commit lists. last chance to wake any waiters */ 435 nfs_unlock_and_release_request(subreq); 436 } 437 } 438 439 /* 440 * nfs_lock_and_join_requests - join all subreqs to the head req and return 441 * a locked reference, cancelling any pending 442 * operations for this page. 443 * 444 * @page - the page used to lookup the "page group" of nfs_page structures 445 * 446 * This function joins all sub requests to the head request by first 447 * locking all requests in the group, cancelling any pending operations 448 * and finally updating the head request to cover the whole range covered by 449 * the (former) group. All subrequests are removed from any write or commit 450 * lists, unlinked from the group and destroyed. 451 * 452 * Returns a locked, referenced pointer to the head request - which after 453 * this call is guaranteed to be the only request associated with the page. 454 * Returns NULL if no requests are found for @page, or a ERR_PTR if an 455 * error was encountered. 456 */ 457 static struct nfs_page * 458 nfs_lock_and_join_requests(struct page *page) 459 { 460 struct inode *inode = page_file_mapping(page)->host; 461 struct nfs_page *head, *subreq; 462 struct nfs_page *destroy_list = NULL; 463 unsigned int total_bytes; 464 int ret; 465 466 try_again: 467 /* 468 * A reference is taken only on the head request which acts as a 469 * reference to the whole page group - the group will not be destroyed 470 * until the head reference is released. 471 */ 472 head = nfs_page_find_head_request(page); 473 if (!head) 474 return NULL; 475 476 /* lock the page head first in order to avoid an ABBA inefficiency */ 477 if (!nfs_lock_request(head)) { 478 ret = nfs_wait_on_request(head); 479 nfs_release_request(head); 480 if (ret < 0) 481 return ERR_PTR(ret); 482 goto try_again; 483 } 484 485 /* Ensure that nobody removed the request before we locked it */ 486 if (head != nfs_page_private_request(page) && !PageSwapCache(page)) { 487 nfs_unlock_and_release_request(head); 488 goto try_again; 489 } 490 491 ret = nfs_page_group_lock(head); 492 if (ret < 0) 493 goto release_request; 494 495 /* lock each request in the page group */ 496 total_bytes = head->wb_bytes; 497 for (subreq = head->wb_this_page; subreq != head; 498 subreq = subreq->wb_this_page) { 499 500 if (!kref_get_unless_zero(&subreq->wb_kref)) { 501 if (subreq->wb_offset == head->wb_offset + total_bytes) 502 total_bytes += subreq->wb_bytes; 503 continue; 504 } 505 506 while (!nfs_lock_request(subreq)) { 507 /* 508 * Unlock page to allow nfs_page_group_sync_on_bit() 509 * to succeed 510 */ 511 nfs_page_group_unlock(head); 512 ret = nfs_wait_on_request(subreq); 513 if (!ret) 514 ret = nfs_page_group_lock(head); 515 if (ret < 0) { 516 nfs_unroll_locks(inode, head, subreq); 517 nfs_release_request(subreq); 518 goto release_request; 519 } 520 } 521 /* 522 * Subrequests are always contiguous, non overlapping 523 * and in order - but may be repeated (mirrored writes). 524 */ 525 if (subreq->wb_offset == (head->wb_offset + total_bytes)) { 526 /* keep track of how many bytes this group covers */ 527 total_bytes += subreq->wb_bytes; 528 } else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset || 529 ((subreq->wb_offset + subreq->wb_bytes) > 530 (head->wb_offset + total_bytes)))) { 531 nfs_page_group_unlock(head); 532 nfs_unroll_locks(inode, head, subreq); 533 nfs_unlock_and_release_request(subreq); 534 ret = -EIO; 535 goto release_request; 536 } 537 } 538 539 /* Now that all requests are locked, make sure they aren't on any list. 540 * Commit list removal accounting is done after locks are dropped */ 541 subreq = head; 542 do { 543 nfs_clear_request_commit(subreq); 544 subreq = subreq->wb_this_page; 545 } while (subreq != head); 546 547 /* unlink subrequests from head, destroy them later */ 548 if (head->wb_this_page != head) { 549 /* destroy list will be terminated by head */ 550 destroy_list = head->wb_this_page; 551 head->wb_this_page = head; 552 553 /* change head request to cover whole range that 554 * the former page group covered */ 555 head->wb_bytes = total_bytes; 556 } 557 558 /* Postpone destruction of this request */ 559 if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) { 560 set_bit(PG_INODE_REF, &head->wb_flags); 561 kref_get(&head->wb_kref); 562 atomic_long_inc(&NFS_I(inode)->nrequests); 563 } 564 565 nfs_page_group_unlock(head); 566 567 nfs_destroy_unlinked_subrequests(destroy_list, head, inode); 568 569 /* Did we lose a race with nfs_inode_remove_request()? */ 570 if (!(PagePrivate(page) || PageSwapCache(page))) { 571 nfs_unlock_and_release_request(head); 572 return NULL; 573 } 574 575 /* still holds ref on head from nfs_page_find_head_request 576 * and still has lock on head from lock loop */ 577 return head; 578 579 release_request: 580 nfs_unlock_and_release_request(head); 581 return ERR_PTR(ret); 582 } 583 584 static void nfs_write_error_remove_page(struct nfs_page *req) 585 { 586 nfs_end_page_writeback(req); 587 generic_error_remove_page(page_file_mapping(req->wb_page), 588 req->wb_page); 589 nfs_release_request(req); 590 } 591 592 static bool 593 nfs_error_is_fatal_on_server(int err) 594 { 595 switch (err) { 596 case 0: 597 case -ERESTARTSYS: 598 case -EINTR: 599 return false; 600 } 601 return nfs_error_is_fatal(err); 602 } 603 604 /* 605 * Find an associated nfs write request, and prepare to flush it out 606 * May return an error if the user signalled nfs_wait_on_request(). 607 */ 608 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 609 struct page *page) 610 { 611 struct nfs_page *req; 612 int ret = 0; 613 614 req = nfs_lock_and_join_requests(page); 615 if (!req) 616 goto out; 617 ret = PTR_ERR(req); 618 if (IS_ERR(req)) 619 goto out; 620 621 nfs_set_page_writeback(page); 622 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags)); 623 624 ret = 0; 625 /* If there is a fatal error that covers this write, just exit */ 626 if (nfs_error_is_fatal_on_server(req->wb_context->error)) 627 goto out_launder; 628 629 if (!nfs_pageio_add_request(pgio, req)) { 630 ret = pgio->pg_error; 631 /* 632 * Remove the problematic req upon fatal errors on the server 633 */ 634 if (nfs_error_is_fatal(ret)) { 635 nfs_context_set_write_error(req->wb_context, ret); 636 if (nfs_error_is_fatal_on_server(ret)) 637 goto out_launder; 638 } 639 nfs_redirty_request(req); 640 ret = -EAGAIN; 641 } else 642 nfs_add_stats(page_file_mapping(page)->host, 643 NFSIOS_WRITEPAGES, 1); 644 out: 645 return ret; 646 out_launder: 647 nfs_write_error_remove_page(req); 648 return ret; 649 } 650 651 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, 652 struct nfs_pageio_descriptor *pgio) 653 { 654 int ret; 655 656 nfs_pageio_cond_complete(pgio, page_index(page)); 657 ret = nfs_page_async_flush(pgio, page); 658 if (ret == -EAGAIN) { 659 redirty_page_for_writepage(wbc, page); 660 ret = 0; 661 } 662 return ret; 663 } 664 665 /* 666 * Write an mmapped page to the server. 