xref: /openbmc/linux/fs/nfs/write.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24 #include <linux/freezer.h>
25 #include <linux/wait.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "delegation.h"
30 #include "internal.h"
31 #include "iostat.h"
32 #include "nfs4_fs.h"
33 #include "fscache.h"
34 #include "pnfs.h"
35 
36 #include "nfstrace.h"
37 
38 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
39 
40 #define MIN_POOL_WRITE		(32)
41 #define MIN_POOL_COMMIT		(4)
42 
43 struct nfs_io_completion {
44 	void (*complete)(void *data);
45 	void *data;
46 	struct kref refcount;
47 };
48 
49 /*
50  * Local function declarations
51  */
52 static void nfs_redirty_request(struct nfs_page *req);
53 static const struct rpc_call_ops nfs_commit_ops;
54 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
55 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
56 static const struct nfs_rw_ops nfs_rw_write_ops;
57 static void nfs_clear_request_commit(struct nfs_page *req);
58 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
59 				      struct inode *inode);
60 static struct nfs_page *
61 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
62 						struct page *page);
63 
64 static struct kmem_cache *nfs_wdata_cachep;
65 static mempool_t *nfs_wdata_mempool;
66 static struct kmem_cache *nfs_cdata_cachep;
67 static mempool_t *nfs_commit_mempool;
68 
69 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
70 {
71 	struct nfs_commit_data *p;
72 
73 	if (never_fail)
74 		p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
75 	else {
76 		/* It is OK to do some reclaim, not no safe to wait
77 		 * for anything to be returned to the pool.
78 		 * mempool_alloc() cannot handle that particular combination,
79 		 * so we need two separate attempts.
80 		 */
81 		p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
82 		if (!p)
83 			p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
84 					     __GFP_NOWARN | __GFP_NORETRY);
85 		if (!p)
86 			return NULL;
87 	}
88 
89 	memset(p, 0, sizeof(*p));
90 	INIT_LIST_HEAD(&p->pages);
91 	return p;
92 }
93 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
94 
95 void nfs_commit_free(struct nfs_commit_data *p)
96 {
97 	mempool_free(p, nfs_commit_mempool);
98 }
99 EXPORT_SYMBOL_GPL(nfs_commit_free);
100 
101 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
102 {
103 	struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
104 
105 	memset(p, 0, sizeof(*p));
106 	p->rw_mode = FMODE_WRITE;
107 	return p;
108 }
109 
110 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
111 {
112 	mempool_free(hdr, nfs_wdata_mempool);
113 }
114 
115 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
116 {
117 	return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
118 }
119 
120 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
121 		void (*complete)(void *), void *data)
122 {
123 	ioc->complete = complete;
124 	ioc->data = data;
125 	kref_init(&ioc->refcount);
126 }
127 
128 static void nfs_io_completion_release(struct kref *kref)
129 {
130 	struct nfs_io_completion *ioc = container_of(kref,
131 			struct nfs_io_completion, refcount);
132 	ioc->complete(ioc->data);
133 	kfree(ioc);
134 }
135 
136 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
137 {
138 	if (ioc != NULL)
139 		kref_get(&ioc->refcount);
140 }
141 
142 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
143 {
144 	if (ioc != NULL)
145 		kref_put(&ioc->refcount, nfs_io_completion_release);
146 }
147 
148 static struct nfs_page *
149 nfs_page_private_request(struct page *page)
150 {
151 	if (!PagePrivate(page))
152 		return NULL;
153 	return (struct nfs_page *)page_private(page);
154 }
155 
156 /*
157  * nfs_page_find_head_request_locked - find head request associated with @page
158  *
159  * must be called while holding the inode lock.
160  *
161  * returns matching head request with reference held, or NULL if not found.
162  */
163 static struct nfs_page *
164 nfs_page_find_private_request(struct page *page)
165 {
166 	struct address_space *mapping = page_file_mapping(page);
167 	struct nfs_page *req;
168 
169 	if (!PagePrivate(page))
170 		return NULL;
171 	spin_lock(&mapping->private_lock);
172 	req = nfs_page_private_request(page);
173 	if (req) {
174 		WARN_ON_ONCE(req->wb_head != req);
175 		kref_get(&req->wb_kref);
176 	}
177 	spin_unlock(&mapping->private_lock);
178 	return req;
179 }
180 
181 static struct nfs_page *
182 nfs_page_find_swap_request(struct page *page)
183 {
184 	struct inode *inode = page_file_mapping(page)->host;
185 	struct nfs_inode *nfsi = NFS_I(inode);
186 	struct nfs_page *req = NULL;
187 	if (!PageSwapCache(page))
188 		return NULL;
189 	mutex_lock(&nfsi->commit_mutex);
190 	if (PageSwapCache(page)) {
191 		req = nfs_page_search_commits_for_head_request_locked(nfsi,
192 			page);
193 		if (req) {
194 			WARN_ON_ONCE(req->wb_head != req);
195 			kref_get(&req->wb_kref);
196 		}
197 	}
198 	mutex_unlock(&nfsi->commit_mutex);
199 	return req;
200 }
201 
202 /*
203  * nfs_page_find_head_request - find head request associated with @page
204  *
205  * returns matching head request with reference held, or NULL if not found.
