xref: /openbmc/linux/fs/nfs/write.c (revision e105007c)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 
24 #include <asm/uaccess.h>
25 
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31 
32 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
33 
34 #define MIN_POOL_WRITE		(32)
35 #define MIN_POOL_COMMIT		(4)
36 
37 /*
38  * Local function declarations
39  */
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 				  struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
46 
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
50 
51 struct nfs_write_data *nfs_commitdata_alloc(void)
52 {
53 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
54 
55 	if (p) {
56 		memset(p, 0, sizeof(*p));
57 		INIT_LIST_HEAD(&p->pages);
58 		p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
59 	}
60 	return p;
61 }
62 
63 void nfs_commit_free(struct nfs_write_data *p)
64 {
65 	if (p && (p->pagevec != &p->page_array[0]))
66 		kfree(p->pagevec);
67 	mempool_free(p, nfs_commit_mempool);
68 }
69 
70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
71 {
72 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
73 
74 	if (p) {
75 		memset(p, 0, sizeof(*p));
76 		INIT_LIST_HEAD(&p->pages);
77 		p->npages = pagecount;
78 		p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
79 		if (pagecount <= ARRAY_SIZE(p->page_array))
80 			p->pagevec = p->page_array;
81 		else {
82 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
83 			if (!p->pagevec) {
84 				mempool_free(p, nfs_wdata_mempool);
85 				p = NULL;
86 			}
87 		}
88 	}
89 	return p;
90 }
91 
92 void nfs_writedata_free(struct nfs_write_data *p)
93 {
94 	if (p && (p->pagevec != &p->page_array[0]))
95 		kfree(p->pagevec);
96 	mempool_free(p, nfs_wdata_mempool);
97 }
98 
99 static void nfs_writedata_release(struct nfs_write_data *wdata)
100 {
101 	put_nfs_open_context(wdata->args.context);
102 	nfs_writedata_free(wdata);
103 }
104 
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
106 {
107 	ctx->error = error;
108 	smp_wmb();
109 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
110 }
111 
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
113 {
114 	struct nfs_page *req = NULL;
115 
116 	if (PagePrivate(page)) {
117 		req = (struct nfs_page *)page_private(page);
118 		if (req != NULL)
119 			kref_get(&req->wb_kref);
120 	}
121 	return req;
122 }
123 
124 static struct nfs_page *nfs_page_find_request(struct page *page)
125 {
126 	struct inode *inode = page->mapping->host;
127 	struct nfs_page *req = NULL;
128 
129 	spin_lock(&inode->i_lock);
130 	req = nfs_page_find_request_locked(page);
131 	spin_unlock(&inode->i_lock);
132 	return req;
133 }
134 
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
137 {
138 	struct inode *inode = page->mapping->host;
139 	loff_t end, i_size;
140 	pgoff_t end_index;
141 
142 	spin_lock(&inode->i_lock);
143 	i_size = i_size_read(inode);
144 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
145 	if (i_size > 0 && page->index < end_index)
146 		goto out;
147 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148 	if (i_size >= end)
149 		goto out;
150 	i_size_write(inode, end);
151 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
152 out:
153 	spin_unlock(&inode->i_lock);
154 }
155 
156 /* A writeback failed: mark the page as bad, and invalidate the page cache */
157 static void nfs_set_pageerror(struct page *page)
158 {
159 	SetPageError(page);
160 	nfs_zap_mapping(page->mapping->host, page->mapping);
161 }
162 
163 /* We can set the PG_uptodate flag if we see that a write request
164  * covers the full page.
165  */
166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
167 {
168 	if (PageUptodate(page))
169 		return;
170 	if (base != 0)
171 		return;
172 	if (count != nfs_page_length(page))
173 		return;
174 	SetPageUptodate(page);
175 }
176 
177 static int wb_priority(struct writeback_control *wbc)
178 {
179 	if (wbc->for_reclaim)
180 		return FLUSH_HIGHPRI | FLUSH_STABLE;
181 	if (wbc->for_kupdate || wbc->for_background)
182 		return FLUSH_LOWPRI;
183 	return 0;
184 }
185 
186 /*
187  * NFS congestion control
188  */
189 
190 int nfs_congestion_kb;
191 
192 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
193 #define NFS_CONGESTION_OFF_THRESH	\
194 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
195 
196 static int nfs_set_page_writeback(struct page *page)
197 {
198 	int ret = test_set_page_writeback(page);
199 
200 	if (!ret) {
201 		struct inode *inode = page->mapping->host;
202 		struct nfs_server *nfss = NFS_SERVER(inode);
203 
204 		if (atomic_long_inc_return(&nfss->writeback) >
205 				NFS_CONGESTION_ON_THRESH) {
206 			set_bdi_congested(&nfss->backing_dev_info,
207 						BLK_RW_ASYNC);
208 		}
209 	}
210 	return ret;
211 }
212 
213 static void nfs_end_page_writeback(struct page *page)
214 {
215 	struct inode *inode = page->mapping->host;
216 	struct nfs_server *nfss = NFS_SERVER(inode);
217 
218 	end_page_writeback(page);
219 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
220 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
221 }
222 
223 static struct nfs_page *nfs_find_and_lock_request(struct page *page)
224 {
225 	struct inode *inode = page->mapping->host;
226 	struct nfs_page *req;
227 	int ret;
228 
229 	spin_lock(&inode->i_lock);
230 	for (;;) {
231 		req = nfs_page_find_request_locked(page);
232 		if (req == NULL)
233 			break;
234 		if (nfs_set_page_tag_locked(req))
235 			break;
236 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
237 		 *	 then the call to nfs_set_page_tag_locked() will always
238 		 *	 succeed provided that someone hasn't already marked the
239 		 *	 request as dirty (in which case we don't care).
240 		 */
241 		spin_unlock(&inode->i_lock);
242 		ret = nfs_wait_on_request(req);
243 		nfs_release_request(req);
244 		if (ret != 0)
245 			return ERR_PTR(ret);
246 		spin_lock(&inode->i_lock);
247 	}
248 	spin_unlock(&inode->i_lock);
249 	return req;
250 }
251 
252 /*
253  * Find an associated nfs write request, and prepare to flush it out
254  * May return an error if the user signalled nfs_wait_on_request().
