xref: /openbmc/linux/fs/nfs/write.c (revision ddc141e5)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24 #include <linux/freezer.h>
25 #include <linux/wait.h>
26 #include <linux/iversion.h>
27 
28 #include <linux/uaccess.h>
29 
30 #include "delegation.h"
31 #include "internal.h"
32 #include "iostat.h"
33 #include "nfs4_fs.h"
34 #include "fscache.h"
35 #include "pnfs.h"
36 
37 #include "nfstrace.h"
38 
39 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
40 
41 #define MIN_POOL_WRITE		(32)
42 #define MIN_POOL_COMMIT		(4)
43 
44 struct nfs_io_completion {
45 	void (*complete)(void *data);
46 	void *data;
47 	struct kref refcount;
48 };
49 
50 /*
51  * Local function declarations
52  */
53 static void nfs_redirty_request(struct nfs_page *req);
54 static const struct rpc_call_ops nfs_commit_ops;
55 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
56 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
57 static const struct nfs_rw_ops nfs_rw_write_ops;
58 static void nfs_clear_request_commit(struct nfs_page *req);
59 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
60 				      struct inode *inode);
61 static struct nfs_page *
62 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
63 						struct page *page);
64 
65 static struct kmem_cache *nfs_wdata_cachep;
66 static mempool_t *nfs_wdata_mempool;
67 static struct kmem_cache *nfs_cdata_cachep;
68 static mempool_t *nfs_commit_mempool;
69 
70 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
71 {
72 	struct nfs_commit_data *p;
73 
74 	if (never_fail)
75 		p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
76 	else {
77 		/* It is OK to do some reclaim, not no safe to wait
78 		 * for anything to be returned to the pool.
79 		 * mempool_alloc() cannot handle that particular combination,
80 		 * so we need two separate attempts.
81 		 */
82 		p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
83 		if (!p)
84 			p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
85 					     __GFP_NOWARN | __GFP_NORETRY);
86 		if (!p)
87 			return NULL;
88 	}
89 
90 	memset(p, 0, sizeof(*p));
91 	INIT_LIST_HEAD(&p->pages);
92 	return p;
93 }
94 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
95 
96 void nfs_commit_free(struct nfs_commit_data *p)
97 {
98 	mempool_free(p, nfs_commit_mempool);
99 }
100 EXPORT_SYMBOL_GPL(nfs_commit_free);
101 
102 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
103 {
104 	struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
105 
106 	memset(p, 0, sizeof(*p));
107 	p->rw_mode = FMODE_WRITE;
108 	return p;
109 }
110 
111 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
112 {
113 	mempool_free(hdr, nfs_wdata_mempool);
114 }
115 
116 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
117 {
118 	return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
119 }
120 
121 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
122 		void (*complete)(void *), void *data)
123 {
124 	ioc->complete = complete;
125 	ioc->data = data;
126 	kref_init(&ioc->refcount);
127 }
128 
129 static void nfs_io_completion_release(struct kref *kref)
130 {
131 	struct nfs_io_completion *ioc = container_of(kref,
132 			struct nfs_io_completion, refcount);
133 	ioc->complete(ioc->data);
134 	kfree(ioc);
135 }
136 
137 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
138 {
139 	if (ioc != NULL)
140 		kref_get(&ioc->refcount);
141 }
142 
143 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
144 {
145 	if (ioc != NULL)
146 		kref_put(&ioc->refcount, nfs_io_completion_release);
147 }
148 
149 static struct nfs_page *
150 nfs_page_private_request(struct page *page)
151 {
152 	if (!PagePrivate(page))
153 		return NULL;
154 	return (struct nfs_page *)page_private(page);
155 }
156 
157 /*
158  * nfs_page_find_head_request_locked - find head request associated with @page
159  *
160  * must be called while holding the inode lock.
161  *
162  * returns matching head request with reference held, or NULL if not found.
163  */
164 static struct nfs_page *
165 nfs_page_find_private_request(struct page *page)
166 {
167 	struct address_space *mapping = page_file_mapping(page);
168 	struct nfs_page *req;
169 
170 	if (!PagePrivate(page))
171 		return NULL;
172 	spin_lock(&mapping->private_lock);
173 	req = nfs_page_private_request(page);
174 	if (req) {
175 		WARN_ON_ONCE(req->wb_head != req);
176 		kref_get(&req->wb_kref);
177 	}
178 	spin_unlock(&mapping->private_lock);
179 	return req;
180 }
181 
182 static struct nfs_page *
183 nfs_page_find_swap_request(struct page *page)
184 {
185 	struct inode *inode = page_file_mapping(page)->host;
186 	struct nfs_inode *nfsi = NFS_I(inode);
187 	struct nfs_page *req = NULL;
188 	if (!PageSwapCache(page))
189 		return NULL;
190 	mutex_lock(&nfsi->commit_mutex);
191 	if (PageSwapCache(page)) {
192 		req = nfs_page_search_commits_for_head_request_locked(nfsi,
193 			page);
194 		if (req) {
195 			WARN_ON_ONCE(req->wb_head != req);
196 			kref_get(&req->wb_kref);
197 		}
198 	}
199 	mutex_unlock(&nfsi->commit_mutex);
200 	return req;
201 }
202 
203 /*
204  * nfs_page_find_head_request - find head request associated with @page
205  *
206  * returns matching head request with reference held, or NULL if not found.
207  */
208 static struct nfs_page *nfs_page_find_head_request(struct page *page)
209 {
210 	struct nfs_page *req;
211 
212 	req = nfs_page_find_private_request(page);
213 	if (!req)
214 		req = nfs_page_find_swap_request(page);
215 	return req;
216 }
217 
218 /* Adjust the file length if we're writing beyond the end */
219 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
220 {
221 	struct inode *inode = page_file_mapping(page)->host;
222 	loff_t end, i_size;
223 	pgoff_t end_index;
224 
225 	spin_lock(&inode->i_lock);
226 	i_size = i_size_read(inode);
227 	end_index = (i_size - 1) >> PAGE_SHIFT;
228 	if (i_size > 0 && page_index(page) < end_index)
229 		goto out;
230 	end = page_file_offset(page) + ((loff_t)offset+count);
231 	if (i_size >= end)
232 		goto out;
233 	i_size_write(inode, end);
234 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
235 out:
236 	spin_unlock(&inode->i_lock);
237 }
238 
239 /* A writeback failed: mark the page as bad, and invalidate the page cache */
240 static void nfs_set_pageerror(struct page *page)
241 {
242 	nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page));
243 }
244 
245 /*
246  * nfs_page_group_search_locked
247  * @head - head request of page group
248  * @page_offset - offset into page
249  *
250  * Search page group with head @head to find a request that contains the
251  * page offset @page_offset.
252  *
253  * Returns a pointer to the first matching nfs request, or NULL if no
254  * match is found.
255  *
256  * Must be called with the page group lock held
257  */
258 static struct nfs_page *
259 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
260 {
261 	struct nfs_page *req;
262 
263 	req = head;
264 	do {
265 		if (page_offset >= req->wb_pgbase &&
266 		    page_offset < (req->wb_pgbase + req->wb_bytes))
267 			return req;
268 
269 		req = req->wb_this_page;
270 	} while (req != head);
271 
272 	return NULL;
273 }
274 
275 /*
276  * nfs_page_group_covers_page
277  * @head - head request of page group
278  *
279  * Return true if the page group with head @head covers the whole page,
280  * returns false otherwise
281  */
282 static bool nfs_page_group_covers_page(struct nfs_page *req)
283 {
284 	struct nfs_page *tmp;
285 	unsigned int pos = 0;
286 	unsigned int len = nfs_page_length(req->wb_page);
287 
288 	nfs_page_group_lock(req);
289 
290 	for (;;) {
291 		tmp = nfs_page_group_search_locked(req->wb_head, pos);
292 		if (!tmp)
293 			break;
294 		pos = tmp->wb_pgbase + tmp->wb_bytes;
295 	}
296 
297 	nfs_page_group_unlock(req);
298 	return pos >= len;
299 }
300 
301 /* We can set the PG_uptodate flag if we see that a write request
302  * covers the full page.
