1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 24 #include <asm/uaccess.h> 25 26 #include "delegation.h" 27 #include "internal.h" 28 #include "iostat.h" 29 #include "nfs4_fs.h" 30 #include "fscache.h" 31 32 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 33 34 #define MIN_POOL_WRITE (32) 35 #define MIN_POOL_COMMIT (4) 36 37 /* 38 * Local function declarations 39 */ 40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 41 struct inode *inode, int ioflags); 42 static void nfs_redirty_request(struct nfs_page *req); 43 static const struct rpc_call_ops nfs_write_partial_ops; 44 static const struct rpc_call_ops nfs_write_full_ops; 45 static const struct rpc_call_ops nfs_commit_ops; 46 47 static struct kmem_cache *nfs_wdata_cachep; 48 static mempool_t *nfs_wdata_mempool; 49 static mempool_t *nfs_commit_mempool; 50 51 struct nfs_write_data *nfs_commitdata_alloc(void) 52 { 53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 54 55 if (p) { 56 memset(p, 0, sizeof(*p)); 57 INIT_LIST_HEAD(&p->pages); 58 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE; 59 } 60 return p; 61 } 62 63 void nfs_commit_free(struct nfs_write_data *p) 64 { 65 if (p && (p->pagevec != &p->page_array[0])) 66 kfree(p->pagevec); 67 mempool_free(p, nfs_commit_mempool); 68 } 69 70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 71 { 72 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 73 74 if (p) { 75 memset(p, 0, sizeof(*p)); 76 INIT_LIST_HEAD(&p->pages); 77 p->npages = pagecount; 78 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE; 79 if (pagecount <= ARRAY_SIZE(p->page_array)) 80 p->pagevec = p->page_array; 81 else { 82 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 83 if (!p->pagevec) { 84 mempool_free(p, nfs_wdata_mempool); 85 p = NULL; 86 } 87 } 88 } 89 return p; 90 } 91 92 void nfs_writedata_free(struct nfs_write_data *p) 93 { 94 if (p && (p->pagevec != &p->page_array[0])) 95 kfree(p->pagevec); 96 mempool_free(p, nfs_wdata_mempool); 97 } 98 99 static void nfs_writedata_release(struct nfs_write_data *wdata) 100 { 101 put_nfs_open_context(wdata->args.context); 102 nfs_writedata_free(wdata); 103 } 104 105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 106 { 107 ctx->error = error; 108 smp_wmb(); 109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 110 } 111 112 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 113 { 114 struct nfs_page *req = NULL; 115 116 if (PagePrivate(page)) { 117 req = (struct nfs_page *)page_private(page); 118 if (req != NULL) 119 kref_get(&req->wb_kref); 120 } 121 return req; 122 } 123 124 static struct nfs_page *nfs_page_find_request(struct page *page) 125 { 126 struct inode *inode = page->mapping->host; 127 struct nfs_page *req = NULL; 128 129 spin_lock(&inode->i_lock); 130 req = nfs_page_find_request_locked(page); 131 spin_unlock(&inode->i_lock); 132 return req; 133 } 134 135 /* Adjust the file length if we're writing beyond the end */ 136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 137 { 138 struct inode *inode = page->mapping->host; 139 loff_t end, i_size; 140 pgoff_t end_index; 141 142 spin_lock(&inode->i_lock); 143 i_size = i_size_read(inode); 144 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 145 if (i_size > 0 && page->index < end_index) 146 goto out; 147 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 148 if (i_size >= end) 149 goto out; 150 i_size_write(inode, end); 151 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 152 out: 153 spin_unlock(&inode->i_lock); 154 } 155 156 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 157 static void nfs_set_pageerror(struct page *page) 158 { 159 SetPageError(page); 160 nfs_zap_mapping(page->mapping->host, page->mapping); 161 } 162 163 /* We can set the PG_uptodate flag if we see that a write request 164 * covers the full page. 165 */ 166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 167 { 168 if (PageUptodate(page)) 169 return; 170 if (base != 0) 171 return; 172 if (count != nfs_page_length(page)) 173 return; 174 SetPageUptodate(page); 175 } 176 177 static int wb_priority(struct writeback_control *wbc) 178 { 179 if (wbc->for_reclaim) 180 return FLUSH_HIGHPRI | FLUSH_STABLE; 181 if (wbc->for_kupdate || wbc->for_background) 182 return FLUSH_LOWPRI; 183 return 0; 184 } 185 186 /* 187 * NFS congestion control 188 */ 189 190 int nfs_congestion_kb; 191 192 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 193 #define NFS_CONGESTION_OFF_THRESH \ 194 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 195 196 static int nfs_set_page_writeback(struct page *page) 197 { 198 int ret = test_set_page_writeback(page); 199 200 if (!ret) { 201 struct inode *inode = page->mapping->host; 202 struct nfs_server *nfss = NFS_SERVER(inode); 203 204 page_cache_get(page); 205 if (atomic_long_inc_return(&nfss->writeback) > 206 NFS_CONGESTION_ON_THRESH) { 207 set_bdi_congested(&nfss->backing_dev_info, 208 BLK_RW_ASYNC); 209 } 210 } 211 return ret; 212 } 213 214 static void nfs_end_page_writeback(struct page *page) 215 { 216 struct inode *inode = page->mapping->host; 217 struct nfs_server *nfss = NFS_SERVER(inode); 218 219 end_page_writeback(page); 220 page_cache_release(page); 221 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 222 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC); 223 } 224 225 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock) 226 { 227 struct inode *inode = page->mapping->host; 228 struct nfs_page *req; 229 int ret; 230 231 spin_lock(&inode->i_lock); 232 for (;;) { 233 req = nfs_page_find_request_locked(page); 234 if (req == NULL) 235 break; 236 if (nfs_set_page_tag_locked(req)) 237 break; 238 /* Note: If we hold the page lock, as is the case in nfs_writepage, 239 * then the call to nfs_set_page_tag_locked() will always 240 * succeed provided that someone hasn't already marked the 241 * request as dirty (in which case we don't care). 