255  */
256 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
257 				struct page *page)
258 {
259 	struct nfs_page *req;
260 	int ret = 0;
261 
262 	req = nfs_find_and_lock_request(page);
263 	if (!req)
264 		goto out;
265 	ret = PTR_ERR(req);
266 	if (IS_ERR(req))
267 		goto out;
268 
269 	ret = nfs_set_page_writeback(page);
270 	BUG_ON(ret != 0);
271 	BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
272 
273 	if (!nfs_pageio_add_request(pgio, req)) {
274 		nfs_redirty_request(req);
275 		ret = pgio->pg_error;
276 	}
277 out:
278 	return ret;
279 }
280 
281 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
282 {
283 	struct inode *inode = page->mapping->host;
284 
285 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
286 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
287 
288 	nfs_pageio_cond_complete(pgio, page->index);
289 	return nfs_page_async_flush(pgio, page);
290 }
291 
292 /*
293  * Write an mmapped page to the server.
294  */
295 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
296 {
297 	struct nfs_pageio_descriptor pgio;
298 	int err;
299 
300 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
301 	err = nfs_do_writepage(page, wbc, &pgio);
302 	nfs_pageio_complete(&pgio);
303 	if (err < 0)
304 		return err;
305 	if (pgio.pg_error < 0)
306 		return pgio.pg_error;
307 	return 0;
308 }
309 
310 int nfs_writepage(struct page *page, struct writeback_control *wbc)
311 {
312 	int ret;
313 
314 	ret = nfs_writepage_locked(page, wbc);
315 	unlock_page(page);
316 	return ret;
317 }
318 
319 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
320 {
321 	int ret;
322 
323 	ret = nfs_do_writepage(page, wbc, data);
324 	unlock_page(page);
325 	return ret;
326 }
327 
328 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
329 {
330 	struct inode *inode = mapping->host;
331 	unsigned long *bitlock = &NFS_I(inode)->flags;
332 	struct nfs_pageio_descriptor pgio;
333 	int err;
334 
335 	/* Stop dirtying of new pages while we sync */
336 	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
337 			nfs_wait_bit_killable, TASK_KILLABLE);
338 	if (err)
339 		goto out_err;
340 
341 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
342 
343 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
344 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
345 	nfs_pageio_complete(&pgio);
346 
347 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
348 	smp_mb__after_clear_bit();
349 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
350 
351 	if (err < 0)
352 		goto out_err;
353 	err = pgio.pg_error;
354 	if (err < 0)
355 		goto out_err;
356 	return 0;
357 out_err:
358 	return err;
359 }
360 
361 /*
362  * Insert a write request into an inode
363  */
364 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
365 {
366 	struct nfs_inode *nfsi = NFS_I(inode);
367 	int error;
368 
369 	error = radix_tree_preload(GFP_NOFS);
370 	if (error != 0)
371 		goto out;
372 
373 	/* Lock the request! */
374 	nfs_lock_request_dontget(req);
375 
376 	spin_lock(&inode->i_lock);
377 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
378 	BUG_ON(error);
379 	if (!nfsi->npages) {
380 		igrab(inode);
381 		if (nfs_have_delegation(inode, FMODE_WRITE))
382 			nfsi->change_attr++;
383 	}
384 	SetPagePrivate(req->wb_page);
385 	set_page_private(req->wb_page, (unsigned long)req);
386 	nfsi->npages++;
387 	kref_get(&req->wb_kref);
388 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
389 				NFS_PAGE_TAG_LOCKED);
390 	spin_unlock(&inode->i_lock);
391 	radix_tree_preload_end();
392 out:
393 	return error;
394 }
395 
396 /*
397  * Remove a write request from an inode
398  */
399 static void nfs_inode_remove_request(struct nfs_page *req)
400 {
401 	struct inode *inode = req->wb_context->path.dentry->d_inode;
402 	struct nfs_inode *nfsi = NFS_I(inode);
403 
404 	BUG_ON (!NFS_WBACK_BUSY(req));
405 
406 	spin_lock(&inode->i_lock);
407 	set_page_private(req->wb_page, 0);
408 	ClearPagePrivate(req->wb_page);
409 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
410 	nfsi->npages--;
411 	if (!nfsi->npages) {
412 		spin_unlock(&inode->i_lock);
413 		iput(inode);
414 	} else
415 		spin_unlock(&inode->i_lock);
416 	nfs_clear_request(req);
417 	nfs_release_request(req);
418 }
419 
420 static void
421 nfs_mark_request_dirty(struct nfs_page *req)
422 {
423 	__set_page_dirty_nobuffers(req->wb_page);
424 }
425 
426 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
427 /*
428  * Add a request to the inode's commit list.
429  */
430 static void
431 nfs_mark_request_commit(struct nfs_page *req)
432 {
433 	struct inode *inode = req->wb_context->path.dentry->d_inode;
434 	struct nfs_inode *nfsi = NFS_I(inode);
435 
436 	spin_lock(&inode->i_lock);
437 	set_bit(PG_CLEAN, &(req)->wb_flags);
438 	radix_tree_tag_set(&nfsi->nfs_page_tree,
439 			req->wb_index,
440 			NFS_PAGE_TAG_COMMIT);
441 	spin_unlock(&inode->i_lock);
442 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
443 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
444 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
445 }
446 
447 static int
448 nfs_clear_request_commit(struct nfs_page *req)
449 {
450 	struct page *page = req->wb_page;
451 
452 	if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
453 		dec_zone_page_state(page, NR_UNSTABLE_NFS);
454 		dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
455 		return 1;
456 	}
457 	return 0;
458 }
459 
460 static inline
461 int nfs_write_need_commit(struct nfs_write_data *data)
462 {
463 	return data->verf.committed != NFS_FILE_SYNC;
464 }
465 
466 static inline
467 int nfs_reschedule_unstable_write(struct nfs_page *req)
468 {
469 	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
470 		nfs_mark_request_commit(req);
471 		return 1;
472 	}
473 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
474 		nfs_mark_request_dirty(req);
475 		return 1;
476 	}
477 	return 0;
478 }
479 #else
480 static inline void
481 nfs_mark_request_commit(struct nfs_page *req)
482 {
483 }
484 
485 static inline int
486 nfs_clear_request_commit(struct nfs_page *req)
487 {
488 	return 0;
489 }
490 
491 static inline
492 int nfs_write_need_commit(struct nfs_write_data *data)
493 {
494 	return 0;
495 }
496 
497 static inline
498 int nfs_reschedule_unstable_write(struct nfs_page *req)
499 {
500 	return 0;
501 }
502 #endif
503 
504 /*
505  * Wait for a request to complete.