303  */
304 static void nfs_mark_uptodate(struct nfs_page *req)
305 {
306 	if (PageUptodate(req->wb_page))
307 		return;
308 	if (!nfs_page_group_covers_page(req))
309 		return;
310 	SetPageUptodate(req->wb_page);
311 }
312 
313 static int wb_priority(struct writeback_control *wbc)
314 {
315 	int ret = 0;
316 
317 	if (wbc->sync_mode == WB_SYNC_ALL)
318 		ret = FLUSH_COND_STABLE;
319 	return ret;
320 }
321 
322 /*
323  * NFS congestion control
324  */
325 
326 int nfs_congestion_kb;
327 
328 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
329 #define NFS_CONGESTION_OFF_THRESH	\
330 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
331 
332 static void nfs_set_page_writeback(struct page *page)
333 {
334 	struct inode *inode = page_file_mapping(page)->host;
335 	struct nfs_server *nfss = NFS_SERVER(inode);
336 	int ret = test_set_page_writeback(page);
337 
338 	WARN_ON_ONCE(ret != 0);
339 
340 	if (atomic_long_inc_return(&nfss->writeback) >
341 			NFS_CONGESTION_ON_THRESH)
342 		set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
343 }
344 
345 static void nfs_end_page_writeback(struct nfs_page *req)
346 {
347 	struct inode *inode = page_file_mapping(req->wb_page)->host;
348 	struct nfs_server *nfss = NFS_SERVER(inode);
349 	bool is_done;
350 
351 	is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
352 	nfs_unlock_request(req);
353 	if (!is_done)
354 		return;
355 
356 	end_page_writeback(req->wb_page);
357 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
358 		clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
359 }
360 
361 /*
362  * nfs_unroll_locks_and_wait -  unlock all newly locked reqs and wait on @req
363  *
364  * this is a helper function for nfs_lock_and_join_requests
365  *
366  * @inode - inode associated with request page group, must be holding inode lock
367  * @head  - head request of page group, must be holding head lock
368  * @req   - request that couldn't lock and needs to wait on the req bit lock
369  *
370  * NOTE: this must be called holding page_group bit lock
371  *       which will be released before returning.
372  *
373  * returns 0 on success, < 0 on error.
374  */
375 static void
376 nfs_unroll_locks(struct inode *inode, struct nfs_page *head,
377 			  struct nfs_page *req)
378 {
379 	struct nfs_page *tmp;
380 
381 	/* relinquish all the locks successfully grabbed this run */
382 	for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) {
383 		if (!kref_read(&tmp->wb_kref))
384 			continue;
385 		nfs_unlock_and_release_request(tmp);
386 	}
387 }
388 
389 /*
390  * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
391  *
392  * @destroy_list - request list (using wb_this_page) terminated by @old_head
393  * @old_head - the old head of the list
394  *
395  * All subrequests must be locked and removed from all lists, so at this point
396  * they are only "active" in this function, and possibly in nfs_wait_on_request
397  * with a reference held by some other context.
398  */
399 static void
400 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
401 				 struct nfs_page *old_head,
402 				 struct inode *inode)
403 {
404 	while (destroy_list) {
405 		struct nfs_page *subreq = destroy_list;
406 
407 		destroy_list = (subreq->wb_this_page == old_head) ?
408 				   NULL : subreq->wb_this_page;
409 
410 		WARN_ON_ONCE(old_head != subreq->wb_head);
411 
412 		/* make sure old group is not used */
413 		subreq->wb_this_page = subreq;
414 
415 		clear_bit(PG_REMOVE, &subreq->wb_flags);
416 
417 		/* Note: races with nfs_page_group_destroy() */
418 		if (!kref_read(&subreq->wb_kref)) {
419 			/* Check if we raced with nfs_page_group_destroy() */
420 			if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags))
421 				nfs_free_request(subreq);
422 			continue;
423 		}
424 
425 		subreq->wb_head = subreq;
426 
427 		if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
428 			nfs_release_request(subreq);
429 			atomic_long_dec(&NFS_I(inode)->nrequests);
430 		}
431 
432 		/* subreq is now totally disconnected from page group or any
433 		 * write / commit lists. last chance to wake any waiters */
434 		nfs_unlock_and_release_request(subreq);
435 	}
436 }
437 
438 /*
439  * nfs_lock_and_join_requests - join all subreqs to the head req and return
440  *                              a locked reference, cancelling any pending
441  *                              operations for this page.
442  *
443  * @page - the page used to lookup the "page group" of nfs_page structures
444  *
445  * This function joins all sub requests to the head request by first
446  * locking all requests in the group, cancelling any pending operations
447  * and finally updating the head request to cover the whole range covered by
448  * the (former) group.  All subrequests are removed from any write or commit
449  * lists, unlinked from the group and destroyed.
450  *
451  * Returns a locked, referenced pointer to the head request - which after
452  * this call is guaranteed to be the only request associated with the page.
453  * Returns NULL if no requests are found for @page, or a ERR_PTR if an
454  * error was encountered.
455  */
456 static struct nfs_page *
457 nfs_lock_and_join_requests(struct page *page)
458 {
459 	struct inode *inode = page_file_mapping(page)->host;
460 	struct nfs_page *head, *subreq;
461 	struct nfs_page *destroy_list = NULL;
462 	unsigned int total_bytes;
463 	int ret;
464 
465 try_again:
466 	/*
467 	 * A reference is taken only on the head request which acts as a
468 	 * reference to the whole page group - the group will not be destroyed
469 	 * until the head reference is released.
470 	 */
471 	head = nfs_page_find_head_request(page);
472 	if (!head)
473 		return NULL;
474 
475 	/* lock the page head first in order to avoid an ABBA inefficiency */
476 	if (!nfs_lock_request(head)) {
477 		ret = nfs_wait_on_request(head);
478 		nfs_release_request(head);
479 		if (ret < 0)
480 			return ERR_PTR(ret);
481 		goto try_again;
482 	}
483 
484 	/* Ensure that nobody removed the request before we locked it */
485 	if (head != nfs_page_private_request(page) && !PageSwapCache(page)) {
486 		nfs_unlock_and_release_request(head);
487 		goto try_again;
488 	}
489 
490 	ret = nfs_page_group_lock(head);
491 	if (ret < 0)
492 		goto release_request;
493 
494 	/* lock each request in the page group */
495 	total_bytes = head->wb_bytes;
496 	for (subreq = head->wb_this_page; subreq != head;
497 			subreq = subreq->wb_this_page) {
498 
499 		if (!kref_get_unless_zero(&subreq->wb_kref)) {
500 			if (subreq->wb_offset == head->wb_offset + total_bytes)
501 				total_bytes += subreq->wb_bytes;
502 			continue;
503 		}
504 
505 		while (!nfs_lock_request(subreq)) {
506 			/*
507 			 * Unlock page to allow nfs_page_group_sync_on_bit()
508 			 * to succeed
509 			 */
510 			nfs_page_group_unlock(head);
511 			ret = nfs_wait_on_request(subreq);
512 			if (!ret)
513 				ret = nfs_page_group_lock(head);
514 			if (ret < 0) {
515 				nfs_unroll_locks(inode, head, subreq);
516 				nfs_release_request(subreq);
517 				goto release_request;
518 			}
519 		}
520 		/*
521 		 * Subrequests are always contiguous, non overlapping
522 		 * and in order - but may be repeated (mirrored writes).
523 		 */
524 		if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
525 			/* keep track of how many bytes this group covers */
526 			total_bytes += subreq->wb_bytes;
527 		} else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
528 			    ((subreq->wb_offset + subreq->wb_bytes) >
529 			     (head->wb_offset + total_bytes)))) {
530 			nfs_page_group_unlock(head);
531 			nfs_unroll_locks(inode, head, subreq);
532 			nfs_unlock_and_release_request(subreq);
533 			ret = -EIO;
534 			goto release_request;
535 		}
536 	}
537 
538 	/* Now that all requests are locked, make sure they aren't on any list.
539 	 * Commit list removal accounting is done after locks are dropped */
540 	subreq = head;
541 	do {
542 		nfs_clear_request_commit(subreq);
543 		subreq = subreq->wb_this_page;
544 	} while (subreq != head);
545 
546 	/* unlink subrequests from head, destroy them later */
547 	if (head->wb_this_page != head) {
548 		/* destroy list will be terminated by head */
549 		destroy_list = head->wb_this_page;
550 		head->wb_this_page = head;
551 
552 		/* change head request to cover whole range that
553 		 * the former page group covered */
554 		head->wb_bytes = total_bytes;
555 	}
556 
557 	/* Postpone destruction of this request */
558 	if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) {
559 		set_bit(PG_INODE_REF, &head->wb_flags);
560 		kref_get(&head->wb_kref);
561 		atomic_long_inc(&NFS_I(inode)->nrequests);
562 	}
563 
564 	nfs_page_group_unlock(head);
565 
566 	nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
567 
568 	/* Did we lose a race with nfs_inode_remove_request()? */
569 	if (!(PagePrivate(page) || PageSwapCache(page))) {
570 		nfs_unlock_and_release_request(head);
571 		return NULL;
572 	}
573 
574 	/* still holds ref on head from nfs_page_find_head_request
575 	 * and still has lock on head from lock loop */
576 	return head;
577 
578 release_request:
579 	nfs_unlock_and_release_request(head);
580 	return ERR_PTR(ret);
581 }
582 
583 static void nfs_write_error_remove_page(struct nfs_page *req)
584 {
585 	nfs_end_page_writeback(req);
586 	generic_error_remove_page(page_file_mapping(req->wb_page),
587 				  req->wb_page);
588 	nfs_release_request(req);
589 }
590 
591 static bool
592 nfs_error_is_fatal_on_server(int err)
593 {
594 	switch (err) {
595 	case 0:
596 	case -ERESTARTSYS:
597 	case -EINTR:
598 		return false;
599 	}
600 	return nfs_error_is_fatal(err);
601 }
602 
603 /*
604  * Find an associated nfs write request, and prepare to flush it out
605  * May return an error if the user signalled nfs_wait_on_request().
