1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 17 #include <linux/sunrpc/clnt.h> 18 #include <linux/nfs_fs.h> 19 #include <linux/nfs_mount.h> 20 #include <linux/nfs_page.h> 21 #include <linux/backing-dev.h> 22 23 #include <asm/uaccess.h> 24 25 #include "delegation.h" 26 #include "internal.h" 27 #include "iostat.h" 28 29 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 30 31 #define MIN_POOL_WRITE (32) 32 #define MIN_POOL_COMMIT (4) 33 34 /* 35 * Local function declarations 36 */ 37 static struct nfs_page * nfs_update_request(struct nfs_open_context*, 38 struct page *, 39 unsigned int, unsigned int); 40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 41 struct inode *inode, int ioflags); 42 static const struct rpc_call_ops nfs_write_partial_ops; 43 static const struct rpc_call_ops nfs_write_full_ops; 44 static const struct rpc_call_ops nfs_commit_ops; 45 46 static struct kmem_cache *nfs_wdata_cachep; 47 static mempool_t *nfs_wdata_mempool; 48 static mempool_t *nfs_commit_mempool; 49 50 struct nfs_write_data *nfs_commit_alloc(void) 51 { 52 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 53 54 if (p) { 55 memset(p, 0, sizeof(*p)); 56 INIT_LIST_HEAD(&p->pages); 57 } 58 return p; 59 } 60 61 static void nfs_commit_rcu_free(struct rcu_head *head) 62 { 63 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu); 64 if (p && (p->pagevec != &p->page_array[0])) 65 kfree(p->pagevec); 66 mempool_free(p, nfs_commit_mempool); 67 } 68 69 void nfs_commit_free(struct nfs_write_data *wdata) 70 { 71 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_commit_rcu_free); 72 } 73 74 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 75 { 76 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 77 78 if (p) { 79 memset(p, 0, sizeof(*p)); 80 INIT_LIST_HEAD(&p->pages); 81 p->npages = pagecount; 82 if (pagecount <= ARRAY_SIZE(p->page_array)) 83 p->pagevec = p->page_array; 84 else { 85 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 86 if (!p->pagevec) { 87 mempool_free(p, nfs_wdata_mempool); 88 p = NULL; 89 } 90 } 91 } 92 return p; 93 } 94 95 static void nfs_writedata_rcu_free(struct rcu_head *head) 96 { 97 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu); 98 if (p && (p->pagevec != &p->page_array[0])) 99 kfree(p->pagevec); 100 mempool_free(p, nfs_wdata_mempool); 101 } 102 103 static void nfs_writedata_free(struct nfs_write_data *wdata) 104 { 105 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_writedata_rcu_free); 106 } 107 108 void nfs_writedata_release(void *wdata) 109 { 110 nfs_writedata_free(wdata); 111 } 112 113 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 114 { 115 struct nfs_page *req = NULL; 116 117 if (PagePrivate(page)) { 118 req = (struct nfs_page *)page_private(page); 119 if (req != NULL) 120 kref_get(&req->wb_kref); 121 } 122 return req; 123 } 124 125 static struct nfs_page *nfs_page_find_request(struct page *page) 126 { 127 struct inode *inode = page->mapping->host; 128 struct nfs_page *req = NULL; 129 130 spin_lock(&inode->i_lock); 131 req = nfs_page_find_request_locked(page); 132 spin_unlock(&inode->i_lock); 133 return req; 134 } 135 136 /* Adjust the file length if we're writing beyond the end */ 137 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 138 { 139 struct inode *inode = page->mapping->host; 140 loff_t end, i_size = i_size_read(inode); 141 pgoff_t end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 142 143 if (i_size > 0 && page->index < end_index) 144 return; 145 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 146 if (i_size >= end) 147 return; 148 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 149 i_size_write(inode, end); 150 } 151 152 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 153 static void nfs_set_pageerror(struct page *page) 154 { 155 SetPageError(page); 156 nfs_zap_mapping(page->mapping->host, page->mapping); 157 } 158 159 /* We can set the PG_uptodate flag if we see that a write request 160 * covers the full page. 161 */ 162 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 163 { 164 if (PageUptodate(page)) 165 return; 166 if (base != 0) 167 return; 168 if (count != nfs_page_length(page)) 169 return; 170 if (count != PAGE_CACHE_SIZE) 171 zero_user_page(page, count, PAGE_CACHE_SIZE - count, KM_USER0); 172 SetPageUptodate(page); 173 } 174 175 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 176 unsigned int offset, unsigned int count) 177 { 178 struct nfs_page *req; 179 int ret; 180 181 for (;;) { 182 req = nfs_update_request(ctx, page, offset, count); 183 if (!IS_ERR(req)) 184 break; 185 ret = PTR_ERR(req); 186 if (ret != -EBUSY) 187 return ret; 188 ret = nfs_wb_page(page->mapping->host, page); 189 if (ret != 0) 190 return ret; 191 } 192 /* Update file length */ 193 nfs_grow_file(page, offset, count); 194 nfs_unlock_request(req); 195 return 0; 196 } 197 198 static int wb_priority(struct writeback_control *wbc) 199 { 200 if (wbc->for_reclaim) 201 return FLUSH_HIGHPRI | FLUSH_STABLE; 202 if (wbc->for_kupdate) 203 return FLUSH_LOWPRI; 204 return 0; 205 } 206 207 /* 208 * NFS congestion control 209 */ 210 211 int nfs_congestion_kb; 212 213 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 214 #define