242 */ 243 spin_unlock(&inode->i_lock); 244 if (!nonblock) 245 ret = nfs_wait_on_request(req); 246 else 247 ret = -EAGAIN; 248 nfs_release_request(req); 249 if (ret != 0) 250 return ERR_PTR(ret); 251 spin_lock(&inode->i_lock); 252 } 253 spin_unlock(&inode->i_lock); 254 return req; 255 } 256 257 /* 258 * Find an associated nfs write request, and prepare to flush it out 259 * May return an error if the user signalled nfs_wait_on_request(). 260 */ 261 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 262 struct page *page, bool nonblock) 263 { 264 struct nfs_page *req; 265 int ret = 0; 266 267 req = nfs_find_and_lock_request(page, nonblock); 268 if (!req) 269 goto out; 270 ret = PTR_ERR(req); 271 if (IS_ERR(req)) 272 goto out; 273 274 ret = nfs_set_page_writeback(page); 275 BUG_ON(ret != 0); 276 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags)); 277 278 if (!nfs_pageio_add_request(pgio, req)) { 279 nfs_redirty_request(req); 280 ret = pgio->pg_error; 281 } 282 out: 283 return ret; 284 } 285 286 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 287 { 288 struct inode *inode = page->mapping->host; 289 int ret; 290 291 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 292 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 293 294 nfs_pageio_cond_complete(pgio, page->index); 295 ret = nfs_page_async_flush(pgio, page, 296 wbc->sync_mode == WB_SYNC_NONE || 297 wbc->nonblocking != 0); 298 if (ret == -EAGAIN) { 299 redirty_page_for_writepage(wbc, page); 300 ret = 0; 301 } 302 return ret; 303 } 304 305 /* 306 * Write an mmapped page to the server. 307 */ 308 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 309 { 310 struct nfs_pageio_descriptor pgio; 311 int err; 312 313 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 314 err = nfs_do_writepage(page, wbc, &pgio); 315 nfs_pageio_complete(&pgio); 316 if (err < 0) 317 return err; 318 if (pgio.pg_error < 0) 319 return pgio.pg_error; 320 return 0; 321 } 322 323 int nfs_writepage(struct page *page, struct writeback_control *wbc) 324 { 325 int ret; 326 327 ret = nfs_writepage_locked(page, wbc); 328 unlock_page(page); 329 return ret; 330 } 331 332 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 333 { 334 int ret; 335 336 ret = nfs_do_writepage(page, wbc, data); 337 unlock_page(page); 338 return ret; 339 } 340 341 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 342 { 343 struct inode *inode = mapping->host; 344 unsigned long *bitlock = &NFS_I(inode)->flags; 345 struct nfs_pageio_descriptor pgio; 346 int err; 347 348 /* Stop dirtying of new pages while we sync */ 349 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING, 350 nfs_wait_bit_killable, TASK_KILLABLE); 351 if (err) 352 goto out_err; 353 354 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 355 356 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 357 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 358 nfs_pageio_complete(&pgio); 359 360 clear_bit_unlock(NFS_INO_FLUSHING, bitlock); 361 smp_mb__after_clear_bit(); 362 wake_up_bit(bitlock, NFS_INO_FLUSHING); 363 364 if (err < 0) 365 goto out_err; 366 err = pgio.pg_error; 367 if (err < 0) 368 goto out_err; 369 return 0; 370 out_err: 371 return err; 372 } 373 374 /* 375 * Insert a write request into an inode 376 */ 377 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 378 { 379 struct nfs_inode *nfsi = NFS_I(inode); 380 int error; 381 382 error = radix_tree_preload(GFP_NOFS); 383 if (error != 0) 384 goto out; 385 386 /* Lock the request! */ 387 nfs_lock_request_dontget(req); 388 389 spin_lock(&inode->i_lock); 390 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 391 BUG_ON(error); 392 if (!nfsi->npages) { 393 igrab(inode); 394 if (nfs_have_delegation(inode, FMODE_WRITE)) 395 nfsi->change_attr++; 396 } 397 SetPagePrivate(req->wb_page); 398 set_page_private(req->wb_page, (unsigned long)req); 399 nfsi->npages++; 400 kref_get(&req->wb_kref); 401 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, 402 NFS_PAGE_TAG_LOCKED); 403 spin_unlock(&inode->i_lock); 404 radix_tree_preload_end(); 405 out: 406 return error; 407 } 408 409 /* 410 * Remove a write request from an inode 411 */ 412 static void nfs_inode_remove_request(struct nfs_page *req) 413 { 414 struct inode *inode = req->wb_context->path.dentry->d_inode; 415 struct nfs_inode *nfsi = NFS_I(inode); 416 417 BUG_ON (!NFS_WBACK_BUSY(req)); 418 419 spin_lock(&inode->i_lock); 420 set_page_private(req->wb_page, 0); 421 ClearPagePrivate(req->wb_page); 422 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 423 nfsi->npages--; 424 if (!nfsi->npages) { 425 spin_unlock(&inode->i_lock); 426 iput(inode); 427 } else 428 spin_unlock(&inode->i_lock); 429 nfs_clear_request(req); 430 nfs_release_request(req); 431 } 432 433 static void 434 nfs_mark_request_dirty(struct nfs_page *req) 435 { 436 __set_page_dirty_nobuffers(req->wb_page); 437 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC); 438 } 439 440 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 441 /* 442 * Add a request to the inode's commit list. 443 */ 444 static void 445 nfs_mark_request_commit(struct nfs_page *req) 446 { 447 struct inode *inode = req->wb_context->path.dentry->d_inode; 448 struct nfs_inode *nfsi = NFS_I(inode); 449 450 spin_lock(&inode->i_lock); 451 set_bit(PG_CLEAN, &(req)->wb_flags); 452 