667 */ 668 static int nfs_writepage_locked(struct page *page, 669 struct writeback_control *wbc) 670 { 671 struct nfs_pageio_descriptor pgio; 672 struct inode *inode = page_file_mapping(page)->host; 673 int err; 674 675 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 676 nfs_pageio_init_write(&pgio, inode, 0, 677 false, &nfs_async_write_completion_ops); 678 err = nfs_do_writepage(page, wbc, &pgio); 679 nfs_pageio_complete(&pgio); 680 if (err < 0) 681 return err; 682 if (pgio.pg_error < 0) 683 return pgio.pg_error; 684 return 0; 685 } 686 687 int nfs_writepage(struct page *page, struct writeback_control *wbc) 688 { 689 int ret; 690 691 ret = nfs_writepage_locked(page, wbc); 692 unlock_page(page); 693 return ret; 694 } 695 696 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 697 { 698 int ret; 699 700 ret = nfs_do_writepage(page, wbc, data); 701 unlock_page(page); 702 return ret; 703 } 704 705 static void nfs_io_completion_commit(void *inode) 706 { 707 nfs_commit_inode(inode, 0); 708 } 709 710 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 711 { 712 struct inode *inode = mapping->host; 713 struct nfs_pageio_descriptor pgio; 714 struct nfs_io_completion *ioc = nfs_io_completion_alloc(GFP_NOFS); 715 int err; 716 717 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 718 719 if (ioc) 720 nfs_io_completion_init(ioc, nfs_io_completion_commit, inode); 721 722 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false, 723 &nfs_async_write_completion_ops); 724 pgio.pg_io_completion = ioc; 725 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 726 nfs_pageio_complete(&pgio); 727 nfs_io_completion_put(ioc); 728 729 if (err < 0) 730 goto out_err; 731 err = pgio.pg_error; 732 if (err < 0) 733 goto out_err; 734 return 0; 735 out_err: 736 return err; 737 } 738 739 /* 740 * Insert a write request into an inode 741 */ 742 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 743 { 744 struct address_space *mapping = page_file_mapping(req->wb_page); 745 struct nfs_inode *nfsi = NFS_I(inode); 746 747 WARN_ON_ONCE(req->wb_this_page != req); 748 749 /* Lock the request! */ 750 nfs_lock_request(req); 751 752 /* 753 * Swap-space should not get truncated. Hence no need to plug the race 754 * with invalidate/truncate. 755 */ 756 spin_lock(&mapping->private_lock); 757 if (!nfs_have_writebacks(inode) && 758 NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 759 inode_inc_iversion_raw(inode); 760 if (likely(!PageSwapCache(req->wb_page))) { 761 set_bit(PG_MAPPED, &req->wb_flags); 762 SetPagePrivate(req->wb_page); 763 set_page_private(req->wb_page, (unsigned long)req); 764 } 765 spin_unlock(&mapping->private_lock); 766 atomic_long_inc(&nfsi->nrequests); 767 /* this a head request for a page group - mark it as having an 768 * extra reference so sub groups can follow suit. 769 * This flag also informs pgio layer when to bump nrequests when 770 * adding subrequests. */ 771 WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags)); 772 kref_get(&req->wb_kref); 773 } 774 775 /* 776 * Remove a write request from an inode 777 */ 778 static void nfs_inode_remove_request(struct nfs_page *req) 779 { 780 struct address_space *mapping = page_file_mapping(req->wb_page); 781 struct inode *inode = mapping->host; 782 struct nfs_inode *nfsi = NFS_I(inode); 783 struct nfs_page *head; 784 785 atomic_long_dec(&nfsi->nrequests); 786 if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) { 787 head = req->wb_head; 788 789 spin_lock(&mapping->private_lock); 790 if (likely(head->wb_page && !PageSwapCache(head->wb_page))) { 791 set_page_private(head->wb_page, 0); 792 ClearPagePrivate(head->wb_page); 793 clear_bit(PG_MAPPED, &head->wb_flags); 794 } 795 spin_unlock(&mapping->private_lock); 796 } 797 798 if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) 799 nfs_release_request(req); 800 } 801 802 static void 803 nfs_mark_request_dirty(struct nfs_page *req) 804 { 805 if (req->wb_page) 806 __set_page_dirty_nobuffers(req->wb_page); 807 } 808 809 /* 810 * nfs_page_search_commits_for_head_request_locked 811 * 812 * Search through commit lists on @inode for the head request for @page. 813 * Must be called while holding the inode (which is cinfo) lock. 814 * 815 * Returns the head request if found, or NULL if not found. 816 */ 817 static struct nfs_page * 818 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi, 819 struct page *page) 820 { 821 struct nfs_page *freq, *t; 822 struct nfs_commit_info cinfo; 823 struct inode *inode = &nfsi->vfs_inode; 824 825 nfs_init_cinfo_from_inode(&cinfo, inode); 826 827 /* search through pnfs commit lists */ 828 freq = pnfs_search_commit_reqs(inode, &cinfo, page); 829 if (freq) 830 return freq->wb_head; 831 832 /* Linearly search the commit list for the correct request */ 833 list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) { 834 if (freq->wb_page == page) 835 return freq->wb_head; 836 } 837 838 return NULL; 839 } 840 841 /** 842 * nfs_request_add_commit_list_locked - add request to a commit list 843 * @req: pointer to a struct nfs_page 844 * @dst: commit list head 845 * @cinfo: holds list lock and accounting info 846 * 847 * This sets the PG_CLEAN bit, updates the cinfo count of 848 * number of outstanding requests requiring a commit as well as 849 * the MM page stats. 850 * 851 * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the 852 * nfs_page lock. 853 */ 854 void 855 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst, 856 struct nfs_commit_info *cinfo) 857 { 858 set_bit(PG_CLEAN, &req->wb_flags); 859 nfs_list_add_request(req, dst); 860 atomic_long_inc(&cinfo->mds->ncommit); 861 } 862 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked); 863 864 /** 865 * nfs_request_add_commit_list - add request to a commit list 866 * @req: pointer to a struct nfs_page 867 * @dst: commit list head 868 * @cinfo: holds list lock and accounting info 869 * 870 * This sets the PG_CLEAN bit, updates the cinfo count of 871 * number of outstanding requests requiring a commit as well as 872 * the MM page stats. 