NFS_CONGESTION_OFF_THRESH \ 215 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 216 217 static int nfs_set_page_writeback(struct page *page) 218 { 219 int ret = test_set_page_writeback(page); 220 221 if (!ret) { 222 struct inode *inode = page->mapping->host; 223 struct nfs_server *nfss = NFS_SERVER(inode); 224 225 if (atomic_long_inc_return(&nfss->writeback) > 226 NFS_CONGESTION_ON_THRESH) 227 set_bdi_congested(&nfss->backing_dev_info, WRITE); 228 } 229 return ret; 230 } 231 232 static void nfs_end_page_writeback(struct page *page) 233 { 234 struct inode *inode = page->mapping->host; 235 struct nfs_server *nfss = NFS_SERVER(inode); 236 237 end_page_writeback(page); 238 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) { 239 clear_bdi_congested(&nfss->backing_dev_info, WRITE); 240 congestion_end(WRITE); 241 } 242 } 243 244 /* 245 * Find an associated nfs write request, and prepare to flush it out 246 * Returns 1 if there was no write request, or if the request was 247 * already tagged by nfs_set_page_dirty.Returns 0 if the request 248 * was not tagged. 249 * May also return an error if the user signalled nfs_wait_on_request(). 250 */ 251 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 252 struct page *page) 253 { 254 struct inode *inode = page->mapping->host; 255 struct nfs_inode *nfsi = NFS_I(inode); 256 struct nfs_page *req; 257 int ret; 258 259 spin_lock(&inode->i_lock); 260 for(;;) { 261 req = nfs_page_find_request_locked(page); 262 if (req == NULL) { 263 spin_unlock(&inode->i_lock); 264 return 1; 265 } 266 if (nfs_lock_request_dontget(req)) 267 break; 268 /* Note: If we hold the page lock, as is the case in nfs_writepage, 269 * then the call to nfs_lock_request_dontget() will always 270 * succeed provided that someone hasn't already marked the 271 * request as dirty (in which case we don't care). 272 */ 273 spin_unlock(&inode->i_lock); 274 ret = nfs_wait_on_request(req); 275 nfs_release_request(req); 276 if (ret != 0) 277 return ret; 278 spin_lock(&inode->i_lock); 279 } 280 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) { 281 /* This request is marked for commit */ 282 spin_unlock(&inode->i_lock); 283 nfs_unlock_request(req); 284 nfs_pageio_complete(pgio); 285 return 1; 286 } 287 if (nfs_set_page_writeback(page) != 0) { 288 spin_unlock(&inode->i_lock); 289 BUG(); 290 } 291 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, 292 NFS_PAGE_TAG_LOCKED); 293 ret = test_bit(PG_NEED_FLUSH, &req->wb_flags); 294 spin_unlock(&inode->i_lock); 295 nfs_pageio_add_request(pgio, req); 296 return ret; 297 } 298 299 /* 300 * Write an mmapped page to the server. 301 */ 302 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 303 { 304 struct nfs_pageio_descriptor mypgio, *pgio; 305 struct nfs_open_context *ctx; 306 struct inode *inode = page->mapping->host; 307 unsigned offset; 308 int err; 309 310 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 311 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 312 313 if (wbc->for_writepages) 314 pgio = wbc->fs_private; 315 else { 316 nfs_pageio_init_write(&mypgio, inode, wb_priority(wbc)); 317 pgio = &mypgio; 318 } 319 320 nfs_pageio_cond_complete(pgio, page->index); 321 322 err = nfs_page_async_flush(pgio, page); 323 if (err <= 0) 324 goto out; 325 err = 0; 326 offset = nfs_page_length(page); 327 if (!offset) 328 goto out; 329 330 nfs_pageio_cond_complete(pgio, page->index); 331 332 ctx = nfs_find_open_context(inode, NULL, FMODE_WRITE); 333 if (ctx == NULL) { 334 err = -EBADF; 335 goto out; 336 } 337 err = nfs_writepage_setup(ctx, page, 0, offset); 338 put_nfs_open_context(ctx); 339 if (err != 0) 340 goto out; 341 err = nfs_page_async_flush(pgio, page); 342 if (err > 0) 343 err = 0; 344 out: 345 if (!wbc->for_writepages) 346 nfs_pageio_complete(pgio); 347 return err; 348 } 349 350 int nfs_writepage(struct page *page, struct writeback_control *wbc) 351 { 352 int err; 353 354 err = nfs_writepage_locked(page, wbc); 355 unlock_page(page); 356 return err; 357 } 358 359 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 360 { 361 struct inode *inode = mapping->host; 362 struct nfs_pageio_descriptor pgio; 363 int err; 364 365 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 366 367 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 368 wbc->fs_private = &pgio; 369 err = generic_writepages(mapping, wbc); 370 nfs_pageio_complete(&pgio); 371 if (err) 372 return err; 373 if (pgio.pg_error) 374 return pgio.pg_error; 375 return 0; 376 } 377 378 /* 379 * Insert a write request into an inode 380 */ 381 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 382 { 383 struct nfs_inode *nfsi = NFS_I(inode); 384 int error; 385 386 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 387 BUG_ON(error == -EEXIST); 388 if (error) 389 return error; 390 if (!nfsi->npages) { 391 igrab(inode); 392 nfs_begin_data_update(inode); 393 if (nfs_have_delegation(inode, FMODE_WRITE)) 394 nfsi->change_attr++; 395 } 396 SetPagePrivate(req->wb_page); 397 set_page_private(req->wb_page, (unsigned long)req); 398 if (PageDirty(req->wb_page)) 399 set_bit(PG_NEED_FLUSH, &req->wb_flags); 400 nfsi->npages++; 401 kref_get(&req->wb_kref); 402 return 0; 403 } 404 405 /* 406 * Remove a write request