506  *
507  * Interruptible by fatal signals only.
508  */
509 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
510 {
511 	struct nfs_inode *nfsi = NFS_I(inode);
512 	struct nfs_page *req;
513 	pgoff_t idx_end, next;
514 	unsigned int		res = 0;
515 	int			error;
516 
517 	if (npages == 0)
518 		idx_end = ~0;
519 	else
520 		idx_end = idx_start + npages - 1;
521 
522 	next = idx_start;
523 	while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
524 		if (req->wb_index > idx_end)
525 			break;
526 
527 		next = req->wb_index + 1;
528 		BUG_ON(!NFS_WBACK_BUSY(req));
529 
530 		kref_get(&req->wb_kref);
531 		spin_unlock(&inode->i_lock);
532 		error = nfs_wait_on_request(req);
533 		nfs_release_request(req);
534 		spin_lock(&inode->i_lock);
535 		if (error < 0)
536 			return error;
537 		res++;
538 	}
539 	return res;
540 }
541 
542 static void nfs_cancel_commit_list(struct list_head *head)
543 {
544 	struct nfs_page *req;
545 
546 	while(!list_empty(head)) {
547 		req = nfs_list_entry(head->next);
548 		nfs_list_remove_request(req);
549 		nfs_clear_request_commit(req);
550 		nfs_inode_remove_request(req);
551 		nfs_unlock_request(req);
552 	}
553 }
554 
555 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
556 static int
557 nfs_need_commit(struct nfs_inode *nfsi)
558 {
559 	return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
560 }
561 
562 /*
563  * nfs_scan_commit - Scan an inode for commit requests
564  * @inode: NFS inode to scan
565  * @dst: destination list
566  * @idx_start: lower bound of page->index to scan.
567  * @npages: idx_start + npages sets the upper bound to scan.
568  *
569  * Moves requests from the inode's 'commit' request list.
570  * The requests are *not* checked to ensure that they form a contiguous set.
571  */
572 static int
573 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
574 {
575 	struct nfs_inode *nfsi = NFS_I(inode);
576 
577 	if (!nfs_need_commit(nfsi))
578 		return 0;
579 
580 	return nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
581 }
582 #else
583 static inline int nfs_need_commit(struct nfs_inode *nfsi)
584 {
585 	return 0;
586 }
587 
588 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
589 {
590 	return 0;
591 }
592 #endif
593 
594 /*
595  * Search for an existing write request, and attempt to update
596  * it to reflect a new dirty region on a given page.
597  *
598  * If the attempt fails, then the existing request is flushed out
599  * to disk.
600  */
601 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
602 		struct page *page,
603 		unsigned int offset,
604 		unsigned int bytes)
605 {
606 	struct nfs_page *req;
607 	unsigned int rqend;
608 	unsigned int end;
609 	int error;
610 
611 	if (!PagePrivate(page))
612 		return NULL;
613 
614 	end = offset + bytes;
615 	spin_lock(&inode->i_lock);
616 
617 	for (;;) {
618 		req = nfs_page_find_request_locked(page);
619 		if (req == NULL)
620 			goto out_unlock;
621 
622 		rqend = req->wb_offset + req->wb_bytes;
623 		/*
624 		 * Tell the caller to flush out the request if
625 		 * the offsets are non-contiguous.
626 		 * Note: nfs_flush_incompatible() will already
627 		 * have flushed out requests having wrong owners.
628 		 */
629 		if (offset > rqend
630 		    || end < req->wb_offset)
631 			goto out_flushme;
632 
633 		if (nfs_set_page_tag_locked(req))
634 			break;
635 
636 		/* The request is locked, so wait and then retry */
637 		spin_unlock(&inode->i_lock);
638 		error = nfs_wait_on_request(req);
639 		nfs_release_request(req);
640 		if (error != 0)
641 			goto out_err;
642 		spin_lock(&inode->i_lock);
643 	}
644 
645 	if (nfs_clear_request_commit(req))
646 		radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
647 				req->wb_index, NFS_PAGE_TAG_COMMIT);
648 
649 	/* Okay, the request matches. Update the region */
650 	if (offset < req->wb_offset) {
651 		req->wb_offset = offset;
652 		req->wb_pgbase = offset;
653 	}
654 	if (end > rqend)
655 		req->wb_bytes = end - req->wb_offset;
656 	else
657 		req->wb_bytes = rqend - req->wb_offset;
658 out_unlock:
659 	spin_unlock(&inode->i_lock);
660 	return req;
661 out_flushme:
662 	spin_unlock(&inode->i_lock);
663 	nfs_release_request(req);
664 	error = nfs_wb_page(inode, page);
665 out_err:
666 	return ERR_PTR(error);
667 }
668 
669 /*
670  * Try to update an existing write request, or create one if there is none.
671  *
672  * Note: Should always be called with the Page Lock held to prevent races
673  * if we have to add a new request. Also assumes that the caller has
674  * already called nfs_flush_incompatible() if necessary.
675  */
676 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
677 		struct page *page, unsigned int offset, unsigned int bytes)
678 {
679 	struct inode *inode = page->mapping->host;
680 	struct nfs_page	*req;
681 	int error;
682 
683 	req = nfs_try_to_update_request(inode, page, offset, bytes);
684 	if (req != NULL)
685 		goto out;
686 	req = nfs_create_request(ctx, inode, page, offset, bytes);
687 	if (IS_ERR(req))
688 		goto out;
689 	error = nfs_inode_add_request(inode, req);
690 	if (error != 0) {
691 		nfs_release_request(req);
692 		req = ERR_PTR(error);
693 	}
694 out:
695 	return req;
696 }
697 
698 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
699 		unsigned int offset, unsigned int count)
700 {
701 	struct nfs_page	*req;
702 
703 	req = nfs_setup_write_request(ctx, page, offset, count);
704 	if (IS_ERR(req))
705 		return PTR_ERR(req);
706 	/* Update file length */
707 	nfs_grow_file(page, offset, count);
708 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
709 	nfs_clear_page_tag_locked(req);
710 	return 0;
711 }
712 
713 int nfs_flush_incompatible(struct file *file, struct page *page)
714 {
715 	struct nfs_open_context *ctx = nfs_file_open_context(file);
716 	struct nfs_page	*req;
717 	int do_flush, status;
718 	/*
719 	 * Look for a request corresponding to this page. If there
720 	 * is one, and it belongs to another file, we flush it out
721 	 * before we try to copy anything into the page. Do this
722 	 * due to the lack of an ACCESS-type call in NFSv2.