606  */
607 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
608 				struct page *page)
609 {
610 	struct nfs_page *req;
611 	int ret = 0;
612 
613 	req = nfs_lock_and_join_requests(page);
614 	if (!req)
615 		goto out;
616 	ret = PTR_ERR(req);
617 	if (IS_ERR(req))
618 		goto out;
619 
620 	nfs_set_page_writeback(page);
621 	WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
622 
623 	ret = 0;
624 	/* If there is a fatal error that covers this write, just exit */
625 	if (nfs_error_is_fatal_on_server(req->wb_context->error))
626 		goto out_launder;
627 
628 	if (!nfs_pageio_add_request(pgio, req)) {
629 		ret = pgio->pg_error;
630 		/*
631 		 * Remove the problematic req upon fatal errors on the server
632 		 */
633 		if (nfs_error_is_fatal(ret)) {
634 			nfs_context_set_write_error(req->wb_context, ret);
635 			if (nfs_error_is_fatal_on_server(ret))
636 				goto out_launder;
637 		}
638 		nfs_redirty_request(req);
639 		ret = -EAGAIN;
640 	} else
641 		nfs_add_stats(page_file_mapping(page)->host,
642 				NFSIOS_WRITEPAGES, 1);
643 out:
644 	return ret;
645 out_launder:
646 	nfs_write_error_remove_page(req);
647 	return ret;
648 }
649 
650 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
651 			    struct nfs_pageio_descriptor *pgio)
652 {
653 	int ret;
654 
655 	nfs_pageio_cond_complete(pgio, page_index(page));
656 	ret = nfs_page_async_flush(pgio, page);
657 	if (ret == -EAGAIN) {
658 		redirty_page_for_writepage(wbc, page);
659 		ret = 0;
660 	}
661 	return ret;
662 }
663 
664 /*
665  * Write an mmapped page to the server.
666  */
667 static int nfs_writepage_locked(struct page *page,
668 				struct writeback_control *wbc)
669 {
670 	struct nfs_pageio_descriptor pgio;
671 	struct inode *inode = page_file_mapping(page)->host;
672 	int err;
673 
674 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
675 	nfs_pageio_init_write(&pgio, inode, 0,
676 				false, &nfs_async_write_completion_ops);
677 	err = nfs_do_writepage(page, wbc, &pgio);
678 	nfs_pageio_complete(&pgio);
679 	if (err < 0)
680 		return err;
681 	if (pgio.pg_error < 0)
682 		return pgio.pg_error;
683 	return 0;
684 }
685 
686 int nfs_writepage(struct page *page, struct writeback_control *wbc)
687 {
688 	int ret;
689 
690 	ret = nfs_writepage_locked(page, wbc);
691 	unlock_page(page);
692 	return ret;
693 }
694 
695 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
696 {
697 	int ret;
698 
699 	ret = nfs_do_writepage(page, wbc, data);
700 	unlock_page(page);
701 	return ret;
702 }
703 
704 static void nfs_io_completion_commit(void *inode)
705 {
706 	nfs_commit_inode(inode, 0);
707 }
708 
709 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
710 {
711 	struct inode *inode = mapping->host;
712 	struct nfs_pageio_descriptor pgio;
713 	struct nfs_io_completion *ioc = nfs_io_completion_alloc(GFP_NOFS);
714 	int err;
715 
716 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
717 
718 	if (ioc)
719 		nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
720 
721 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
722 				&nfs_async_write_completion_ops);
723 	pgio.pg_io_completion = ioc;
724 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
725 	nfs_pageio_complete(&pgio);
726 	nfs_io_completion_put(ioc);
727 
728 	if (err < 0)
729 		goto out_err;
730 	err = pgio.pg_error;
731 	if (err < 0)
732 		goto out_err;
733 	return 0;
734 out_err:
735 	return err;
736 }
737 
738 /*
739  * Insert a write request into an inode
740  */
741 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
742 {
743 	struct address_space *mapping = page_file_mapping(req->wb_page);
744 	struct nfs_inode *nfsi = NFS_I(inode);
745 
746 	WARN_ON_ONCE(req->wb_this_page != req);
747 
748 	/* Lock the request! */
749 	nfs_lock_request(req);
750 
751 	/*
752 	 * Swap-space should not get truncated. Hence no need to plug the race
753 	 * with invalidate/truncate.
754 	 */
755 	spin_lock(&mapping->private_lock);
756 	if (!nfs_have_writebacks(inode) &&
757 	    NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
758 		inode_inc_iversion_raw(inode);
759 	if (likely(!PageSwapCache(req->wb_page))) {
760 		set_bit(PG_MAPPED, &req->wb_flags);
761 		SetPagePrivate(req->wb_page);
762 		set_page_private(req->wb_page, (unsigned long)req);
763 	}
764 	spin_unlock(&mapping->private_lock);
765 	atomic_long_inc(&nfsi->nrequests);
766 	/* this a head request for a page group - mark it as having an
767 	 * extra reference so sub groups can follow suit.
768 	 * This flag also informs pgio layer when to bump nrequests when
769 	 * adding subrequests. */
770 	WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
771 	kref_get(&req->wb_kref);
772 }
773 
774 /*
775  * Remove a write request from an inode
776  */
777 static void nfs_inode_remove_request(struct nfs_page *req)
778 {
779 	struct address_space *mapping = page_file_mapping(req->wb_page);
780 	struct inode *inode = mapping->host;
781 	struct nfs_inode *nfsi = NFS_I(inode);
782 	struct nfs_page *head;
783 
784 	atomic_long_dec(&nfsi->nrequests);
785 	if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
786 		head = req->wb_head;
787 
788 		spin_lock(&mapping->private_lock);
789 		if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
790 			set_page_private(head->wb_page, 0);
791 			ClearPagePrivate(head->wb_page);
792 			clear_bit(PG_MAPPED, &head->wb_flags);
793 		}
794 		spin_unlock(&mapping->private_lock);
795 	}
796 
797 	if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags))
798 		nfs_release_request(req);
799 }
800 
801 static void
802 nfs_mark_request_dirty(struct nfs_page *req)
803 {
804 	if (req->wb_page)
805 		__set_page_dirty_nobuffers(req->wb_page);
806 }
807 
808 /*
809  * nfs_page_search_commits_for_head_request_locked
810  *
811  * Search through commit lists on @inode for the head request for @page.
812  * Must be called while holding the inode (which is cinfo) lock.
813  *
814  * Returns the head request if found, or NULL if not found.
815  */
816 static struct nfs_page *
817 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
818 						struct page *page)
819 {
820 	struct nfs_page *freq, *t;
821 	struct nfs_commit_info cinfo;
822 	struct inode *inode = &nfsi->vfs_inode;
823 
824 	nfs_init_cinfo_from_inode(&cinfo, inode);
825 
826 	/* search through pnfs commit lists */
827 	freq = pnfs_search_commit_reqs(inode, &cinfo, page);
828 	if (freq)
829 		return freq->wb_head;
830 
831 	/* Linearly search the commit list for the correct request */
832 	list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
833 		if (freq->wb_page == page)
834 			return freq->wb_head;
835 	}
836 
837 	return NULL;
838 }
839 
840 /**
841  * nfs_request_add_commit_list_locked - add request to a commit list
842  * @req: pointer to a struct nfs_page
843  * @dst: commit list head
844  * @cinfo: holds list lock and accounting info
845  *
846  * This sets the PG_CLEAN bit, updates the cinfo count of
847  * number of outstanding requests requiring a commit as well as
848  * the MM page stats.
849  *
850  * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
851  * nfs_page lock.