from an inode 407 */ 408 static void nfs_inode_remove_request(struct nfs_page *req) 409 { 410 struct inode *inode = req->wb_context->path.dentry->d_inode; 411 struct nfs_inode *nfsi = NFS_I(inode); 412 413 BUG_ON (!NFS_WBACK_BUSY(req)); 414 415 spin_lock(&inode->i_lock); 416 set_page_private(req->wb_page, 0); 417 ClearPagePrivate(req->wb_page); 418 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 419 if (test_and_clear_bit(PG_NEED_FLUSH, &req->wb_flags)) 420 __set_page_dirty_nobuffers(req->wb_page); 421 nfsi->npages--; 422 if (!nfsi->npages) { 423 spin_unlock(&inode->i_lock); 424 nfs_end_data_update(inode); 425 iput(inode); 426 } else 427 spin_unlock(&inode->i_lock); 428 nfs_clear_request(req); 429 nfs_release_request(req); 430 } 431 432 static void 433 nfs_redirty_request(struct nfs_page *req) 434 { 435 __set_page_dirty_nobuffers(req->wb_page); 436 } 437 438 /* 439 * Check if a request is dirty 440 */ 441 static inline int 442 nfs_dirty_request(struct nfs_page *req) 443 { 444 struct page *page = req->wb_page; 445 446 if (page == NULL || test_bit(PG_NEED_COMMIT, &req->wb_flags)) 447 return 0; 448 return !PageWriteback(req->wb_page); 449 } 450 451 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 452 /* 453 * Add a request to the inode's commit list. 454 */ 455 static void 456 nfs_mark_request_commit(struct nfs_page *req) 457 { 458 struct inode *inode = req->wb_context->path.dentry->d_inode; 459 struct nfs_inode *nfsi = NFS_I(inode); 460 461 spin_lock(&inode->i_lock); 462 nfsi->ncommit++; 463 set_bit(PG_NEED_COMMIT, &(req)->wb_flags); 464 radix_tree_tag_set(&nfsi->nfs_page_tree, 465 req->wb_index, 466 NFS_PAGE_TAG_COMMIT); 467 spin_unlock(&inode->i_lock); 468 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 469 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 470 } 471 472 static inline 473 int nfs_write_need_commit(struct nfs_write_data *data) 474 { 475 return data->verf.committed != NFS_FILE_SYNC; 476 } 477 478 static inline 479 int nfs_reschedule_unstable_write(struct nfs_page *req) 480 { 481 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) { 482 nfs_mark_request_commit(req); 483 return 1; 484 } 485 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 486 nfs_redirty_request(req); 487 return 1; 488 } 489 return 0; 490 } 491 #else 492 static inline void 493 nfs_mark_request_commit(struct nfs_page *req) 494 { 495 } 496 497 static inline 498 int nfs_write_need_commit(struct nfs_write_data *data) 499 { 500 return 0; 501 } 502 503 static inline 504 int nfs_reschedule_unstable_write(struct nfs_page *req) 505 { 506 return 0; 507 } 508 #endif 509 510 /* 511 * Wait for a request to complete. 512 * 513 * Interruptible by signals only if mounted with intr flag. 514 */ 515 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages) 516 { 517 struct nfs_inode *nfsi = NFS_I(inode); 518 struct nfs_page *req; 519 pgoff_t idx_end, next; 520 unsigned int res = 0; 521 int error; 522 523 if (npages == 0) 524 idx_end = ~0; 525 else 526 idx_end = idx_start + npages - 1; 527 528 next = idx_start; 529 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) { 530 if (req->wb_index > idx_end) 531 break; 532 533 next = req->wb_index + 1; 534 BUG_ON(!NFS_WBACK_BUSY(req)); 535 536 kref_get(&req->wb_kref); 537 spin_unlock(&inode->i_lock); 538 error = nfs_wait_on_request(req); 539 nfs_release_request(req); 540 spin_lock(&inode->i_lock); 541 if (error < 0) 542 return error; 543 res++; 544 } 545 return res; 546 } 547 548 static void nfs_cancel_commit_list(struct list_head *head) 549 { 550 struct nfs_page *req; 551 552 while(!list_empty(head)) { 553 req = nfs_list_entry(head->next); 554 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 555 nfs_list_remove_request(req); 556 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags); 557 nfs_inode_remove_request(req); 558 nfs_unlock_request(req); 559 } 560 } 561 562 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 563 /* 564 * nfs_scan_commit - Scan an inode for commit requests 565 * @inode: NFS inode to scan 566 * @dst: destination list 567 * @idx_start: lower bound of page->index to scan. 568 * @npages: idx_start + npages sets the upper bound to scan. 569 * 570 * Moves requests from the inode's 'commit' request list. 571 * The requests are *not* checked to ensure that they form a contiguous set. 572 */ 573 static int 574 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 575 { 576 struct nfs_inode *nfsi = NFS_I(inode); 577 int res = 0; 578 579 if (nfsi->ncommit != 0) { 580 res = nfs_scan_list(nfsi, dst, idx_start, npages, 581 NFS_PAGE_TAG_COMMIT); 582 nfsi->ncommit -= res; 583 } 584 return res; 585 } 586 #else 587 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 588 { 589 return 0; 590 } 591 #endif 592 593 /* 594 * Try to update any existing write request, or create one if there is none. 595 * In order to match, the request's credentials must match those of 596 * the calling process. 