xref: /openbmc/linux/fs/nfs/write.c (revision ebd09753)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24 #include <linux/freezer.h>
25 #include <linux/wait.h>
26 #include <linux/iversion.h>
27 
28 #include <linux/uaccess.h>
29 
30 #include "delegation.h"
31 #include "internal.h"
32 #include "iostat.h"
33 #include "nfs4_fs.h"
34 #include "fscache.h"
35 #include "pnfs.h"
36 
37 #include "nfstrace.h"
38 
39 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
40 
41 #define MIN_POOL_WRITE		(32)
42 #define MIN_POOL_COMMIT		(4)
43 
44 struct nfs_io_completion {
45 	void (*complete)(void *data);
46 	void *data;
47 	struct kref refcount;
48 };
49 
50 /*
51  * Local function declarations
52  */
53 static void nfs_redirty_request(struct nfs_page *req);
54 static const struct rpc_call_ops nfs_commit_ops;
55 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
56 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
57 static const struct nfs_rw_ops nfs_rw_write_ops;
58 static void nfs_clear_request_commit(struct nfs_page *req);
59 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
60 				      struct inode *inode);
61 static struct nfs_page *
62 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
63 						struct page *page);
64 
65 static struct kmem_cache *nfs_wdata_cachep;
66 static mempool_t *nfs_wdata_mempool;
67 static struct kmem_cache *nfs_cdata_cachep;
68 static mempool_t *nfs_commit_mempool;
69 
70 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
71 {
72 	struct nfs_commit_data *p;
73 
74 	if (never_fail)
75 		p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
76 	else {
77 		/* It is OK to do some reclaim, not no safe to wait
78 		 * for anything to be returned to the pool.
79 		 * mempool_alloc() cannot handle that particular combination,
80 		 * so we need two separate attempts.
81 		 */
82 		p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
83 		if (!p)
84 			p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
85 					     __GFP_NOWARN | __GFP_NORETRY);
86 		if (!p)
87 			return NULL;
88 	}
89 
90 	memset(p, 0, sizeof(*p));
91 	INIT_LIST_HEAD(&p->pages);
92 	return p;
93 }
94 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
95 
96 void nfs_commit_free(struct nfs_commit_data *p)
97 {
98 	mempool_free(p, nfs_commit_mempool);
99 }
100 EXPORT_SYMBOL_GPL(nfs_commit_free);
101 
102 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
103 {
104 	struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
105 
106 	memset(p, 0, sizeof(*p));
107 	p->rw_mode = FMODE_WRITE;
108 	return p;
109 }
110 
111 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
112 {
113 	mempool_free(hdr, nfs_wdata_mempool);
114 }
115 
116 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
117 {
118 	return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
119 }
120 
121 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
122 		void (*complete)(void *), void *data)
123 {
124 	ioc->complete = complete;
125 	ioc->data = data;
126 	kref_init(&ioc->refcount);
127 }
128 
129 static void nfs_io_completion_release(struct kref *kref)
130 {
131 	struct nfs_io_completion *ioc = container_of(kref,
132 			struct nfs_io_completion, refcount);
133 	ioc->complete(ioc->data);
134 	kfree(ioc);
135 }
136 
137 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
138 {
139 	if (ioc != NULL)
140 		kref_get(&ioc->refcount);
141 }
142 
143 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
144 {
145 	if (ioc != NULL)
146 		kref_put(&ioc->refcount, nfs_io_completion_release);
147 }
148 
149 static struct nfs_page *
150 nfs_page_private_request(struct page *page)
151 {
152 	if (!PagePrivate(page))
153 		return NULL;
154 	return (struct nfs_page *)page_private(page);
155 }
156 
157 /*
158  * nfs_page_find_head_request_locked - find head request associated with @page
159  *
160  * must be called while holding the inode lock.
161  *
162  * returns matching head request with reference held, or NULL if not found.
163  */
164 static struct nfs_page *
165 nfs_page_find_private_request(struct page *page)
166 {
167 	struct address_space *mapping = page_file_mapping(page);
168 	struct nfs_page *req;
169 
170 	if (!PagePrivate(page))
171 		return NULL;
172 	spin_lock(&mapping->private_lock);
173 	req = nfs_page_private_request(page);
174 	if (req) {
175 		WARN_ON_ONCE(req->wb_head != req);
176 		kref_get(&req->wb_kref);
177 	}
178 	spin_unlock(&mapping->private_lock);
179 	return req;
180 }
181 
182 static struct nfs_page *
183 nfs_page_find_swap_request(struct page *page)
184 {
185 	struct inode *inode = page_file_mapping(page)->host;
186 	struct nfs_inode *nfsi = NFS_I(inode);
187 	struct nfs_page *req = NULL;
188 	if (!PageSwapCache(page))
189 		return NULL;
190 	mutex_lock(&nfsi->commit_mutex);
191 	if (PageSwapCache(page)) {
192 		req = nfs_page_search_commits_for_head_request_locked(nfsi,
193 			page);
194 		if (req) {
195 			WARN_ON_ONCE(req->wb_head != req);
196 			kref_get(&req->wb_kref);
197 		}
198 	}
199 	mutex_unlock(&nfsi->commit_mutex);
200 	return req;
201 }
202 
203 /*
204  * nfs_page_find_head_request - find head request associated with @page
205  *
206  * returns matching head request with reference held, or NULL if not found.
207  */
208 static struct nfs_page *nfs_page_find_head_request(struct page *page)
209 {
210 	struct nfs_page *req;
211 
212 	req = nfs_page_find_private_request(page);
213 	if (!req)
214 		req = nfs_page_find_swap_request(page);
215 	return req;
216 }
217 
218 /* Adjust the file length if we're writing beyond the end */
219 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
220 {
221 	struct inode *inode = page_file_mapping(page)->host;
222 	loff_t end, i_size;
223 	pgoff_t end_index;
224 
225 	spin_lock(&inode->i_lock);
226 	i_size = i_size_read(inode);
227 	end_index = (i_size - 1) >> PAGE_SHIFT;
228 	if (i_size > 0 && page_index(page) < end_index)
229 		goto out;
230 	end = page_file_offset(page) + ((loff_t)offset+count);
231 	if (i_size >= end)
232 		goto out;
233 	i_size_write(inode, end);
234 	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE;
235 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
236 out:
237 	spin_unlock(&inode->i_lock);
238 }
239 
240 /* A writeback failed: mark the page as bad, and invalidate the page cache */
241 static void nfs_set_pageerror(struct page *page)
242 {
243 	nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page));
244 }
245 
246 /*
247  * nfs_page_group_search_locked
248  * @head - head request of page group
249  * @page_offset - offset into page
250  *
251  * Search page group with head @head to find a request that contains the
252  * page offset @page_offset.
253  *
254  * Returns a pointer to the first matching nfs request, or NULL if no
255  * match is found.
256  *
257  * Must be called with the page group lock held
258  */
259 static struct nfs_page *
260 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
261 {
262 	struct nfs_page *req;
263 
264 	req = head;
265 	do {
266 		if (page_offset >= req->wb_pgbase &&
267 		    page_offset < (req->wb_pgbase + req->wb_bytes))
268 			return req;
269 
270 		req = req->wb_this_page;
271 	} while (req != head);
272 
273 	return NULL;
274 }
275 
276 /*
277  * nfs_page_group_covers_page
278  * @head - head request of page group
279  *
280  * Return true if the page group with head @head covers the whole page,
281  * returns false otherwise
282  */
283 static bool nfs_page_group_covers_page(struct nfs_page *req)
284 {
285 	struct nfs_page *tmp;
286 	unsigned int pos = 0;
287 	unsigned int len = nfs_page_length(req->wb_page);
288 
289 	nfs_page_group_lock(req);
290 
291 	for (;;) {
292 		tmp = nfs_page_group_search_locked(req->wb_head, pos);
293 		if (!tmp)
294 			break;
295 		pos = tmp->wb_pgbase + tmp->wb_bytes;
296 	}
297 
298 	nfs_page_group_unlock(req);
299 	return pos >= len;
300 }
301 
302 /* We can set the PG_uptodate flag if we see that a write request
303  * covers the full page.