852  */
853 void
854 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
855 			    struct nfs_commit_info *cinfo)
856 {
857 	set_bit(PG_CLEAN, &req->wb_flags);
858 	nfs_list_add_request(req, dst);
859 	atomic_long_inc(&cinfo->mds->ncommit);
860 }
861 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
862 
863 /**
864  * nfs_request_add_commit_list - add request to a commit list
865  * @req: pointer to a struct nfs_page
866  * @dst: commit list head
867  * @cinfo: holds list lock and accounting info
868  *
869  * This sets the PG_CLEAN bit, updates the cinfo count of
870  * number of outstanding requests requiring a commit as well as
871  * the MM page stats.
872  *
873  * The caller must _not_ hold the cinfo->lock, but must be
874  * holding the nfs_page lock.
875  */
876 void
877 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
878 {
879 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
880 	nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
881 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
882 	if (req->wb_page)
883 		nfs_mark_page_unstable(req->wb_page, cinfo);
884 }
885 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
886 
887 /**
888  * nfs_request_remove_commit_list - Remove request from a commit list
889  * @req: pointer to a nfs_page
890  * @cinfo: holds list lock and accounting info
891  *
892  * This clears the PG_CLEAN bit, and updates the cinfo's count of
893  * number of outstanding requests requiring a commit
894  * It does not update the MM page stats.
895  *
896  * The caller _must_ hold the cinfo->lock and the nfs_page lock.
897  */
898 void
899 nfs_request_remove_commit_list(struct nfs_page *req,
900 			       struct nfs_commit_info *cinfo)
901 {
902 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
903 		return;
904 	nfs_list_remove_request(req);
905 	atomic_long_dec(&cinfo->mds->ncommit);
906 }
907 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
908 
909 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
910 				      struct inode *inode)
911 {
912 	cinfo->inode = inode;
913 	cinfo->mds = &NFS_I(inode)->commit_info;
914 	cinfo->ds = pnfs_get_ds_info(inode);
915 	cinfo->dreq = NULL;
916 	cinfo->completion_ops = &nfs_commit_completion_ops;
917 }
918 
919 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
920 		    struct inode *inode,
921 		    struct nfs_direct_req *dreq)
922 {
923 	if (dreq)
924 		nfs_init_cinfo_from_dreq(cinfo, dreq);
925 	else
926 		nfs_init_cinfo_from_inode(cinfo, inode);
927 }
928 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
929 
930 /*
931  * Add a request to the inode's commit list.
932  */
933 void
934 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
935 			struct nfs_commit_info *cinfo, u32 ds_commit_idx)
936 {
937 	if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
938 		return;
939 	nfs_request_add_commit_list(req, cinfo);
940 }
941 
942 static void
943 nfs_clear_page_commit(struct page *page)
944 {
945 	dec_node_page_state(page, NR_UNSTABLE_NFS);
946 	dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
947 		    WB_RECLAIMABLE);
948 }
949 
950 /* Called holding the request lock on @req */
951 static void
952 nfs_clear_request_commit(struct nfs_page *req)
953 {
954 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
955 		struct inode *inode = d_inode(req->wb_context->dentry);
956 		struct nfs_commit_info cinfo;
957 
958 		nfs_init_cinfo_from_inode(&cinfo, inode);
959 		mutex_lock(&NFS_I(inode)->commit_mutex);
960 		if (!pnfs_clear_request_commit(req, &cinfo)) {
961 			nfs_request_remove_commit_list(req, &cinfo);
962 		}
963 		mutex_unlock(&NFS_I(inode)->commit_mutex);
964 		nfs_clear_page_commit(req->wb_page);
965 	}
966 }
967 
968 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
969 {
970 	if (hdr->verf.committed == NFS_DATA_SYNC)
971 		return hdr->lseg == NULL;
972 	return hdr->verf.committed != NFS_FILE_SYNC;
973 }
974 
975 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
976 {
977 	nfs_io_completion_get(hdr->io_completion);
978 }
979 
980 static void nfs_write_completion(struct nfs_pgio_header *hdr)
981 {
982 	struct nfs_commit_info cinfo;
983 	unsigned long bytes = 0;
984 
985 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
986 		goto out;
987 	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
988 	while (!list_empty(&hdr->pages)) {
989 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
990 
991 		bytes += req->wb_bytes;
992 		nfs_list_remove_request(req);
993 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
994 		    (hdr->good_bytes < bytes)) {
995 			nfs_set_pageerror(req->wb_page);
996 			nfs_context_set_write_error(req->wb_context, hdr->error);
997 			goto remove_req;
998 		}
999 		if (nfs_write_need_commit(hdr)) {
1000 			memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1001 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1002 				hdr->pgio_mirror_idx);
1003 			goto next;
1004 		}
1005 remove_req:
1006 		nfs_inode_remove_request(req);
1007 next:
1008 		nfs_end_page_writeback(req);
1009 		nfs_release_request(req);
1010 	}
1011 out:
1012 	nfs_io_completion_put(hdr->io_completion);
1013 	hdr->release(hdr);
1014 }
1015 
1016 unsigned long
1017 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1018 {
1019 	return atomic_long_read(&cinfo->mds->ncommit);
1020 }
1021 
1022 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1023 int
1024 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1025 		     struct nfs_commit_info *cinfo, int max)
1026 {
1027 	struct nfs_page *req, *tmp;
1028 	int ret = 0;
1029 
1030 restart:
1031 	list_for_each_entry_safe(req, tmp, src, wb_list) {
1032 		kref_get(&req->wb_kref);
1033 		if (!nfs_lock_request(req)) {
1034 			int status;
1035 
1036 			/* Prevent deadlock with nfs_lock_and_join_requests */
1037 			if (!list_empty(dst)) {
1038 				nfs_release_request(req);
1039 				continue;
1040 			}
1041 			/* Ensure we make progress to prevent livelock */
1042 			mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1043 			status = nfs_wait_on_request(req);
1044 			nfs_release_request(req);
1045 			mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1046 			if (status < 0)
1047 				break;
1048 			goto restart;
1049 		}
1050 		nfs_request_remove_commit_list(req, cinfo);
1051 		clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1052 		nfs_list_add_request(req, dst);
1053 		ret++;
1054 		if ((ret == max) && !cinfo->dreq)
1055 			break;
1056 		cond_resched();
1057 	}
1058 	return ret;
1059 }
1060 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1061 
1062 /*
1063  * nfs_scan_commit - Scan an inode for commit requests
1064  * @inode: NFS inode to scan
1065  * @dst: mds destination list
1066  * @cinfo: mds and ds lists of reqs ready to commit
1067  *
1068  * Moves requests from the inode's 'commit' request list.
1069  * The requests are *not* checked to ensure that they form a contiguous set.
1070  */
1071 int
1072 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1073 		struct nfs_commit_info *cinfo)
1074 {
1075 	int ret = 0;
1076 
1077 	if (!atomic_long_read(&cinfo->mds->ncommit))
1078 		return 0;
1079 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1080 	if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1081 		const int max = INT_MAX;
1082 
1083 		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1084 					   cinfo, max);
1085 		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1086 	}
1087 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1088 	return ret;
1089 }
1090 
1091 /*
1092  * Search for an existing write request, and attempt to update
1093  * it to reflect a new dirty region on a given page.
1094  *
1095  * If the attempt fails, then the existing request is flushed out
1096  * to disk.
1097  */
1098 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1099 		struct page *page,
1100 		unsigned int offset,
1101 		unsigned int bytes)
1102 {
1103 	struct nfs_page *req;
1104 	unsigned int rqend;
1105 	unsigned int end;
1106 	int error;
1107 
1108 	end = offset + bytes;
1109 
1110 	req = nfs_lock_and_join_requests(page);
1111 	if (IS_ERR_OR_NULL(req))
1112 		return req;
1113 
1114 	rqend = req->wb_offset + req->wb_bytes;
1115 	/*
1116 	 * Tell the caller to flush out the request if
1117 	 * the offsets are non-contiguous.
1118 	 * Note: nfs_flush_incompatible() will already
1119 	 * have flushed out requests having wrong owners.
1120 	 */
1121 	if (offset > rqend || end < req->wb_offset)
1122 		goto out_flushme;
1123 
1124 	/* Okay, the request matches. Update the region */
1125 	if (offset < req->wb_offset) {
1126 		req->wb_offset = offset;
1127 		req->wb_pgbase = offset;
1128 	}
1129 	if (end > rqend)
1130 		req->wb_bytes = end - req->wb_offset;
1131 	else
1132 		req->wb_bytes = rqend - req->wb_offset;
1133 	return req;
1134 out_flushme:
1135 	/*
1136 	 * Note: we mark the request dirty here because
1137 	 * nfs_lock_and_join_requests() cannot preserve
1138 	 * commit flags, so we have to replay the write.