597 * 598 * Note: Should always be called with the Page Lock held! 599 */ 600 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx, 601 struct page *page, unsigned int offset, unsigned int bytes) 602 { 603 struct address_space *mapping = page->mapping; 604 struct inode *inode = mapping->host; 605 struct nfs_page *req, *new = NULL; 606 pgoff_t rqend, end; 607 608 end = offset + bytes; 609 610 for (;;) { 611 /* Loop over all inode entries and see if we find 612 * A request for the page we wish to update 613 */ 614 spin_lock(&inode->i_lock); 615 req = nfs_page_find_request_locked(page); 616 if (req) { 617 if (!nfs_lock_request_dontget(req)) { 618 int error; 619 620 spin_unlock(&inode->i_lock); 621 error = nfs_wait_on_request(req); 622 nfs_release_request(req); 623 if (error < 0) { 624 if (new) 625 nfs_release_request(new); 626 return ERR_PTR(error); 627 } 628 continue; 629 } 630 spin_unlock(&inode->i_lock); 631 if (new) 632 nfs_release_request(new); 633 break; 634 } 635 636 if (new) { 637 int error; 638 nfs_lock_request_dontget(new); 639 error = nfs_inode_add_request(inode, new); 640 if (error) { 641 spin_unlock(&inode->i_lock); 642 nfs_unlock_request(new); 643 return ERR_PTR(error); 644 } 645 spin_unlock(&inode->i_lock); 646 return new; 647 } 648 spin_unlock(&inode->i_lock); 649 650 new = nfs_create_request(ctx, inode, page, offset, bytes); 651 if (IS_ERR(new)) 652 return new; 653 } 654 655 /* We have a request for our page. 656 * If the creds don't match, or the 657 * page addresses don't match, 658 * tell the caller to wait on the conflicting 659 * request. 660 */ 661 rqend = req->wb_offset + req->wb_bytes; 662 if (req->wb_context != ctx 663 || req->wb_page != page 664 || !nfs_dirty_request(req) 665 || offset > rqend || end < req->wb_offset) { 666 nfs_unlock_request(req); 667 return ERR_PTR(-EBUSY); 668 } 669 670 /* Okay, the request matches. Update the region */ 671 if (offset < req->wb_offset) { 672 req->wb_offset = offset; 673 req->wb_pgbase = offset; 674 req->wb_bytes = rqend - req->wb_offset; 675 } 676 677 if (end > rqend) 678 req->wb_bytes = end - req->wb_offset; 679 680 return req; 681 } 682 683 int nfs_flush_incompatible(struct file *file, struct page *page) 684 { 685 struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data; 686 struct nfs_page *req; 687 int do_flush, status; 688 /* 689 * Look for a request corresponding to this page. If there 690 * is one, and it belongs to another file, we flush it out 691 * before we try to copy anything into the page. Do this 692 * due to the lack of an ACCESS-type call in NFSv2. 693 * Also do the same if we find a request from an existing 694 * dropped page. 695 */ 696 do { 697 req = nfs_page_find_request(page); 698 if (req == NULL) 699 return 0; 700 do_flush = req->wb_page != page || req->wb_context != ctx 701 || !nfs_dirty_request(req); 702 nfs_release_request(req); 703 if (!do_flush) 704 return 0; 705 status = nfs_wb_page(page->mapping->host, page); 706 } while (status == 0); 707 return status; 708 } 709 710 /* 711 * Update and possibly write a cached page of an NFS file. 712 * 713 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 714 * things with a page scheduled for an RPC call (e.g. invalidate it). 715 */ 716 int nfs_updatepage(struct file *file, struct page *page, 717 unsigned int offset, unsigned int count) 718 { 719 struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data; 720 struct inode *inode = page->mapping->host; 721 int status = 0; 722 723 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 724 725 dprintk("NFS: nfs_updatepage(%s/%s %d@%Ld)\n", 726 file->f_path.dentry->d_parent->d_name.name, 727 file->f_path.dentry->d_name.name, count, 728 (long long)(page_offset(page) +offset)); 729 730 /* If we're not using byte range locks, and we know the page 731 * is entirely in cache, it may be more efficient to avoid 732 * fragmenting write requests. 733 */ 734 if (PageUptodate(page) && inode->i_flock == NULL && !(file->f_mode & O_SYNC)) { 735 count = max(count + offset, nfs_page_length(page)); 736 offset = 0; 737 } 738 739 status = nfs_writepage_setup(ctx, page, offset, count); 740 __set_page_dirty_nobuffers(page); 741 742 dprintk("NFS: nfs_updatepage returns %d (isize %Ld)\n", 743 status, (long long)i_size_read(inode)); 744 if (status < 0) 745 nfs_set_pageerror(page); 746 return status; 747 } 748 749 static void nfs_writepage_release(struct nfs_page *req) 750 { 751 752 if (PageError(req->wb_page)) { 753 nfs_end_page_writeback(req->wb_page); 754 nfs_inode_remove_request(req); 755 } else if (!nfs_reschedule_unstable_write(req)) { 756 /* Set the PG_uptodate flag */ 757 nfs_mark_uptodate(req->wb_page, req->wb_pgbase, req->wb_bytes); 758 nfs_end_page_writeback(req->wb_page); 759 nfs_inode_remove_request(req); 760 } else 761 nfs_end_page_writeback(req->wb_page); 762 nfs_clear_page_tag_locked(req); 763 } 764 765 static inline int flush_task_priority(int how) 766 { 767 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 768 case FLUSH_HIGHPRI: 769 return RPC_PRIORITY_HIGH; 770 case FLUSH_LOWPRI: 771 return RPC_PRIORITY_LOW; 772 } 773 return RPC_PRIORITY_NORMAL; 774 } 775 776 /* 777 * Set up the argument/result storage required for the RPC call. 778 */ 779 static void nfs_write_rpcsetup(struct nfs_page *req, 780 struct nfs_write_data *data, 781 const struct rpc_call_ops *call_ops, 782 unsigned int count, unsigned int offset, 783 int how) 784 { 785 struct inode *inode; 786 int flags; 787 788 /* Set up the RPC argument