radix_tree_tag_set(&nfsi->nfs_page_tree, 453 req->wb_index, 454 NFS_PAGE_TAG_COMMIT); 455 nfsi->ncommit++; 456 spin_unlock(&inode->i_lock); 457 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 458 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 459 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 460 } 461 462 static int 463 nfs_clear_request_commit(struct nfs_page *req) 464 { 465 struct page *page = req->wb_page; 466 467 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) { 468 dec_zone_page_state(page, NR_UNSTABLE_NFS); 469 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE); 470 return 1; 471 } 472 return 0; 473 } 474 475 static inline 476 int nfs_write_need_commit(struct nfs_write_data *data) 477 { 478 return data->verf.committed != NFS_FILE_SYNC; 479 } 480 481 static inline 482 int nfs_reschedule_unstable_write(struct nfs_page *req) 483 { 484 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) { 485 nfs_mark_request_commit(req); 486 return 1; 487 } 488 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 489 nfs_mark_request_dirty(req); 490 return 1; 491 } 492 return 0; 493 } 494 #else 495 static inline void 496 nfs_mark_request_commit(struct nfs_page *req) 497 { 498 } 499 500 static inline int 501 nfs_clear_request_commit(struct nfs_page *req) 502 { 503 return 0; 504 } 505 506 static inline 507 int nfs_write_need_commit(struct nfs_write_data *data) 508 { 509 return 0; 510 } 511 512 static inline 513 int nfs_reschedule_unstable_write(struct nfs_page *req) 514 { 515 return 0; 516 } 517 #endif 518 519 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 520 static int 521 nfs_need_commit(struct nfs_inode *nfsi) 522 { 523 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT); 524 } 525 526 /* 527 * nfs_scan_commit - Scan an inode for commit requests 528 * @inode: NFS inode to scan 529 * @dst: destination list 530 * @idx_start: lower bound of page->index to scan. 531 * @npages: idx_start + npages sets the upper bound to scan. 532 * 533 * Moves requests from the inode's 'commit' request list. 534 * The requests are *not* checked to ensure that they form a contiguous set. 535 */ 536 static int 537 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 538 { 539 struct nfs_inode *nfsi = NFS_I(inode); 540 int ret; 541 542 if (!nfs_need_commit(nfsi)) 543 return 0; 544 545 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT); 546 if (ret > 0) 547 nfsi->ncommit -= ret; 548 if (nfs_need_commit(NFS_I(inode))) 549 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 550 return ret; 551 } 552 #else 553 static inline int nfs_need_commit(struct nfs_inode *nfsi) 554 { 555 return 0; 556 } 557 558 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 559 { 560 return 0; 561 } 562 #endif 563 564 /* 565 * Search for an existing write request, and attempt to update 566 * it to reflect a new dirty region on a given page. 567 * 568 * If the attempt fails, then the existing request is flushed out 569 * to disk. 570 */ 571 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 572 struct page *page, 573 unsigned int offset, 574 unsigned int bytes) 575 { 576 struct nfs_page *req; 577 unsigned int rqend; 578 unsigned int end; 579 int error; 580 581 if (!PagePrivate(page)) 582 return NULL; 583 584 end = offset + bytes; 585 spin_lock(&inode->i_lock); 586 587 for (;;) { 588 req = nfs_page_find_request_locked(page); 589 if (req == NULL) 590 goto out_unlock; 591 592 rqend = req->wb_offset + req->wb_bytes; 593 /* 594 * Tell the caller to flush out the request if 595 * the offsets are non-contiguous. 596 * Note: nfs_flush_incompatible() will already 597 * have flushed out requests having wrong owners. 598 */ 599 if (offset > rqend 600 || end < req->wb_offset) 601 goto out_flushme; 602 603 if (nfs_set_page_tag_locked(req)) 604 break; 605 606 /* The request is locked, so wait and then retry */ 607 spin_unlock(&inode->i_lock); 608 error = nfs_wait_on_request(req); 609 nfs_release_request(req); 610 if (error != 0) 611 goto out_err; 612 spin_lock(&inode->i_lock); 613 } 614 615 if (nfs_clear_request_commit(req) && 616 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree, 617 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) 618 NFS_I(inode)->ncommit--; 619 620 /* Okay, the request matches. Update the region */ 621 if (offset < req->wb_offset) { 622 req->wb_offset = offset; 623 req->wb_pgbase = offset; 624 } 625 if (end > rqend) 626 req->wb_bytes = end - req->wb_offset; 627 else 628 req->wb_bytes = rqend - req->wb_offset; 629 out_unlock: 630 spin_unlock(&inode->i_lock); 631 return req; 632 out_flushme: 633 spin_unlock(&inode->i_lock); 634 nfs_release_request(req); 635 error = nfs_wb_page(inode, page); 636 out_err: 637 return ERR_PTR(error); 638 } 639 640 /* 641 * Try to update an existing write request, or create one if there is none. 642 * 643 * Note: Should always be called with the Page Lock held to prevent races 644 * if we have to add a new request. Also assumes that the caller has 645 * already called nfs_flush_incompatible() if necessary. 