304  */
305 static void nfs_mark_uptodate(struct nfs_page *req)
306 {
307 	if (PageUptodate(req->wb_page))
308 		return;
309 	if (!nfs_page_group_covers_page(req))
310 		return;
311 	SetPageUptodate(req->wb_page);
312 }
313 
314 static int wb_priority(struct writeback_control *wbc)
315 {
316 	int ret = 0;
317 
318 	if (wbc->sync_mode == WB_SYNC_ALL)
319 		ret = FLUSH_COND_STABLE;
320 	return ret;
321 }
322 
323 /*
324  * NFS congestion control
325  */
326 
327 int nfs_congestion_kb;
328 
329 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
330 #define NFS_CONGESTION_OFF_THRESH	\
331 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
332 
333 static void nfs_set_page_writeback(struct page *page)
334 {
335 	struct inode *inode = page_file_mapping(page)->host;
336 	struct nfs_server *nfss = NFS_SERVER(inode);
337 	int ret = test_set_page_writeback(page);
338 
339 	WARN_ON_ONCE(ret != 0);
340 
341 	if (atomic_long_inc_return(&nfss->writeback) >
342 			NFS_CONGESTION_ON_THRESH)
343 		set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
344 }
345 
346 static void nfs_end_page_writeback(struct nfs_page *req)
347 {
348 	struct inode *inode = page_file_mapping(req->wb_page)->host;
349 	struct nfs_server *nfss = NFS_SERVER(inode);
350 	bool is_done;
351 
352 	is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
353 	nfs_unlock_request(req);
354 	if (!is_done)
355 		return;
356 
357 	end_page_writeback(req->wb_page);
358 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
359 		clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
360 }
361 
362 /*
363  * nfs_unroll_locks_and_wait -  unlock all newly locked reqs and wait on @req
364  *
365  * this is a helper function for nfs_lock_and_join_requests
366  *
367  * @inode - inode associated with request page group, must be holding inode lock
368  * @head  - head request of page group, must be holding head lock
369  * @req   - request that couldn't lock and needs to wait on the req bit lock
370  *
371  * NOTE: this must be called holding page_group bit lock
372  *       which will be released before returning.
373  *
374  * returns 0 on success, < 0 on error.
375  */
376 static void
377 nfs_unroll_locks(struct inode *inode, struct nfs_page *head,
378 			  struct nfs_page *req)
379 {
380 	struct nfs_page *tmp;
381 
382 	/* relinquish all the locks successfully grabbed this run */
383 	for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) {
384 		if (!kref_read(&tmp->wb_kref))
385 			continue;
386 		nfs_unlock_and_release_request(tmp);
387 	}
388 }
389 
390 /*
391  * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
392  *
393  * @destroy_list - request list (using wb_this_page) terminated by @old_head
394  * @old_head - the old head of the list
395  *
396  * All subrequests must be locked and removed from all lists, so at this point
397  * they are only "active" in this function, and possibly in nfs_wait_on_request
398  * with a reference held by some other context.
399  */
400 static void
401 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
402 				 struct nfs_page *old_head,
403 				 struct inode *inode)
404 {
405 	while (destroy_list) {
406 		struct nfs_page *subreq = destroy_list;
407 
408 		destroy_list = (subreq->wb_this_page == old_head) ?
409 				   NULL : subreq->wb_this_page;
410 
411 		WARN_ON_ONCE(old_head != subreq->wb_head);
412 
413 		/* make sure old group is not used */
414 		subreq->wb_this_page = subreq;
415 
416 		clear_bit(PG_REMOVE, &subreq->wb_flags);
417 
418 		/* Note: races with nfs_page_group_destroy() */
419 		if (!kref_read(&subreq->wb_kref)) {
420 			/* Check if we raced with nfs_page_group_destroy() */
421 			if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags))
422 				nfs_free_request(subreq);
423 			continue;
424 		}
425 
426 		subreq->wb_head = subreq;
427 
428 		if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
429 			nfs_release_request(subreq);
430 			atomic_long_dec(&NFS_I(inode)->nrequests);
431 		}
432 
433 		/* subreq is now totally disconnected from page group or any
434 		 * write / commit lists. last chance to wake any waiters */
435 		nfs_unlock_and_release_request(subreq);
436 	}
437 }
438 
439 /*
440  * nfs_lock_and_join_requests - join all subreqs to the head req and return
441  *                              a locked reference, cancelling any pending
442  *                              operations for this page.
443  *
444  * @page - the page used to lookup the "page group" of nfs_page structures
445  *
446  * This function joins all sub requests to the head request by first
447  * locking all requests in the group, cancelling any pending operations
448  * and finally updating the head request to cover the whole range covered by
449  * the (former) group.  All subrequests are removed from any write or commit
450  * lists, unlinked from the group and destroyed.
451  *
452  * Returns a locked, referenced pointer to the head request - which after
453  * this call is guaranteed to be the only request associated with the page.
454  * Returns NULL if no requests are found for @page, or a ERR_PTR if an
455  * error was encountered.
456  */
457 static struct nfs_page *
458 nfs_lock_and_join_requests(struct page *page)
459 {
460 	struct inode *inode = page_file_mapping(page)->host;
461 	struct nfs_page *head, *subreq;
462 	struct nfs_page *destroy_list = NULL;
463 	unsigned int total_bytes;
464 	int ret;
465 
466 try_again:
467 	/*
468 	 * A reference is taken only on the head request which acts as a
469 	 * reference to the whole page group - the group will not be destroyed
470 	 * until the head reference is released.
471 	 */
472 	head = nfs_page_find_head_request(page);
473 	if (!head)
474 		return NULL;
475 
476 	/* lock the page head first in order to avoid an ABBA inefficiency */
477 	if (!nfs_lock_request(head)) {
478 		ret = nfs_wait_on_request(head);
479 		nfs_release_request(head);
480 		if (ret < 0)
481 			return ERR_PTR(ret);
482 		goto try_again;
483 	}
484 
485 	/* Ensure that nobody removed the request before we locked it */
486 	if (head != nfs_page_private_request(page) && !PageSwapCache(page)) {
487 		nfs_unlock_and_release_request(head);
488 		goto try_again;
489 	}
490 
491 	ret = nfs_page_group_lock(head);
492 	if (ret < 0)
493 		goto release_request;
494 
495 	/* lock each request in the page group */
496 	total_bytes = head->wb_bytes;
497 	for (subreq = head->wb_this_page; subreq != head;
498 			subreq = subreq->wb_this_page) {
499 
500 		if (!kref_get_unless_zero(&subreq->wb_kref)) {
501 			if (subreq->wb_offset == head->wb_offset + total_bytes)
502 				total_bytes += subreq->wb_bytes;
503 			continue;
504 		}
505 
506 		while (!nfs_lock_request(subreq)) {
507 			/*
508 			 * Unlock page to allow nfs_page_group_sync_on_bit()
509 			 * to succeed
510 			 */
511 			nfs_page_group_unlock(head);
512 			ret = nfs_wait_on_request(subreq);
513 			if (!ret)
514 				ret = nfs_page_group_lock(head);
515 			if (ret < 0) {
516 				nfs_unroll_locks(inode, head, subreq);
517 				nfs_release_request(subreq);
518 				goto release_request;
519 			}
520 		}
521 		/*
522 		 * Subrequests are always contiguous, non overlapping
523 		 * and in order - but may be repeated (mirrored writes).
524 		 */
525 		if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
526 			/* keep track of how many bytes this group covers */
527 			total_bytes += subreq->wb_bytes;
528 		} else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
529 			    ((subreq->wb_offset + subreq->wb_bytes) >
530 			     (head->wb_offset + total_bytes)))) {
531 			nfs_page_group_unlock(head);
532 			nfs_unroll_locks(inode, head, subreq);
533 			nfs_unlock_and_release_request(subreq);
534 			ret = -EIO;
535 			goto release_request;
536 		}
537 	}
538 
539 	/* Now that all requests are locked, make sure they aren't on any list.
540 	 * Commit list removal accounting is done after locks are dropped */
541 	subreq = head;
542 	do {
543 		nfs_clear_request_commit(subreq);
544 		subreq = subreq->wb_this_page;
545 	} while (subreq != head);
546 
547 	/* unlink subrequests from head, destroy them later */
548 	if (head->wb_this_page != head) {
549 		/* destroy list will be terminated by head */
550 		destroy_list = head->wb_this_page;
551 		head->wb_this_page = head;
552 
553 		/* change head request to cover whole range that
554 		 * the former page group covered */
555 		head->wb_bytes = total_bytes;
556 	}
557 
558 	/* Postpone destruction of this request */
559 	if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) {
560 		set_bit(PG_INODE_REF, &head->wb_flags);
561 		kref_get(&head->wb_kref);
562 		atomic_long_inc(&NFS_I(inode)->nrequests);
563 	}
564 
565 	nfs_page_group_unlock(head);
566 
567 	nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
568 
569 	/* Did we lose a race with nfs_inode_remove_request()? */
570 	if (!(PagePrivate(page) || PageSwapCache(page))) {
571 		nfs_unlock_and_release_request(head);
572 		return NULL;
573 	}
574 
575 	/* still holds ref on head from nfs_page_find_head_request
576 	 * and still has lock on head from lock loop */
577 	return head;
578 
579 release_request:
580 	nfs_unlock_and_release_request(head);
581 	return ERR_PTR(ret);
582 }
583 
584 static void nfs_write_error_remove_page(struct nfs_page *req)
585 {
586 	nfs_end_page_writeback(req);
587 	generic_error_remove_page(page_file_mapping(req->wb_page),
588 				  req->wb_page);
589 	nfs_release_request(req);
590 }
591 
592 static bool
593 nfs_error_is_fatal_on_server(int err)
594 {
595 	switch (err) {
596 	case 0:
597 	case -ERESTARTSYS:
598 	case -EINTR:
599 		return false;
600 	}
601 	return nfs_error_is_fatal(err);
602 }
603 
604 /*
605  * Find an associated nfs write request, and prepare to flush it out
606  * May return an error if the user signalled nfs_wait_on_request().