1139 	 */
1140 	nfs_mark_request_dirty(req);
1141 	nfs_unlock_and_release_request(req);
1142 	error = nfs_wb_page(inode, page);
1143 	return (error < 0) ? ERR_PTR(error) : NULL;
1144 }
1145 
1146 /*
1147  * Try to update an existing write request, or create one if there is none.
1148  *
1149  * Note: Should always be called with the Page Lock held to prevent races
1150  * if we have to add a new request. Also assumes that the caller has
1151  * already called nfs_flush_incompatible() if necessary.
1152  */
1153 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1154 		struct page *page, unsigned int offset, unsigned int bytes)
1155 {
1156 	struct inode *inode = page_file_mapping(page)->host;
1157 	struct nfs_page	*req;
1158 
1159 	req = nfs_try_to_update_request(inode, page, offset, bytes);
1160 	if (req != NULL)
1161 		goto out;
1162 	req = nfs_create_request(ctx, page, NULL, offset, bytes);
1163 	if (IS_ERR(req))
1164 		goto out;
1165 	nfs_inode_add_request(inode, req);
1166 out:
1167 	return req;
1168 }
1169 
1170 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1171 		unsigned int offset, unsigned int count)
1172 {
1173 	struct nfs_page	*req;
1174 
1175 	req = nfs_setup_write_request(ctx, page, offset, count);
1176 	if (IS_ERR(req))
1177 		return PTR_ERR(req);
1178 	/* Update file length */
1179 	nfs_grow_file(page, offset, count);
1180 	nfs_mark_uptodate(req);
1181 	nfs_mark_request_dirty(req);
1182 	nfs_unlock_and_release_request(req);
1183 	return 0;
1184 }
1185 
1186 int nfs_flush_incompatible(struct file *file, struct page *page)
1187 {
1188 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1189 	struct nfs_lock_context *l_ctx;
1190 	struct file_lock_context *flctx = file_inode(file)->i_flctx;
1191 	struct nfs_page	*req;
1192 	int do_flush, status;
1193 	/*
1194 	 * Look for a request corresponding to this page. If there
1195 	 * is one, and it belongs to another file, we flush it out
1196 	 * before we try to copy anything into the page. Do this
1197 	 * due to the lack of an ACCESS-type call in NFSv2.
1198 	 * Also do the same if we find a request from an existing
1199 	 * dropped page.
1200 	 */
1201 	do {
1202 		req = nfs_page_find_head_request(page);
1203 		if (req == NULL)
1204 			return 0;
1205 		l_ctx = req->wb_lock_context;
1206 		do_flush = req->wb_page != page ||
1207 			!nfs_match_open_context(req->wb_context, ctx);
1208 		if (l_ctx && flctx &&
1209 		    !(list_empty_careful(&flctx->flc_posix) &&
1210 		      list_empty_careful(&flctx->flc_flock))) {
1211 			do_flush |= l_ctx->lockowner != current->files;
1212 		}
1213 		nfs_release_request(req);
1214 		if (!do_flush)
1215 			return 0;
1216 		status = nfs_wb_page(page_file_mapping(page)->host, page);
1217 	} while (status == 0);
1218 	return status;
1219 }
1220 
1221 /*
1222  * Avoid buffered writes when a open context credential's key would
1223  * expire soon.
1224  *
1225  * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1226  *
1227  * Return 0 and set a credential flag which triggers the inode to flush
1228  * and performs  NFS_FILE_SYNC writes if the key will expired within
1229  * RPC_KEY_EXPIRE_TIMEO.
1230  */
1231 int
1232 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1233 {
1234 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
1235 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1236 
1237 	return rpcauth_key_timeout_notify(auth, ctx->cred);
1238 }
1239 
1240 /*
1241  * Test if the open context credential key is marked to expire soon.
1242  */
1243 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1244 {
1245 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1246 
1247 	return rpcauth_cred_key_to_expire(auth, ctx->cred);
1248 }
1249 
1250 /*
1251  * If the page cache is marked as unsafe or invalid, then we can't rely on
1252  * the PageUptodate() flag. In this case, we will need to turn off
1253  * write optimisations that depend on the page contents being correct.
1254  */
1255 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1256 {
1257 	struct nfs_inode *nfsi = NFS_I(inode);
1258 
1259 	if (nfs_have_delegated_attributes(inode))
1260 		goto out;
1261 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1262 		return false;
1263 	smp_rmb();
1264 	if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1265 		return false;
1266 out:
1267 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1268 		return false;
1269 	return PageUptodate(page) != 0;
1270 }
1271 
1272 static bool
1273 is_whole_file_wrlock(struct file_lock *fl)
1274 {
1275 	return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1276 			fl->fl_type == F_WRLCK;
1277 }
1278 
1279 /* If we know the page is up to date, and we're not using byte range locks (or
1280  * if we have the whole file locked for writing), it may be more efficient to
1281  * extend the write to cover the entire page in order to avoid fragmentation
1282  * inefficiencies.
1283  *
1284  * If the file is opened for synchronous writes then we can just skip the rest
1285  * of the checks.
1286  */
1287 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1288 {
1289 	int ret;
1290 	struct file_lock_context *flctx = inode->i_flctx;
1291 	struct file_lock *fl;
1292 
1293 	if (file->f_flags & O_DSYNC)
1294 		return 0;
1295 	if (!nfs_write_pageuptodate(page, inode))
1296 		return 0;
1297 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1298 		return 1;
1299 	if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1300 		       list_empty_careful(&flctx->flc_posix)))
1301 		return 1;
1302 
1303 	/* Check to see if there are whole file write locks */
1304 	ret = 0;
1305 	spin_lock(&flctx->flc_lock);
1306 	if (!list_empty(&flctx->flc_posix)) {
1307 		fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1308 					fl_list);
1309 		if (is_whole_file_wrlock(fl))
1310 			ret = 1;
1311 	} else if (!list_empty(&flctx->flc_flock)) {
1312 		fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1313 					fl_list);
1314 		if (fl->fl_type == F_WRLCK)
1315 			ret = 1;
1316 	}
1317 	spin_unlock(&flctx->flc_lock);
1318 	return ret;
1319 }
1320 
1321 /*
1322  * Update and possibly write a cached page of an NFS file.
1323  *
1324  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1325  * things with a page scheduled for an RPC call (e.g. invalidate it).
1326  */
1327 int nfs_updatepage(struct file *file, struct page *page,
1328 		unsigned int offset, unsigned int count)
1329 {
1330 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1331 	struct inode	*inode = page_file_mapping(page)->host;
1332 	int		status = 0;
1333 
1334 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1335 
1336 	dprintk("NFS:       nfs_updatepage(%pD2 %d@%lld)\n",
1337 		file, count, (long long)(page_file_offset(page) + offset));
1338 
1339 	if (!count)
1340 		goto out;
1341 
1342 	if (nfs_can_extend_write(file, page, inode)) {
1343 		count = max(count + offset, nfs_page_length(page));
1344 		offset = 0;
1345 	}
1346 
1347 	status = nfs_writepage_setup(ctx, page, offset, count);
1348 	if (status < 0)
1349 		nfs_set_pageerror(page);
1350 	else
1351 		__set_page_dirty_nobuffers(page);
1352 out:
1353 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
1354 			status, (long long)i_size_read(inode));
1355 	return status;
1356 }
1357 
1358 static int flush_task_priority(int how)
1359 {
1360 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1361 		case FLUSH_HIGHPRI:
1362 			return RPC_PRIORITY_HIGH;
1363 		case FLUSH_LOWPRI:
1364 			return RPC_PRIORITY_LOW;
1365 	}
1366 	return RPC_PRIORITY_NORMAL;
1367 }
1368 
1369 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1370 			       struct rpc_message *msg,
1371 			       const struct nfs_rpc_ops *rpc_ops,
1372 			       struct rpc_task_setup *task_setup_data, int how)
1373 {
1374 	int priority = flush_task_priority(how);
1375 
1376 	task_setup_data->priority = priority;
1377 	rpc_ops->write_setup(hdr, msg);
1378 	trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes,
1379 				 hdr->args.stable);
1380 
1381 	nfs4_state_protect_write(NFS_SERVER(hdr->inode)->nfs_client,
1382 				 &task_setup_data->rpc_client, msg, hdr);
1383 }
1384 
1385 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1386  * call this on each, which will prepare them to be retried on next
1387  * writeback using standard nfs.