646 */ 647 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 648 struct page *page, unsigned int offset, unsigned int bytes) 649 { 650 struct inode *inode = page->mapping->host; 651 struct nfs_page *req; 652 int error; 653 654 req = nfs_try_to_update_request(inode, page, offset, bytes); 655 if (req != NULL) 656 goto out; 657 req = nfs_create_request(ctx, inode, page, offset, bytes); 658 if (IS_ERR(req)) 659 goto out; 660 error = nfs_inode_add_request(inode, req); 661 if (error != 0) { 662 nfs_release_request(req); 663 req = ERR_PTR(error); 664 } 665 out: 666 return req; 667 } 668 669 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 670 unsigned int offset, unsigned int count) 671 { 672 struct nfs_page *req; 673 674 req = nfs_setup_write_request(ctx, page, offset, count); 675 if (IS_ERR(req)) 676 return PTR_ERR(req); 677 nfs_mark_request_dirty(req); 678 /* Update file length */ 679 nfs_grow_file(page, offset, count); 680 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 681 nfs_mark_request_dirty(req); 682 nfs_clear_page_tag_locked(req); 683 return 0; 684 } 685 686 int nfs_flush_incompatible(struct file *file, struct page *page) 687 { 688 struct nfs_open_context *ctx = nfs_file_open_context(file); 689 struct nfs_page *req; 690 int do_flush, status; 691 /* 692 * Look for a request corresponding to this page. If there 693 * is one, and it belongs to another file, we flush it out 694 * before we try to copy anything into the page. Do this 695 * due to the lack of an ACCESS-type call in NFSv2. 696 * Also do the same if we find a request from an existing 697 * dropped page. 698 */ 699 do { 700 req = nfs_page_find_request(page); 701 if (req == NULL) 702 return 0; 703 do_flush = req->wb_page != page || req->wb_context != ctx || 704 req->wb_lock_context->lockowner != current->files || 705 req->wb_lock_context->pid != current->tgid; 706 nfs_release_request(req); 707 if (!do_flush) 708 return 0; 709 status = nfs_wb_page(page->mapping->host, page); 710 } while (status == 0); 711 return status; 712 } 713 714 /* 715 * If the page cache is marked as unsafe or invalid, then we can't rely on 716 * the PageUptodate() flag. In this case, we will need to turn off 717 * write optimisations that depend on the page contents being correct. 718 */ 719 static int nfs_write_pageuptodate(struct page *page, struct inode *inode) 720 { 721 return PageUptodate(page) && 722 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA)); 723 } 724 725 /* 726 * Update and possibly write a cached page of an NFS file. 727 * 728 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 729 * things with a page scheduled for an RPC call (e.g. invalidate it). 730 */ 731 int nfs_updatepage(struct file *file, struct page *page, 732 unsigned int offset, unsigned int count) 733 { 734 struct nfs_open_context *ctx = nfs_file_open_context(file); 735 struct inode *inode = page->mapping->host; 736 int status = 0; 737 738 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 739 740 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n", 741 file->f_path.dentry->d_parent->d_name.name, 742 file->f_path.dentry->d_name.name, count, 743 (long long)(page_offset(page) + offset)); 744 745 /* If we're not using byte range locks, and we know the page 746 * is up to date, it may be more efficient to extend the write 747 * to cover the entire page in order to avoid fragmentation 748 * inefficiencies. 749 */ 750 if (nfs_write_pageuptodate(page, inode) && 751 inode->i_flock == NULL && 752 !(file->f_flags & O_DSYNC)) { 753 count = max(count + offset, nfs_page_length(page)); 754 offset = 0; 755 } 756 757 status = nfs_writepage_setup(ctx, page, offset, count); 758 if (status < 0) 759 nfs_set_pageerror(page); 760 761 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 762 status, (long long)i_size_read(inode)); 763 return status; 764 } 765 766 static void nfs_writepage_release(struct nfs_page *req) 767 { 768 struct page *page = req->wb_page; 769 770 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) 771 nfs_inode_remove_request(req); 772 nfs_clear_page_tag_locked(req); 773 nfs_end_page_writeback(page); 774 } 775 776 static int flush_task_priority(int how) 777 { 778 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 779 case FLUSH_HIGHPRI: 780 return RPC_PRIORITY_HIGH; 781 case FLUSH_LOWPRI: 782 return RPC_PRIORITY_LOW; 783 } 784 return RPC_PRIORITY_NORMAL; 785 } 786 787 /* 788 * Set up the argument/result storage required for the RPC call. 789 */ 790 static int nfs_write_rpcsetup(struct nfs_page *req, 791 struct nfs_write_data *data, 792 const struct rpc_call_ops *call_ops, 793 unsigned int count, unsigned int offset, 794 int how) 795 { 796 struct inode *inode = req->wb_context->path.dentry->d_inode; 797 int priority = flush_task_priority(how); 798 struct rpc_task *task; 799 struct rpc_message msg = { 800 .rpc_argp = &data->args, 801 .rpc_resp = &data->res, 802 .rpc_cred = req->wb_context->cred, 803 }; 804 struct rpc_task_setup task_setup_data = { 805 .rpc_client = NFS_CLIENT(inode), 806 .task = &data->task, 807 .rpc_message = &msg, 808 .callback_ops = call_ops, 809 .callback_data = data, 810 .workqueue = nfsiod_workqueue, 811 .flags = RPC_TASK_ASYNC, 812 .priority = priority, 813 }; 814 int ret = 0; 815 816 /* Set up the RPC argument and reply structs 817 * NB: take care not to mess about with data->commit et al. */ 818 819 data->req = req; 820 data->inode = inode = req->wb_context->path.dentry->d_inode; 821 data->cred = msg.rpc_cred; 822 823 data->args.fh = NFS_FH(inode); 824 data->args.offset = req_offset(req) + offset; 825 data->args.pgbase = req->wb_pgbase + offset; 826 data->args.pages = data->pagevec; 827 data->args.count = count; 828 data->args.context = get_nfs_open_context(req->wb_context); 829 data->args.lock_context = req->wb_lock_context; 830 data->args.stable = NFS_UNSTABLE; 831 if (how & FLUSH_STABLE) { 832 data->args.stable = NFS_DATA_SYNC; 833 if (!nfs_need_commit(NFS_I(inode))) 834 data->args.stable = NFS_FILE_SYNC; 835 } 836 837 data->res.fattr = &data->fattr; 838 data->res.count = count; 839 data->res.verf = &data->verf; 840 nfs_fattr_init(&data->fattr); 841 842 /* Set up the initial