206  */
207 static struct nfs_page *nfs_page_find_head_request(struct page *page)
208 {
209 	struct nfs_page *req;
210 
211 	req = nfs_page_find_private_request(page);
212 	if (!req)
213 		req = nfs_page_find_swap_request(page);
214 	return req;
215 }
216 
217 /* Adjust the file length if we're writing beyond the end */
218 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
219 {
220 	struct inode *inode = page_file_mapping(page)->host;
221 	loff_t end, i_size;
222 	pgoff_t end_index;
223 
224 	spin_lock(&inode->i_lock);
225 	i_size = i_size_read(inode);
226 	end_index = (i_size - 1) >> PAGE_SHIFT;
227 	if (i_size > 0 && page_index(page) < end_index)
228 		goto out;
229 	end = page_file_offset(page) + ((loff_t)offset+count);
230 	if (i_size >= end)
231 		goto out;
232 	i_size_write(inode, end);
233 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
234 out:
235 	spin_unlock(&inode->i_lock);
236 }
237 
238 /* A writeback failed: mark the page as bad, and invalidate the page cache */
239 static void nfs_set_pageerror(struct page *page)
240 {
241 	nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page));
242 }
243 
244 /*
245  * nfs_page_group_search_locked
246  * @head - head request of page group
247  * @page_offset - offset into page
248  *
249  * Search page group with head @head to find a request that contains the
250  * page offset @page_offset.
251  *
252  * Returns a pointer to the first matching nfs request, or NULL if no
253  * match is found.
254  *
255  * Must be called with the page group lock held
256  */
257 static struct nfs_page *
258 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
259 {
260 	struct nfs_page *req;
261 
262 	req = head;
263 	do {
264 		if (page_offset >= req->wb_pgbase &&
265 		    page_offset < (req->wb_pgbase + req->wb_bytes))
266 			return req;
267 
268 		req = req->wb_this_page;
269 	} while (req != head);
270 
271 	return NULL;
272 }
273 
274 /*
275  * nfs_page_group_covers_page
276  * @head - head request of page group
277  *
278  * Return true if the page group with head @head covers the whole page,
279  * returns false otherwise
280  */
281 static bool nfs_page_group_covers_page(struct nfs_page *req)
282 {
283 	struct nfs_page *tmp;
284 	unsigned int pos = 0;
285 	unsigned int len = nfs_page_length(req->wb_page);
286 
287 	nfs_page_group_lock(req);
288 
289 	for (;;) {
290 		tmp = nfs_page_group_search_locked(req->wb_head, pos);
291 		if (!tmp)
292 			break;
293 		pos = tmp->wb_pgbase + tmp->wb_bytes;
294 	}
295 
296 	nfs_page_group_unlock(req);
297 	return pos >= len;
298 }
299 
300 /* We can set the PG_uptodate flag if we see that a write request
301  * covers the full page.
302  */
303 static void nfs_mark_uptodate(struct nfs_page *req)
304 {
305 	if (PageUptodate(req->wb_page))
306 		return;
307 	if (!nfs_page_group_covers_page(req))
308 		return;
309 	SetPageUptodate(req->wb_page);
310 }
311 
312 static int wb_priority(struct writeback_control *wbc)
313 {
314 	int ret = 0;
315 
316 	if (wbc->sync_mode == WB_SYNC_ALL)
317 		ret = FLUSH_COND_STABLE;
318 	return ret;
319 }
320 
321 /*
322  * NFS congestion control
323  */
324 
325 int nfs_congestion_kb;
326 
327 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
328 #define NFS_CONGESTION_OFF_THRESH	\
329 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
330 
331 static void nfs_set_page_writeback(struct page *page)
332 {
333 	struct inode *inode = page_file_mapping(page)->host;
334 	struct nfs_server *nfss = NFS_SERVER(inode);
335 	int ret = test_set_page_writeback(page);
336 
337 	WARN_ON_ONCE(ret != 0);
338 
339 	if (atomic_long_inc_return(&nfss->writeback) >
340 			NFS_CONGESTION_ON_THRESH)
341 		set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
342 }
343 
344 static void nfs_end_page_writeback(struct nfs_page *req)
345 {
346 	struct inode *inode = page_file_mapping(req->wb_page)->host;
347 	struct nfs_server *nfss = NFS_SERVER(inode);
348 	bool is_done;
349 
350 	is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
351 	nfs_unlock_request(req);
352 	if (!is_done)
353 		return;
354 
355 	end_page_writeback(req->wb_page);
356 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
357 		clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
358 }
359 
360 /*
361  * nfs_unroll_locks_and_wait -  unlock all newly locked reqs and wait on @req
362  *
363  * this is a helper function for nfs_lock_and_join_requests
364  *
365  * @inode - inode associated with request page group, must be holding inode lock
366  * @head  - head request of page group, must be holding head lock
367  * @req   - request that couldn't lock and needs to wait on the req bit lock
368  *
369  * NOTE: this must be called holding page_group bit lock
370  *       which will be released before returning.