873 * 874 * The caller must _not_ hold the cinfo->lock, but must be 875 * holding the nfs_page lock. 876 */ 877 void 878 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo) 879 { 880 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 881 nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo); 882 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 883 if (req->wb_page) 884 nfs_mark_page_unstable(req->wb_page, cinfo); 885 } 886 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list); 887 888 /** 889 * nfs_request_remove_commit_list - Remove request from a commit list 890 * @req: pointer to a nfs_page 891 * @cinfo: holds list lock and accounting info 892 * 893 * This clears the PG_CLEAN bit, and updates the cinfo's count of 894 * number of outstanding requests requiring a commit 895 * It does not update the MM page stats. 896 * 897 * The caller _must_ hold the cinfo->lock and the nfs_page lock. 898 */ 899 void 900 nfs_request_remove_commit_list(struct nfs_page *req, 901 struct nfs_commit_info *cinfo) 902 { 903 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) 904 return; 905 nfs_list_remove_request(req); 906 atomic_long_dec(&cinfo->mds->ncommit); 907 } 908 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list); 909 910 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 911 struct inode *inode) 912 { 913 cinfo->inode = inode; 914 cinfo->mds = &NFS_I(inode)->commit_info; 915 cinfo->ds = pnfs_get_ds_info(inode); 916 cinfo->dreq = NULL; 917 cinfo->completion_ops = &nfs_commit_completion_ops; 918 } 919 920 void nfs_init_cinfo(struct nfs_commit_info *cinfo, 921 struct inode *inode, 922 struct nfs_direct_req *dreq) 923 { 924 if (dreq) 925 nfs_init_cinfo_from_dreq(cinfo, dreq); 926 else 927 nfs_init_cinfo_from_inode(cinfo, inode); 928 } 929 EXPORT_SYMBOL_GPL(nfs_init_cinfo); 930 931 /* 932 * Add a request to the inode's commit list. 933 */ 934 void 935 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, 936 struct nfs_commit_info *cinfo, u32 ds_commit_idx) 937 { 938 if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx)) 939 return; 940 nfs_request_add_commit_list(req, cinfo); 941 } 942 943 static void 944 nfs_clear_page_commit(struct page *page) 945 { 946 dec_node_page_state(page, NR_UNSTABLE_NFS); 947 dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb, 948 WB_RECLAIMABLE); 949 } 950 951 /* Called holding the request lock on @req */ 952 static void 953 nfs_clear_request_commit(struct nfs_page *req) 954 { 955 if (test_bit(PG_CLEAN, &req->wb_flags)) { 956 struct inode *inode = d_inode(req->wb_context->dentry); 957 struct nfs_commit_info cinfo; 958 959 nfs_init_cinfo_from_inode(&cinfo, inode); 960 mutex_lock(&NFS_I(inode)->commit_mutex); 961 if (!pnfs_clear_request_commit(req, &cinfo)) { 962 nfs_request_remove_commit_list(req, &cinfo); 963 } 964 mutex_unlock(&NFS_I(inode)->commit_mutex); 965 nfs_clear_page_commit(req->wb_page); 966 } 967 } 968 969 int nfs_write_need_commit(struct nfs_pgio_header *hdr) 970 { 971 if (hdr->verf.committed == NFS_DATA_SYNC) 972 return hdr->lseg == NULL; 973 return hdr->verf.committed != NFS_FILE_SYNC; 974 } 975 976 static void nfs_async_write_init(struct nfs_pgio_header *hdr) 977 { 978 nfs_io_completion_get(hdr->io_completion); 979 } 980 981 static void nfs_write_completion(struct nfs_pgio_header *hdr) 982 { 983 struct nfs_commit_info cinfo; 984 unsigned long bytes = 0; 985 986 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 987 goto out; 988 nfs_init_cinfo_from_inode(&cinfo, hdr->inode); 989 while (!list_empty(&hdr->pages)) { 990 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 991 992 bytes += req->wb_bytes; 993 nfs_list_remove_request(req); 994 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && 995 (hdr->good_bytes < bytes)) { 996 nfs_set_pageerror(req->wb_page); 997 nfs_context_set_write_error(req->wb_context, hdr->error); 998 goto remove_req; 999 } 1000 if (nfs_write_need_commit(hdr)) { 1001 memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf)); 1002 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 1003 hdr->pgio_mirror_idx); 1004 goto next; 1005 } 1006 remove_req: 1007 nfs_inode_remove_request(req); 1008 next: 1009 nfs_end_page_writeback(req); 1010 nfs_release_request(req); 1011 } 1012 out: 1013 nfs_io_completion_put(hdr->io_completion); 1014 hdr->release(hdr); 1015 } 1016 1017 unsigned long 1018 nfs_reqs_to_commit(struct nfs_commit_info *cinfo) 1019 { 1020 return atomic_long_read(&cinfo->mds->ncommit); 1021 } 1022 1023 /* NFS_I(cinfo->inode)->commit_mutex held by caller */ 1024 int 1025 nfs_scan_commit_list(struct list_head *src, struct list_head *dst, 1026 struct nfs_commit_info *cinfo, int max) 1027 { 1028 struct nfs_page *req, *tmp; 1029 int ret = 0; 1030 1031 restart: 1032 list_for_each_entry_safe(req, tmp, src, wb_list) { 1033 kref_get(&req->wb_kref); 1034 if (!nfs_lock_request(req)) { 1035 int status; 1036 1037 /* Prevent deadlock with nfs_lock_and_join_requests */ 1038 if (!list_empty(dst)) { 1039 nfs_release_request(req); 1040 continue; 1041 } 1042 /* Ensure we make progress to prevent livelock */ 1043 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 1044 status = nfs_wait_on_request(req); 1045 nfs_release_request(req); 1046 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 1047 if (status < 0) 1048 break; 1049 goto restart; 1050 } 1051 nfs_request_remove_commit_list(req, cinfo); 1052 clear_bit(PG_COMMIT_TO_DS, &req->wb_flags); 1053 nfs_list_add_request(req, dst); 1054 ret++; 1055 if ((ret == max) && !cinfo->dreq) 1056 break; 1057 cond_resched(); 1058 } 1059 return ret; 1060 } 1061 EXPORT_SYMBOL_GPL(nfs_scan_commit_list); 1062 1063 /* 1064 * nfs_scan_commit - Scan an inode for commit requests 1065 * @inode: NFS inode to scan 1066 * @dst: mds destination list 1067 * @cinfo: mds and ds lists of reqs ready to commit 1068 * 1069 * Moves requests from the inode's 'commit' request list. 1070 * The requests are *not* checked to ensure that they form a contiguous set. 1071 */ 1072 int 1073 nfs_scan_commit(struct inode *inode, struct list_head *dst, 1074 struct nfs_commit_info *cinfo) 1075 { 1076 int ret = 0; 1077 1078 if (!atomic_long_read(&cinfo->mds->ncommit)) 1079 return 0; 1080 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 1081 if (atomic_long_read(&cinfo->mds->ncommit) > 0) { 1082 const int max = INT_MAX; 1083 1084 ret = nfs_scan_commit_list(&cinfo->mds->list, dst, 1085 cinfo, max); 1086 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret); 1087 } 1088 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 1089 return ret; 1090 } 1091 1092 /* 1093 * Search for an existing write request, and attempt to update 1094 * it to reflect a new dirty region on a given page. 1095 * 1096 * If the attempt fails, then the existing request is flushed out 1097 * to disk. 1098 */ 1099 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 1100 struct page *page, 1101 unsigned int offset, 1102 unsigned int bytes) 1103 { 1104 struct nfs_page *req; 1105 unsigned int rqend; 1106 unsigned int end; 1107 int error; 1108 1109 end = offset + bytes; 1110 1111 req = nfs_lock_and_join_requests(page); 1112 if (IS_ERR_OR_NULL(req)) 1113 return req; 1114 1115 rqend = req->wb_offset + req->wb_bytes; 1116 /* 1117 * Tell the caller to flush out the request if 1118 * the offsets are non-contiguous. 