task struct. */ 843 NFS_PROTO(inode)->write_setup(data, &msg); 844 845 dprintk("NFS: %5u initiated write call " 846 "(req %s/%lld, %u bytes @ offset %llu)\n", 847 data->task.tk_pid, 848 inode->i_sb->s_id, 849 (long long)NFS_FILEID(inode), 850 count, 851 (unsigned long long)data->args.offset); 852 853 task = rpc_run_task(&task_setup_data); 854 if (IS_ERR(task)) { 855 ret = PTR_ERR(task); 856 goto out; 857 } 858 if (how & FLUSH_SYNC) { 859 ret = rpc_wait_for_completion_task(task); 860 if (ret == 0) 861 ret = task->tk_status; 862 } 863 rpc_put_task(task); 864 out: 865 return ret; 866 } 867 868 /* If a nfs_flush_* function fails, it should remove reqs from @head and 869 * call this on each, which will prepare them to be retried on next 870 * writeback using standard nfs. 871 */ 872 static void nfs_redirty_request(struct nfs_page *req) 873 { 874 struct page *page = req->wb_page; 875 876 nfs_mark_request_dirty(req); 877 nfs_clear_page_tag_locked(req); 878 nfs_end_page_writeback(page); 879 } 880 881 /* 882 * Generate multiple small requests to write out a single 883 * contiguous dirty area on one page. 884 */ 885 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 886 { 887 struct nfs_page *req = nfs_list_entry(head->next); 888 struct page *page = req->wb_page; 889 struct nfs_write_data *data; 890 size_t wsize = NFS_SERVER(inode)->wsize, nbytes; 891 unsigned int offset; 892 int requests = 0; 893 int ret = 0; 894 LIST_HEAD(list); 895 896 nfs_list_remove_request(req); 897 898 nbytes = count; 899 do { 900 size_t len = min(nbytes, wsize); 901 902 data = nfs_writedata_alloc(1); 903 if (!data) 904 goto out_bad; 905 list_add(&data->pages, &list); 906 requests++; 907 nbytes -= len; 908 } while (nbytes != 0); 909 atomic_set(&req->wb_complete, requests); 910 911 ClearPageError(page); 912 offset = 0; 913 nbytes = count; 914 do { 915 int ret2; 916 917 data = list_entry(list.next, struct nfs_write_data, pages); 918 list_del_init(&data->pages); 919 920 data->pagevec[0] = page; 921 922 if (nbytes < wsize) 923 wsize = nbytes; 924 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 925 wsize, offset, how); 926 if (ret == 0) 927 ret = ret2; 928 offset += wsize; 929 nbytes -= wsize; 930 } while (nbytes != 0); 931 932 return ret; 933 934 out_bad: 935 while (!list_empty(&list)) { 936 data = list_entry(list.next, struct nfs_write_data, pages); 937 list_del(&data->pages); 938 nfs_writedata_release(data); 939 } 940 nfs_redirty_request(req); 941 return -ENOMEM; 942 } 943 944 /* 945 * Create an RPC task for the given write request and kick it. 946 * The page must have been locked by the caller. 947 * 948 * It may happen that the page we're passed is not marked dirty. 949 * This is the case if nfs_updatepage detects a conflicting request 950 * that has been written but not committed. 951 */ 952 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 953 { 954 struct nfs_page *req; 955 struct page **pages; 956 struct nfs_write_data *data; 957 958 data = nfs_writedata_alloc(npages); 959 if (!data) 960 goto out_bad; 961 962 pages = data->pagevec; 963 while (!list_empty(head)) { 964 req = nfs_list_entry(head->next); 965 nfs_list_remove_request(req); 966 nfs_list_add_request(req, &data->pages); 967 ClearPageError(req->wb_page); 968 *pages++ = req->wb_page; 969 } 970 req = nfs_list_entry(data->pages.next); 971 972 /* Set up the argument struct */ 973 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 974 out_bad: 975 while (!list_empty(head)) { 976 req = nfs_list_entry(head->next); 977 nfs_list_remove_request(req); 978 nfs_redirty_request(req); 979 } 980 return -ENOMEM; 981 } 982 983 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 984 struct inode *inode, int ioflags) 985 { 986 size_t wsize = NFS_SERVER(inode)->wsize; 987 988 if (wsize < PAGE_CACHE_SIZE) 989 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); 990 else 991 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); 992 } 993 994 /* 995 * Handle a write reply that flushed part of a page. 996 */ 997 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 998 { 999 struct nfs_write_data *data = calldata; 1000 1001 dprintk("NFS: %5u write(%s/%lld %d@%lld)", 1002 task->tk_pid, 1003 data->req->wb_context->path.dentry->d_inode->i_sb->s_id, 1004 (long long) 1005 NFS_FILEID(data->req->wb_context->path.dentry->d_inode), 1006 data->req->wb_bytes, (long long)req_offset(data->req)); 1007 1008 nfs_writeback_done(task, data); 1009 } 1010 1011 static void nfs_writeback_release_partial(void *calldata) 1012 { 1013 struct nfs_write_data *data = calldata; 1014 struct nfs_page *req = data->req; 1015 struct page *page = req->wb_page; 1016 int status = data->task.tk_status; 1017 1018 if (status < 0) { 1019 nfs_set_pageerror(page); 1020 nfs_context_set_write_error(req->wb_context, status); 1021 dprintk(", error = %d\n", status); 1022 goto out; 1023 } 1024 1025 if (nfs_write_need_commit(data)) { 1026 struct inode *inode = page->mapping->host; 1027 1028 spin_lock(&inode->i_lock); 1029 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 1030 /* Do nothing we need to resend the writes */ 1031 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1032 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1033 dprintk(" defer commit\n"); 1034 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1035 set_bit(PG_NEED_RESCHED, &req->wb_flags); 1036 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 1037 dprintk(" server reboot detected\n"); 1038 } 1039 spin_unlock(&inode->i_lock); 1040 } else 1041 dprintk(" OK\n"); 1042 1043 out: 1044 if (atomic_dec_and_test(&req->wb_complete)) 1045 