607  */
608 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
609 				struct page *page)
610 {
611 	struct nfs_page *req;
612 	int ret = 0;
613 
614 	req = nfs_lock_and_join_requests(page);
615 	if (!req)
616 		goto out;
617 	ret = PTR_ERR(req);
618 	if (IS_ERR(req))
619 		goto out;
620 
621 	nfs_set_page_writeback(page);
622 	WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
623 
624 	ret = 0;
625 	/* If there is a fatal error that covers this write, just exit */
626 	if (nfs_error_is_fatal_on_server(req->wb_context->error))
627 		goto out_launder;
628 
629 	if (!nfs_pageio_add_request(pgio, req)) {
630 		ret = pgio->pg_error;
631 		/*
632 		 * Remove the problematic req upon fatal errors on the server
633 		 */
634 		if (nfs_error_is_fatal(ret)) {
635 			nfs_context_set_write_error(req->wb_context, ret);
636 			if (nfs_error_is_fatal_on_server(ret))
637 				goto out_launder;
638 		}
639 		nfs_redirty_request(req);
640 		ret = -EAGAIN;
641 	} else
642 		nfs_add_stats(page_file_mapping(page)->host,
643 				NFSIOS_WRITEPAGES, 1);
644 out:
645 	return ret;
646 out_launder:
647 	nfs_write_error_remove_page(req);
648 	return ret;
649 }
650 
651 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
652 			    struct nfs_pageio_descriptor *pgio)
653 {
654 	int ret;
655 
656 	nfs_pageio_cond_complete(pgio, page_index(page));
657 	ret = nfs_page_async_flush(pgio, page);
658 	if (ret == -EAGAIN) {
659 		redirty_page_for_writepage(wbc, page);
660 		ret = 0;
661 	}
662 	return ret;
663 }
664 
665 /*
666  * Write an mmapped page to the server.
667  */
668 static int nfs_writepage_locked(struct page *page,
669 				struct writeback_control *wbc)
670 {
671 	struct nfs_pageio_descriptor pgio;
672 	struct inode *inode = page_file_mapping(page)->host;
673 	int err;
674 
675 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
676 	nfs_pageio_init_write(&pgio, inode, 0,
677 				false, &nfs_async_write_completion_ops);
678 	err = nfs_do_writepage(page, wbc, &pgio);
679 	nfs_pageio_complete(&pgio);
680 	if (err < 0)
681 		return err;
682 	if (pgio.pg_error < 0)
683 		return pgio.pg_error;
684 	return 0;
685 }
686 
687 int nfs_writepage(struct page *page, struct writeback_control *wbc)
688 {
689 	int ret;
690 
691 	ret = nfs_writepage_locked(page, wbc);
692 	unlock_page(page);
693 	return ret;
694 }
695 
696 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
697 {
698 	int ret;
699 
700 	ret = nfs_do_writepage(page, wbc, data);
701 	unlock_page(page);
702 	return ret;
703 }
704 
705 static void nfs_io_completion_commit(void *inode)
706 {
707 	nfs_commit_inode(inode, 0);
708 }
709 
710 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
711 {
712 	struct inode *inode = mapping->host;
713 	struct nfs_pageio_descriptor pgio;
714 	struct nfs_io_completion *ioc = nfs_io_completion_alloc(GFP_NOFS);
715 	int err;
716 
717 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
718 
719 	if (ioc)
720 		nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
721 
722 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
723 				&nfs_async_write_completion_ops);
724 	pgio.pg_io_completion = ioc;
725 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
726 	nfs_pageio_complete(&pgio);
727 	nfs_io_completion_put(ioc);
728 
729 	if (err < 0)
730 		goto out_err;
731 	err = pgio.pg_error;
732 	if (err < 0)
733 		goto out_err;
734 	return 0;
735 out_err:
736 	return err;
737 }
738 
739 /*
740  * Insert a write request into an inode
741  */
742 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
743 {
744 	struct address_space *mapping = page_file_mapping(req->wb_page);
745 	struct nfs_inode *nfsi = NFS_I(inode);
746 
747 	WARN_ON_ONCE(req->wb_this_page != req);
748 
749 	/* Lock the request! */
750 	nfs_lock_request(req);
751 
752 	/*
753 	 * Swap-space should not get truncated. Hence no need to plug the race
754 	 * with invalidate/truncate.
755 	 */
756 	spin_lock(&mapping->private_lock);
757 	if (!nfs_have_writebacks(inode) &&
758 	    NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
759 		inode_inc_iversion_raw(inode);
760 	if (likely(!PageSwapCache(req->wb_page))) {
761 		set_bit(PG_MAPPED, &req->wb_flags);
762 		SetPagePrivate(req->wb_page);
763 		set_page_private(req->wb_page, (unsigned long)req);
764 	}
765 	spin_unlock(&mapping->private_lock);
766 	atomic_long_inc(&nfsi->nrequests);
767 	/* this a head request for a page group - mark it as having an
768 	 * extra reference so sub groups can follow suit.
769 	 * This flag also informs pgio layer when to bump nrequests when
770 	 * adding subrequests. */
771 	WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
772 	kref_get(&req->wb_kref);
773 }
774 
775 /*
776  * Remove a write request from an inode
777  */
778 static void nfs_inode_remove_request(struct nfs_page *req)
779 {
780 	struct address_space *mapping = page_file_mapping(req->wb_page);
781 	struct inode *inode = mapping->host;
782 	struct nfs_inode *nfsi = NFS_I(inode);
783 	struct nfs_page *head;
784 
785 	atomic_long_dec(&nfsi->nrequests);
786 	if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
787 		head = req->wb_head;
788 
789 		spin_lock(&mapping->private_lock);
790 		if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
791 			set_page_private(head->wb_page, 0);
792 			ClearPagePrivate(head->wb_page);
793 			clear_bit(PG_MAPPED, &head->wb_flags);
794 		}
795 		spin_unlock(&mapping->private_lock);
796 	}
797 
798 	if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags))
799 		nfs_release_request(req);
800 }
801 
802 static void
803 nfs_mark_request_dirty(struct nfs_page *req)
804 {
805 	if (req->wb_page)
806 		__set_page_dirty_nobuffers(req->wb_page);
807 }
808 
809 /*
810  * nfs_page_search_commits_for_head_request_locked
811  *
812  * Search through commit lists on @inode for the head request for @page.
813  * Must be called while holding the inode (which is cinfo) lock.
814  *
815  * Returns the head request if found, or NULL if not found.
816  */
817 static struct nfs_page *
818 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
819 						struct page *page)
820 {
821 	struct nfs_page *freq, *t;
822 	struct nfs_commit_info cinfo;
823 	struct inode *inode = &nfsi->vfs_inode;
824 
825 	nfs_init_cinfo_from_inode(&cinfo, inode);
826 
827 	/* search through pnfs commit lists */
828 	freq = pnfs_search_commit_reqs(inode, &cinfo, page);
829 	if (freq)
830 		return freq->wb_head;
831 
832 	/* Linearly search the commit list for the correct request */
833 	list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
834 		if (freq->wb_page == page)
835 			return freq->wb_head;
836 	}
837 
838 	return NULL;
839 }
840 
841 /**
842  * nfs_request_add_commit_list_locked - add request to a commit list
843  * @req: pointer to a struct nfs_page
844  * @dst: commit list head
845  * @cinfo: holds list lock and accounting info
846  *
847  * This sets the PG_CLEAN bit, updates the cinfo count of
848  * number of outstanding requests requiring a commit as well as
849  * the MM page stats.
850  *
851  * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
852  * nfs_page lock.