371  *
372  * returns 0 on success, < 0 on error.
373  */
374 static void
375 nfs_unroll_locks(struct inode *inode, struct nfs_page *head,
376 			  struct nfs_page *req)
377 {
378 	struct nfs_page *tmp;
379 
380 	/* relinquish all the locks successfully grabbed this run */
381 	for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) {
382 		if (!kref_read(&tmp->wb_kref))
383 			continue;
384 		nfs_unlock_and_release_request(tmp);
385 	}
386 }
387 
388 /*
389  * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
390  *
391  * @destroy_list - request list (using wb_this_page) terminated by @old_head
392  * @old_head - the old head of the list
393  *
394  * All subrequests must be locked and removed from all lists, so at this point
395  * they are only "active" in this function, and possibly in nfs_wait_on_request
396  * with a reference held by some other context.
397  */
398 static void
399 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
400 				 struct nfs_page *old_head,
401 				 struct inode *inode)
402 {
403 	while (destroy_list) {
404 		struct nfs_page *subreq = destroy_list;
405 
406 		destroy_list = (subreq->wb_this_page == old_head) ?
407 				   NULL : subreq->wb_this_page;
408 
409 		WARN_ON_ONCE(old_head != subreq->wb_head);
410 
411 		/* make sure old group is not used */
412 		subreq->wb_this_page = subreq;
413 
414 		clear_bit(PG_REMOVE, &subreq->wb_flags);
415 
416 		/* Note: races with nfs_page_group_destroy() */
417 		if (!kref_read(&subreq->wb_kref)) {
418 			/* Check if we raced with nfs_page_group_destroy() */
419 			if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags))
420 				nfs_free_request(subreq);
421 			continue;
422 		}
423 
424 		subreq->wb_head = subreq;
425 
426 		if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
427 			nfs_release_request(subreq);
428 			atomic_long_dec(&NFS_I(inode)->nrequests);
429 		}
430 
431 		/* subreq is now totally disconnected from page group or any
432 		 * write / commit lists. last chance to wake any waiters */
433 		nfs_unlock_and_release_request(subreq);
434 	}
435 }
436 
437 /*
438  * nfs_lock_and_join_requests - join all subreqs to the head req and return
439  *                              a locked reference, cancelling any pending
440  *                              operations for this page.
441  *
442  * @page - the page used to lookup the "page group" of nfs_page structures
443  *
444  * This function joins all sub requests to the head request by first
445  * locking all requests in the group, cancelling any pending operations
446  * and finally updating the head request to cover the whole range covered by
447  * the (former) group.  All subrequests are removed from any write or commit
448  * lists, unlinked from the group and destroyed.
449  *
450  * Returns a locked, referenced pointer to the head request - which after
451  * this call is guaranteed to be the only request associated with the page.
452  * Returns NULL if no requests are found for @page, or a ERR_PTR if an
453  * error was encountered.
454  */
455 static struct nfs_page *
456 nfs_lock_and_join_requests(struct page *page)
457 {
458 	struct inode *inode = page_file_mapping(page)->host;
459 	struct nfs_page *head, *subreq;
460 	struct nfs_page *destroy_list = NULL;
461 	unsigned int total_bytes;
462 	int ret;
463 
464 try_again:
465 	/*
466 	 * A reference is taken only on the head request which acts as a
467 	 * reference to the whole page group - the group will not be destroyed
468 	 * until the head reference is released.
469 	 */
470 	head = nfs_page_find_head_request(page);
471 	if (!head)
472 		return NULL;
473 
474 	/* lock the page head first in order to avoid an ABBA inefficiency */
475 	if (!nfs_lock_request(head)) {
476 		ret = nfs_wait_on_request(head);
477 		nfs_release_request(head);
478 		if (ret < 0)
479 			return ERR_PTR(ret);
480 		goto try_again;
481 	}
482 
483 	/* Ensure that nobody removed the request before we locked it */
484 	if (head != nfs_page_private_request(page) && !PageSwapCache(page)) {
485 		nfs_unlock_and_release_request(head);
486 		goto try_again;
487 	}
488 
489 	ret = nfs_page_group_lock(head);
490 	if (ret < 0) {
491 		nfs_unlock_and_release_request(head);
492 		return ERR_PTR(ret);
493 	}
494 
495 	/* lock each request in the page group */
496 	total_bytes = head->wb_bytes;
497 	for (subreq = head->wb_this_page; subreq != head;
498 			subreq = subreq->wb_this_page) {
499 
500 		if (!kref_get_unless_zero(&subreq->wb_kref)) {
501 			if (subreq->wb_offset == head->wb_offset + total_bytes)
502 				total_bytes += subreq->wb_bytes;
503 			continue;
504 		}
505 
506 		while (!nfs_lock_request(subreq)) {
507 			/*
508 			 * Unlock page to allow nfs_page_group_sync_on_bit()
509 			 * to succeed
510 			 */
511 			nfs_page_group_unlock(head);
512 			ret = nfs_wait_on_request(subreq);
513 			if (!ret)
514 				ret = nfs_page_group_lock(head);
515 			if (ret < 0) {
516 				nfs_unroll_locks(inode, head, subreq);
517 				nfs_release_request(subreq);
518 				nfs_unlock_and_release_request(head);
519 				return ERR_PTR(ret);
520 			}
521 		}
522 		/*
523 		 * Subrequests are always contiguous, non overlapping
524 		 * and in order - but may be repeated (mirrored writes).