nfs_writepage_release(req); 1046 nfs_writedata_release(calldata); 1047 } 1048 1049 #if defined(CONFIG_NFS_V4_1) 1050 void nfs_write_prepare(struct rpc_task *task, void *calldata) 1051 { 1052 struct nfs_write_data *data = calldata; 1053 1054 if (nfs4_setup_sequence(NFS_SERVER(data->inode), 1055 &data->args.seq_args, 1056 &data->res.seq_res, 1, task)) 1057 return; 1058 rpc_call_start(task); 1059 } 1060 #endif /* CONFIG_NFS_V4_1 */ 1061 1062 static const struct rpc_call_ops nfs_write_partial_ops = { 1063 #if defined(CONFIG_NFS_V4_1) 1064 .rpc_call_prepare = nfs_write_prepare, 1065 #endif /* CONFIG_NFS_V4_1 */ 1066 .rpc_call_done = nfs_writeback_done_partial, 1067 .rpc_release = nfs_writeback_release_partial, 1068 }; 1069 1070 /* 1071 * Handle a write reply that flushes a whole page. 1072 * 1073 * FIXME: There is an inherent race with invalidate_inode_pages and 1074 * writebacks since the page->count is kept > 1 for as long 1075 * as the page has a write request pending. 1076 */ 1077 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1078 { 1079 struct nfs_write_data *data = calldata; 1080 1081 nfs_writeback_done(task, data); 1082 } 1083 1084 static void nfs_writeback_release_full(void *calldata) 1085 { 1086 struct nfs_write_data *data = calldata; 1087 int status = data->task.tk_status; 1088 1089 /* Update attributes as result of writeback. */ 1090 while (!list_empty(&data->pages)) { 1091 struct nfs_page *req = nfs_list_entry(data->pages.next); 1092 struct page *page = req->wb_page; 1093 1094 nfs_list_remove_request(req); 1095 1096 dprintk("NFS: %5u write (%s/%lld %d@%lld)", 1097 data->task.tk_pid, 1098 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1099 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1100 req->wb_bytes, 1101 (long long)req_offset(req)); 1102 1103 if (status < 0) { 1104 nfs_set_pageerror(page); 1105 nfs_context_set_write_error(req->wb_context, status); 1106 dprintk(", error = %d\n", status); 1107 goto remove_request; 1108 } 1109 1110 if (nfs_write_need_commit(data)) { 1111 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1112 nfs_mark_request_commit(req); 1113 dprintk(" marked for commit\n"); 1114 goto next; 1115 } 1116 dprintk(" OK\n"); 1117 remove_request: 1118 nfs_inode_remove_request(req); 1119 next: 1120 nfs_clear_page_tag_locked(req); 1121 nfs_end_page_writeback(page); 1122 } 1123 nfs_writedata_release(calldata); 1124 } 1125 1126 static const struct rpc_call_ops nfs_write_full_ops = { 1127 #if defined(CONFIG_NFS_V4_1) 1128 .rpc_call_prepare = nfs_write_prepare, 1129 #endif /* CONFIG_NFS_V4_1 */ 1130 .rpc_call_done = nfs_writeback_done_full, 1131 .rpc_release = nfs_writeback_release_full, 1132 }; 1133 1134 1135 /* 1136 * This function is called when the WRITE call is complete. 1137 */ 1138 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1139 { 1140 struct nfs_writeargs *argp = &data->args; 1141 struct nfs_writeres *resp = &data->res; 1142 struct nfs_server *server = NFS_SERVER(data->inode); 1143 int status; 1144 1145 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1146 task->tk_pid, task->tk_status); 1147 1148 /* 1149 * ->write_done will attempt to use post-op attributes to detect 1150 * conflicting writes by other clients. A strict interpretation 1151 * of close-to-open would allow us to continue caching even if 1152 * another writer had changed the file, but some applications 1153 * depend on tighter cache coherency when writing. 1154 */ 1155 status = NFS_PROTO(data->inode)->write_done(task, data); 1156 if (status != 0) 1157 return status; 1158 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1159 1160 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1161 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1162 /* We tried a write call, but the server did not 1163 * commit data to stable storage even though we 1164 * requested it. 1165 * Note: There is a known bug in Tru64 < 5.0 in which 1166 * the server reports NFS_DATA_SYNC, but performs 1167 * NFS_FILE_SYNC. We therefore implement this checking 1168 * as a dprintk() in order to avoid filling syslog. 1169 */ 1170 static unsigned long complain; 1171 1172 if (time_before(complain, jiffies)) { 1173 dprintk("NFS: faulty NFS server %s:" 1174 " (committed = %d) != (stable = %d)\n", 1175 server->nfs_client->cl_hostname, 1176 resp->verf->committed, argp->stable); 1177 complain = jiffies + 300 * HZ; 1178 } 1179 } 1180 #endif 1181 /* Is this a short write? */ 1182 if (task->tk_status >= 0 && resp->count < argp->count) { 1183 static unsigned long complain; 1184 1185 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1186 1187 /* Has the server at least made some progress? */ 1188 if (resp->count != 0) { 1189 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1190 if (resp->verf->committed != NFS_UNSTABLE) { 1191 /* Resend from where the server left off */ 1192 argp->offset += resp->count; 1193 argp->pgbase += resp->count; 1194 argp->count -= resp->count; 1195 } else { 1196 /* Resend as a stable write in order to avoid 1197 * headaches in the case of a server crash. 1198 */ 1199 argp->stable = NFS_FILE_SYNC; 1200 } 1201 nfs_restart_rpc(task, server->nfs_client); 1202 return -EAGAIN; 1203 } 1204 if (time_before(complain, jiffies)) { 1205 printk(KERN_WARNING 1206 "NFS: Server wrote zero bytes, expected %u.