1388  */
1389 static void nfs_redirty_request(struct nfs_page *req)
1390 {
1391 	nfs_mark_request_dirty(req);
1392 	set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1393 	nfs_end_page_writeback(req);
1394 	nfs_release_request(req);
1395 }
1396 
1397 static void nfs_async_write_error(struct list_head *head)
1398 {
1399 	struct nfs_page	*req;
1400 
1401 	while (!list_empty(head)) {
1402 		req = nfs_list_entry(head->next);
1403 		nfs_list_remove_request(req);
1404 		nfs_redirty_request(req);
1405 	}
1406 }
1407 
1408 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1409 {
1410 	nfs_async_write_error(&hdr->pages);
1411 }
1412 
1413 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1414 	.init_hdr = nfs_async_write_init,
1415 	.error_cleanup = nfs_async_write_error,
1416 	.completion = nfs_write_completion,
1417 	.reschedule_io = nfs_async_write_reschedule_io,
1418 };
1419 
1420 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1421 			       struct inode *inode, int ioflags, bool force_mds,
1422 			       const struct nfs_pgio_completion_ops *compl_ops)
1423 {
1424 	struct nfs_server *server = NFS_SERVER(inode);
1425 	const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1426 
1427 #ifdef CONFIG_NFS_V4_1
1428 	if (server->pnfs_curr_ld && !force_mds)
1429 		pg_ops = server->pnfs_curr_ld->pg_write_ops;
1430 #endif
1431 	nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1432 			server->wsize, ioflags);
1433 }
1434 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1435 
1436 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1437 {
1438 	struct nfs_pgio_mirror *mirror;
1439 
1440 	if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1441 		pgio->pg_ops->pg_cleanup(pgio);
1442 
1443 	pgio->pg_ops = &nfs_pgio_rw_ops;
1444 
1445 	nfs_pageio_stop_mirroring(pgio);
1446 
1447 	mirror = &pgio->pg_mirrors[0];
1448 	mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1449 }
1450 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1451 
1452 
1453 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1454 {
1455 	struct nfs_commit_data *data = calldata;
1456 
1457 	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1458 }
1459 
1460 /*
1461  * Special version of should_remove_suid() that ignores capabilities.
1462  */
1463 static int nfs_should_remove_suid(const struct inode *inode)
1464 {
1465 	umode_t mode = inode->i_mode;
1466 	int kill = 0;
1467 
1468 	/* suid always must be killed */
1469 	if (unlikely(mode & S_ISUID))
1470 		kill = ATTR_KILL_SUID;
1471 
1472 	/*
1473 	 * sgid without any exec bits is just a mandatory locking mark; leave
1474 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1475 	 */
1476 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1477 		kill |= ATTR_KILL_SGID;
1478 
1479 	if (unlikely(kill && S_ISREG(mode)))
1480 		return kill;
1481 
1482 	return 0;
1483 }
1484 
1485 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1486 		struct nfs_fattr *fattr)
1487 {
1488 	struct nfs_pgio_args *argp = &hdr->args;
1489 	struct nfs_pgio_res *resp = &hdr->res;
1490 	u64 size = argp->offset + resp->count;
1491 
1492 	if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1493 		fattr->size = size;
1494 	if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1495 		fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1496 		return;
1497 	}
1498 	if (size != fattr->size)
1499 		return;
1500 	/* Set attribute barrier */
1501 	nfs_fattr_set_barrier(fattr);
1502 	/* ...and update size */
1503 	fattr->valid |= NFS_ATTR_FATTR_SIZE;
1504 }
1505 
1506 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1507 {
1508 	struct nfs_fattr *fattr = &hdr->fattr;
1509 	struct inode *inode = hdr->inode;
1510 
1511 	spin_lock(&inode->i_lock);
1512 	nfs_writeback_check_extend(hdr, fattr);
1513 	nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1514 	spin_unlock(&inode->i_lock);
1515 }
1516 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1517 
1518 /*
1519  * This function is called when the WRITE call is complete.
1520  */
1521 static int nfs_writeback_done(struct rpc_task *task,
1522 			      struct nfs_pgio_header *hdr,
1523 			      struct inode *inode)
1524 {
1525 	int status;
1526 
1527 	/*
1528 	 * ->write_done will attempt to use post-op attributes to detect
1529 	 * conflicting writes by other clients.  A strict interpretation
1530 	 * of close-to-open would allow us to continue caching even if
1531 	 * another writer had changed the file, but some applications
1532 	 * depend on tighter cache coherency when writing.
1533 	 */
1534 	status = NFS_PROTO(inode)->write_done(task, hdr);
1535 	if (status != 0)
1536 		return status;
1537 
1538 	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1539 	trace_nfs_writeback_done(inode, task->tk_status,
1540 				 hdr->args.offset, hdr->res.verf);
1541 
1542 	if (hdr->res.verf->committed < hdr->args.stable &&
1543 	    task->tk_status >= 0) {
1544 		/* We tried a write call, but the server did not
1545 		 * commit data to stable storage even though we
1546 		 * requested it.
1547 		 * Note: There is a known bug in Tru64 < 5.0 in which
1548 		 *	 the server reports NFS_DATA_SYNC, but performs
1549 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1550 		 *	 as a dprintk() in order to avoid filling syslog.
1551 		 */
1552 		static unsigned long    complain;
1553 
1554 		/* Note this will print the MDS for a DS write */
1555 		if (time_before(complain, jiffies)) {
1556 			dprintk("NFS:       faulty NFS server %s:"
1557 				" (committed = %d) != (stable = %d)\n",
1558 				NFS_SERVER(inode)->nfs_client->cl_hostname,
1559 				hdr->res.verf->committed, hdr->args.stable);
1560 			complain = jiffies + 300 * HZ;
1561 		}
1562 	}
1563 
1564 	/* Deal with the suid/sgid bit corner case */
1565 	if (nfs_should_remove_suid(inode))
1566 		nfs_mark_for_revalidate(inode);
1567 	return 0;
1568 }
1569 
1570 /*
1571  * This function is called when the WRITE call is complete.
1572  */
1573 static void nfs_writeback_result(struct rpc_task *task,
1574 				 struct nfs_pgio_header *hdr)
1575 {
1576 	struct nfs_pgio_args	*argp = &hdr->args;
1577 	struct nfs_pgio_res	*resp = &hdr->res;
1578 
1579 	if (resp->count < argp->count) {
1580 		static unsigned long    complain;
1581 
1582 		/* This a short write! */
1583 		nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1584 
1585 		/* Has the server at least made some progress? */
1586 		if (resp->count == 0) {
1587 			if (time_before(complain, jiffies)) {
1588 				printk(KERN_WARNING
1589 				       "NFS: Server wrote zero bytes, expected %u.\n",
1590 				       argp->count);
1591 				complain = jiffies + 300 * HZ;
1592 			}
1593 			nfs_set_pgio_error(hdr, -EIO, argp->offset);
1594 			task->tk_status = -EIO;
1595 			return;
1596 		}
1597 
1598 		/* For non rpc-based layout drivers, retry-through-MDS */
1599 		if (!task->tk_ops) {
1600 			hdr->pnfs_error = -EAGAIN;
1601 			return;
1602 		}
1603 
1604 		/* Was this an NFSv2 write or an NFSv3 stable write? */
1605 		if (resp->verf->committed != NFS_UNSTABLE) {
1606 			/* Resend from where the server left off */
1607 			hdr->mds_offset += resp->count;
1608 			argp->offset += resp->count;
1609 			argp->pgbase += resp->count;
1610 			argp->count -= resp->count;
1611 		} else {
1612 			/* Resend as a stable write in order to avoid
1613 			 * headaches in the case of a server crash.