and reply structs 789 * NB: take care not to mess about with data->commit et al. */ 790 791 data->req = req; 792 data->inode = inode = req->wb_context->path.dentry->d_inode; 793 data->cred = req->wb_context->cred; 794 795 data->args.fh = NFS_FH(inode); 796 data->args.offset = req_offset(req) + offset; 797 data->args.pgbase = req->wb_pgbase + offset; 798 data->args.pages = data->pagevec; 799 data->args.count = count; 800 data->args.context = req->wb_context; 801 802 data->res.fattr = &data->fattr; 803 data->res.count = count; 804 data->res.verf = &data->verf; 805 nfs_fattr_init(&data->fattr); 806 807 /* Set up the initial task struct. */ 808 flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 809 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data); 810 NFS_PROTO(inode)->write_setup(data, how); 811 812 data->task.tk_priority = flush_task_priority(how); 813 data->task.tk_cookie = (unsigned long)inode; 814 815 dprintk("NFS: %5u initiated write call " 816 "(req %s/%Ld, %u bytes @ offset %Lu)\n", 817 data->task.tk_pid, 818 inode->i_sb->s_id, 819 (long long)NFS_FILEID(inode), 820 count, 821 (unsigned long long)data->args.offset); 822 } 823 824 static void nfs_execute_write(struct nfs_write_data *data) 825 { 826 struct rpc_clnt *clnt = NFS_CLIENT(data->inode); 827 sigset_t oldset; 828 829 rpc_clnt_sigmask(clnt, &oldset); 830 rpc_execute(&data->task); 831 rpc_clnt_sigunmask(clnt, &oldset); 832 } 833 834 /* 835 * Generate multiple small requests to write out a single 836 * contiguous dirty area on one page. 837 */ 838 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 839 { 840 struct nfs_page *req = nfs_list_entry(head->next); 841 struct page *page = req->wb_page; 842 struct nfs_write_data *data; 843 size_t wsize = NFS_SERVER(inode)->wsize, nbytes; 844 unsigned int offset; 845 int requests = 0; 846 LIST_HEAD(list); 847 848 nfs_list_remove_request(req); 849 850 nbytes = count; 851 do { 852 size_t len = min(nbytes, wsize); 853 854 data = nfs_writedata_alloc(1); 855 if (!data) 856 goto out_bad; 857 list_add(&data->pages, &list); 858 requests++; 859 nbytes -= len; 860 } while (nbytes != 0); 861 atomic_set(&req->wb_complete, requests); 862 863 ClearPageError(page); 864 offset = 0; 865 nbytes = count; 866 do { 867 data = list_entry(list.next, struct nfs_write_data, pages); 868 list_del_init(&data->pages); 869 870 data->pagevec[0] = page; 871 872 if (nbytes < wsize) 873 wsize = nbytes; 874 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 875 wsize, offset, how); 876 offset += wsize; 877 nbytes -= wsize; 878 nfs_execute_write(data); 879 } while (nbytes != 0); 880 881 return 0; 882 883 out_bad: 884 while (!list_empty(&list)) { 885 data = list_entry(list.next, struct nfs_write_data, pages); 886 list_del(&data->pages); 887 nfs_writedata_release(data); 888 } 889 nfs_redirty_request(req); 890 nfs_end_page_writeback(req->wb_page); 891 nfs_clear_page_tag_locked(req); 892 return -ENOMEM; 893 } 894 895 /* 896 * Create an RPC task for the given write request and kick it. 897 * The page must have been locked by the caller. 898 * 899 * It may happen that the page we're passed is not marked dirty. 900 * This is the case if nfs_updatepage detects a conflicting request 901 * that has been written but not committed. 902 */ 903 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 904 { 905 struct nfs_page *req; 906 struct page **pages; 907 struct nfs_write_data *data; 908 909 data = nfs_writedata_alloc(npages); 910 if (!data) 911 goto out_bad; 912 913 pages = data->pagevec; 914 while (!list_empty(head)) { 915 req = nfs_list_entry(head->next); 916 nfs_list_remove_request(req); 917 nfs_list_add_request(req, &data->pages); 918 ClearPageError(req->wb_page); 919 *pages++ = req->wb_page; 920 } 921 req = nfs_list_entry(data->pages.next); 922 923 /* Set up the argument struct */ 924 nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 925 926 nfs_execute_write(data); 927 return 0; 928 out_bad: 929 while (!list_empty(head)) { 930 req = nfs_list_entry(head->next); 931 nfs_list_remove_request(req); 932 nfs_redirty_request(req); 933 nfs_end_page_writeback(req->wb_page); 934 nfs_clear_page_tag_locked(req); 935 } 936 return -ENOMEM; 937 } 938 939 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 940 struct inode *inode, int ioflags) 941 { 942 int wsize = NFS_SERVER(inode)->wsize; 943 944 if (wsize < PAGE_CACHE_SIZE) 945 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); 946 else 947 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); 948 } 949 950 /* 951 * Handle a write reply that flushed part of a page. 952 */ 953 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 954 { 955 struct nfs_write_data *data = calldata; 956 struct nfs_page *req = data->req; 957 struct page *page = req->wb_page; 958 959 dprintk("NFS: write (%s/%Ld %d@%Ld)", 960 req->wb_context->path.dentry->d_inode->i_sb->s_id, 961 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 962 req->wb_bytes, 963 (long long)req_offset(req)); 964 965 if (nfs_writeback_done(task, data) != 0) 966 return; 967 968 if (task->tk_status < 0) { 969 nfs_set_pageerror(page); 970 req->wb_context->error = task->tk_status; 971 dprintk(", error = %d\n", task->tk_status); 972 goto out; 