525 		 */
526 		if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
527 			/* keep track of how many bytes this group covers */
528 			total_bytes += subreq->wb_bytes;
529 		} else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
530 			    ((subreq->wb_offset + subreq->wb_bytes) >
531 			     (head->wb_offset + total_bytes)))) {
532 			nfs_page_group_unlock(head);
533 			nfs_unroll_locks(inode, head, subreq);
534 			nfs_unlock_and_release_request(subreq);
535 			nfs_unlock_and_release_request(head);
536 			return ERR_PTR(-EIO);
537 		}
538 	}
539 
540 	/* Now that all requests are locked, make sure they aren't on any list.
541 	 * Commit list removal accounting is done after locks are dropped */
542 	subreq = head;
543 	do {
544 		nfs_clear_request_commit(subreq);
545 		subreq = subreq->wb_this_page;
546 	} while (subreq != head);
547 
548 	/* unlink subrequests from head, destroy them later */
549 	if (head->wb_this_page != head) {
550 		/* destroy list will be terminated by head */
551 		destroy_list = head->wb_this_page;
552 		head->wb_this_page = head;
553 
554 		/* change head request to cover whole range that
555 		 * the former page group covered */
556 		head->wb_bytes = total_bytes;
557 	}
558 
559 	/* Postpone destruction of this request */
560 	if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) {
561 		set_bit(PG_INODE_REF, &head->wb_flags);
562 		kref_get(&head->wb_kref);
563 		atomic_long_inc(&NFS_I(inode)->nrequests);
564 	}
565 
566 	nfs_page_group_unlock(head);
567 
568 	nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
569 
570 	/* Did we lose a race with nfs_inode_remove_request()? */
571 	if (!(PagePrivate(page) || PageSwapCache(page))) {
572 		nfs_unlock_and_release_request(head);
573 		return NULL;
574 	}
575 
576 	/* still holds ref on head from nfs_page_find_head_request
577 	 * and still has lock on head from lock loop */
578 	return head;
579 }
580 
581 static void nfs_write_error_remove_page(struct nfs_page *req)
582 {
583 	nfs_end_page_writeback(req);
584 	generic_error_remove_page(page_file_mapping(req->wb_page),
585 				  req->wb_page);
586 	nfs_release_request(req);
587 }
588 
589 static bool
590 nfs_error_is_fatal_on_server(int err)
591 {
592 	switch (err) {
593 	case 0:
594 	case -ERESTARTSYS:
595 	case -EINTR:
596 		return false;
597 	}
598 	return nfs_error_is_fatal(err);
599 }
600 
601 /*
602  * Find an associated nfs write request, and prepare to flush it out
603  * May return an error if the user signalled nfs_wait_on_request().
604  */
605 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
606 				struct page *page)
607 {
608 	struct nfs_page *req;
609 	int ret = 0;
610 
611 	req = nfs_lock_and_join_requests(page);
612 	if (!req)
613 		goto out;
614 	ret = PTR_ERR(req);
615 	if (IS_ERR(req))
616 		goto out;
617 
618 	nfs_set_page_writeback(page);
619 	WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
620 
621 	ret = 0;
622 	/* If there is a fatal error that covers this write, just exit */
623 	if (nfs_error_is_fatal_on_server(req->wb_context->error))
624 		goto out_launder;
625 
626 	if (!nfs_pageio_add_request(pgio, req)) {
627 		ret = pgio->pg_error;
628 		/*
629 		 * Remove the problematic req upon fatal errors on the server
630 		 */
631 		if (nfs_error_is_fatal(ret)) {
632 			nfs_context_set_write_error(req->wb_context, ret);
633 			if (nfs_error_is_fatal_on_server(ret))
634 				goto out_launder;
635 		}
636 		nfs_redirty_request(req);
637 		ret = -EAGAIN;
638 	} else
639 		nfs_add_stats(page_file_mapping(page)->host,
640 				NFSIOS_WRITEPAGES, 1);
641 out:
642 	return ret;
643 out_launder:
644 	nfs_write_error_remove_page(req);
645 	return ret;
646 }
647 
648 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
649 			    struct nfs_pageio_descriptor *pgio)
650 {
651 	int ret;
652 
653 	nfs_pageio_cond_complete(pgio, page_index(page));
654 	ret = nfs_page_async_flush(pgio, page);
655 	if (ret == -EAGAIN) {
656 		redirty_page_for_writepage(wbc, page);
657 		ret = 0;
658 	}
659 	return ret;
660 }
661 
662 /*
663  * Write an mmapped page to the server.