853  */
854 void
855 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
856 			    struct nfs_commit_info *cinfo)
857 {
858 	set_bit(PG_CLEAN, &req->wb_flags);
859 	nfs_list_add_request(req, dst);
860 	atomic_long_inc(&cinfo->mds->ncommit);
861 }
862 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
863 
864 /**
865  * nfs_request_add_commit_list - add request to a commit list
866  * @req: pointer to a struct nfs_page
867  * @dst: commit list head
868  * @cinfo: holds list lock and accounting info
869  *
870  * This sets the PG_CLEAN bit, updates the cinfo count of
871  * number of outstanding requests requiring a commit as well as
872  * the MM page stats.
873  *
874  * The caller must _not_ hold the cinfo->lock, but must be
875  * holding the nfs_page lock.
876  */
877 void
878 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
879 {
880 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
881 	nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
882 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
883 	if (req->wb_page)
884 		nfs_mark_page_unstable(req->wb_page, cinfo);
885 }
886 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
887 
888 /**
889  * nfs_request_remove_commit_list - Remove request from a commit list
890  * @req: pointer to a nfs_page
891  * @cinfo: holds list lock and accounting info
892  *
893  * This clears the PG_CLEAN bit, and updates the cinfo's count of
894  * number of outstanding requests requiring a commit
895  * It does not update the MM page stats.
896  *
897  * The caller _must_ hold the cinfo->lock and the nfs_page lock.
898  */
899 void
900 nfs_request_remove_commit_list(struct nfs_page *req,
901 			       struct nfs_commit_info *cinfo)
902 {
903 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
904 		return;
905 	nfs_list_remove_request(req);
906 	atomic_long_dec(&cinfo->mds->ncommit);
907 }
908 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
909 
910 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
911 				      struct inode *inode)
912 {
913 	cinfo->inode = inode;
914 	cinfo->mds = &NFS_I(inode)->commit_info;
915 	cinfo->ds = pnfs_get_ds_info(inode);
916 	cinfo->dreq = NULL;
917 	cinfo->completion_ops = &nfs_commit_completion_ops;
918 }
919 
920 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
921 		    struct inode *inode,
922 		    struct nfs_direct_req *dreq)
923 {
924 	if (dreq)
925 		nfs_init_cinfo_from_dreq(cinfo, dreq);
926 	else
927 		nfs_init_cinfo_from_inode(cinfo, inode);
928 }
929 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
930 
931 /*
932  * Add a request to the inode's commit list.
933  */
934 void
935 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
936 			struct nfs_commit_info *cinfo, u32 ds_commit_idx)
937 {
938 	if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
939 		return;
940 	nfs_request_add_commit_list(req, cinfo);
941 }
942 
943 static void
944 nfs_clear_page_commit(struct page *page)
945 {
946 	dec_node_page_state(page, NR_UNSTABLE_NFS);
947 	dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
948 		    WB_RECLAIMABLE);
949 }
950 
951 /* Called holding the request lock on @req */
952 static void
953 nfs_clear_request_commit(struct nfs_page *req)
954 {
955 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
956 		struct inode *inode = d_inode(req->wb_context->dentry);
957 		struct nfs_commit_info cinfo;
958 
959 		nfs_init_cinfo_from_inode(&cinfo, inode);
960 		mutex_lock(&NFS_I(inode)->commit_mutex);
961 		if (!pnfs_clear_request_commit(req, &cinfo)) {
962 			nfs_request_remove_commit_list(req, &cinfo);
963 		}
964 		mutex_unlock(&NFS_I(inode)->commit_mutex);
965 		nfs_clear_page_commit(req->wb_page);
966 	}
967 }
968 
969 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
970 {
971 	if (hdr->verf.committed == NFS_DATA_SYNC)
972 		return hdr->lseg == NULL;
973 	return hdr->verf.committed != NFS_FILE_SYNC;
974 }
975 
976 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
977 {
978 	nfs_io_completion_get(hdr->io_completion);
979 }
980 
981 static void nfs_write_completion(struct nfs_pgio_header *hdr)
982 {
983 	struct nfs_commit_info cinfo;
984 	unsigned long bytes = 0;
985 
986 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
987 		goto out;
988 	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
989 	while (!list_empty(&hdr->pages)) {
990 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
991 
992 		bytes += req->wb_bytes;
993 		nfs_list_remove_request(req);
994 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
995 		    (hdr->good_bytes < bytes)) {
996 			nfs_set_pageerror(req->wb_page);
997 			nfs_context_set_write_error(req->wb_context, hdr->error);
998 			goto remove_req;
999 		}
1000 		if (nfs_write_need_commit(hdr)) {
1001 			memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1002 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1003 				hdr->pgio_mirror_idx);
1004 			goto next;
1005 		}
1006 remove_req:
1007 		nfs_inode_remove_request(req);
1008 next:
1009 		nfs_end_page_writeback(req);
1010 		nfs_release_request(req);
1011 	}
1012 out:
1013 	nfs_io_completion_put(hdr->io_completion);
1014 	hdr->release(hdr);
1015 }
1016 
1017 unsigned long
1018 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1019 {
1020 	return atomic_long_read(&cinfo->mds->ncommit);
1021 }
1022 
1023 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1024 int
1025 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1026 		     struct nfs_commit_info *cinfo, int max)
1027 {
1028 	struct nfs_page *req, *tmp;
1029 	int ret = 0;
1030 
1031 restart:
1032 	list_for_each_entry_safe(req, tmp, src, wb_list) {
1033 		kref_get(&req->wb_kref);
1034 		if (!nfs_lock_request(req)) {
1035 			int status;
1036 
1037 			/* Prevent deadlock with nfs_lock_and_join_requests */
1038 			if (!list_empty(dst)) {
1039 				nfs_release_request(req);
1040 				continue;
1041 			}
1042 			/* Ensure we make progress to prevent livelock */
1043 			mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1044 			status = nfs_wait_on_request(req);
1045 			nfs_release_request(req);
1046 			mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1047 			if (status < 0)
1048 				break;
1049 			goto restart;
1050 		}
1051 		nfs_request_remove_commit_list(req, cinfo);
1052 		clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1053 		nfs_list_add_request(req, dst);
1054 		ret++;
1055 		if ((ret == max) && !cinfo->dreq)
1056 			break;
1057 		cond_resched();
1058 	}
1059 	return ret;
1060 }
1061 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1062 
1063 /*
1064  * nfs_scan_commit - Scan an inode for commit requests
1065  * @inode: NFS inode to scan
1066  * @dst: mds destination list
1067  * @cinfo: mds and ds lists of reqs ready to commit
1068  *
1069  * Moves requests from the inode's 'commit' request list.
1070  * The requests are *not* checked to ensure that they form a contiguous set.
1071  */
1072 int
1073 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1074 		struct nfs_commit_info *cinfo)
1075 {
1076 	int ret = 0;
1077 
1078 	if (!atomic_long_read(&cinfo->mds->ncommit))
1079 		return 0;
1080 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1081 	if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1082 		const int max = INT_MAX;
1083 
1084 		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1085 					   cinfo, max);
1086 		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1087 	}
1088 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1089 	return ret;
1090 }
1091 
1092 /*
1093  * Search for an existing write request, and attempt to update
1094  * it to reflect a new dirty region on a given page.
1095  *
1096  * If the attempt fails, then the existing request is flushed out
1097  * to disk.
1098  */
1099 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1100 		struct page *page,
1101 		unsigned int offset,
1102 		unsigned int bytes)
1103 {
1104 	struct nfs_page *req;
1105 	unsigned int rqend;
1106 	unsigned int end;
1107 	int error;
1108 
1109 	end = offset + bytes;
1110 
1111 	req = nfs_lock_and_join_requests(page);
1112 	if (IS_ERR_OR_NULL(req))
1113 		return req;
1114 
1115 	rqend = req->wb_offset + req->wb_bytes;
1116 	/*
1117 	 * Tell the caller to flush out the request if
1118 	 * the offsets are non-contiguous.
1119 	 * Note: nfs_flush_incompatible() will already
1120 	 * have flushed out requests having wrong owners.
1121 	 */
1122 	if (offset > rqend || end < req->wb_offset)
1123 		goto out_flushme;
1124 
1125 	/* Okay, the request matches. Update the region */
1126 	if (offset < req->wb_offset) {
1127 		req->wb_offset = offset;
1128 		req->wb_pgbase = offset;
1129 	}
1130 	if (end > rqend)
1131 		req->wb_bytes = end - req->wb_offset;
1132 	else
1133 		req->wb_bytes = rqend - req->wb_offset;
1134 	return req;
1135 out_flushme:
1136 	/*
1137 	 * Note: we mark the request dirty here because
1138 	 * nfs_lock_and_join_requests() cannot preserve
1139 	 * commit flags, so we have to replay the write.