723 	 * Also do the same if we find a request from an existing
724 	 * dropped page.
725 	 */
726 	do {
727 		req = nfs_page_find_request(page);
728 		if (req == NULL)
729 			return 0;
730 		do_flush = req->wb_page != page || req->wb_context != ctx;
731 		nfs_release_request(req);
732 		if (!do_flush)
733 			return 0;
734 		status = nfs_wb_page(page->mapping->host, page);
735 	} while (status == 0);
736 	return status;
737 }
738 
739 /*
740  * If the page cache is marked as unsafe or invalid, then we can't rely on
741  * the PageUptodate() flag. In this case, we will need to turn off
742  * write optimisations that depend on the page contents being correct.
743  */
744 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
745 {
746 	return PageUptodate(page) &&
747 		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
748 }
749 
750 /*
751  * Update and possibly write a cached page of an NFS file.
752  *
753  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
754  * things with a page scheduled for an RPC call (e.g. invalidate it).
755  */
756 int nfs_updatepage(struct file *file, struct page *page,
757 		unsigned int offset, unsigned int count)
758 {
759 	struct nfs_open_context *ctx = nfs_file_open_context(file);
760 	struct inode	*inode = page->mapping->host;
761 	int		status = 0;
762 
763 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
764 
765 	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
766 		file->f_path.dentry->d_parent->d_name.name,
767 		file->f_path.dentry->d_name.name, count,
768 		(long long)(page_offset(page) + offset));
769 
770 	/* If we're not using byte range locks, and we know the page
771 	 * is up to date, it may be more efficient to extend the write
772 	 * to cover the entire page in order to avoid fragmentation
773 	 * inefficiencies.
774 	 */
775 	if (nfs_write_pageuptodate(page, inode) &&
776 			inode->i_flock == NULL &&
777 			!(file->f_flags & O_DSYNC)) {
778 		count = max(count + offset, nfs_page_length(page));
779 		offset = 0;
780 	}
781 
782 	status = nfs_writepage_setup(ctx, page, offset, count);
783 	if (status < 0)
784 		nfs_set_pageerror(page);
785 	else
786 		__set_page_dirty_nobuffers(page);
787 
788 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
789 			status, (long long)i_size_read(inode));
790 	return status;
791 }
792 
793 static void nfs_writepage_release(struct nfs_page *req)
794 {
795 
796 	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) {
797 		nfs_end_page_writeback(req->wb_page);
798 		nfs_inode_remove_request(req);
799 	} else
800 		nfs_end_page_writeback(req->wb_page);
801 	nfs_clear_page_tag_locked(req);
802 }
803 
804 static int flush_task_priority(int how)
805 {
806 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
807 		case FLUSH_HIGHPRI:
808 			return RPC_PRIORITY_HIGH;
809 		case FLUSH_LOWPRI:
810 			return RPC_PRIORITY_LOW;
811 	}
812 	return RPC_PRIORITY_NORMAL;
813 }
814 
815 /*
816  * Set up the argument/result storage required for the RPC call.
817  */
818 static int nfs_write_rpcsetup(struct nfs_page *req,
819 		struct nfs_write_data *data,
820 		const struct rpc_call_ops *call_ops,
821 		unsigned int count, unsigned int offset,
822 		int how)
823 {
824 	struct inode *inode = req->wb_context->path.dentry->d_inode;
825 	int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
826 	int priority = flush_task_priority(how);
827 	struct rpc_task *task;
828 	struct rpc_message msg = {
829 		.rpc_argp = &data->args,
830 		.rpc_resp = &data->res,
831 		.rpc_cred = req->wb_context->cred,
832 	};
833 	struct rpc_task_setup task_setup_data = {
834 		.rpc_client = NFS_CLIENT(inode),
835 		.task = &data->task,
836 		.rpc_message = &msg,
837 		.callback_ops = call_ops,
838 		.callback_data = data,
839 		.workqueue = nfsiod_workqueue,
840 		.flags = flags,
841 		.priority = priority,
842 	};
843 
844 	/* Set up the RPC argument and reply structs
845 	 * NB: take care not to mess about with data->commit et al. */
846 
847 	data->req = req;
848 	data->inode = inode = req->wb_context->path.dentry->d_inode;
849 	data->cred = msg.rpc_cred;
850 
851 	data->args.fh     = NFS_FH(inode);
852 	data->args.offset = req_offset(req) + offset;
853 	data->args.pgbase = req->wb_pgbase + offset;
854 	data->args.pages  = data->pagevec;
855 	data->args.count  = count;
856 	data->args.context = get_nfs_open_context(req->wb_context);
857 	data->args.stable  = NFS_UNSTABLE;
858 	if (how & FLUSH_STABLE) {
859 		data->args.stable = NFS_DATA_SYNC;
860 		if (!nfs_need_commit(NFS_I(inode)))
861 			data->args.stable = NFS_FILE_SYNC;
862 	}
863 
864 	data->res.fattr   = &data->fattr;
865 	data->res.count   = count;
866 	data->res.verf    = &data->verf;
867 	nfs_fattr_init(&data->fattr);
868 
869 	/* Set up the initial task struct.  */
870 	NFS_PROTO(inode)->write_setup(data, &msg);
871 
872 	dprintk("NFS: %5u initiated write call "
873 		"(req %s/%lld, %u bytes @ offset %llu)\n",
874 		data->task.tk_pid,
875 		inode->i_sb->s_id,
876 		(long long)NFS_FILEID(inode),
877 		count,
878 		(unsigned long long)data->args.offset);
879 
880 	task = rpc_run_task(&task_setup_data);
881 	if (IS_ERR(task))
882 		return PTR_ERR(task);
883 	rpc_put_task(task);
884 	return 0;
885 }
886 
887 /* If a nfs_flush_* function fails, it should remove reqs from @head and
888  * call this on each, which will prepare them to be retried on next
889  * writeback using standard nfs.
890  */
891 static void nfs_redirty_request(struct nfs_page *req)
892 {
893 	nfs_mark_request_dirty(req);
894 	nfs_end_page_writeback(req->wb_page);
895 	nfs_clear_page_tag_locked(req);
896 }
897 
898 /*
899  * Generate multiple small requests to write out a single
900  * contiguous dirty area on one page.