664  */
665 static int nfs_writepage_locked(struct page *page,
666 				struct writeback_control *wbc)
667 {
668 	struct nfs_pageio_descriptor pgio;
669 	struct inode *inode = page_file_mapping(page)->host;
670 	int err;
671 
672 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
673 	nfs_pageio_init_write(&pgio, inode, 0,
674 				false, &nfs_async_write_completion_ops);
675 	err = nfs_do_writepage(page, wbc, &pgio);
676 	nfs_pageio_complete(&pgio);
677 	if (err < 0)
678 		return err;
679 	if (pgio.pg_error < 0)
680 		return pgio.pg_error;
681 	return 0;
682 }
683 
684 int nfs_writepage(struct page *page, struct writeback_control *wbc)
685 {
686 	int ret;
687 
688 	ret = nfs_writepage_locked(page, wbc);
689 	unlock_page(page);
690 	return ret;
691 }
692 
693 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
694 {
695 	int ret;
696 
697 	ret = nfs_do_writepage(page, wbc, data);
698 	unlock_page(page);
699 	return ret;
700 }
701 
702 static void nfs_io_completion_commit(void *inode)
703 {
704 	nfs_commit_inode(inode, 0);
705 }
706 
707 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
708 {
709 	struct inode *inode = mapping->host;
710 	struct nfs_pageio_descriptor pgio;
711 	struct nfs_io_completion *ioc = nfs_io_completion_alloc(GFP_NOFS);
712 	int err;
713 
714 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
715 
716 	if (ioc)
717 		nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
718 
719 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
720 				&nfs_async_write_completion_ops);
721 	pgio.pg_io_completion = ioc;
722 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
723 	nfs_pageio_complete(&pgio);
724 	nfs_io_completion_put(ioc);
725 
726 	if (err < 0)
727 		goto out_err;
728 	err = pgio.pg_error;
729 	if (err < 0)
730 		goto out_err;
731 	return 0;
732 out_err:
733 	return err;
734 }
735 
736 /*
737  * Insert a write request into an inode
738  */
739 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
740 {
741 	struct address_space *mapping = page_file_mapping(req->wb_page);
742 	struct nfs_inode *nfsi = NFS_I(inode);
743 
744 	WARN_ON_ONCE(req->wb_this_page != req);
745 
746 	/* Lock the request! */
747 	nfs_lock_request(req);
748 
749 	/*
750 	 * Swap-space should not get truncated. Hence no need to plug the race
751 	 * with invalidate/truncate.
752 	 */
753 	spin_lock(&mapping->private_lock);
754 	if (!nfs_have_writebacks(inode) &&
755 	    NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) {
756 		spin_lock(&inode->i_lock);
757 		inode->i_version++;
758 		spin_unlock(&inode->i_lock);
759 	}
760 	if (likely(!PageSwapCache(req->wb_page))) {
761 		set_bit(PG_MAPPED, &req->wb_flags);
762 		SetPagePrivate(req->wb_page);
763 		set_page_private(req->wb_page, (unsigned long)req);
764 	}
765 	spin_unlock(&mapping->private_lock);
766 	atomic_long_inc(&nfsi->nrequests);
767 	/* this a head request for a page group - mark it as having an
768 	 * extra reference so sub groups can follow suit.
769 	 * This flag also informs pgio layer when to bump nrequests when
770 	 * adding subrequests. */
771 	WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
772 	kref_get(&req->wb_kref);
773 }
774 
775 /*
776  * Remove a write request from an inode
777  */
778 static void nfs_inode_remove_request(struct nfs_page *req)
779 {
780 	struct address_space *mapping = page_file_mapping(req->wb_page);
781 	struct inode *inode = mapping->host;
782 	struct nfs_inode *nfsi = NFS_I(inode);
783 	struct nfs_page *head;
784 
785 	atomic_long_dec(&nfsi->nrequests);
786 	if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
787 		head = req->wb_head;
788 
789 		spin_lock(&mapping->private_lock);
790 		if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
791 			set_page_private(head->wb_page, 0);
792 			ClearPagePrivate(head->wb_page);
793 			clear_bit(PG_MAPPED, &head->wb_flags);
794 		}
795 		spin_unlock(&mapping->private_lock);
796 	}
797 
798 	if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags))
799 		nfs_release_request(req);
800 }
801 
802 static void
803 nfs_mark_request_dirty(struct nfs_page *req)
804 {
805 	if (req->wb_page)
806 		__set_page_dirty_nobuffers(req->wb_page);
807 }
808 
809 /*
810  * nfs_page_search_commits_for_head_request_locked
811  *
812  * Search through commit lists on @inode for the head request for @page.
813  * Must be called while holding the inode (which is cinfo) lock.
814  *
815  * Returns the head request if found, or NULL if not found.