\n", 1207 argp->count); 1208 complain = jiffies + 300 * HZ; 1209 } 1210 /* Can't do anything about it except throw an error. */ 1211 task->tk_status = -EIO; 1212 } 1213 return 0; 1214 } 1215 1216 1217 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1218 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait) 1219 { 1220 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags)) 1221 return 1; 1222 if (may_wait && !out_of_line_wait_on_bit_lock(&nfsi->flags, 1223 NFS_INO_COMMIT, nfs_wait_bit_killable, 1224 TASK_KILLABLE)) 1225 return 1; 1226 return 0; 1227 } 1228 1229 static void nfs_commit_clear_lock(struct nfs_inode *nfsi) 1230 { 1231 clear_bit(NFS_INO_COMMIT, &nfsi->flags); 1232 smp_mb__after_clear_bit(); 1233 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT); 1234 } 1235 1236 1237 static void nfs_commitdata_release(void *data) 1238 { 1239 struct nfs_write_data *wdata = data; 1240 1241 put_nfs_open_context(wdata->args.context); 1242 nfs_commit_free(wdata); 1243 } 1244 1245 /* 1246 * Set up the argument/result storage required for the RPC call. 1247 */ 1248 static int nfs_commit_rpcsetup(struct list_head *head, 1249 struct nfs_write_data *data, 1250 int how) 1251 { 1252 struct nfs_page *first = nfs_list_entry(head->next); 1253 struct inode *inode = first->wb_context->path.dentry->d_inode; 1254 int priority = flush_task_priority(how); 1255 struct rpc_task *task; 1256 struct rpc_message msg = { 1257 .rpc_argp = &data->args, 1258 .rpc_resp = &data->res, 1259 .rpc_cred = first->wb_context->cred, 1260 }; 1261 struct rpc_task_setup task_setup_data = { 1262 .task = &data->task, 1263 .rpc_client = NFS_CLIENT(inode), 1264 .rpc_message = &msg, 1265 .callback_ops = &nfs_commit_ops, 1266 .callback_data = data, 1267 .workqueue = nfsiod_workqueue, 1268 .flags = RPC_TASK_ASYNC, 1269 .priority = priority, 1270 }; 1271 1272 /* Set up the RPC argument and reply structs 1273 * NB: take care not to mess about with data->commit et al. */ 1274 1275 list_splice_init(head, &data->pages); 1276 1277 data->inode = inode; 1278 data->cred = msg.rpc_cred; 1279 1280 data->args.fh = NFS_FH(data->inode); 1281 /* Note: we always request a commit of the entire inode */ 1282 data->args.offset = 0; 1283 data->args.count = 0; 1284 data->args.context = get_nfs_open_context(first->wb_context); 1285 data->res.count = 0; 1286 data->res.fattr = &data->fattr; 1287 data->res.verf = &data->verf; 1288 nfs_fattr_init(&data->fattr); 1289 1290 /* Set up the initial task struct. */ 1291 NFS_PROTO(inode)->commit_setup(data, &msg); 1292 1293 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1294 1295 task = rpc_run_task(&task_setup_data); 1296 if (IS_ERR(task)) 1297 return PTR_ERR(task); 1298 rpc_put_task(task); 1299 return 0; 1300 } 1301 1302 /* 1303 * Commit dirty pages 1304 */ 1305 static int 1306 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1307 { 1308 struct nfs_write_data *data; 1309 struct nfs_page *req; 1310 1311 data = nfs_commitdata_alloc(); 1312 1313 if (!data) 1314 goto out_bad; 1315 1316 /* Set up the argument struct */ 1317 return nfs_commit_rpcsetup(head, data, how); 1318 out_bad: 1319 while (!list_empty(head)) { 1320 req = nfs_list_entry(head->next); 1321 nfs_list_remove_request(req); 1322 nfs_mark_request_commit(req); 1323 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1324 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1325 BDI_RECLAIMABLE); 1326 nfs_clear_page_tag_locked(req); 1327 } 1328 nfs_commit_clear_lock(NFS_I(inode)); 1329 return -ENOMEM; 1330 } 1331 1332 /* 1333 * COMMIT call returned 1334 */ 1335 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1336 { 1337 struct nfs_write_data *data = calldata; 1338 1339 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1340 task->tk_pid, task->tk_status); 1341 1342 /* Call the NFS version-specific code */ 1343 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1344 return; 1345 } 1346 1347 static void nfs_commit_release(void *calldata) 1348 { 1349 struct nfs_write_data *data = calldata; 1350 struct nfs_page *req; 1351 int status = data->task.tk_status; 1352 1353 while (!list_empty(&data->pages)) { 1354 req = nfs_list_entry(data->pages.next); 1355 nfs_list_remove_request(req); 1356 nfs_clear_request_commit(req); 1357 1358 dprintk("NFS: commit (%s/%lld %d@%lld)", 1359 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1360 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1361 req->wb_bytes, 1362 (long long)req_offset(req)); 1363 if (status < 0) { 1364 nfs_context_set_write_error(req->wb_context, status); 1365 nfs_inode_remove_request(req); 1366 dprintk(", error = %d\n", status); 1367 goto next; 1368 } 1369 1370 /* Okay, COMMIT succeeded, apparently. Check the verifier 1371 * returned by the server against all stored verfs. */ 1372 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1373 /* We have a match */ 1374 nfs_inode_remove_request(req); 1375 dprintk(" OK\n"); 1376 goto next; 1377 } 1378 /* We have a mismatch. Write the page again */ 1379 dprintk(" mismatch\n"); 1380 nfs_mark_request_dirty(req); 1381 next: 1382 nfs_clear_page_tag_locked(req); 1383 } 1384 nfs_commit_clear_lock(NFS_I(data->inode)); 1385 nfs_commitdata_release(calldata); 1386 } 1387 1388 static const struct rpc_call_ops nfs_commit_ops = { 1389 #if defined(CONFIG_NFS_V4_1) 1390 .rpc_call_prepare = nfs_write_prepare, 1391 #endif /* CONFIG_NFS_V4_1 */ 1392 .rpc_call_done = nfs_commit_done, 1393 .rpc_release = nfs_commit_release, 1394 }; 1395 1396 int nfs_commit_inode(struct inode *inode, int how) 1397 { 1398 LIST_HEAD(head); 1399 int may_wait = how & FLUSH_SYNC; 1400 int res = 0; 1401 1402 if (!nfs_commit_set_lock(NFS_I(inode), may_wait)) 1403 goto out_mark_dirty; 1404 spin_lock(&inode->i_lock); 1405 res = nfs_scan_commit(inode, &head, 0, 0); 1406 spin_unlock(&inode->i_lock); 1407 if (res) { 1408 int error = nfs_commit_list(inode, &head, how); 1409 if (error < 0) 1410 return error; 