901  */
902 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
903 {
904 	struct nfs_page *req = nfs_list_entry(head->next);
905 	struct page *page = req->wb_page;
906 	struct nfs_write_data *data;
907 	size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
908 	unsigned int offset;
909 	int requests = 0;
910 	int ret = 0;
911 	LIST_HEAD(list);
912 
913 	nfs_list_remove_request(req);
914 
915 	nbytes = count;
916 	do {
917 		size_t len = min(nbytes, wsize);
918 
919 		data = nfs_writedata_alloc(1);
920 		if (!data)
921 			goto out_bad;
922 		list_add(&data->pages, &list);
923 		requests++;
924 		nbytes -= len;
925 	} while (nbytes != 0);
926 	atomic_set(&req->wb_complete, requests);
927 
928 	ClearPageError(page);
929 	offset = 0;
930 	nbytes = count;
931 	do {
932 		int ret2;
933 
934 		data = list_entry(list.next, struct nfs_write_data, pages);
935 		list_del_init(&data->pages);
936 
937 		data->pagevec[0] = page;
938 
939 		if (nbytes < wsize)
940 			wsize = nbytes;
941 		ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
942 				   wsize, offset, how);
943 		if (ret == 0)
944 			ret = ret2;
945 		offset += wsize;
946 		nbytes -= wsize;
947 	} while (nbytes != 0);
948 
949 	return ret;
950 
951 out_bad:
952 	while (!list_empty(&list)) {
953 		data = list_entry(list.next, struct nfs_write_data, pages);
954 		list_del(&data->pages);
955 		nfs_writedata_release(data);
956 	}
957 	nfs_redirty_request(req);
958 	return -ENOMEM;
959 }
960 
961 /*
962  * Create an RPC task for the given write request and kick it.
963  * The page must have been locked by the caller.
964  *
965  * It may happen that the page we're passed is not marked dirty.
966  * This is the case if nfs_updatepage detects a conflicting request
967  * that has been written but not committed.
968  */
969 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
970 {
971 	struct nfs_page		*req;
972 	struct page		**pages;
973 	struct nfs_write_data	*data;
974 
975 	data = nfs_writedata_alloc(npages);
976 	if (!data)
977 		goto out_bad;
978 
979 	pages = data->pagevec;
980 	while (!list_empty(head)) {
981 		req = nfs_list_entry(head->next);
982 		nfs_list_remove_request(req);
983 		nfs_list_add_request(req, &data->pages);
984 		ClearPageError(req->wb_page);
985 		*pages++ = req->wb_page;
986 	}
987 	req = nfs_list_entry(data->pages.next);
988 
989 	/* Set up the argument struct */
990 	return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
991  out_bad:
992 	while (!list_empty(head)) {
993 		req = nfs_list_entry(head->next);
994 		nfs_list_remove_request(req);
995 		nfs_redirty_request(req);
996 	}
997 	return -ENOMEM;
998 }
999 
1000 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1001 				  struct inode *inode, int ioflags)
1002 {
1003 	size_t wsize = NFS_SERVER(inode)->wsize;
1004 
1005 	if (wsize < PAGE_CACHE_SIZE)
1006 		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
1007 	else
1008 		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
1009 }
1010 
1011 /*
1012  * Handle a write reply that flushed part of a page.
1013  */
1014 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1015 {
1016 	struct nfs_write_data	*data = calldata;
1017 
1018 	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1019 		task->tk_pid,
1020 		data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1021 		(long long)
1022 		  NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1023 		data->req->wb_bytes, (long long)req_offset(data->req));
1024 
1025 	nfs_writeback_done(task, data);
1026 }
1027 
1028 static void nfs_writeback_release_partial(void *calldata)
1029 {
1030 	struct nfs_write_data	*data = calldata;
1031 	struct nfs_page		*req = data->req;
1032 	struct page		*page = req->wb_page;
1033 	int status = data->task.tk_status;
1034 
1035 	if (status < 0) {
1036 		nfs_set_pageerror(page);
1037 		nfs_context_set_write_error(req->wb_context, status);
1038 		dprintk(", error = %d\n", status);
1039 		goto out;
1040 	}
1041 
1042 	if (nfs_write_need_commit(data)) {
1043 		struct inode *inode = page->mapping->host;
1044 
1045 		spin_lock(&inode->i_lock);
1046 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1047 			/* Do nothing we need to resend the writes */
1048 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1049 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1050 			dprintk(" defer commit\n");
1051 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1052 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1053 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1054 			dprintk(" server reboot detected\n");
1055 		}
1056 		spin_unlock(&inode->i_lock);
1057 	} else
1058 		dprintk(" OK\n");
1059 
1060 out:
1061 	if (atomic_dec_and_test(&req->wb_complete))
1062 		nfs_writepage_release(req);
1063 	nfs_writedata_release(calldata);
1064 }
1065 
1066 #if defined(CONFIG_NFS_V4_1)
1067 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1068 {
1069 	struct nfs_write_data *data = calldata;
1070 	struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client;
1071 
1072 	if (nfs4_setup_sequence(clp, &data->args.seq_args,
1073 				&data->res.seq_res, 1, task))
1074 		return;
1075 	rpc_call_start(task);
1076 }
1077 #endif /* CONFIG_NFS_V4_1 */
1078 
1079 static const struct rpc_call_ops nfs_write_partial_ops = {
1080 #if defined(CONFIG_NFS_V4_1)
1081 	.rpc_call_prepare = nfs_write_prepare,
1082 #endif /* CONFIG_NFS_V4_1 */
1083 	.rpc_call_done = nfs_writeback_done_partial,
1084 	.rpc_release = nfs_writeback_release_partial,
1085 };
1086 
1087 /*
1088  * Handle a write reply that flushes a whole page.
1089  *
1090  * FIXME: There is an inherent race with invalidate_inode_pages and
1091  *	  writebacks since the page->count is kept > 1 for as long
1092  *	  as the page has a write request pending.