1614 			 */
1615 			argp->stable = NFS_FILE_SYNC;
1616 		}
1617 		rpc_restart_call_prepare(task);
1618 	}
1619 }
1620 
1621 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1622 {
1623 	return wait_on_atomic_t(&cinfo->rpcs_out,
1624 			nfs_wait_atomic_killable, TASK_KILLABLE);
1625 }
1626 
1627 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1628 {
1629 	atomic_inc(&cinfo->rpcs_out);
1630 }
1631 
1632 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1633 {
1634 	if (atomic_dec_and_test(&cinfo->rpcs_out))
1635 		wake_up_atomic_t(&cinfo->rpcs_out);
1636 }
1637 
1638 void nfs_commitdata_release(struct nfs_commit_data *data)
1639 {
1640 	put_nfs_open_context(data->context);
1641 	nfs_commit_free(data);
1642 }
1643 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1644 
1645 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1646 			const struct nfs_rpc_ops *nfs_ops,
1647 			const struct rpc_call_ops *call_ops,
1648 			int how, int flags)
1649 {
1650 	struct rpc_task *task;
1651 	int priority = flush_task_priority(how);
1652 	struct rpc_message msg = {
1653 		.rpc_argp = &data->args,
1654 		.rpc_resp = &data->res,
1655 		.rpc_cred = data->cred,
1656 	};
1657 	struct rpc_task_setup task_setup_data = {
1658 		.task = &data->task,
1659 		.rpc_client = clnt,
1660 		.rpc_message = &msg,
1661 		.callback_ops = call_ops,
1662 		.callback_data = data,
1663 		.workqueue = nfsiod_workqueue,
1664 		.flags = RPC_TASK_ASYNC | flags,
1665 		.priority = priority,
1666 	};
1667 	/* Set up the initial task struct.  */
1668 	nfs_ops->commit_setup(data, &msg);
1669 	trace_nfs_initiate_commit(data);
1670 
1671 	dprintk("NFS: initiated commit call\n");
1672 
1673 	nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client,
1674 		NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg);
1675 
1676 	task = rpc_run_task(&task_setup_data);
1677 	if (IS_ERR(task))
1678 		return PTR_ERR(task);
1679 	if (how & FLUSH_SYNC)
1680 		rpc_wait_for_completion_task(task);
1681 	rpc_put_task(task);
1682 	return 0;
1683 }
1684 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1685 
1686 static loff_t nfs_get_lwb(struct list_head *head)
1687 {
1688 	loff_t lwb = 0;
1689 	struct nfs_page *req;
1690 
1691 	list_for_each_entry(req, head, wb_list)
1692 		if (lwb < (req_offset(req) + req->wb_bytes))
1693 			lwb = req_offset(req) + req->wb_bytes;
1694 
1695 	return lwb;
1696 }
1697 
1698 /*
1699  * Set up the argument/result storage required for the RPC call.
1700  */
1701 void nfs_init_commit(struct nfs_commit_data *data,
1702 		     struct list_head *head,
1703 		     struct pnfs_layout_segment *lseg,
1704 		     struct nfs_commit_info *cinfo)
1705 {
1706 	struct nfs_page *first = nfs_list_entry(head->next);
1707 	struct inode *inode = d_inode(first->wb_context->dentry);
1708 
1709 	/* Set up the RPC argument and reply structs
1710 	 * NB: take care not to mess about with data->commit et al. */
1711 
1712 	list_splice_init(head, &data->pages);
1713 
1714 	data->inode	  = inode;
1715 	data->cred	  = first->wb_context->cred;
1716 	data->lseg	  = lseg; /* reference transferred */
1717 	/* only set lwb for pnfs commit */
1718 	if (lseg)
1719 		data->lwb = nfs_get_lwb(&data->pages);
1720 	data->mds_ops     = &nfs_commit_ops;
1721 	data->completion_ops = cinfo->completion_ops;
1722 	data->dreq	  = cinfo->dreq;
1723 
1724 	data->args.fh     = NFS_FH(data->inode);
1725 	/* Note: we always request a commit of the entire inode */
1726 	data->args.offset = 0;
1727 	data->args.count  = 0;
1728 	data->context     = get_nfs_open_context(first->wb_context);
1729 	data->res.fattr   = &data->fattr;
1730 	data->res.verf    = &data->verf;
1731 	nfs_fattr_init(&data->fattr);
1732 }
1733 EXPORT_SYMBOL_GPL(nfs_init_commit);
1734 
1735 void nfs_retry_commit(struct list_head *page_list,
1736 		      struct pnfs_layout_segment *lseg,
1737 		      struct nfs_commit_info *cinfo,
1738 		      u32 ds_commit_idx)
1739 {
1740 	struct nfs_page *req;
1741 
1742 	while (!list_empty(page_list)) {
1743 		req = nfs_list_entry(page_list->next);
1744 		nfs_list_remove_request(req);
1745 		nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1746 		if (!cinfo->dreq)
1747 			nfs_clear_page_commit(req->wb_page);
1748 		nfs_unlock_and_release_request(req);
1749 	}
1750 }
1751 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1752 
1753 static void
1754 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1755 		struct nfs_page *req)
1756 {
1757 	__set_page_dirty_nobuffers(req->wb_page);
1758 }
1759 
1760 /*
1761  * Commit dirty pages
1762  */
1763 static int
1764 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1765 		struct nfs_commit_info *cinfo)
1766 {
1767 	struct nfs_commit_data	*data;
1768 
1769 	/* another commit raced with us */
1770 	if (list_empty(head))
1771 		return 0;
1772 
1773 	data = nfs_commitdata_alloc(true);
1774 
1775 	/* Set up the argument struct */
1776 	nfs_init_commit(data, head, NULL, cinfo);
1777 	atomic_inc(&cinfo->mds->rpcs_out);
1778 	return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1779 				   data->mds_ops, how, 0);
1780 }
1781 
1782 /*
1783  * COMMIT call returned
1784  */
1785 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1786 {
1787 	struct nfs_commit_data	*data = calldata;
1788 
1789         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1790                                 task->tk_pid, task->tk_status);
1791 
1792 	/* Call the NFS version-specific code */
1793 	NFS_PROTO(data->inode)->commit_done(task, data);
1794 	trace_nfs_commit_done(data);
1795 }
1796 
1797 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1798 {
1799 	struct nfs_page	*req;
1800 	int status = data->task.tk_status;
1801 	struct nfs_commit_info cinfo;
1802 	struct nfs_server *nfss;
1803 
1804 	while (!list_empty(&data->pages)) {
1805 		req = nfs_list_entry(data->pages.next);
1806 		nfs_list_remove_request(req);
1807 		if (req->wb_page)
1808 			nfs_clear_page_commit(req->wb_page);
1809 
1810 		dprintk("NFS:       commit (%s/%llu %d@%lld)",
1811 			req->wb_context->dentry->d_sb->s_id,
1812 			(unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
1813 			req->wb_bytes,
1814 			(long long)req_offset(req));
1815 		if (status < 0) {
1816 			nfs_context_set_write_error(req->wb_context, status);
1817 			if (req->wb_page)
1818 				nfs_inode_remove_request(req);
1819 			dprintk_cont(", error = %d\n", status);
1820 			goto next;
1821 		}
1822 
1823 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1824 		 * returned by the server against all stored verfs. */
1825 		if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) {
1826 			/* We have a match */
1827 			if (req->wb_page)
1828 				nfs_inode_remove_request(req);
1829 			dprintk_cont(" OK\n");
1830 			goto next;
1831 		}
1832 		/* We have a mismatch. Write the page again */
1833 		dprintk_cont(" mismatch\n");
1834 		nfs_mark_request_dirty(req);
1835 		set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1836 	next:
1837 		nfs_unlock_and_release_request(req);
1838 		/* Latency breaker */
1839 		cond_resched();
1840 	}
1841 	nfss = NFS_SERVER(data->inode);
1842 	if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1843 		clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1844 
1845 	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1846 	nfs_commit_end(cinfo.mds);
1847 }
1848 
1849 static void nfs_commit_release(void *calldata)
1850 {
1851 	struct nfs_commit_data *data = calldata;
1852 
1853 	data->completion_ops->completion(data);
1854 	nfs_commitdata_release(calldata);
1855 }
1856 
1857 static const struct rpc_call_ops nfs_commit_ops = {
1858 	.rpc_call_prepare = nfs_commit_prepare,
1859 	.rpc_call_done = nfs_commit_done,
1860 	.rpc_release = nfs_commit_release,
1861 };
1862 
1863 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1864 	.completion = nfs_commit_release_pages,
1865 	.resched_write = nfs_commit_resched_write,
1866 };
1867 
1868 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1869 			    int how, struct nfs_commit_info *cinfo)
1870 {
1871 	int status;
1872 
1873 	status = pnfs_commit_list(inode, head, how, cinfo);
1874 	if (status == PNFS_NOT_ATTEMPTED)
1875 		status = nfs_commit_list(inode, head, how, cinfo);
1876 	return status;
1877 }
1878 
1879 int nfs_commit_inode(struct inode *inode, int how)
1880 {
1881 	LIST_HEAD(head);
1882 	struct nfs_commit_info cinfo;
1883 	int may_wait = how & FLUSH_SYNC;
1884 	int error = 0;
1885 	int res;
1886 
1887 	nfs_init_cinfo_from_inode(&cinfo, inode);
1888 	nfs_commit_begin(cinfo.mds);
1889 	res = nfs_scan_commit(inode, &head, &cinfo);
1890 	if (res)
1891 		error = nfs_generic_commit_list(inode, &head, how, &cinfo);
1892 	nfs_commit_end(cinfo.mds);
1893 	if (res == 0)
1894 		return res;
1895 	if (error < 0)
1896 		goto out_error;
1897 	if (!may_wait)
1898 		goto out_mark_dirty;
1899 	error = wait_on_commit(cinfo.mds);
1900 	if (error < 0)
1901 		return error;
1902 	return res;
1903 out_error:
1904 	res = error;
1905 	/* Note: If we exit without ensuring that the commit is complete,
1906 	 * we must mark the inode as dirty. Otherwise, future calls to
1907 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1908 	 * that the data is on the disk.