1119 * Note: nfs_flush_incompatible() will already 1120 * have flushed out requests having wrong owners. 1121 */ 1122 if (offset > rqend || end < req->wb_offset) 1123 goto out_flushme; 1124 1125 /* Okay, the request matches. Update the region */ 1126 if (offset < req->wb_offset) { 1127 req->wb_offset = offset; 1128 req->wb_pgbase = offset; 1129 } 1130 if (end > rqend) 1131 req->wb_bytes = end - req->wb_offset; 1132 else 1133 req->wb_bytes = rqend - req->wb_offset; 1134 return req; 1135 out_flushme: 1136 /* 1137 * Note: we mark the request dirty here because 1138 * nfs_lock_and_join_requests() cannot preserve 1139 * commit flags, so we have to replay the write. 1140 */ 1141 nfs_mark_request_dirty(req); 1142 nfs_unlock_and_release_request(req); 1143 error = nfs_wb_page(inode, page); 1144 return (error < 0) ? ERR_PTR(error) : NULL; 1145 } 1146 1147 /* 1148 * Try to update an existing write request, or create one if there is none. 1149 * 1150 * Note: Should always be called with the Page Lock held to prevent races 1151 * if we have to add a new request. Also assumes that the caller has 1152 * already called nfs_flush_incompatible() if necessary. 1153 */ 1154 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 1155 struct page *page, unsigned int offset, unsigned int bytes) 1156 { 1157 struct inode *inode = page_file_mapping(page)->host; 1158 struct nfs_page *req; 1159 1160 req = nfs_try_to_update_request(inode, page, offset, bytes); 1161 if (req != NULL) 1162 goto out; 1163 req = nfs_create_request(ctx, page, NULL, offset, bytes); 1164 if (IS_ERR(req)) 1165 goto out; 1166 nfs_inode_add_request(inode, req); 1167 out: 1168 return req; 1169 } 1170 1171 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 1172 unsigned int offset, unsigned int count) 1173 { 1174 struct nfs_page *req; 1175 1176 req = nfs_setup_write_request(ctx, page, offset, count); 1177 if (IS_ERR(req)) 1178 return PTR_ERR(req); 1179 /* Update file length */ 1180 nfs_grow_file(page, offset, count); 1181 nfs_mark_uptodate(req); 1182 nfs_mark_request_dirty(req); 1183 nfs_unlock_and_release_request(req); 1184 return 0; 1185 } 1186 1187 int nfs_flush_incompatible(struct file *file, struct page *page) 1188 { 1189 struct nfs_open_context *ctx = nfs_file_open_context(file); 1190 struct nfs_lock_context *l_ctx; 1191 struct file_lock_context *flctx = file_inode(file)->i_flctx; 1192 struct nfs_page *req; 1193 int do_flush, status; 1194 /* 1195 * Look for a request corresponding to this page. If there 1196 * is one, and it belongs to another file, we flush it out 1197 * before we try to copy anything into the page. Do this 1198 * due to the lack of an ACCESS-type call in NFSv2. 1199 * Also do the same if we find a request from an existing 1200 * dropped page. 1201 */ 1202 do { 1203 req = nfs_page_find_head_request(page); 1204 if (req == NULL) 1205 return 0; 1206 l_ctx = req->wb_lock_context; 1207 do_flush = req->wb_page != page || 1208 !nfs_match_open_context(req->wb_context, ctx); 1209 if (l_ctx && flctx && 1210 !(list_empty_careful(&flctx->flc_posix) && 1211 list_empty_careful(&flctx->flc_flock))) { 1212 do_flush |= l_ctx->lockowner != current->files; 1213 } 1214 nfs_release_request(req); 1215 if (!do_flush) 1216 return 0; 1217 status = nfs_wb_page(page_file_mapping(page)->host, page); 1218 } while (status == 0); 1219 return status; 1220 } 1221 1222 /* 1223 * Avoid buffered writes when a open context credential's key would 1224 * expire soon. 1225 * 1226 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL. 1227 * 1228 * Return 0 and set a credential flag which triggers the inode to flush 1229 * and performs NFS_FILE_SYNC writes if the key will expired within 1230 * RPC_KEY_EXPIRE_TIMEO. 1231 */ 1232 int 1233 nfs_key_timeout_notify(struct file *filp, struct inode *inode) 1234 { 1235 struct nfs_open_context *ctx = nfs_file_open_context(filp); 1236 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth; 1237 1238 return rpcauth_key_timeout_notify(auth, ctx->cred); 1239 } 1240 1241 /* 1242 * Test if the open context credential key is marked to expire soon. 1243 */ 1244 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode) 1245 { 1246 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth; 1247 1248 return rpcauth_cred_key_to_expire(auth, ctx->cred); 1249 } 1250 1251 /* 1252 * If the page cache is marked as unsafe or invalid, then we can't rely on 1253 * the PageUptodate() flag. In this case, we will need to turn off 1254 * write optimisations that depend on the page contents being correct. 1255 */ 1256 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode) 1257 { 1258 struct nfs_inode *nfsi = NFS_I(inode); 1259 1260 if (nfs_have_delegated_attributes(inode)) 1261 goto out; 1262 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 1263 return false; 1264 smp_rmb(); 1265 if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags)) 1266 return false; 1267 out: 1268 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 1269 return false; 1270 return PageUptodate(page) != 0; 1271 } 1272 1273 static bool 1274 is_whole_file_wrlock(struct file_lock *fl) 1275 { 1276 return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX && 1277 fl->fl_type == F_WRLCK; 1278 } 1279 1280 /* If we know the page is up to date, and we're not using byte range locks (or 1281 * if we have the whole file locked for writing), it may be more efficient to 1282 * extend the write to cover the entire page in order to avoid fragmentation 1283 * inefficiencies. 