1140 	 */
1141 	nfs_mark_request_dirty(req);
1142 	nfs_unlock_and_release_request(req);
1143 	error = nfs_wb_page(inode, page);
1144 	return (error < 0) ? ERR_PTR(error) : NULL;
1145 }
1146 
1147 /*
1148  * Try to update an existing write request, or create one if there is none.
1149  *
1150  * Note: Should always be called with the Page Lock held to prevent races
1151  * if we have to add a new request. Also assumes that the caller has
1152  * already called nfs_flush_incompatible() if necessary.
1153  */
1154 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1155 		struct page *page, unsigned int offset, unsigned int bytes)
1156 {
1157 	struct inode *inode = page_file_mapping(page)->host;
1158 	struct nfs_page	*req;
1159 
1160 	req = nfs_try_to_update_request(inode, page, offset, bytes);
1161 	if (req != NULL)
1162 		goto out;
1163 	req = nfs_create_request(ctx, page, NULL, offset, bytes);
1164 	if (IS_ERR(req))
1165 		goto out;
1166 	nfs_inode_add_request(inode, req);
1167 out:
1168 	return req;
1169 }
1170 
1171 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1172 		unsigned int offset, unsigned int count)
1173 {
1174 	struct nfs_page	*req;
1175 
1176 	req = nfs_setup_write_request(ctx, page, offset, count);
1177 	if (IS_ERR(req))
1178 		return PTR_ERR(req);
1179 	/* Update file length */
1180 	nfs_grow_file(page, offset, count);
1181 	nfs_mark_uptodate(req);
1182 	nfs_mark_request_dirty(req);
1183 	nfs_unlock_and_release_request(req);
1184 	return 0;
1185 }
1186 
1187 int nfs_flush_incompatible(struct file *file, struct page *page)
1188 {
1189 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1190 	struct nfs_lock_context *l_ctx;
1191 	struct file_lock_context *flctx = file_inode(file)->i_flctx;
1192 	struct nfs_page	*req;
1193 	int do_flush, status;
1194 	/*
1195 	 * Look for a request corresponding to this page. If there
1196 	 * is one, and it belongs to another file, we flush it out
1197 	 * before we try to copy anything into the page. Do this
1198 	 * due to the lack of an ACCESS-type call in NFSv2.
1199 	 * Also do the same if we find a request from an existing
1200 	 * dropped page.
1201 	 */
1202 	do {
1203 		req = nfs_page_find_head_request(page);
1204 		if (req == NULL)
1205 			return 0;
1206 		l_ctx = req->wb_lock_context;
1207 		do_flush = req->wb_page != page ||
1208 			!nfs_match_open_context(req->wb_context, ctx);
1209 		if (l_ctx && flctx &&
1210 		    !(list_empty_careful(&flctx->flc_posix) &&
1211 		      list_empty_careful(&flctx->flc_flock))) {
1212 			do_flush |= l_ctx->lockowner != current->files;
1213 		}
1214 		nfs_release_request(req);
1215 		if (!do_flush)
1216 			return 0;
1217 		status = nfs_wb_page(page_file_mapping(page)->host, page);
1218 	} while (status == 0);
1219 	return status;
1220 }
1221 
1222 /*
1223  * Avoid buffered writes when a open context credential's key would
1224  * expire soon.
1225  *
1226  * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1227  *
1228  * Return 0 and set a credential flag which triggers the inode to flush
1229  * and performs  NFS_FILE_SYNC writes if the key will expired within
1230  * RPC_KEY_EXPIRE_TIMEO.
1231  */
1232 int
1233 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1234 {
1235 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
1236 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1237 
1238 	return rpcauth_key_timeout_notify(auth, ctx->cred);
1239 }
1240 
1241 /*
1242  * Test if the open context credential key is marked to expire soon.
1243  */
1244 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1245 {
1246 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1247 
1248 	return rpcauth_cred_key_to_expire(auth, ctx->cred);
1249 }
1250 
1251 /*
1252  * If the page cache is marked as unsafe or invalid, then we can't rely on
1253  * the PageUptodate() flag. In this case, we will need to turn off
1254  * write optimisations that depend on the page contents being correct.
1255  */
1256 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1257 {
1258 	struct nfs_inode *nfsi = NFS_I(inode);
1259 
1260 	if (nfs_have_delegated_attributes(inode))
1261 		goto out;
1262 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1263 		return false;
1264 	smp_rmb();
1265 	if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1266 		return false;
1267 out:
1268 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1269 		return false;
1270 	return PageUptodate(page) != 0;
1271 }
1272 
1273 static bool
1274 is_whole_file_wrlock(struct file_lock *fl)
1275 {
1276 	return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1277 			fl->fl_type == F_WRLCK;
1278 }
1279 
1280 /* If we know the page is up to date, and we're not using byte range locks (or
1281  * if we have the whole file locked for writing), it may be more efficient to
1282  * extend the write to cover the entire page in order to avoid fragmentation
1283  * inefficiencies.
1284  *
1285  * If the file is opened for synchronous writes then we can just skip the rest
1286  * of the checks.
1287  */
1288 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1289 {
1290 	int ret;
1291 	struct file_lock_context *flctx = inode->i_flctx;
1292 	struct file_lock *fl;
1293 
1294 	if (file->f_flags & O_DSYNC)
1295 		return 0;
1296 	if (!nfs_write_pageuptodate(page, inode))
1297 		return 0;
1298 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1299 		return 1;
1300 	if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1301 		       list_empty_careful(&flctx->flc_posix)))
1302 		return 1;
1303 
1304 	/* Check to see if there are whole file write locks */
1305 	ret = 0;
1306 	spin_lock(&flctx->flc_lock);
1307 	if (!list_empty(&flctx->flc_posix)) {
1308 		fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1309 					fl_list);
1310 		if (is_whole_file_wrlock(fl))
1311 			ret = 1;
1312 	} else if (!list_empty(&flctx->flc_flock)) {
1313 		fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1314 					fl_list);
1315 		if (fl->fl_type == F_WRLCK)
1316 			ret = 1;
1317 	}
1318 	spin_unlock(&flctx->flc_lock);
1319 	return ret;
1320 }
1321 
1322 /*
1323  * Update and possibly write a cached page of an NFS file.
1324  *
1325  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1326  * things with a page scheduled for an RPC call (e.g. invalidate it).
1327  */
1328 int nfs_updatepage(struct file *file, struct page *page,
1329 		unsigned int offset, unsigned int count)
1330 {
1331 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1332 	struct inode	*inode = page_file_mapping(page)->host;
1333 	int		status = 0;
1334 
1335 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1336 
1337 	dprintk("NFS:       nfs_updatepage(%pD2 %d@%lld)\n",
1338 		file, count, (long long)(page_file_offset(page) + offset));
1339 
1340 	if (!count)
1341 		goto out;
1342 
1343 	if (nfs_can_extend_write(file, page, inode)) {
1344 		count = max(count + offset, nfs_page_length(page));
1345 		offset = 0;
1346 	}
1347 
1348 	status = nfs_writepage_setup(ctx, page, offset, count);
1349 	if (status < 0)
1350 		nfs_set_pageerror(page);
1351 	else
1352 		__set_page_dirty_nobuffers(page);
1353 out:
1354 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
1355 			status, (long long)i_size_read(inode));
1356 	return status;
1357 }
1358 
1359 static int flush_task_priority(int how)
1360 {
1361 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1362 		case FLUSH_HIGHPRI:
1363 			return RPC_PRIORITY_HIGH;
1364 		case FLUSH_LOWPRI:
1365 			return RPC_PRIORITY_LOW;
1366 	}
1367 	return RPC_PRIORITY_NORMAL;
1368 }
1369 
1370 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1371 			       struct rpc_message *msg,
1372 			       const struct nfs_rpc_ops *rpc_ops,
1373 			       struct rpc_task_setup *task_setup_data, int how)
1374 {
1375 	int priority = flush_task_priority(how);
1376 
1377 	task_setup_data->priority = priority;
1378 	rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client);
1379 	trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes,
1380 				 hdr->args.stable);
1381 }
1382 
1383 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1384  * call this on each, which will prepare them to be retried on next
1385  * writeback using standard nfs.