1909 	 */
1910 out_mark_dirty:
1911 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1912 	return res;
1913 }
1914 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1915 
1916 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1917 {
1918 	struct nfs_inode *nfsi = NFS_I(inode);
1919 	int flags = FLUSH_SYNC;
1920 	int ret = 0;
1921 
1922 	/* no commits means nothing needs to be done */
1923 	if (!atomic_long_read(&nfsi->commit_info.ncommit))
1924 		return ret;
1925 
1926 	if (wbc->sync_mode == WB_SYNC_NONE) {
1927 		/* Don't commit yet if this is a non-blocking flush and there
1928 		 * are a lot of outstanding writes for this mapping.
1929 		 */
1930 		if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1931 			goto out_mark_dirty;
1932 
1933 		/* don't wait for the COMMIT response */
1934 		flags = 0;
1935 	}
1936 
1937 	ret = nfs_commit_inode(inode, flags);
1938 	if (ret >= 0) {
1939 		if (wbc->sync_mode == WB_SYNC_NONE) {
1940 			if (ret < wbc->nr_to_write)
1941 				wbc->nr_to_write -= ret;
1942 			else
1943 				wbc->nr_to_write = 0;
1944 		}
1945 		return 0;
1946 	}
1947 out_mark_dirty:
1948 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1949 	return ret;
1950 }
1951 EXPORT_SYMBOL_GPL(nfs_write_inode);
1952 
1953 /*
1954  * Wrapper for filemap_write_and_wait_range()
1955  *
1956  * Needed for pNFS in order to ensure data becomes visible to the
1957  * client.
1958  */
1959 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
1960 		loff_t lstart, loff_t lend)
1961 {
1962 	int ret;
1963 
1964 	ret = filemap_write_and_wait_range(mapping, lstart, lend);
1965 	if (ret == 0)
1966 		ret = pnfs_sync_inode(mapping->host, true);
1967 	return ret;
1968 }
1969 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
1970 
1971 /*
1972  * flush the inode to disk.
1973  */
1974 int nfs_wb_all(struct inode *inode)
1975 {
1976 	int ret;
1977 
1978 	trace_nfs_writeback_inode_enter(inode);
1979 
1980 	ret = filemap_write_and_wait(inode->i_mapping);
1981 	if (ret)
1982 		goto out;
1983 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
1984 	if (ret < 0)
1985 		goto out;
1986 	pnfs_sync_inode(inode, true);
1987 	ret = 0;
1988 
1989 out:
1990 	trace_nfs_writeback_inode_exit(inode, ret);
1991 	return ret;
1992 }
1993 EXPORT_SYMBOL_GPL(nfs_wb_all);
1994 
1995 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1996 {
1997 	struct nfs_page *req;
1998 	int ret = 0;
1999 
2000 	wait_on_page_writeback(page);
2001 
2002 	/* blocking call to cancel all requests and join to a single (head)
2003 	 * request */
2004 	req = nfs_lock_and_join_requests(page);
2005 
2006 	if (IS_ERR(req)) {
2007 		ret = PTR_ERR(req);
2008 	} else if (req) {
2009 		/* all requests from this page have been cancelled by
2010 		 * nfs_lock_and_join_requests, so just remove the head
2011 		 * request from the inode / page_private pointer and
2012 		 * release it */
2013 		nfs_inode_remove_request(req);
2014 		nfs_unlock_and_release_request(req);
2015 	}
2016 
2017 	return ret;
2018 }
2019 
2020 /*
2021  * Write back all requests on one page - we do this before reading it.
2022  */
2023 int nfs_wb_page(struct inode *inode, struct page *page)
2024 {
2025 	loff_t range_start = page_file_offset(page);
2026 	loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2027 	struct writeback_control wbc = {
2028 		.sync_mode = WB_SYNC_ALL,
2029 		.nr_to_write = 0,
2030 		.range_start = range_start,
2031 		.range_end = range_end,
2032 	};
2033 	int ret;
2034 
2035 	trace_nfs_writeback_page_enter(inode);
2036 
2037 	for (;;) {
2038 		wait_on_page_writeback(page);
2039 		if (clear_page_dirty_for_io(page)) {
2040 			ret = nfs_writepage_locked(page, &wbc);
2041 			if (ret < 0)
2042 				goto out_error;
2043 			continue;
2044 		}
2045 		ret = 0;
2046 		if (!PagePrivate(page))
2047 			break;
2048 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
2049 		if (ret < 0)
2050 			goto out_error;
2051 	}
2052 out_error:
2053 	trace_nfs_writeback_page_exit(inode, ret);
2054 	return ret;
2055 }
2056 
2057 #ifdef CONFIG_MIGRATION
2058 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2059 		struct page *page, enum migrate_mode mode)
2060 {
2061 	/*
2062 	 * If PagePrivate is set, then the page is currently associated with
2063 	 * an in-progress read or write request. Don't try to migrate it.
2064 	 *
2065 	 * FIXME: we could do this in principle, but we'll need a way to ensure
2066 	 *        that we can safely release the inode reference while holding
2067 	 *        the page lock.
2068 	 */
2069 	if (PagePrivate(page))
2070 		return -EBUSY;
2071 
2072 	if (!nfs_fscache_release_page(page, GFP_KERNEL))
2073 		return -EBUSY;
2074 
2075 	return migrate_page(mapping, newpage, page, mode);
2076 }
2077 #endif
2078 
2079 int __init nfs_init_writepagecache(void)
2080 {
2081 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2082 					     sizeof(struct nfs_pgio_header),
2083 					     0, SLAB_HWCACHE_ALIGN,
2084 					     NULL);
2085 	if (nfs_wdata_cachep == NULL)
2086 		return -ENOMEM;
2087 
2088 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2089 						     nfs_wdata_cachep);
2090 	if (nfs_wdata_mempool == NULL)
2091 		goto out_destroy_write_cache;
2092 
2093 	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2094 					     sizeof(struct nfs_commit_data),
2095 					     0, SLAB_HWCACHE_ALIGN,
2096 					     NULL);
2097 	if (nfs_cdata_cachep == NULL)
2098 		goto out_destroy_write_mempool;
2099 
2100 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2101 						      nfs_cdata_cachep);
2102 	if (nfs_commit_mempool == NULL)
2103 		goto out_destroy_commit_cache;
2104 
2105 	/*
2106 	 * NFS congestion size, scale with available memory.
2107 	 *
2108 	 *  64MB:    8192k
2109 	 * 128MB:   11585k
2110 	 * 256MB:   16384k
2111 	 * 512MB:   23170k
2112 	 *   1GB:   32768k
2113 	 *   2GB:   46340k
2114 	 *   4GB:   65536k
2115 	 *   8GB:   92681k
2116 	 *  16GB:  131072k
2117 	 *
2118 	 * This allows larger machines to have larger/more transfers.
2119 	 * Limit the default to 256M
2120 	 */
2121 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
2122 	if (nfs_congestion_kb > 256*1024)
2123 		nfs_congestion_kb = 256*1024;
2124 
2125 	return 0;
2126 
2127 out_destroy_commit_cache:
2128 	kmem_cache_destroy(nfs_cdata_cachep);
2129 out_destroy_write_mempool:
2130 	mempool_destroy(nfs_wdata_mempool);
2131 out_destroy_write_cache:
2132 	kmem_cache_destroy(nfs_wdata_cachep);
2133 	return -ENOMEM;
2134 }
2135 
2136 void nfs_destroy_writepagecache(void)
2137 {
2138 	mempool_destroy(nfs_commit_mempool);
2139 	kmem_cache_destroy(nfs_cdata_cachep);
2140 	mempool_destroy(nfs_wdata_mempool);
2141 	kmem_cache_destroy(nfs_wdata_cachep);
2142 }
2143 
2144 static const struct nfs_rw_ops nfs_rw_write_ops = {
2145 	.rw_alloc_header	= nfs_writehdr_alloc,
2146 	.rw_free_header		= nfs_writehdr_free,
2147 	.rw_done		= nfs_writeback_done,
2148 	.rw_result		= nfs_writeback_result,
2149 	.rw_initiate		= nfs_initiate_write,
2150 };
2151