1284 * 1285 * If the file is opened for synchronous writes then we can just skip the rest 1286 * of the checks. 1287 */ 1288 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode) 1289 { 1290 int ret; 1291 struct file_lock_context *flctx = inode->i_flctx; 1292 struct file_lock *fl; 1293 1294 if (file->f_flags & O_DSYNC) 1295 return 0; 1296 if (!nfs_write_pageuptodate(page, inode)) 1297 return 0; 1298 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 1299 return 1; 1300 if (!flctx || (list_empty_careful(&flctx->flc_flock) && 1301 list_empty_careful(&flctx->flc_posix))) 1302 return 1; 1303 1304 /* Check to see if there are whole file write locks */ 1305 ret = 0; 1306 spin_lock(&flctx->flc_lock); 1307 if (!list_empty(&flctx->flc_posix)) { 1308 fl = list_first_entry(&flctx->flc_posix, struct file_lock, 1309 fl_list); 1310 if (is_whole_file_wrlock(fl)) 1311 ret = 1; 1312 } else if (!list_empty(&flctx->flc_flock)) { 1313 fl = list_first_entry(&flctx->flc_flock, struct file_lock, 1314 fl_list); 1315 if (fl->fl_type == F_WRLCK) 1316 ret = 1; 1317 } 1318 spin_unlock(&flctx->flc_lock); 1319 return ret; 1320 } 1321 1322 /* 1323 * Update and possibly write a cached page of an NFS file. 1324 * 1325 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 1326 * things with a page scheduled for an RPC call (e.g. invalidate it). 1327 */ 1328 int nfs_updatepage(struct file *file, struct page *page, 1329 unsigned int offset, unsigned int count) 1330 { 1331 struct nfs_open_context *ctx = nfs_file_open_context(file); 1332 struct inode *inode = page_file_mapping(page)->host; 1333 int status = 0; 1334 1335 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 1336 1337 dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n", 1338 file, count, (long long)(page_file_offset(page) + offset)); 1339 1340 if (!count) 1341 goto out; 1342 1343 if (nfs_can_extend_write(file, page, inode)) { 1344 count = max(count + offset, nfs_page_length(page)); 1345 offset = 0; 1346 } 1347 1348 status = nfs_writepage_setup(ctx, page, offset, count); 1349 if (status < 0) 1350 nfs_set_pageerror(page); 1351 else 1352 __set_page_dirty_nobuffers(page); 1353 out: 1354 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 1355 status, (long long)i_size_read(inode)); 1356 return status; 1357 } 1358 1359 static int flush_task_priority(int how) 1360 { 1361 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 1362 case FLUSH_HIGHPRI: 1363 return RPC_PRIORITY_HIGH; 1364 case FLUSH_LOWPRI: 1365 return RPC_PRIORITY_LOW; 1366 } 1367 return RPC_PRIORITY_NORMAL; 1368 } 1369 1370 static void nfs_initiate_write(struct nfs_pgio_header *hdr, 1371 struct rpc_message *msg, 1372 const struct nfs_rpc_ops *rpc_ops, 1373 struct rpc_task_setup *task_setup_data, int how) 1374 { 1375 int priority = flush_task_priority(how); 1376 1377 task_setup_data->priority = priority; 1378 rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client); 1379 trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes, 1380 hdr->args.stable); 1381 } 1382 1383 /* If a nfs_flush_* function fails, it should remove reqs from @head and 1384 * call this on each, which will prepare them to be retried on next 1385 * writeback using standard nfs. 1386 */ 1387 static void nfs_redirty_request(struct nfs_page *req) 1388 { 1389 nfs_mark_request_dirty(req); 1390 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags); 1391 nfs_end_page_writeback(req); 1392 nfs_release_request(req); 1393 } 1394 1395 static void nfs_async_write_error(struct list_head *head) 1396 { 1397 struct nfs_page *req; 1398 1399 while (!list_empty(head)) { 1400 req = nfs_list_entry(head->next); 1401 nfs_list_remove_request(req); 1402 nfs_redirty_request(req); 1403 } 1404 } 1405 1406 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr) 1407 { 1408 nfs_async_write_error(&hdr->pages); 1409 filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset, 1410 hdr->args.offset + hdr->args.count - 1); 1411 } 1412 1413 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = { 1414 .init_hdr = nfs_async_write_init, 1415 .error_cleanup = nfs_async_write_error, 1416 .completion = nfs_write_completion, 1417 .reschedule_io = nfs_async_write_reschedule_io, 1418 }; 1419 1420 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 1421 struct inode *inode, int ioflags, bool force_mds, 1422 const struct nfs_pgio_completion_ops *compl_ops) 1423 { 1424 struct nfs_server *server = NFS_SERVER(inode); 1425 const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops; 1426 1427 #ifdef CONFIG_NFS_V4_1 1428 if (server->pnfs_curr_ld && !force_mds) 1429 pg_ops = server->pnfs_curr_ld->pg_write_ops; 1430 #endif 1431 nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops, 1432 server->wsize, ioflags); 1433 } 1434 EXPORT_SYMBOL_GPL(nfs_pageio_init_write); 1435 1436 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio) 1437 { 1438 struct nfs_pgio_mirror *mirror; 1439 1440 if (pgio->pg_ops && pgio->pg_ops->pg_cleanup) 1441 pgio->pg_ops->pg_cleanup(pgio); 1442 1443 pgio->pg_ops = &nfs_pgio_rw_ops; 1444 1445 nfs_pageio_stop_mirroring(pgio); 1446 1447 mirror = &pgio->pg_mirrors[0]; 1448 mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize; 1449 } 1450 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds); 1451 1452 1453 void nfs_commit_prepare(struct rpc_task *task, void *calldata) 1454 { 1455 struct nfs_commit_data *data = calldata; 1456 1457 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data); 1458 } 1459 1460 /* 1461 * Special version of should_remove_suid() that ignores capabilities. 1462 */ 1463 static int nfs_should_remove_suid(const struct inode *inode) 1464 { 1465 umode_t mode = inode->i_mode; 1466 int kill = 0; 1467 1468 /* suid always must be killed */ 1469 if (unlikely(mode & S_ISUID)) 1470 kill = ATTR_KILL_SUID; 1471 1472 /* 1473 * sgid without any exec bits is just a mandatory locking mark; leave 1474 * it alone. If some exec bits are set, it's a real sgid; kill it. 1475 */ 1476 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1477 kill |= ATTR_KILL_SGID; 1478 1479 if (unlikely(kill && S_ISREG(mode))) 1480 return kill; 1481 1482 return 0; 1483 } 1484 1485 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr, 1486 struct nfs_fattr *fattr) 1487 { 1488 struct nfs_pgio_args *argp = &hdr->args; 1489 struct nfs_pgio_res *resp = &hdr->res; 1490 u64 size = argp->offset + resp->count; 1491 1492 if (!