816  */
817 static struct nfs_page *
818 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
819 						struct page *page)
820 {
821 	struct nfs_page *freq, *t;
822 	struct nfs_commit_info cinfo;
823 	struct inode *inode = &nfsi->vfs_inode;
824 
825 	nfs_init_cinfo_from_inode(&cinfo, inode);
826 
827 	/* search through pnfs commit lists */
828 	freq = pnfs_search_commit_reqs(inode, &cinfo, page);
829 	if (freq)
830 		return freq->wb_head;
831 
832 	/* Linearly search the commit list for the correct request */
833 	list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
834 		if (freq->wb_page == page)
835 			return freq->wb_head;
836 	}
837 
838 	return NULL;
839 }
840 
841 /**
842  * nfs_request_add_commit_list_locked - add request to a commit list
843  * @req: pointer to a struct nfs_page
844  * @dst: commit list head
845  * @cinfo: holds list lock and accounting info
846  *
847  * This sets the PG_CLEAN bit, updates the cinfo count of
848  * number of outstanding requests requiring a commit as well as
849  * the MM page stats.
850  *
851  * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
852  * nfs_page lock.
853  */
854 void
855 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
856 			    struct nfs_commit_info *cinfo)
857 {
858 	set_bit(PG_CLEAN, &req->wb_flags);
859 	nfs_list_add_request(req, dst);
860 	atomic_long_inc(&cinfo->mds->ncommit);
861 }
862 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
863 
864 /**
865  * nfs_request_add_commit_list - add request to a commit list
866  * @req: pointer to a struct nfs_page
867  * @dst: commit list head
868  * @cinfo: holds list lock and accounting info
869  *
870  * This sets the PG_CLEAN bit, updates the cinfo count of
871  * number of outstanding requests requiring a commit as well as
872  * the MM page stats.
873  *
874  * The caller must _not_ hold the cinfo->lock, but must be
875  * holding the nfs_page lock.
876  */
877 void
878 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
879 {
880 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
881 	nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
882 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
883 	if (req->wb_page)
884 		nfs_mark_page_unstable(req->wb_page, cinfo);
885 }
886 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
887 
888 /**
889  * nfs_request_remove_commit_list - Remove request from a commit list
890  * @req: pointer to a nfs_page
891  * @cinfo: holds list lock and accounting info
892  *
893  * This clears the PG_CLEAN bit, and updates the cinfo's count of
894  * number of outstanding requests requiring a commit
895  * It does not update the MM page stats.
896  *
897  * The caller _must_ hold the cinfo->lock and the nfs_page lock.
898  */
899 void
900 nfs_request_remove_commit_list(struct nfs_page *req,
901 			       struct nfs_commit_info *cinfo)
902 {
903 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
904 		return;
905 	nfs_list_remove_request(req);
906 	atomic_long_dec(&cinfo->mds->ncommit);
907 }
908 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
909 
910 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
911 				      struct inode *inode)
912 {
913 	cinfo->inode = inode;
914 	cinfo->mds = &NFS_I(inode)->commit_info;
915 	cinfo->ds = pnfs_get_ds_info(inode);
916 	cinfo->dreq = NULL;
917 	cinfo->completion_ops = &nfs_commit_completion_ops;
918 }
919 
920 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
921 		    struct inode *inode,
922 		    struct nfs_direct_req *dreq)
923 {
924 	if (dreq)
925 		nfs_init_cinfo_from_dreq(cinfo, dreq);
926 	else
927 		nfs_init_cinfo_from_inode(cinfo, inode);
928 }
929 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
930 
931 /*
932  * Add a request to the inode's commit list.
933  */
934 void
935 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
936 			struct nfs_commit_info *cinfo, u32 ds_commit_idx)
937 {
938 	if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
939 		return;
940 	nfs_request_add_commit_list(req, cinfo);
941 }
942 
943 static void
944 nfs_clear_page_commit(struct page *page)
945 {
946 	dec_node_page_state(page, NR_UNSTABLE_NFS);
947 	dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
948 		    WB_RECLAIMABLE);
949 }
950 
951 /* Called holding the request lock on @req */
952 static void
953 nfs_clear_request_commit(struct nfs_page *req)
954 {
955 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
956 		struct inode *inode = d_inode(req->wb_context->dentry);
957 		struct nfs_commit_info cinfo;
958 
959 		nfs_init_cinfo_from_inode(&cinfo, inode);
960 		mutex_lock(&NFS_I(inode)->commit_mutex);
961 		if (!pnfs_clear_request_commit(req, &cinfo)) {
962 			nfs_request_remove_commit_list(req, &cinfo);
963 		}
964 		mutex_unlock(&NFS_I(inode)->commit_mutex);
965 		nfs_clear_page_commit(req->wb_page);
966 	}
967 }
968 
969 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
970 {
971 	if (hdr->verf.committed == NFS_DATA_SYNC)
972 		return hdr->lseg == NULL;
973 	return hdr->verf.committed != NFS_FILE_SYNC;
974 }
975 
976 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
977 {
978 	nfs_io_completion_get(hdr->io_completion);
979 }
980 