1093  */
1094 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1095 {
1096 	struct nfs_write_data	*data = calldata;
1097 
1098 	nfs_writeback_done(task, data);
1099 }
1100 
1101 static void nfs_writeback_release_full(void *calldata)
1102 {
1103 	struct nfs_write_data	*data = calldata;
1104 	int status = data->task.tk_status;
1105 
1106 	/* Update attributes as result of writeback. */
1107 	while (!list_empty(&data->pages)) {
1108 		struct nfs_page *req = nfs_list_entry(data->pages.next);
1109 		struct page *page = req->wb_page;
1110 
1111 		nfs_list_remove_request(req);
1112 
1113 		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1114 			data->task.tk_pid,
1115 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1116 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1117 			req->wb_bytes,
1118 			(long long)req_offset(req));
1119 
1120 		if (status < 0) {
1121 			nfs_set_pageerror(page);
1122 			nfs_context_set_write_error(req->wb_context, status);
1123 			dprintk(", error = %d\n", status);
1124 			goto remove_request;
1125 		}
1126 
1127 		if (nfs_write_need_commit(data)) {
1128 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1129 			nfs_mark_request_commit(req);
1130 			nfs_end_page_writeback(page);
1131 			dprintk(" marked for commit\n");
1132 			goto next;
1133 		}
1134 		dprintk(" OK\n");
1135 remove_request:
1136 		nfs_end_page_writeback(page);
1137 		nfs_inode_remove_request(req);
1138 	next:
1139 		nfs_clear_page_tag_locked(req);
1140 	}
1141 	nfs_writedata_release(calldata);
1142 }
1143 
1144 static const struct rpc_call_ops nfs_write_full_ops = {
1145 #if defined(CONFIG_NFS_V4_1)
1146 	.rpc_call_prepare = nfs_write_prepare,
1147 #endif /* CONFIG_NFS_V4_1 */
1148 	.rpc_call_done = nfs_writeback_done_full,
1149 	.rpc_release = nfs_writeback_release_full,
1150 };
1151 
1152 
1153 /*
1154  * This function is called when the WRITE call is complete.
1155  */
1156 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1157 {
1158 	struct nfs_writeargs	*argp = &data->args;
1159 	struct nfs_writeres	*resp = &data->res;
1160 	struct nfs_server	*server = NFS_SERVER(data->inode);
1161 	int status;
1162 
1163 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1164 		task->tk_pid, task->tk_status);
1165 
1166 	/*
1167 	 * ->write_done will attempt to use post-op attributes to detect
1168 	 * conflicting writes by other clients.  A strict interpretation
1169 	 * of close-to-open would allow us to continue caching even if
1170 	 * another writer had changed the file, but some applications
1171 	 * depend on tighter cache coherency when writing.
1172 	 */
1173 	status = NFS_PROTO(data->inode)->write_done(task, data);
1174 	if (status != 0)
1175 		return status;
1176 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1177 
1178 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1179 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1180 		/* We tried a write call, but the server did not
1181 		 * commit data to stable storage even though we
1182 		 * requested it.
1183 		 * Note: There is a known bug in Tru64 < 5.0 in which
1184 		 *	 the server reports NFS_DATA_SYNC, but performs
1185 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1186 		 *	 as a dprintk() in order to avoid filling syslog.
1187 		 */
1188 		static unsigned long    complain;
1189 
1190 		if (time_before(complain, jiffies)) {
1191 			dprintk("NFS:       faulty NFS server %s:"
1192 				" (committed = %d) != (stable = %d)\n",
1193 				server->nfs_client->cl_hostname,
1194 				resp->verf->committed, argp->stable);
1195 			complain = jiffies + 300 * HZ;
1196 		}
1197 	}
1198 #endif
1199 	/* Is this a short write? */
1200 	if (task->tk_status >= 0 && resp->count < argp->count) {
1201 		static unsigned long    complain;
1202 
1203 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1204 
1205 		/* Has the server at least made some progress? */
1206 		if (resp->count != 0) {
1207 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1208 			if (resp->verf->committed != NFS_UNSTABLE) {
1209 				/* Resend from where the server left off */
1210 				argp->offset += resp->count;
1211 				argp->pgbase += resp->count;
1212 				argp->count -= resp->count;
1213 			} else {
1214 				/* Resend as a stable write in order to avoid
1215 				 * headaches in the case of a server crash.
1216 				 */
1217 				argp->stable = NFS_FILE_SYNC;
1218 			}
1219 			nfs_restart_rpc(task, server->nfs_client);
1220 			return -EAGAIN;
1221 		}
1222 		if (time_before(complain, jiffies)) {
1223 			printk(KERN_WARNING
1224 			       "NFS: Server wrote zero bytes, expected %u.\n",
1225 					argp->count);
1226 			complain = jiffies + 300 * HZ;
1227 		}
1228 		/* Can't do anything about it except throw an error. */
1229 		task->tk_status = -EIO;
1230 	}
1231 	return 0;
1232 }
1233 
1234 
1235 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1236 void nfs_commitdata_release(void *data)
1237 {
1238 	struct nfs_write_data *wdata = data;
1239 
1240 	put_nfs_open_context(wdata->args.context);
1241 	nfs_commit_free(wdata);
1242 }
1243 
1244 /*
1245  * Set up the argument/result storage required for the RPC call.