(fattr->valid & NFS_ATTR_FATTR_SIZE)) 1493 fattr->size = size; 1494 if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) { 1495 fattr->valid &= ~NFS_ATTR_FATTR_SIZE; 1496 return; 1497 } 1498 if (size != fattr->size) 1499 return; 1500 /* Set attribute barrier */ 1501 nfs_fattr_set_barrier(fattr); 1502 /* ...and update size */ 1503 fattr->valid |= NFS_ATTR_FATTR_SIZE; 1504 } 1505 1506 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr) 1507 { 1508 struct nfs_fattr *fattr = &hdr->fattr; 1509 struct inode *inode = hdr->inode; 1510 1511 spin_lock(&inode->i_lock); 1512 nfs_writeback_check_extend(hdr, fattr); 1513 nfs_post_op_update_inode_force_wcc_locked(inode, fattr); 1514 spin_unlock(&inode->i_lock); 1515 } 1516 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode); 1517 1518 /* 1519 * This function is called when the WRITE call is complete. 1520 */ 1521 static int nfs_writeback_done(struct rpc_task *task, 1522 struct nfs_pgio_header *hdr, 1523 struct inode *inode) 1524 { 1525 int status; 1526 1527 /* 1528 * ->write_done will attempt to use post-op attributes to detect 1529 * conflicting writes by other clients. A strict interpretation 1530 * of close-to-open would allow us to continue caching even if 1531 * another writer had changed the file, but some applications 1532 * depend on tighter cache coherency when writing. 1533 */ 1534 status = NFS_PROTO(inode)->write_done(task, hdr); 1535 if (status != 0) 1536 return status; 1537 1538 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count); 1539 trace_nfs_writeback_done(inode, task->tk_status, 1540 hdr->args.offset, hdr->res.verf); 1541 1542 if (hdr->res.verf->committed < hdr->args.stable && 1543 task->tk_status >= 0) { 1544 /* We tried a write call, but the server did not 1545 * commit data to stable storage even though we 1546 * requested it. 1547 * Note: There is a known bug in Tru64 < 5.0 in which 1548 * the server reports NFS_DATA_SYNC, but performs 1549 * NFS_FILE_SYNC. We therefore implement this checking 1550 * as a dprintk() in order to avoid filling syslog. 1551 */ 1552 static unsigned long complain; 1553 1554 /* Note this will print the MDS for a DS write */ 1555 if (time_before(complain, jiffies)) { 1556 dprintk("NFS: faulty NFS server %s:" 1557 " (committed = %d) != (stable = %d)\n", 1558 NFS_SERVER(inode)->nfs_client->cl_hostname, 1559 hdr->res.verf->committed, hdr->args.stable); 1560 complain = jiffies + 300 * HZ; 1561 } 1562 } 1563 1564 /* Deal with the suid/sgid bit corner case */ 1565 if (nfs_should_remove_suid(inode)) { 1566 spin_lock(&inode->i_lock); 1567 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_OTHER; 1568 spin_unlock(&inode->i_lock); 1569 } 1570 return 0; 1571 } 1572 1573 /* 1574 * This function is called when the WRITE call is complete. 1575 */ 1576 static void nfs_writeback_result(struct rpc_task *task, 1577 struct nfs_pgio_header *hdr) 1578 { 1579 struct nfs_pgio_args *argp = &hdr->args; 1580 struct nfs_pgio_res *resp = &hdr->res; 1581 1582 if (resp->count < argp->count) { 1583 static unsigned long complain; 1584 1585 /* This a short write! */ 1586 nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE); 1587 1588 /* Has the server at least made some progress? */ 1589 if (resp->count == 0) { 1590 if (time_before(complain, jiffies)) { 1591 printk(KERN_WARNING 1592 "NFS: Server wrote zero bytes, expected %u.\n", 1593 argp->count); 1594 complain = jiffies + 300 * HZ; 1595 } 1596 nfs_set_pgio_error(hdr, -EIO, argp->offset); 1597 task->tk_status = -EIO; 1598 return; 1599 } 1600 1601 /* For non rpc-based layout drivers, retry-through-MDS */ 1602 if (!task->tk_ops) { 1603 hdr->pnfs_error = -EAGAIN; 1604 return; 1605 } 1606 1607 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1608 if (resp->verf->committed != NFS_UNSTABLE) { 1609 /* Resend from where the server left off */ 1610 hdr->mds_offset += resp->count; 1611 argp->offset += resp->count; 1612 argp->pgbase += resp->count; 1613 argp->count -= resp->count; 1614 } else { 1615 /* Resend as a stable write in order to avoid 1616 * headaches in the case of a server crash. 1617 */ 1618 argp->stable = NFS_FILE_SYNC; 1619 } 1620 rpc_restart_call_prepare(task); 1621 } 1622 } 1623 1624 static int wait_on_commit(struct nfs_mds_commit_info *cinfo) 1625 { 1626 return wait_var_event_killable(&cinfo->rpcs_out, 1627 !atomic_read(&cinfo->rpcs_out)); 1628 } 1629 1630 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo) 1631 { 1632 atomic_inc(&cinfo->rpcs_out); 1633 } 1634 1635 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo) 1636 { 1637 if (atomic_dec_and_test(&cinfo->rpcs_out)) 1638 wake_up_var(&cinfo->rpcs_out); 1639 } 1640 1641 void nfs_commitdata_release(struct nfs_commit_data *data) 1642 { 1643 put_nfs_open_context(data->context); 1644 nfs_commit_free(data); 1645 } 1646 EXPORT_SYMBOL_GPL(nfs_commitdata_release); 1647 1648 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data, 1649 const struct nfs_rpc_ops *nfs_ops, 1650 const struct rpc_call_ops *call_ops, 1651 int how, int flags) 1652 { 1653 struct rpc_task *task; 1654 int priority = flush_task_priority(how); 1655 struct rpc_message msg = { 1656 .rpc_argp = &data->args, 1657 .rpc_resp = &data->res, 1658 .rpc_cred = data->cred, 1659 }; 1660 struct rpc_task_setup task_setup_data = { 1661 .task = &data->task, 1662 .rpc_client = clnt, 1663 .rpc_message = &msg, 1664 .callback_ops = call_ops, 1665 .callback_data = data, 1666 .workqueue = nfsiod_workqueue, 1667 .flags = RPC_TASK_ASYNC | flags, 1668 .priority = priority, 1669 }; 1670 /* Set up the initial task struct. */ 1671 nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client); 1672 trace_nfs_initiate_commit(data); 1673 1674 dprintk("NFS: initiated commit call\n"); 1675 1676 task = rpc_run_task(&task_setup_data); 1677 if (IS_ERR(task)) 1678 return PTR_ERR(task); 1679 if (how & FLUSH_SYNC) 1680 rpc_wait_for_completion_task(task); 1681 rpc_put_task(task); 1682 return 0; 1683 } 1684 EXPORT_SYMBOL_GPL(nfs_initiate_commit); 1685 1686 static loff_t nfs_get_lwb(struct list_head *head) 1687 { 1688 loff_t lwb = 0; 1689 struct nfs_page *req; 1690 1691 list_for_each_entry(req, head, wb_list) 1692 if (lwb < (req_offset(req) + req->wb_bytes)) 1693 lwb = req_offset(req) + req->wb_bytes; 1694 1695 return lwb; 1696 } 1697 1698 /* 1699 * Set up the argument/result storage required for the RPC call. 1700 */ 1701 void nfs_init_commit(struct nfs_commit_data *data, 1702 struct list_head *head, 1703 struct pnfs_layout_segment *lseg, 1704 struct nfs_commit_info *cinfo) 1705 { 1706 struct nfs_page *first = nfs_list_entry(head->next); 1707 struct inode *inode = d_inode(first->wb_context->dentry); 1708 1709 /* Set up the RPC argument and reply structs 1710 * NB: take care not to mess about with data->commit et al. */ 1711 1712 list_splice_init(head, &data->pages); 1713 1714 data->inode = inode; 1715 data->cred = first->wb_context->cred; 1716 data->lseg = lseg; /* reference transferred */ 1717 /* only set lwb for pnfs commit */ 1718 if (lseg) 1719 data->lwb = nfs_get_lwb(&data->pages); 1720 data->mds_ops = &nfs_commit_ops; 1721 data->completion_ops = cinfo->completion_ops; 1722 data->dreq = cinfo->dreq; 1723 1724 data->args.fh = NFS_FH(data->inode); 1725 /* Note: we always request a commit of the entire inode */ 1726 data->args.offset = 0; 1727 data->args.count = 0; 1728 data->context = get_nfs_open_context(first->wb_context); 1729 data->res.fattr = &data->fattr; 1730 data->res.verf = &data->verf; 1731 nfs_fattr_init(&data->fattr); 1732 } 1733 EXPORT_SYMBOL_GPL(nfs_init_commit); 1734 1735 void nfs_retry_commit(struct list_head *page_list, 1736 struct pnfs_layout_segment *lseg, 1737 struct nfs_commit_info *cinfo, 1738 u32 ds_commit_idx) 1739 { 1740 struct nfs_page *req; 1741 1742 while (!list_empty(page_list)) { 1743 req = nfs_list_entry(page_list->next); 1744 nfs_list_remove_request(req); 1745 nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx); 1746 if (!cinfo->dreq) 1747 nfs_clear_page_commit(req->wb_page); 1748 nfs_unlock_and_release_request(req); 1749 } 1750 } 1751 EXPORT_SYMBOL_GPL(nfs_retry_commit); 1752 1753 static void 1754 nfs_commit_resched_write(struct nfs_commit_info *cinfo, 1755 struct nfs_page *req) 1756 { 1757 __set_page_dirty_nobuffers(req->wb_page); 1758 } 1759 1760 /* 1761 * Commit dirty pages 1762 */ 1763 static int 1764 nfs_commit_list(struct inode *inode, struct list_head *head, int how, 1765 struct nfs_commit_info *cinfo) 1766 { 1767 struct nfs_commit_data *data; 1768 1769 /* another commit raced with us */ 1770 if (list_empty(head)) 1771 return 0; 1772 1773 data = nfs_commitdata_alloc(true); 1774 1775 /* Set up the argument struct */ 1776 nfs_init_commit(data, head, NULL, cinfo); 1777 atomic_inc(&cinfo->mds->rpcs_out); 1778 return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode), 1779 data->mds_ops, how, 0); 1780 } 1781 1782 /* 1783 * COMMIT call returned 1784 */ 1785 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1786 { 1787 struct nfs_commit_data *data = calldata; 1788 1789 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1790 task->tk_pid, task->tk_status); 1791 1792 /* Call the NFS version-specific code */ 1793 NFS_PROTO(data->inode)->commit_done(task, data); 1794 trace_nfs_commit_done(data); 1795 } 1796 1797 static void nfs_commit_release_pages(struct nfs_commit_data *data) 1798 { 1799 struct nfs_page *req; 1800 int status = data->task.tk_status; 1801 struct nfs_commit_info cinfo; 1802 struct nfs_server *nfss; 1803 1804 while (!list_empty(&data->pages)) { 1805 req = nfs_list_entry(data->pages.next); 1806 nfs_list_remove_request(req); 1807 if (req->wb_page) 1808 nfs_clear_page_commit(req->wb_page); 1809 1810 dprintk("NFS: commit (%s/%llu %d@%lld)", 1811 req->wb_context->dentry->d_sb->s_id, 1812 (unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)), 1813 req->wb_bytes, 1814 (long long)req_offset(req)); 1815 if (status < 0) { 1816 nfs_context_set_write_error(req->wb_context, status); 1817 if (req->wb_page) 1818 nfs_inode_remove_request(req); 1819 dprintk_cont(", error = %d\n", status); 1820 goto next; 1821 } 1822 1823 /* Okay, COMMIT succeeded, apparently. Check the verifier 1824 * returned by the server against all stored verfs. */ 1825 if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) { 1826 /* We have a match */ 1827 if (req->wb_page) 1828 nfs_inode_remove_request(req); 1829 dprintk_cont(" OK\n"); 1830 goto next; 1831 } 1832 /* We have a mismatch. Write the page again */ 1833 dprintk_cont(" mismatch\n"); 1834 nfs_mark_request_dirty(req); 1835 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags); 1836 next: 1837 nfs_unlock_and_release_request(req); 1838 /* Latency breaker */ 1839 cond_resched(); 1840 } 1841 nfss = NFS_SERVER(data->inode); 1842 if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 1843 clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC); 1844 1845 nfs_init_cinfo(&cinfo, data->inode, data->dreq); 1846 nfs_commit_end(cinfo.mds); 1847 } 1848 1849 static void nfs_commit_release(void *calldata) 1850 { 1851 struct nfs_commit_data *data = calldata; 1852 1853 data->completion_ops->completion(data); 1854 nfs_commitdata_release(calldata); 1855 } 1856 1857 static const struct rpc_call_ops nfs_commit_ops = { 1858 .rpc_call_prepare = nfs_commit_prepare, 1859 .rpc_call_done = nfs_commit_done, 1860 .rpc_release = nfs_commit_release, 1861 }; 1862 1863 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = { 1864 .completion = nfs_commit_release_pages, 1865 .resched_write = nfs_commit_resched_write, 1866 }; 1867 1868 int nfs_generic_commit_list(struct inode *inode, struct list_head *head, 1869 int how, struct nfs_commit_info *cinfo) 1870 { 1871 int status; 1872 1873 status = pnfs_commit_list(inode, head, how, cinfo); 1874 if (status == PNFS_NOT_ATTEMPTED) 1875 status = nfs_commit_list(inode, head, how, cinfo); 1876 return status; 1877 } 1878 1879 static int __nfs_commit_inode(struct inode *inode, int how, 1880 struct writeback_control *wbc) 1881 { 1882 LIST_HEAD(head); 1883 struct nfs_commit_info cinfo; 1884 int may_wait = how & FLUSH_SYNC; 1885 int ret, nscan; 1886 1887 nfs_init_cinfo_from_inode(&cinfo, inode); 1888 nfs_commit_begin(cinfo.mds); 1889 for (;;) { 1890 ret = nscan = nfs_scan_commit(inode, &head, &cinfo); 1891 if (ret <= 0) 1892 break; 1893 ret = nfs_generic_commit_list(inode, &head, how, &cinfo); 1894 if (ret < 0) 1895 break; 1896 ret = 0; 1897 if (wbc && wbc->sync_mode == WB_SYNC_NONE) { 1898 if (nscan < wbc->nr_to_write) 1899 wbc->nr_to_write -= nscan; 1900 else 1901 wbc->nr_to_write = 0; 1902 } 1903 if (nscan < INT_MAX) 1904 break; 1905 cond_resched(); 1906 } 1907 nfs_commit_end(cinfo.mds); 1908 if (ret || !may_wait) 1909 return ret; 1910 return wait_on_commit(cinfo.mds); 1911 } 1912 1913 int nfs_commit_inode(struct inode *inode, int how) 1914 { 1915 return __nfs_commit_inode(inode, how, NULL); 1916 } 1917 EXPORT_SYMBOL_GPL(nfs_commit_inode); 1918 1919 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1920 { 1921 struct nfs_inode *nfsi = NFS_I(inode); 1922 int flags = FLUSH_SYNC; 1923 int ret = 0; 1924 1925 if (wbc->sync_mode == WB_SYNC_NONE) { 1926 /* no commits means nothing needs to be done */ 1927 if (!atomic_long_read(&nfsi->commit_info.ncommit)) 1928 goto check_requests_outstanding; 1929 1930 /* Don't commit yet if this is a non-blocking flush and there 1931 * are a lot of outstanding writes for this mapping. 