1411 if (may_wait) 1412 wait_on_bit(&NFS_I(inode)->flags, NFS_INO_COMMIT, 1413 nfs_wait_bit_killable, 1414 TASK_KILLABLE); 1415 else 1416 goto out_mark_dirty; 1417 } else 1418 nfs_commit_clear_lock(NFS_I(inode)); 1419 return res; 1420 /* Note: If we exit without ensuring that the commit is complete, 1421 * we must mark the inode as dirty. Otherwise, future calls to 1422 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure 1423 * that the data is on the disk. 1424 */ 1425 out_mark_dirty: 1426 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1427 return res; 1428 } 1429 1430 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1431 { 1432 struct nfs_inode *nfsi = NFS_I(inode); 1433 int flags = FLUSH_SYNC; 1434 int ret = 0; 1435 1436 /* Don't commit yet if this is a non-blocking flush and there are 1437 * lots of outstanding writes for this mapping. 1438 */ 1439 if (wbc->sync_mode == WB_SYNC_NONE && 1440 nfsi->ncommit <= (nfsi->npages >> 1)) 1441 goto out_mark_dirty; 1442 1443 if (wbc->nonblocking || wbc->for_background) 1444 flags = 0; 1445 ret = nfs_commit_inode(inode, flags); 1446 if (ret >= 0) { 1447 if (wbc->sync_mode == WB_SYNC_NONE) { 1448 if (ret < wbc->nr_to_write) 1449 wbc->nr_to_write -= ret; 1450 else 1451 wbc->nr_to_write = 0; 1452 } 1453 return 0; 1454 } 1455 out_mark_dirty: 1456 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1457 return ret; 1458 } 1459 #else 1460 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1461 { 1462 return 0; 1463 } 1464 #endif 1465 1466 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1467 { 1468 return nfs_commit_unstable_pages(inode, wbc); 1469 } 1470 1471 /* 1472 * flush the inode to disk. 1473 */ 1474 int nfs_wb_all(struct inode *inode) 1475 { 1476 struct writeback_control wbc = { 1477 .sync_mode = WB_SYNC_ALL, 1478 .nr_to_write = LONG_MAX, 1479 .range_start = 0, 1480 .range_end = LLONG_MAX, 1481 }; 1482 1483 return sync_inode(inode, &wbc); 1484 } 1485 1486 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1487 { 1488 struct nfs_page *req; 1489 int ret = 0; 1490 1491 BUG_ON(!PageLocked(page)); 1492 for (;;) { 1493 wait_on_page_writeback(page); 1494 req = nfs_page_find_request(page); 1495 if (req == NULL) 1496 break; 1497 if (nfs_lock_request_dontget(req)) { 1498 nfs_inode_remove_request(req); 1499 /* 1500 * In case nfs_inode_remove_request has marked the 1501 * page as being dirty 1502 */ 1503 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1504 nfs_unlock_request(req); 1505 break; 1506 } 1507 ret = nfs_wait_on_request(req); 1508 nfs_release_request(req); 1509 if (ret < 0) 1510 break; 1511 } 1512 return ret; 1513 } 1514 1515 /* 1516 * Write back all requests on one page - we do this before reading it. 1517 */ 1518 int nfs_wb_page(struct inode *inode, struct page *page) 1519 { 1520 loff_t range_start = page_offset(page); 1521 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1522 struct writeback_control wbc = { 1523 .sync_mode = WB_SYNC_ALL, 1524 .nr_to_write = 0, 1525 .range_start = range_start, 1526 .range_end = range_end, 1527 }; 1528 int ret; 1529 1530 for (;;) { 1531 wait_on_page_writeback(page); 1532 if (clear_page_dirty_for_io(page)) { 1533 ret = nfs_writepage_locked(page, &wbc); 1534 if (ret < 0) 1535 goto out_error; 1536 continue; 1537 } 1538 if (!PagePrivate(page)) 1539 break; 1540 ret = nfs_commit_inode(inode, FLUSH_SYNC); 1541 if (ret < 0) 1542 goto out_error; 1543 } 1544 return 0; 1545 out_error: 1546 return ret; 1547 } 1548 1549 #ifdef CONFIG_MIGRATION 1550 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 1551 struct page *page) 1552 { 1553 struct nfs_page *req; 1554 int ret; 1555 1556 nfs_fscache_release_page(page, GFP_KERNEL); 1557 1558 req = nfs_find_and_lock_request(page, false); 1559 ret = PTR_ERR(req); 1560 if (IS_ERR(req)) 1561 goto out; 1562 1563 ret = migrate_page(mapping, newpage, page); 1564 if (!req) 1565 goto out; 1566 if (ret) 1567 goto out_unlock; 1568 page_cache_get(newpage); 1569 spin_lock(&mapping->host->i_lock); 1570 req->wb_page = newpage; 1571 SetPagePrivate(newpage); 1572 set_page_private(newpage, (unsigned long)req); 1573 ClearPagePrivate(page); 1574 set_page_private(page, 0); 1575 spin_unlock(&mapping->host->i_lock); 1576 page_cache_release(page); 1577 out_unlock: 1578 nfs_clear_page_tag_locked(req); 1579 out: 1580 return ret; 1581 } 1582 #endif 1583 1584 int __init nfs_init_writepagecache(void) 1585 { 1586 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1587 sizeof(struct nfs_write_data), 1588 0, SLAB_HWCACHE_ALIGN, 1589 NULL); 1590 if (nfs_wdata_cachep == NULL) 1591 return -ENOMEM; 1592 1593 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1594 nfs_wdata_cachep); 1595 if (nfs_wdata_mempool == NULL) 1596 return -ENOMEM; 1597 1598 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1599 nfs_wdata_cachep); 1600 if (nfs_commit_mempool == NULL) 1601 return -ENOMEM; 1602 1603 /* 1604 * NFS congestion size, scale with available memory. 1605 * 1606 * 64MB: 8192k 1607 * 128MB: 11585k 1608 * 256MB: 16384k 1609 * 512MB: 23170k 1610 * 1GB: 32768k 1611 * 2GB: 46340k 1612 * 4GB: 65536k 1613 * 8GB: 92681k 1614 * 16GB: 131072k 1615 * 1616 * This allows larger machines to have larger/more transfers. 1617 * Limit the default to 256M 1618 */ 1619 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1620 if (nfs_congestion_kb > 256*1024) 1621 nfs_congestion_kb = 256*1024; 1622 1623 return 0; 1624 } 1625 1626 void nfs_destroy_writepagecache(void) 1627 { 1628 mempool_destroy(nfs_commit_mempool); 1629 mempool_destroy(nfs_wdata_mempool); 1630 kmem_cache_destroy(nfs_wdata_cachep); 1631 } 1632 1633