1246  */
1247 static int nfs_commit_rpcsetup(struct list_head *head,
1248 		struct nfs_write_data *data,
1249 		int how)
1250 {
1251 	struct nfs_page *first = nfs_list_entry(head->next);
1252 	struct inode *inode = first->wb_context->path.dentry->d_inode;
1253 	int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1254 	int priority = flush_task_priority(how);
1255 	struct rpc_task *task;
1256 	struct rpc_message msg = {
1257 		.rpc_argp = &data->args,
1258 		.rpc_resp = &data->res,
1259 		.rpc_cred = first->wb_context->cred,
1260 	};
1261 	struct rpc_task_setup task_setup_data = {
1262 		.task = &data->task,
1263 		.rpc_client = NFS_CLIENT(inode),
1264 		.rpc_message = &msg,
1265 		.callback_ops = &nfs_commit_ops,
1266 		.callback_data = data,
1267 		.workqueue = nfsiod_workqueue,
1268 		.flags = flags,
1269 		.priority = priority,
1270 	};
1271 
1272 	/* Set up the RPC argument and reply structs
1273 	 * NB: take care not to mess about with data->commit et al. */
1274 
1275 	list_splice_init(head, &data->pages);
1276 
1277 	data->inode	  = inode;
1278 	data->cred	  = msg.rpc_cred;
1279 
1280 	data->args.fh     = NFS_FH(data->inode);
1281 	/* Note: we always request a commit of the entire inode */
1282 	data->args.offset = 0;
1283 	data->args.count  = 0;
1284 	data->args.context = get_nfs_open_context(first->wb_context);
1285 	data->res.count   = 0;
1286 	data->res.fattr   = &data->fattr;
1287 	data->res.verf    = &data->verf;
1288 	nfs_fattr_init(&data->fattr);
1289 
1290 	/* Set up the initial task struct.  */
1291 	NFS_PROTO(inode)->commit_setup(data, &msg);
1292 
1293 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1294 
1295 	task = rpc_run_task(&task_setup_data);
1296 	if (IS_ERR(task))
1297 		return PTR_ERR(task);
1298 	rpc_put_task(task);
1299 	return 0;
1300 }
1301 
1302 /*
1303  * Commit dirty pages
1304  */
1305 static int
1306 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1307 {
1308 	struct nfs_write_data	*data;
1309 	struct nfs_page         *req;
1310 
1311 	data = nfs_commitdata_alloc();
1312 
1313 	if (!data)
1314 		goto out_bad;
1315 
1316 	/* Set up the argument struct */
1317 	return nfs_commit_rpcsetup(head, data, how);
1318  out_bad:
1319 	while (!list_empty(head)) {
1320 		req = nfs_list_entry(head->next);
1321 		nfs_list_remove_request(req);
1322 		nfs_mark_request_commit(req);
1323 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1324 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1325 				BDI_RECLAIMABLE);
1326 		nfs_clear_page_tag_locked(req);
1327 	}
1328 	return -ENOMEM;
1329 }
1330 
1331 /*
1332  * COMMIT call returned
1333  */
1334 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1335 {
1336 	struct nfs_write_data	*data = calldata;
1337 
1338         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1339                                 task->tk_pid, task->tk_status);
1340 
1341 	/* Call the NFS version-specific code */
1342 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1343 		return;
1344 }
1345 
1346 static void nfs_commit_release(void *calldata)
1347 {
1348 	struct nfs_write_data	*data = calldata;
1349 	struct nfs_page		*req;
1350 	int status = data->task.tk_status;
1351 
1352 	while (!list_empty(&data->pages)) {
1353 		req = nfs_list_entry(data->pages.next);
1354 		nfs_list_remove_request(req);
1355 		nfs_clear_request_commit(req);
1356 
1357 		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1358 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1359 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1360 			req->wb_bytes,
1361 			(long long)req_offset(req));
1362 		if (status < 0) {
1363 			nfs_context_set_write_error(req->wb_context, status);
1364 			nfs_inode_remove_request(req);
1365 			dprintk(", error = %d\n", status);
1366 			goto next;
1367 		}
1368 
1369 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1370 		 * returned by the server against all stored verfs. */
1371 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1372 			/* We have a match */
1373 			nfs_inode_remove_request(req);
1374 			dprintk(" OK\n");
1375 			goto next;
1376 		}
1377 		/* We have a mismatch. Write the page again */
1378 		dprintk(" mismatch\n");
1379 		nfs_mark_request_dirty(req);
1380 	next:
1381 		nfs_clear_page_tag_locked(req);
1382 	}
1383 	nfs_commitdata_release(calldata);
1384 }
1385 
1386 static const struct rpc_call_ops nfs_commit_ops = {
1387 #if defined(CONFIG_NFS_V4_1)
1388 	.rpc_call_prepare = nfs_write_prepare,
1389 #endif /* CONFIG_NFS_V4_1 */
1390 	.rpc_call_done = nfs_commit_done,
1391 	.rpc_release = nfs_commit_release,
1392 };
1393 
1394 int nfs_commit_inode(struct inode *inode, int how)
1395 {
1396 	LIST_HEAD(head);
1397 	int res;
1398 
1399 	spin_lock(&inode->i_lock);
1400 	res = nfs_scan_commit(inode, &head, 0, 0);
1401 	spin_unlock(&inode->i_lock);
1402 	if (res) {
1403 		int error = nfs_commit_list(inode, &head, how);
1404 		if (error < 0)
1405 			return error;
1406 	}
1407 	return res;
1408 }
1409 #else
1410 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1411 {
1412 	return 0;
1413 }
1414 #endif
1415 
1416 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1417 {
1418 	struct inode *inode = mapping->host;
1419 	pgoff_t idx_start, idx_end;
1420 	unsigned int npages = 0;
1421 	LIST_HEAD(head);
1422 	int nocommit = how & FLUSH_NOCOMMIT;
1423 	long pages, ret;
1424 
1425 	/* FIXME */
1426 	if (wbc->range_cyclic)
1427 		idx_start = 0;
1428 	else {
1429 		idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1430 		idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1431 		if (idx_end > idx_start) {
1432 			pgoff_t l_npages = 1 + idx_end - idx_start;
1433 			npages = l_npages;
1434 			if (sizeof(npages) != sizeof(l_npages) &&
1435 					(pgoff_t)npages != l_npages)
1436 				npages = 0;
1437 		}
1438 	}
1439 	how &= ~FLUSH_NOCOMMIT;
1440 	spin_lock(&inode->i_lock);
1441 	do {
1442 		ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1443 		if (ret != 0)
1444 			continue;
1445 		if (nocommit)
1446 			break;
1447 		pages = nfs_scan_commit(inode, &head, idx_start, npages);
1448 		if (pages == 0)
1449 			break;
1450 		if (how & FLUSH_INVALIDATE) {
1451 			spin_unlock(&inode->i_lock);
1452 			nfs_cancel_commit_list(&head);
1453 			ret = pages;
1454 			spin_lock(&inode->i_lock);
1455 			continue;
1456 		}
1457 		pages += nfs_scan_commit(inode, &head, 0, 0);
1458 		spin_unlock(&inode->i_lock);
1459 		ret = nfs_commit_list(inode, &head, how);
1460 		spin_lock(&inode->i_lock);
1461 
1462 	} while (ret >= 0);
1463 	spin_unlock(&inode->i_lock);
1464 	return ret;
1465 }
1466 
1467 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
1468 {
1469 	int ret;
1470 
1471 	ret = nfs_writepages(mapping, wbc);
1472 	if (ret < 0)
1473 		goto out;
1474 	ret = nfs_sync_mapping_wait(mapping, wbc, how);
1475 	if (ret < 0)
1476 		goto out;
1477 	return 0;
1478 out:
1479 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1480 	return ret;
1481 }
1482 
1483 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
1484 static int nfs_write_mapping(struct address_space *mapping, int how)
1485 {
1486 	struct writeback_control wbc = {
1487 		.bdi = mapping->backing_dev_info,
1488 		.sync_mode = WB_SYNC_ALL,
1489 		.nr_to_write = LONG_MAX,
1490 		.range_start = 0,
1491 		.range_end = LLONG_MAX,
1492 	};
1493 
1494 	return __nfs_write_mapping(mapping, &wbc, how);
1495 }
1496 
1497 /*
1498  * flush the inode to disk.