1932 */ 1933 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)) 1934 goto out_mark_dirty; 1935 1936 /* don't wait for the COMMIT response */ 1937 flags = 0; 1938 } 1939 1940 ret = __nfs_commit_inode(inode, flags, wbc); 1941 if (!ret) { 1942 if (flags & FLUSH_SYNC) 1943 return 0; 1944 } else if (atomic_long_read(&nfsi->commit_info.ncommit)) 1945 goto out_mark_dirty; 1946 1947 check_requests_outstanding: 1948 if (!atomic_read(&nfsi->commit_info.rpcs_out)) 1949 return ret; 1950 out_mark_dirty: 1951 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1952 return ret; 1953 } 1954 EXPORT_SYMBOL_GPL(nfs_write_inode); 1955 1956 /* 1957 * Wrapper for filemap_write_and_wait_range() 1958 * 1959 * Needed for pNFS in order to ensure data becomes visible to the 1960 * client. 1961 */ 1962 int nfs_filemap_write_and_wait_range(struct address_space *mapping, 1963 loff_t lstart, loff_t lend) 1964 { 1965 int ret; 1966 1967 ret = filemap_write_and_wait_range(mapping, lstart, lend); 1968 if (ret == 0) 1969 ret = pnfs_sync_inode(mapping->host, true); 1970 return ret; 1971 } 1972 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range); 1973 1974 /* 1975 * flush the inode to disk. 1976 */ 1977 int nfs_wb_all(struct inode *inode) 1978 { 1979 int ret; 1980 1981 trace_nfs_writeback_inode_enter(inode); 1982 1983 ret = filemap_write_and_wait(inode->i_mapping); 1984 if (ret) 1985 goto out; 1986 ret = nfs_commit_inode(inode, FLUSH_SYNC); 1987 if (ret < 0) 1988 goto out; 1989 pnfs_sync_inode(inode, true); 1990 ret = 0; 1991 1992 out: 1993 trace_nfs_writeback_inode_exit(inode, ret); 1994 return ret; 1995 } 1996 EXPORT_SYMBOL_GPL(nfs_wb_all); 1997 1998 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1999 { 2000 struct nfs_page *req; 2001 int ret = 0; 2002 2003 wait_on_page_writeback(page); 2004 2005 /* blocking call to cancel all requests and join to a single (head) 2006 * request */ 2007 req = nfs_lock_and_join_requests(page); 2008 2009 if (IS_ERR(req)) { 2010 ret = PTR_ERR(req); 2011 } else if (req) { 2012 /* all requests from this page have been cancelled by 2013 * nfs_lock_and_join_requests, so just remove the head 2014 * request from the inode / page_private pointer and 2015 * release it */ 2016 nfs_inode_remove_request(req); 2017 nfs_unlock_and_release_request(req); 2018 } 2019 2020 return ret; 2021 } 2022 2023 /* 2024 * Write back all requests on one page - we do this before reading it. 2025 */ 2026 int nfs_wb_page(struct inode *inode, struct page *page) 2027 { 2028 loff_t range_start = page_file_offset(page); 2029 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1); 2030 struct writeback_control wbc = { 2031 .sync_mode = WB_SYNC_ALL, 2032 .nr_to_write = 0, 2033 .range_start = range_start, 2034 .range_end = range_end, 2035 }; 2036 int ret; 2037 2038 trace_nfs_writeback_page_enter(inode); 2039 2040 for (;;) { 2041 wait_on_page_writeback(page); 2042 if (clear_page_dirty_for_io(page)) { 2043 ret = nfs_writepage_locked(page, &wbc); 2044 if (ret < 0) 2045 goto out_error; 2046 continue; 2047 } 2048 ret = 0; 2049 if (!PagePrivate(page)) 2050 break; 2051 ret = nfs_commit_inode(inode, FLUSH_SYNC); 2052 if (ret < 0) 2053 goto out_error; 2054 } 2055 out_error: 2056 trace_nfs_writeback_page_exit(inode, ret); 2057 return ret; 2058 } 2059 2060 #ifdef CONFIG_MIGRATION 2061 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 2062 struct page *page, enum migrate_mode mode) 2063 { 2064 /* 2065 * If PagePrivate is set, then the page is currently associated with 2066 * an in-progress read or write request. Don't try to migrate it. 2067 * 2068 * FIXME: we could do this in principle, but we'll need a way to ensure 2069 * that we can safely release the inode reference while holding 2070 * the page lock. 2071 */ 2072 if (PagePrivate(page)) 2073 return -EBUSY; 2074 2075 if (!nfs_fscache_release_page(page, GFP_KERNEL)) 2076 return -EBUSY; 2077 2078 return migrate_page(mapping, newpage, page, mode); 2079 } 2080 #endif 2081 2082 int __init nfs_init_writepagecache(void) 2083 { 2084 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 2085 sizeof(struct nfs_pgio_header), 2086 0, SLAB_HWCACHE_ALIGN, 2087 NULL); 2088 if (nfs_wdata_cachep == NULL) 2089 return -ENOMEM; 2090 2091 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 2092 nfs_wdata_cachep); 2093 if (nfs_wdata_mempool == NULL) 2094 goto out_destroy_write_cache; 2095 2096 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data", 2097 sizeof(struct nfs_commit_data), 2098 0, SLAB_HWCACHE_ALIGN, 2099 NULL); 2100 if (nfs_cdata_cachep == NULL) 2101 goto out_destroy_write_mempool; 2102 2103 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 2104 nfs_cdata_cachep); 2105 if (nfs_commit_mempool == NULL) 2106 goto out_destroy_commit_cache; 2107 2108 /* 2109 * NFS congestion size, scale with available memory. 2110 * 2111 * 64MB: 8192k 2112 * 128MB: 11585k 2113 * 256MB: 16384k 2114 * 512MB: 23170k 2115 * 1GB: 32768k 2116 * 2GB: 46340k 2117 * 4GB: 65536k 2118 * 8GB: 92681k 2119 * 16GB: 131072k 2120 * 2121 * This allows larger machines to have larger/more transfers. 2122 * Limit the default to 256M 2123 */ 2124 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 2125 if (nfs_congestion_kb > 256*1024) 2126 nfs_congestion_kb = 256*1024; 2127 2128 return 0; 2129 2130 out_destroy_commit_cache: 2131 kmem_cache_destroy(nfs_cdata_cachep); 2132 out_destroy_write_mempool: 2133 mempool_destroy(nfs_wdata_mempool); 2134 out_destroy_write_cache: 2135 kmem_cache_destroy(nfs_wdata_cachep); 2136 return -ENOMEM; 2137 } 2138 2139 void nfs_destroy_writepagecache(void) 2140 { 2141 mempool_destroy(nfs_commit_mempool); 2142 kmem_cache_destroy(nfs_cdata_cachep); 2143 mempool_destroy(nfs_wdata_mempool); 2144 kmem_cache_destroy(nfs_wdata_cachep); 2145 } 2146 2147 static const struct nfs_rw_ops nfs_rw_write_ops = { 2148 .rw_alloc_header = nfs_writehdr_alloc, 2149 .rw_free_header = nfs_writehdr_free, 2150 .rw_done = nfs_writeback_done, 2151 .rw_result = nfs_writeback_result, 2152 .rw_initiate = nfs_initiate_write, 2153 }; 2154