981 static void nfs_write_completion(struct nfs_pgio_header *hdr)
982 {
983 	struct nfs_commit_info cinfo;
984 	unsigned long bytes = 0;
985 
986 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
987 		goto out;
988 	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
989 	while (!list_empty(&hdr->pages)) {
990 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
991 
992 		bytes += req->wb_bytes;
993 		nfs_list_remove_request(req);
994 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
995 		    (hdr->good_bytes < bytes)) {
996 			nfs_set_pageerror(req->wb_page);
997 			nfs_context_set_write_error(req->wb_context, hdr->error);
998 			goto remove_req;
999 		}
1000 		if (nfs_write_need_commit(hdr)) {
1001 			memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1002 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1003 				hdr->pgio_mirror_idx);
1004 			goto next;
1005 		}
1006 remove_req:
1007 		nfs_inode_remove_request(req);
1008 next:
1009 		nfs_end_page_writeback(req);
1010 		nfs_release_request(req);
1011 	}
1012 out:
1013 	nfs_io_completion_put(hdr->io_completion);
1014 	hdr->release(hdr);
1015 }
1016 
1017 unsigned long
1018 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1019 {
1020 	return atomic_long_read(&cinfo->mds->ncommit);
1021 }
1022 
1023 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1024 int
1025 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1026 		     struct nfs_commit_info *cinfo, int max)
1027 {
1028 	struct nfs_page *req, *tmp;
1029 	int ret = 0;
1030 
1031 restart:
1032 	list_for_each_entry_safe(req, tmp, src, wb_list) {
1033 		kref_get(&req->wb_kref);
1034 		if (!nfs_lock_request(req)) {
1035 			int status;
1036 
1037 			/* Prevent deadlock with nfs_lock_and_join_requests */
1038 			if (!list_empty(dst)) {
1039 				nfs_release_request(req);
1040 				continue;
1041 			}
1042 			/* Ensure we make progress to prevent livelock */
1043 			mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1044 			status = nfs_wait_on_request(req);
1045 			nfs_release_request(req);
1046 			mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1047 			if (status < 0)
1048 				break;
1049 			goto restart;
1050 		}
1051 		nfs_request_remove_commit_list(req, cinfo);
1052 		clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1053 		nfs_list_add_request(req, dst);
1054 		ret++;
1055 		if ((ret == max) && !cinfo->dreq)
1056 			break;
1057 		cond_resched();
1058 	}
1059 	return ret;
1060 }
1061 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1062 
1063 /*
1064  * nfs_scan_commit - Scan an inode for commit requests
1065  * @inode: NFS inode to scan
1066  * @dst: mds destination list
1067  * @cinfo: mds and ds lists of reqs ready to commit
1068  *
1069  * Moves requests from the inode's 'commit' request list.
1070  * The requests are *not* checked to ensure that they form a contiguous set.
1071  */
1072 int
1073 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1074 		struct nfs_commit_info *cinfo)
1075 {
1076 	int ret = 0;
1077 
1078 	if (!atomic_long_read(&cinfo->mds->ncommit))
1079 		return 0;
1080 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1081 	if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1082 		const int max = INT_MAX;
1083 
1084 		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1085 					   cinfo, max);
1086 		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1087 	}
1088 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1089 	return ret;
1090 }
1091 
1092 /*
1093  * Search for an existing write request, and attempt to update
1094  * it to reflect a new dirty region on a given page.
1095  *
1096  * If the attempt fails, then the existing request is flushed out
1097  * to disk.
1098  */
1099 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1100 		struct page *page,
1101 		unsigned int offset,
1102 		unsigned int bytes)
1103 {
1104 	struct nfs_page *req;
1105 	unsigned int rqend;
1106 	unsigned int end;
1107 	int error;
1108 
1109 	end = offset + bytes;
1110 
1111 	req = nfs_lock_and_join_requests(page);
1112 	if (IS_ERR_OR_NULL(req))
1113 		return req;
1114 
1115 	rqend = req->wb_offset + req->wb_bytes;
1116 	/*
1117 	 * Tell the caller to flush out the request if
1118 	 * the offsets are non-contiguous.
1119 	 * Note: nfs_flush_incompatible() will already
1120 	 * have flushed out requests having wrong owners.
1121 	 */
1122 	if (offset > rqend || end < req->wb_offset)
1123 		goto out_flushme;
1124 
1125 	/* Okay, the request matches. Update the region */
1126 	if (offset < req->wb_offset) {
1127 		req->wb_offset = offset;
1128 		req->wb_pgbase = offset;
1129 	}
1130 	if (end > rqend)
1131 		req->wb_bytes = end - req->wb_offset;
1132 	else
1133 		req->wb_bytes = rqend - req->wb_offset;
1134 	return req;
1135 out_flushme:
1136 	/*
1137 	 * Note: we mark the request dirty here because
1138 	 * nfs_lock_and_join_requests() cannot preserve
1139 	 * commit flags, so we have to replay the write.
1140 	 */
1141 	nfs_mark_request_dirty(req);
1142 	nfs_unlock_and_release_request(req);
1143 	error = nfs_wb_page(inode, page);
1144 	return (error < 0) ? ERR_PTR(error) : NULL;
1145 }
1146 
1147 /*
1148  * Try to update an existing write request, or create one if there is none.