973 } 974 975 if (nfs_write_need_commit(data)) { 976 struct inode *inode = page->mapping->host; 977 978 spin_lock(&inode->i_lock); 979 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 980 /* Do nothing we need to resend the writes */ 981 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 982 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 983 dprintk(" defer commit\n"); 984 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 985 set_bit(PG_NEED_RESCHED, &req->wb_flags); 986 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 987 dprintk(" server reboot detected\n"); 988 } 989 spin_unlock(&inode->i_lock); 990 } else 991 dprintk(" OK\n"); 992 993 out: 994 if (atomic_dec_and_test(&req->wb_complete)) 995 nfs_writepage_release(req); 996 } 997 998 static const struct rpc_call_ops nfs_write_partial_ops = { 999 .rpc_call_done = nfs_writeback_done_partial, 1000 .rpc_release = nfs_writedata_release, 1001 }; 1002 1003 /* 1004 * Handle a write reply that flushes a whole page. 1005 * 1006 * FIXME: There is an inherent race with invalidate_inode_pages and 1007 * writebacks since the page->count is kept > 1 for as long 1008 * as the page has a write request pending. 1009 */ 1010 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1011 { 1012 struct nfs_write_data *data = calldata; 1013 struct nfs_page *req; 1014 struct page *page; 1015 1016 if (nfs_writeback_done(task, data) != 0) 1017 return; 1018 1019 /* Update attributes as result of writeback. */ 1020 while (!list_empty(&data->pages)) { 1021 req = nfs_list_entry(data->pages.next); 1022 nfs_list_remove_request(req); 1023 page = req->wb_page; 1024 1025 dprintk("NFS: write (%s/%Ld %d@%Ld)", 1026 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1027 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1028 req->wb_bytes, 1029 (long long)req_offset(req)); 1030 1031 if (task->tk_status < 0) { 1032 nfs_set_pageerror(page); 1033 req->wb_context->error = task->tk_status; 1034 dprintk(", error = %d\n", task->tk_status); 1035 goto remove_request; 1036 } 1037 1038 if (nfs_write_need_commit(data)) { 1039 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1040 nfs_mark_request_commit(req); 1041 nfs_end_page_writeback(page); 1042 dprintk(" marked for commit\n"); 1043 goto next; 1044 } 1045 /* Set the PG_uptodate flag? */ 1046 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 1047 dprintk(" OK\n"); 1048 remove_request: 1049 nfs_end_page_writeback(page); 1050 nfs_inode_remove_request(req); 1051 next: 1052 nfs_clear_page_tag_locked(req); 1053 } 1054 } 1055 1056 static const struct rpc_call_ops nfs_write_full_ops = { 1057 .rpc_call_done = nfs_writeback_done_full, 1058 .rpc_release = nfs_writedata_release, 1059 }; 1060 1061 1062 /* 1063 * This function is called when the WRITE call is complete. 1064 */ 1065 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1066 { 1067 struct nfs_writeargs *argp = &data->args; 1068 struct nfs_writeres *resp = &data->res; 1069 int status; 1070 1071 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1072 task->tk_pid, task->tk_status); 1073 1074 /* 1075 * ->write_done will attempt to use post-op attributes to detect 1076 * conflicting writes by other clients. A strict interpretation 1077 * of close-to-open would allow us to continue caching even if 1078 * another writer had changed the file, but some applications 1079 * depend on tighter cache coherency when writing. 1080 */ 1081 status = NFS_PROTO(data->inode)->write_done(task, data); 1082 if (status != 0) 1083 return status; 1084 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1085 1086 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1087 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1088 /* We tried a write call, but the server did not 1089 * commit data to stable storage even though we 1090 * requested it. 1091 * Note: There is a known bug in Tru64 < 5.0 in which 1092 * the server reports NFS_DATA_SYNC, but performs 1093 * NFS_FILE_SYNC. We therefore implement this checking 1094 * as a dprintk() in order to avoid filling syslog. 1095 */ 1096 static unsigned long complain; 1097 1098 if (time_before(complain, jiffies)) { 1099 dprintk("NFS: faulty NFS server %s:" 1100 " (committed = %d) != (stable = %d)\n", 1101 NFS_SERVER(data->inode)->nfs_client->cl_hostname, 1102 resp->verf->committed, argp->stable); 1103 complain = jiffies + 300 * HZ; 1104 } 1105 } 1106 #endif 1107 /* Is this a short write? */ 1108 if (task->tk_status >= 0 && resp->count < argp->count) { 1109 static unsigned long complain; 1110 1111 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1112 1113 /* Has the server at least made some progress? */ 1114 if (resp->count != 0) { 1115 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1116 if (resp->verf->committed != NFS_UNSTABLE) { 1117 /* Resend from where the server left off */ 1118 argp->offset += resp->count; 1119 argp->pgbase += resp->count; 1120 argp->count -= resp->count; 1121 } else { 1122 /* Resend as a stable write in order to avoid 1123 * headaches in the case of a server crash. 1124 */ 1125 argp->stable = NFS_FILE_SYNC; 1126 } 1127 rpc_restart_call(task); 1128 return -EAGAIN; 1129 } 1130 if (time_before(complain, jiffies)) { 1131 printk(KERN_WARNING 1132 "NFS: Server wrote zero bytes, expected %u.