1499  */
1500 int nfs_wb_all(struct inode *inode)
1501 {
1502 	return nfs_write_mapping(inode->i_mapping, 0);
1503 }
1504 
1505 int nfs_wb_nocommit(struct inode *inode)
1506 {
1507 	return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
1508 }
1509 
1510 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1511 {
1512 	struct nfs_page *req;
1513 	loff_t range_start = page_offset(page);
1514 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1515 	struct writeback_control wbc = {
1516 		.bdi = page->mapping->backing_dev_info,
1517 		.sync_mode = WB_SYNC_ALL,
1518 		.nr_to_write = LONG_MAX,
1519 		.range_start = range_start,
1520 		.range_end = range_end,
1521 	};
1522 	int ret = 0;
1523 
1524 	BUG_ON(!PageLocked(page));
1525 	for (;;) {
1526 		req = nfs_page_find_request(page);
1527 		if (req == NULL)
1528 			goto out;
1529 		if (test_bit(PG_CLEAN, &req->wb_flags)) {
1530 			nfs_release_request(req);
1531 			break;
1532 		}
1533 		if (nfs_lock_request_dontget(req)) {
1534 			nfs_inode_remove_request(req);
1535 			/*
1536 			 * In case nfs_inode_remove_request has marked the
1537 			 * page as being dirty
1538 			 */
1539 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1540 			nfs_unlock_request(req);
1541 			break;
1542 		}
1543 		ret = nfs_wait_on_request(req);
1544 		if (ret < 0)
1545 			goto out;
1546 	}
1547 	if (!PagePrivate(page))
1548 		return 0;
1549 	ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
1550 out:
1551 	return ret;
1552 }
1553 
1554 static int nfs_wb_page_priority(struct inode *inode, struct page *page,
1555 				int how)
1556 {
1557 	loff_t range_start = page_offset(page);
1558 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1559 	struct writeback_control wbc = {
1560 		.bdi = page->mapping->backing_dev_info,
1561 		.sync_mode = WB_SYNC_ALL,
1562 		.nr_to_write = LONG_MAX,
1563 		.range_start = range_start,
1564 		.range_end = range_end,
1565 	};
1566 	int ret;
1567 
1568 	do {
1569 		if (clear_page_dirty_for_io(page)) {
1570 			ret = nfs_writepage_locked(page, &wbc);
1571 			if (ret < 0)
1572 				goto out_error;
1573 		} else if (!PagePrivate(page))
1574 			break;
1575 		ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1576 		if (ret < 0)
1577 			goto out_error;
1578 	} while (PagePrivate(page));
1579 	return 0;
1580 out_error:
1581 	__mark_inode_dirty(inode, I_DIRTY_PAGES);
1582 	return ret;
1583 }
1584 
1585 /*
1586  * Write back all requests on one page - we do this before reading it.
1587  */
1588 int nfs_wb_page(struct inode *inode, struct page* page)
1589 {
1590 	return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1591 }
1592 
1593 #ifdef CONFIG_MIGRATION
1594 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1595 		struct page *page)
1596 {
1597 	struct nfs_page *req;
1598 	int ret;
1599 
1600 	if (PageFsCache(page))
1601 		nfs_fscache_release_page(page, GFP_KERNEL);
1602 
1603 	req = nfs_find_and_lock_request(page);
1604 	ret = PTR_ERR(req);
1605 	if (IS_ERR(req))
1606 		goto out;
1607 
1608 	ret = migrate_page(mapping, newpage, page);
1609 	if (!req)
1610 		goto out;
1611 	if (ret)
1612 		goto out_unlock;
1613 	page_cache_get(newpage);
1614 	spin_lock(&mapping->host->i_lock);
1615 	req->wb_page = newpage;
1616 	SetPagePrivate(newpage);
1617 	set_page_private(newpage, (unsigned long)req);
1618 	ClearPagePrivate(page);
1619 	set_page_private(page, 0);
1620 	spin_unlock(&mapping->host->i_lock);
1621 	page_cache_release(page);
1622 out_unlock:
1623 	nfs_clear_page_tag_locked(req);
1624 out:
1625 	return ret;
1626 }
1627 #endif
1628 
1629 int __init nfs_init_writepagecache(void)
1630 {
1631 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1632 					     sizeof(struct nfs_write_data),
1633 					     0, SLAB_HWCACHE_ALIGN,
1634 					     NULL);
1635 	if (nfs_wdata_cachep == NULL)
1636 		return -ENOMEM;
1637 
1638 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1639 						     nfs_wdata_cachep);
1640 	if (nfs_wdata_mempool == NULL)
1641 		return -ENOMEM;
1642 
1643 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1644 						      nfs_wdata_cachep);
1645 	if (nfs_commit_mempool == NULL)
1646 		return -ENOMEM;
1647 
1648 	/*
1649 	 * NFS congestion size, scale with available memory.
1650 	 *
1651 	 *  64MB:    8192k
1652 	 * 128MB:   11585k
1653 	 * 256MB:   16384k
1654 	 * 512MB:   23170k
1655 	 *   1GB:   32768k
1656 	 *   2GB:   46340k
1657 	 *   4GB:   65536k
1658 	 *   8GB:   92681k
1659 	 *  16GB:  131072k
1660 	 *
1661 	 * This allows larger machines to have larger/more transfers.
1662 	 * Limit the default to 256M
1663 	 */
1664 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1665 	if (nfs_congestion_kb > 256*1024)
1666 		nfs_congestion_kb = 256*1024;
1667 
1668 	return 0;
1669 }
1670 
1671 void nfs_destroy_writepagecache(void)
1672 {
1673 	mempool_destroy(nfs_commit_mempool);
1674 	mempool_destroy(nfs_wdata_mempool);
1675 	kmem_cache_destroy(nfs_wdata_cachep);
1676 }
1677 
1678