1386  */
1387 static void nfs_redirty_request(struct nfs_page *req)
1388 {
1389 	nfs_mark_request_dirty(req);
1390 	set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1391 	nfs_end_page_writeback(req);
1392 	nfs_release_request(req);
1393 }
1394 
1395 static void nfs_async_write_error(struct list_head *head)
1396 {
1397 	struct nfs_page	*req;
1398 
1399 	while (!list_empty(head)) {
1400 		req = nfs_list_entry(head->next);
1401 		nfs_list_remove_request(req);
1402 		nfs_redirty_request(req);
1403 	}
1404 }
1405 
1406 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1407 {
1408 	nfs_async_write_error(&hdr->pages);
1409 	filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset,
1410 			hdr->args.offset + hdr->args.count - 1);
1411 }
1412 
1413 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1414 	.init_hdr = nfs_async_write_init,
1415 	.error_cleanup = nfs_async_write_error,
1416 	.completion = nfs_write_completion,
1417 	.reschedule_io = nfs_async_write_reschedule_io,
1418 };
1419 
1420 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1421 			       struct inode *inode, int ioflags, bool force_mds,
1422 			       const struct nfs_pgio_completion_ops *compl_ops)
1423 {
1424 	struct nfs_server *server = NFS_SERVER(inode);
1425 	const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1426 
1427 #ifdef CONFIG_NFS_V4_1
1428 	if (server->pnfs_curr_ld && !force_mds)
1429 		pg_ops = server->pnfs_curr_ld->pg_write_ops;
1430 #endif
1431 	nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1432 			server->wsize, ioflags);
1433 }
1434 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1435 
1436 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1437 {
1438 	struct nfs_pgio_mirror *mirror;
1439 
1440 	if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1441 		pgio->pg_ops->pg_cleanup(pgio);
1442 
1443 	pgio->pg_ops = &nfs_pgio_rw_ops;
1444 
1445 	nfs_pageio_stop_mirroring(pgio);
1446 
1447 	mirror = &pgio->pg_mirrors[0];
1448 	mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1449 }
1450 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1451 
1452 
1453 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1454 {
1455 	struct nfs_commit_data *data = calldata;
1456 
1457 	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1458 }
1459 
1460 /*
1461  * Special version of should_remove_suid() that ignores capabilities.
1462  */
1463 static int nfs_should_remove_suid(const struct inode *inode)
1464 {
1465 	umode_t mode = inode->i_mode;
1466 	int kill = 0;
1467 
1468 	/* suid always must be killed */
1469 	if (unlikely(mode & S_ISUID))
1470 		kill = ATTR_KILL_SUID;
1471 
1472 	/*
1473 	 * sgid without any exec bits is just a mandatory locking mark; leave
1474 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1475 	 */
1476 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1477 		kill |= ATTR_KILL_SGID;
1478 
1479 	if (unlikely(kill && S_ISREG(mode)))
1480 		return kill;
1481 
1482 	return 0;
1483 }
1484 
1485 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1486 		struct nfs_fattr *fattr)
1487 {
1488 	struct nfs_pgio_args *argp = &hdr->args;
1489 	struct nfs_pgio_res *resp = &hdr->res;
1490 	u64 size = argp->offset + resp->count;
1491 
1492 	if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1493 		fattr->size = size;
1494 	if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1495 		fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1496 		return;
1497 	}
1498 	if (size != fattr->size)
1499 		return;
1500 	/* Set attribute barrier */
1501 	nfs_fattr_set_barrier(fattr);
1502 	/* ...and update size */
1503 	fattr->valid |= NFS_ATTR_FATTR_SIZE;
1504 }
1505 
1506 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1507 {
1508 	struct nfs_fattr *fattr = &hdr->fattr;
1509 	struct inode *inode = hdr->inode;
1510 
1511 	spin_lock(&inode->i_lock);
1512 	nfs_writeback_check_extend(hdr, fattr);
1513 	nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1514 	spin_unlock(&inode->i_lock);
1515 }
1516 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1517 
1518 /*
1519  * This function is called when the WRITE call is complete.
1520  */
1521 static int nfs_writeback_done(struct rpc_task *task,
1522 			      struct nfs_pgio_header *hdr,
1523 			      struct inode *inode)
1524 {
1525 	int status;
1526 
1527 	/*
1528 	 * ->write_done will attempt to use post-op attributes to detect
1529 	 * conflicting writes by other clients.  A strict interpretation
1530 	 * of close-to-open would allow us to continue caching even if
1531 	 * another writer had changed the file, but some applications
1532 	 * depend on tighter cache coherency when writing.
1533 	 */
1534 	status = NFS_PROTO(inode)->write_done(task, hdr);
1535 	if (status != 0)
1536 		return status;
1537 
1538 	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1539 	trace_nfs_writeback_done(inode, task->tk_status,
1540 				 hdr->args.offset, hdr->res.verf);
1541 
1542 	if (hdr->res.verf->committed < hdr->args.stable &&
1543 	    task->tk_status >= 0) {
1544 		/* We tried a write call, but the server did not
1545 		 * commit data to stable storage even though we
1546 		 * requested it.
1547 		 * Note: There is a known bug in Tru64 < 5.0 in which
1548 		 *	 the server reports NFS_DATA_SYNC, but performs
1549 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1550 		 *	 as a dprintk() in order to avoid filling syslog.
1551 		 */
1552 		static unsigned long    complain;
1553 
1554 		/* Note this will print the MDS for a DS write */
1555 		if (time_before(complain, jiffies)) {
1556 			dprintk("NFS:       faulty NFS server %s:"
1557 				" (committed = %d) != (stable = %d)\n",
1558 				NFS_SERVER(inode)->nfs_client->cl_hostname,
1559 				hdr->res.verf->committed, hdr->args.stable);
1560 			complain = jiffies + 300 * HZ;
1561 		}
1562 	}
1563 
1564 	/* Deal with the suid/sgid bit corner case */
1565 	if (nfs_should_remove_suid(inode)) {
1566 		spin_lock(&inode->i_lock);
1567 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_OTHER;
1568 		spin_unlock(&inode->i_lock);
1569 	}
1570 	return 0;
1571 }
1572 
1573 /*
1574  * This function is called when the WRITE call is complete.
1575  */
1576 static void nfs_writeback_result(struct rpc_task *task,
1577 				 struct nfs_pgio_header *hdr)
1578 {
1579 	struct nfs_pgio_args	*argp = &hdr->args;
1580 	struct nfs_pgio_res	*resp = &hdr->res;
1581 
1582 	if (resp->count < argp->count) {
1583 		static unsigned long    complain;
1584 
1585 		/* This a short write! */
1586 		nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1587 
1588 		/* Has the server at least made some progress? */
1589 		if (resp->count == 0) {
1590 			if (time_before(complain, jiffies)) {
1591 				printk(KERN_WARNING
1592 				       "NFS: Server wrote zero bytes, expected %u.\n",
1593 				       argp->count);
1594 				complain = jiffies + 300 * HZ;
1595 			}
1596 			nfs_set_pgio_error(hdr, -EIO, argp->offset);
1597 			task->tk_status = -EIO;
1598 			return;
1599 		}
1600 
1601 		/* For non rpc-based layout drivers, retry-through-MDS */
1602 		if (!task->tk_ops) {
1603 			hdr->pnfs_error = -EAGAIN;
1604 			return;
1605 		}
1606 
1607 		/* Was this an NFSv2 write or an NFSv3 stable write? */
1608 		if (resp->verf->committed != NFS_UNSTABLE) {
1609 			/* Resend from where the server left off */
1610 			hdr->mds_offset += resp->count;
1611 			argp->offset += resp->count;
1612 			argp->pgbase += resp->count;
1613 			argp->count -= resp->count;
1614 		} else {
1615 			/* Resend as a stable write in order to avoid
1616 			 * headaches in the case of a server crash.