\n", 1133 argp->count); 1134 complain = jiffies + 300 * HZ; 1135 } 1136 /* Can't do anything about it except throw an error. */ 1137 task->tk_status = -EIO; 1138 } 1139 return 0; 1140 } 1141 1142 1143 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1144 void nfs_commit_release(void *wdata) 1145 { 1146 nfs_commit_free(wdata); 1147 } 1148 1149 /* 1150 * Set up the argument/result storage required for the RPC call. 1151 */ 1152 static void nfs_commit_rpcsetup(struct list_head *head, 1153 struct nfs_write_data *data, 1154 int how) 1155 { 1156 struct nfs_page *first; 1157 struct inode *inode; 1158 int flags; 1159 1160 /* Set up the RPC argument and reply structs 1161 * NB: take care not to mess about with data->commit et al. */ 1162 1163 list_splice_init(head, &data->pages); 1164 first = nfs_list_entry(data->pages.next); 1165 inode = first->wb_context->path.dentry->d_inode; 1166 1167 data->inode = inode; 1168 data->cred = first->wb_context->cred; 1169 1170 data->args.fh = NFS_FH(data->inode); 1171 /* Note: we always request a commit of the entire inode */ 1172 data->args.offset = 0; 1173 data->args.count = 0; 1174 data->res.count = 0; 1175 data->res.fattr = &data->fattr; 1176 data->res.verf = &data->verf; 1177 nfs_fattr_init(&data->fattr); 1178 1179 /* Set up the initial task struct. */ 1180 flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 1181 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, &nfs_commit_ops, data); 1182 NFS_PROTO(inode)->commit_setup(data, how); 1183 1184 data->task.tk_priority = flush_task_priority(how); 1185 data->task.tk_cookie = (unsigned long)inode; 1186 1187 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1188 } 1189 1190 /* 1191 * Commit dirty pages 1192 */ 1193 static int 1194 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1195 { 1196 struct nfs_write_data *data; 1197 struct nfs_page *req; 1198 1199 data = nfs_commit_alloc(); 1200 1201 if (!data) 1202 goto out_bad; 1203 1204 /* Set up the argument struct */ 1205 nfs_commit_rpcsetup(head, data, how); 1206 1207 nfs_execute_write(data); 1208 return 0; 1209 out_bad: 1210 while (!list_empty(head)) { 1211 req = nfs_list_entry(head->next); 1212 nfs_list_remove_request(req); 1213 nfs_mark_request_commit(req); 1214 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1215 nfs_clear_page_tag_locked(req); 1216 } 1217 return -ENOMEM; 1218 } 1219 1220 /* 1221 * COMMIT call returned 1222 */ 1223 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1224 { 1225 struct nfs_write_data *data = calldata; 1226 struct nfs_page *req; 1227 1228 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1229 task->tk_pid, task->tk_status); 1230 1231 /* Call the NFS version-specific code */ 1232 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1233 return; 1234 1235 while (!list_empty(&data->pages)) { 1236 req = nfs_list_entry(data->pages.next); 1237 nfs_list_remove_request(req); 1238 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags); 1239 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1240 1241 dprintk("NFS: commit (%s/%Ld %d@%Ld)", 1242 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1243 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1244 req->wb_bytes, 1245 (long long)req_offset(req)); 1246 if (task->tk_status < 0) { 1247 req->wb_context->error = task->tk_status; 1248 nfs_inode_remove_request(req); 1249 dprintk(", error = %d\n", task->tk_status); 1250 goto next; 1251 } 1252 1253 /* Okay, COMMIT succeeded, apparently. Check the verifier 1254 * returned by the server against all stored verfs. */ 1255 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1256 /* We have a match */ 1257 /* Set the PG_uptodate flag */ 1258 nfs_mark_uptodate(req->wb_page, req->wb_pgbase, 1259 req->wb_bytes); 1260 nfs_inode_remove_request(req); 1261 dprintk(" OK\n"); 1262 goto next; 1263 } 1264 /* We have a mismatch. Write the page again */ 1265 dprintk(" mismatch\n"); 1266 nfs_redirty_request(req); 1267 next: 1268 nfs_clear_page_tag_locked(req); 1269 } 1270 } 1271 1272 static const struct rpc_call_ops nfs_commit_ops = { 1273 .rpc_call_done = nfs_commit_done, 1274 .rpc_release = nfs_commit_release, 1275 }; 1276 1277 int nfs_commit_inode(struct inode *inode, int how) 1278 { 1279 LIST_HEAD(head); 1280 int res; 1281 1282 spin_lock(&inode->i_lock); 1283 res = nfs_scan_commit(inode, &head, 0, 0); 1284 spin_unlock(&inode->i_lock); 1285 if (res) { 1286 int error = nfs_commit_list(inode, &head, how); 1287 if (error < 0) 1288 return error; 1289 } 1290 return res; 1291 } 1292 #else 1293 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1294 { 1295 return 0; 1296 } 1297 #endif 1298 1299 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how) 1300 { 1301 struct inode *inode = mapping->host; 1302 pgoff_t idx_start, idx_end; 1303 unsigned int npages = 0; 1304 LIST_HEAD(head); 1305 int nocommit = how & FLUSH_NOCOMMIT; 1306 long pages, ret; 1307 1308 /* FIXME */ 1309 if (wbc->range_cyclic) 1310 idx_start = 0; 1311 else { 1312 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT; 1313 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT; 1314 if (idx_end > idx_start) { 1315 pgoff_t l_npages = 1 + idx_end - idx_start; 1316 npages = l_npages; 1317 if (sizeof(npages) != sizeof(l_npages) && 1318 (pgoff_t)npages != l_npages) 1319 npages = 0; 1320 } 1321 } 1322 how &= ~FLUSH_NOCOMMIT; 1323 spin_lock(&inode->i_lock); 1324 do { 1325 ret = nfs_wait_on_requests_locked(inode, idx_start, npages); 1326 if (ret != 0) 1327 continue; 1328 if (nocommit) 1329 break; 1330 pages = nfs_scan_commit(inode, &head, idx_start, npages); 1331 if (pages == 0) 1332 break; 1333 if (how & FLUSH_INVALIDATE) { 1334 spin_unlock(&inode->i_lock); 1335 nfs_cancel_commit_list(&head); 1336 ret = pages; 1337 spin_lock(&inode->i_lock); 1338 continue; 1339 } 1340 pages += nfs_scan_commit(inode, &head, 0, 0); 1341 spin_unlock(&inode->i_lock); 1342 ret = nfs_commit_list(inode, &head, how); 1343 spin_lock(&inode->i_lock); 1344 1345 } while (ret >= 0); 1346 spin_unlock(&inode->i_lock); 1347 return ret; 1348 } 1349 1350 /* 1351 * flush the inode to disk. 1352 */ 1353 int nfs_wb_all(struct inode *inode) 1354 { 1355 struct address_space *mapping = inode->i_mapping; 1356 struct writeback_control wbc = { 1357 .bdi = mapping->backing_dev_info, 1358 .sync_mode = WB_SYNC_ALL, 1359 .nr_to_write = LONG_MAX, 1360 .for_writepages = 1, 1361 .range_cyclic = 1, 1362 }; 1363 int ret; 1364 1365 ret = nfs_writepages(mapping, &wbc); 1366 if (ret < 0) 1367 goto out; 1368 ret = nfs_sync_mapping_wait(mapping, &wbc, 0); 1369 if (ret >= 0) 1370 return 0; 1371 out: 1372 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1373 return ret; 1374 } 1375 1376 int nfs_sync_mapping_range(struct address_space *mapping, loff_t range_start, loff_t range_end, int how) 1377 { 1378 struct writeback_control wbc = { 1379 .bdi = mapping->backing_dev_info, 1380 .sync_mode = WB_SYNC_ALL, 1381 .nr_to_write = LONG_MAX, 1382 .range_start = range_start, 1383 .range_end = range_end, 1384 .for_writepages = 1, 1385 }; 1386 int ret; 1387 1388 ret = nfs_writepages(mapping, &wbc); 1389 if (ret < 0) 1390 goto out; 1391 ret = nfs_sync_mapping_wait(mapping, &wbc, how); 1392 if (ret >= 0) 1393 return 0; 1394 out: 1395 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1396 return ret; 1397 } 1398 1399 int nfs_wb_page_priority(struct inode *inode, struct page *page, int how) 1400 { 1401 loff_t range_start = page_offset(page); 1402 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1403 struct writeback_control wbc = { 1404 .bdi = page->mapping->backing_dev_info, 1405 .sync_mode = WB_SYNC_ALL, 1406 .nr_to_write = LONG_MAX, 1407 .range_start = range_start, 1408 .range_end = range_end, 1409 }; 1410 int ret; 1411 1412 BUG_ON(!PageLocked(page)); 1413 if (clear_page_dirty_for_io(page)) { 1414 ret = nfs_writepage_locked(page, &wbc); 1415 if (ret < 0) 1416 goto out; 1417 } 1418 if (!PagePrivate(page)) 1419 return 0; 1420 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how); 1421 if (ret >= 0) 1422 return 0; 1423 out: 1424 __mark_inode_dirty(inode, I_DIRTY_PAGES); 1425 return ret; 1426 } 1427 1428 /* 1429 * Write back all requests on one page - we do this before reading it. 1430 */ 1431 int nfs_wb_page(struct inode *inode, struct page* page) 1432 { 1433 return nfs_wb_page_priority(inode, page, FLUSH_STABLE); 1434 } 1435 1436 int nfs_set_page_dirty(struct page *page) 1437 { 1438 struct address_space *mapping = page->mapping; 1439 struct inode *inode; 1440 struct nfs_page *req; 1441 int ret; 1442 1443 if (!mapping) 1444 goto out_raced; 1445 inode = mapping->host; 1446 if (!inode) 1447 goto out_raced; 1448 spin_lock(&inode->i_lock); 1449 req = nfs_page_find_request_locked(page); 1450 if (req != NULL) { 1451 /* Mark any existing write requests for flushing */ 1452 ret = !test_and_set_bit(PG_NEED_FLUSH, &req->wb_flags); 1453 spin_unlock(&inode->i_lock); 1454 nfs_release_request(req); 1455 return ret; 1456 } 1457 ret = __set_page_dirty_nobuffers(page); 1458 spin_unlock(&inode->i_lock); 1459 return ret; 1460 out_raced: 1461 return !TestSetPageDirty(page); 1462 } 1463 1464 1465 int __init nfs_init_writepagecache(void) 1466 { 1467 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1468 sizeof(struct nfs_write_data), 1469 0, SLAB_HWCACHE_ALIGN, 1470 NULL); 1471 if (nfs_wdata_cachep == NULL) 1472 return -ENOMEM; 1473 1474 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1475 nfs_wdata_cachep); 1476 if (nfs_wdata_mempool == NULL) 1477 return -ENOMEM; 1478 1479 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1480 nfs_wdata_cachep); 1481 if (nfs_commit_mempool == NULL) 1482 return -ENOMEM; 1483 1484 /* 1485 * NFS congestion size, scale with available memory. 1486 * 1487 * 64MB: 8192k 1488 * 128MB: 11585k 1489 * 256MB: 16384k 1490 * 512MB: 23170k 1491 * 1GB: 32768k 1492 * 2GB: 46340k 1493 * 4GB: 65536k 1494 * 8GB: 92681k 1495 * 16GB: 131072k 1496 * 1497 * This allows larger machines to have larger/more transfers. 1498 * Limit the default to 256M 1499 */ 1500 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1501 if (nfs_congestion_kb > 256*1024) 1502 nfs_congestion_kb = 256*1024; 1503 1504 return 0; 1505 } 1506 1507 void nfs_destroy_writepagecache(void) 1508 { 1509 mempool_destroy(nfs_commit_mempool); 1510 mempool_destroy(nfs_wdata_mempool); 1511 kmem_cache_destroy(nfs_wdata_cachep); 1512 } 1513 1514