1617 			 */
1618 			argp->stable = NFS_FILE_SYNC;
1619 		}
1620 		rpc_restart_call_prepare(task);
1621 	}
1622 }
1623 
1624 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1625 {
1626 	return wait_var_event_killable(&cinfo->rpcs_out,
1627 				       !atomic_read(&cinfo->rpcs_out));
1628 }
1629 
1630 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1631 {
1632 	atomic_inc(&cinfo->rpcs_out);
1633 }
1634 
1635 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1636 {
1637 	if (atomic_dec_and_test(&cinfo->rpcs_out))
1638 		wake_up_var(&cinfo->rpcs_out);
1639 }
1640 
1641 void nfs_commitdata_release(struct nfs_commit_data *data)
1642 {
1643 	put_nfs_open_context(data->context);
1644 	nfs_commit_free(data);
1645 }
1646 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1647 
1648 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1649 			const struct nfs_rpc_ops *nfs_ops,
1650 			const struct rpc_call_ops *call_ops,
1651 			int how, int flags)
1652 {
1653 	struct rpc_task *task;
1654 	int priority = flush_task_priority(how);
1655 	struct rpc_message msg = {
1656 		.rpc_argp = &data->args,
1657 		.rpc_resp = &data->res,
1658 		.rpc_cred = data->cred,
1659 	};
1660 	struct rpc_task_setup task_setup_data = {
1661 		.task = &data->task,
1662 		.rpc_client = clnt,
1663 		.rpc_message = &msg,
1664 		.callback_ops = call_ops,
1665 		.callback_data = data,
1666 		.workqueue = nfsiod_workqueue,
1667 		.flags = RPC_TASK_ASYNC | flags,
1668 		.priority = priority,
1669 	};
1670 	/* Set up the initial task struct.  */
1671 	nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client);
1672 	trace_nfs_initiate_commit(data);
1673 
1674 	dprintk("NFS: initiated commit call\n");
1675 
1676 	task = rpc_run_task(&task_setup_data);
1677 	if (IS_ERR(task))
1678 		return PTR_ERR(task);
1679 	if (how & FLUSH_SYNC)
1680 		rpc_wait_for_completion_task(task);
1681 	rpc_put_task(task);
1682 	return 0;
1683 }
1684 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1685 
1686 static loff_t nfs_get_lwb(struct list_head *head)
1687 {
1688 	loff_t lwb = 0;
1689 	struct nfs_page *req;
1690 
1691 	list_for_each_entry(req, head, wb_list)
1692 		if (lwb < (req_offset(req) + req->wb_bytes))
1693 			lwb = req_offset(req) + req->wb_bytes;
1694 
1695 	return lwb;
1696 }
1697 
1698 /*
1699  * Set up the argument/result storage required for the RPC call.
1700  */
1701 void nfs_init_commit(struct nfs_commit_data *data,
1702 		     struct list_head *head,
1703 		     struct pnfs_layout_segment *lseg,
1704 		     struct nfs_commit_info *cinfo)
1705 {
1706 	struct nfs_page *first = nfs_list_entry(head->next);
1707 	struct inode *inode = d_inode(first->wb_context->dentry);
1708 
1709 	/* Set up the RPC argument and reply structs
1710 	 * NB: take care not to mess about with data->commit et al. */
1711 
1712 	list_splice_init(head, &data->pages);
1713 
1714 	data->inode	  = inode;
1715 	data->cred	  = first->wb_context->cred;
1716 	data->lseg	  = lseg; /* reference transferred */
1717 	/* only set lwb for pnfs commit */
1718 	if (lseg)
1719 		data->lwb = nfs_get_lwb(&data->pages);
1720 	data->mds_ops     = &nfs_commit_ops;
1721 	data->completion_ops = cinfo->completion_ops;
1722 	data->dreq	  = cinfo->dreq;
1723 
1724 	data->args.fh     = NFS_FH(data->inode);
1725 	/* Note: we always request a commit of the entire inode */
1726 	data->args.offset = 0;
1727 	data->args.count  = 0;
1728 	data->context     = get_nfs_open_context(first->wb_context);
1729 	data->res.fattr   = &data->fattr;
1730 	data->res.verf    = &data->verf;
1731 	nfs_fattr_init(&data->fattr);
1732 }
1733 EXPORT_SYMBOL_GPL(nfs_init_commit);
1734 
1735 void nfs_retry_commit(struct list_head *page_list,
1736 		      struct pnfs_layout_segment *lseg,
1737 		      struct nfs_commit_info *cinfo,
1738 		      u32 ds_commit_idx)
1739 {
1740 	struct nfs_page *req;
1741 
1742 	while (!list_empty(page_list)) {
1743 		req = nfs_list_entry(page_list->next);
1744 		nfs_list_remove_request(req);
1745 		nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1746 		if (!cinfo->dreq)
1747 			nfs_clear_page_commit(req->wb_page);
1748 		nfs_unlock_and_release_request(req);
1749 	}
1750 }
1751 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1752 
1753 static void
1754 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1755 		struct nfs_page *req)
1756 {
1757 	__set_page_dirty_nobuffers(req->wb_page);
1758 }
1759 
1760 /*
1761  * Commit dirty pages
1762  */
1763 static int
1764 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1765 		struct nfs_commit_info *cinfo)
1766 {
1767 	struct nfs_commit_data	*data;
1768 
1769 	/* another commit raced with us */
1770 	if (list_empty(head))
1771 		return 0;
1772 
1773 	data = nfs_commitdata_alloc(true);
1774 
1775 	/* Set up the argument struct */
1776 	nfs_init_commit(data, head, NULL, cinfo);
1777 	atomic_inc(&cinfo->mds->rpcs_out);
1778 	return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1779 				   data->mds_ops, how, 0);
1780 }
1781 
1782 /*
1783  * COMMIT call returned
1784  */
1785 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1786 {
1787 	struct nfs_commit_data	*data = calldata;
1788 
1789         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1790                                 task->tk_pid, task->tk_status);
1791 
1792 	/* Call the NFS version-specific code */
1793 	NFS_PROTO(data->inode)->commit_done(task, data);
1794 	trace_nfs_commit_done(data);
1795 }
1796 
1797 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1798 {
1799 	struct nfs_page	*req;
1800 	int status = data->task.tk_status;
1801 	struct nfs_commit_info cinfo;
1802 	struct nfs_server *nfss;
1803 
1804 	while (!list_empty(&data->pages)) {
1805 		req = nfs_list_entry(data->pages.next);
1806 		nfs_list_remove_request(req);
1807 		if (req->wb_page)
1808 			nfs_clear_page_commit(req->wb_page);
1809 
1810 		dprintk("NFS:       commit (%s/%llu %d@%lld)",
1811 			req->wb_context->dentry->d_sb->s_id,
1812 			(unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
1813 			req->wb_bytes,
1814 			(long long)req_offset(req));
1815 		if (status < 0) {
1816 			nfs_context_set_write_error(req->wb_context, status);
1817 			if (req->wb_page)
1818 				nfs_inode_remove_request(req);
1819 			dprintk_cont(", error = %d\n", status);
1820 			goto next;
1821 		}
1822 
1823 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1824 		 * returned by the server against all stored verfs. */
1825 		if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) {
1826 			/* We have a match */
1827 			if (req->wb_page)
1828 				nfs_inode_remove_request(req);
1829 			dprintk_cont(" OK\n");
1830 			goto next;
1831 		}
1832 		/* We have a mismatch. Write the page again */
1833 		dprintk_cont(" mismatch\n");
1834 		nfs_mark_request_dirty(req);
1835 		set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1836 	next:
1837 		nfs_unlock_and_release_request(req);
1838 		/* Latency breaker */
1839 		cond_resched();
1840 	}
1841 	nfss = NFS_SERVER(data->inode);
1842 	if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1843 		clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1844 
1845 	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1846 	nfs_commit_end(cinfo.mds);
1847 }
1848 
1849 static void nfs_commit_release(void *calldata)
1850 {
1851 	struct nfs_commit_data *data = calldata;
1852 
1853 	data->completion_ops->completion(data);
1854 	nfs_commitdata_release(calldata);
1855 }
1856 
1857 static const struct rpc_call_ops nfs_commit_ops = {
1858 	.rpc_call_prepare = nfs_commit_prepare,
1859 	.rpc_call_done = nfs_commit_done,
1860 	.rpc_release = nfs_commit_release,
1861 };
1862 
1863 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1864 	.completion = nfs_commit_release_pages,
1865 	.resched_write = nfs_commit_resched_write,
1866 };
1867 
1868 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1869 			    int how, struct nfs_commit_info *cinfo)
1870 {
1871 	int status;
1872 
1873 	status = pnfs_commit_list(inode, head, how, cinfo);
1874 	if (status == PNFS_NOT_ATTEMPTED)
1875 		status = nfs_commit_list(inode, head, how, cinfo);
1876 	return status;
1877 }
1878 
1879 static int __nfs_commit_inode(struct inode *inode, int how,
1880 		struct writeback_control *wbc)
1881 {
1882 	LIST_HEAD(head);
1883 	struct nfs_commit_info cinfo;
1884 	int may_wait = how & FLUSH_SYNC;
1885 	int ret, nscan;
1886 
1887 	nfs_init_cinfo_from_inode(&cinfo, inode);
1888 	nfs_commit_begin(cinfo.mds);
1889 	for (;;) {
1890 		ret = nscan = nfs_scan_commit(inode, &head, &cinfo);
1891 		if (ret <= 0)
1892 			break;
1893 		ret = nfs_generic_commit_list(inode, &head, how, &cinfo);
1894 		if (ret < 0)
1895 			break;
1896 		ret = 0;
1897 		if (wbc && wbc->sync_mode == WB_SYNC_NONE) {
1898 			if (nscan < wbc->nr_to_write)
1899 				wbc->nr_to_write -= nscan;
1900 			else
1901 				wbc->nr_to_write = 0;
1902 		}
1903 		if (nscan < INT_MAX)
1904 			break;
1905 		cond_resched();
1906 	}
1907 	nfs_commit_end(cinfo.mds);
1908 	if (ret || !may_wait)
1909 		return ret;
1910 	return wait_on_commit(cinfo.mds);
1911 }
1912 
1913 int nfs_commit_inode(struct inode *inode, int how)
1914 {
1915 	return __nfs_commit_inode(inode, how, NULL);
1916 }
1917 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1918 
1919 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1920 {
1921 	struct nfs_inode *nfsi = NFS_I(inode);
1922 	int flags = FLUSH_SYNC;
1923 	int ret = 0;
1924 
1925 	if (wbc->sync_mode == WB_SYNC_NONE) {
1926 		/* no commits means nothing needs to be done */
1927 		if (!atomic_long_read(&nfsi->commit_info.ncommit))
1928 			goto check_requests_outstanding;
1929 
1930 		/* Don't commit yet if this is a non-blocking flush and there
1931 		 * are a lot of outstanding writes for this mapping.
1932 		 */
1933 		if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1934 			goto out_mark_dirty;
1935 
1936 		/* don't wait for the COMMIT response */
1937 		flags = 0;
1938 	}
1939 
1940 	ret = __nfs_commit_inode(inode, flags, wbc);
1941 	if (!ret) {
1942 		if (flags & FLUSH_SYNC)
1943 			return 0;
1944 	} else if (atomic_long_read(&nfsi->commit_info.ncommit))
1945 		goto out_mark_dirty;
1946 
1947 check_requests_outstanding:
1948 	if (!atomic_read(&nfsi->commit_info.rpcs_out))
1949 		return ret;
1950 out_mark_dirty:
1951 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1952 	return ret;
1953 }
1954 EXPORT_SYMBOL_GPL(nfs_write_inode);
1955 
1956 /*
1957  * Wrapper for filemap_write_and_wait_range()
1958  *
1959  * Needed for pNFS in order to ensure data becomes visible to the
1960  * client.
1961  */
1962 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
1963 		loff_t lstart, loff_t lend)
1964 {
1965 	int ret;
1966 
1967 	ret = filemap_write_and_wait_range(mapping, lstart, lend);
1968 	if (ret == 0)
1969 		ret = pnfs_sync_inode(mapping->host, true);
1970 	return ret;
1971 }
1972 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
1973 
1974 /*
1975  * flush the inode to disk.
1976  */
1977 int nfs_wb_all(struct inode *inode)
1978 {
1979 	int ret;
1980 
1981 	trace_nfs_writeback_inode_enter(inode);
1982 
1983 	ret = filemap_write_and_wait(inode->i_mapping);
1984 	if (ret)
1985 		goto out;
1986 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
1987 	if (ret < 0)
1988 		goto out;
1989 	pnfs_sync_inode(inode, true);
1990 	ret = 0;
1991 
1992 out:
1993 	trace_nfs_writeback_inode_exit(inode, ret);
1994 	return ret;
1995 }
1996 EXPORT_SYMBOL_GPL(nfs_wb_all);
1997 
1998 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1999 {
2000 	struct nfs_page *req;
2001 	int ret = 0;
2002 
2003 	wait_on_page_writeback(page);
2004 
2005 	/* blocking call to cancel all requests and join to a single (head)
2006 	 * request */
2007 	req = nfs_lock_and_join_requests(page);
2008 
2009 	if (IS_ERR(req)) {
2010 		ret = PTR_ERR(req);
2011 	} else if (req) {
2012 		/* all requests from this page have been cancelled by
2013 		 * nfs_lock_and_join_requests, so just remove the head
2014 		 * request from the inode / page_private pointer and
2015 		 * release it */
2016 		nfs_inode_remove_request(req);
2017 		nfs_unlock_and_release_request(req);
2018 	}
2019 
2020 	return ret;
2021 }
2022 
2023 /*
2024  * Write back all requests on one page - we do this before reading it.
2025  */
2026 int nfs_wb_page(struct inode *inode, struct page *page)
2027 {
2028 	loff_t range_start = page_file_offset(page);
2029 	loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2030 	struct writeback_control wbc = {
2031 		.sync_mode = WB_SYNC_ALL,
2032 		.nr_to_write = 0,
2033 		.range_start = range_start,
2034 		.range_end = range_end,
2035 	};
2036 	int ret;
2037 
2038 	trace_nfs_writeback_page_enter(inode);
2039 
2040 	for (;;) {
2041 		wait_on_page_writeback(page);
2042 		if (clear_page_dirty_for_io(page)) {
2043 			ret = nfs_writepage_locked(page, &wbc);
2044 			if (ret < 0)
2045 				goto out_error;
2046 			continue;
2047 		}
2048 		ret = 0;
2049 		if (!PagePrivate(page))
2050 			break;
2051 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
2052 		if (ret < 0)
2053 			goto out_error;
2054 	}
2055 out_error:
2056 	trace_nfs_writeback_page_exit(inode, ret);
2057 	return ret;
2058 }
2059 
2060 #ifdef CONFIG_MIGRATION
2061 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2062 		struct page *page, enum migrate_mode mode)
2063 {
2064 	/*
2065 	 * If PagePrivate is set, then the page is currently associated with
2066 	 * an in-progress read or write request. Don't try to migrate it.
2067 	 *
2068 	 * FIXME: we could do this in principle, but we'll need a way to ensure
2069 	 *        that we can safely release the inode reference while holding
2070 	 *        the page lock.
2071 	 */
2072 	if (PagePrivate(page))
2073 		return -EBUSY;
2074 
2075 	if (!nfs_fscache_release_page(page, GFP_KERNEL))
2076 		return -EBUSY;
2077 
2078 	return migrate_page(mapping, newpage, page, mode);
2079 }
2080 #endif
2081 
2082 int __init nfs_init_writepagecache(void)
2083 {
2084 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2085 					     sizeof(struct nfs_pgio_header),
2086 					     0, SLAB_HWCACHE_ALIGN,
2087 					     NULL);
2088 	if (nfs_wdata_cachep == NULL)
2089 		return -ENOMEM;
2090 
2091 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2092 						     nfs_wdata_cachep);
2093 	if (nfs_wdata_mempool == NULL)
2094 		goto out_destroy_write_cache;
2095 
2096 	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2097 					     sizeof(struct nfs_commit_data),
2098 					     0, SLAB_HWCACHE_ALIGN,
2099 					     NULL);
2100 	if (nfs_cdata_cachep == NULL)
2101 		goto out_destroy_write_mempool;
2102 
2103 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2104 						      nfs_cdata_cachep);
2105 	if (nfs_commit_mempool == NULL)
2106 		goto out_destroy_commit_cache;
2107 
2108 	/*
2109 	 * NFS congestion size, scale with available memory.
2110 	 *
2111 	 *  64MB:    8192k
2112 	 * 128MB:   11585k
2113 	 * 256MB:   16384k
2114 	 * 512MB:   23170k
2115 	 *   1GB:   32768k
2116 	 *   2GB:   46340k
2117 	 *   4GB:   65536k
2118 	 *   8GB:   92681k
2119 	 *  16GB:  131072k
2120 	 *
2121 	 * This allows larger machines to have larger/more transfers.
2122 	 * Limit the default to 256M
2123 	 */
2124 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
2125 	if (nfs_congestion_kb > 256*1024)
2126 		nfs_congestion_kb = 256*1024;
2127 
2128 	return 0;
2129 
2130 out_destroy_commit_cache:
2131 	kmem_cache_destroy(nfs_cdata_cachep);
2132 out_destroy_write_mempool:
2133 	mempool_destroy(nfs_wdata_mempool);
2134 out_destroy_write_cache:
2135 	kmem_cache_destroy(nfs_wdata_cachep);
2136 	return -ENOMEM;
2137 }
2138 
2139 void nfs_destroy_writepagecache(void)
2140 {
2141 	mempool_destroy(nfs_commit_mempool);
2142 	kmem_cache_destroy(nfs_cdata_cachep);
2143 	mempool_destroy(nfs_wdata_mempool);
2144 	kmem_cache_destroy(nfs_wdata_cachep);
2145 }
2146 
2147 static const struct nfs_rw_ops nfs_rw_write_ops = {
2148 	.rw_alloc_header	= nfs_writehdr_alloc,
2149 	.rw_free_header		= nfs_writehdr_free,
2150 	.rw_done		= nfs_writeback_done,
2151 	.rw_result		= nfs_writeback_result,
2152 	.rw_initiate		= nfs_initiate_write,
2153 };
2154