1149  *
1150  * Note: Should always be called with the Page Lock held to prevent races
1151  * if we have to add a new request. Also assumes that the caller has
1152  * already called nfs_flush_incompatible() if necessary.
1153  */
1154 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1155 		struct page *page, unsigned int offset, unsigned int bytes)
1156 {
1157 	struct inode *inode = page_file_mapping(page)->host;
1158 	struct nfs_page	*req;
1159 
1160 	req = nfs_try_to_update_request(inode, page, offset, bytes);
1161 	if (req != NULL)
1162 		goto out;
1163 	req = nfs_create_request(ctx, page, NULL, offset, bytes);
1164 	if (IS_ERR(req))
1165 		goto out;
1166 	nfs_inode_add_request(inode, req);
1167 out:
1168 	return req;
1169 }
1170 
1171 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1172 		unsigned int offset, unsigned int count)
1173 {
1174 	struct nfs_page	*req;
1175 
1176 	req = nfs_setup_write_request(ctx, page, offset, count);
1177 	if (IS_ERR(req))
1178 		return PTR_ERR(req);
1179 	/* Update file length */
1180 	nfs_grow_file(page, offset, count);
1181 	nfs_mark_uptodate(req);
1182 	nfs_mark_request_dirty(req);
1183 	nfs_unlock_and_release_request(req);
1184 	return 0;
1185 }
1186 
1187 int nfs_flush_incompatible(struct file *file, struct page *page)
1188 {
1189 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1190 	struct nfs_lock_context *l_ctx;
1191 	struct file_lock_context *flctx = file_inode(file)->i_flctx;
1192 	struct nfs_page	*req;
1193 	int do_flush, status;
1194 	/*
1195 	 * Look for a request corresponding to this page. If there
1196 	 * is one, and it belongs to another file, we flush it out
1197 	 * before we try to copy anything into the page. Do this
1198 	 * due to the lack of an ACCESS-type call in NFSv2.
1199 	 * Also do the same if we find a request from an existing
1200 	 * dropped page.
1201 	 */
1202 	do {
1203 		req = nfs_page_find_head_request(page);
1204 		if (req == NULL)
1205 			return 0;
1206 		l_ctx = req->wb_lock_context;
1207 		do_flush = req->wb_page != page ||
1208 			!nfs_match_open_context(req->wb_context, ctx);
1209 		if (l_ctx && flctx &&
1210 		    !(list_empty_careful(&flctx->flc_posix) &&
1211 		      list_empty_careful(&flctx->flc_flock))) {
1212 			do_flush |= l_ctx->lockowner != current->files;
1213 		}
1214 		nfs_release_request(req);
1215 		if (!do_flush)
1216 			return 0;
1217 		status = nfs_wb_page(page_file_mapping(page)->host, page);
1218 	} while (status == 0);
1219 	return status;
1220 }
1221 
1222 /*
1223  * Avoid buffered writes when a open context credential's key would
1224  * expire soon.
1225  *
1226  * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1227  *
1228  * Return 0 and set a credential flag which triggers the inode to flush
1229  * and performs  NFS_FILE_SYNC writes if the key will expired within
1230  * RPC_KEY_EXPIRE_TIMEO.
1231  */
1232 int
1233 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1234 {
1235 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
1236 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1237 
1238 	return rpcauth_key_timeout_notify(auth, ctx->cred);
1239 }
1240 
1241 /*
1242  * Test if the open context credential key is marked to expire soon.
1243  */
1244 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1245 {
1246 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1247 
1248 	return rpcauth_cred_key_to_expire(auth, ctx->cred);
1249 }
1250 
1251 /*
1252  * If the page cache is marked as unsafe or invalid, then we can't rely on
1253  * the PageUptodate() flag. In this case, we will need to turn off
1254  * write optimisations that depend on the page contents being correct.
1255  */
1256 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1257 {
1258 	struct nfs_inode *nfsi = NFS_I(inode);
1259 
1260 	if (nfs_have_delegated_attributes(inode))
1261 		goto out;
1262 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1263 		return false;
1264 	smp_rmb();
1265 	if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1266 		return false;
1267 out:
1268 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1269 		return false;
1270 	return PageUptodate(page) != 0;
1271 }
1272 
1273 static bool
1274 is_whole_file_wrlock(struct file_lock *fl)
1275 {
1276 	return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1277 			fl->fl_type == F_WRLCK;
1278 }
1279 
1280 /* If we know the page is up to date, and we're not using byte range locks (or
1281  * if we have the whole file locked for writing), it may be more efficient to
1282  * extend the write to cover the entire page in order to avoid fragmentation
1283  * inefficiencies.
1284  *
1285  * If the file is opened for synchronous writes then we can just skip the rest
1286  * of the checks.
1287  */
1288 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1289 {
1290 	int ret;
1291 	struct file_lock_context *flctx = inode->i_flctx;
1292 	struct file_lock *fl;
1293 
1294 	if (file->f_flags & O_DSYNC)
1295 		return 0;
1296 	if (!nfs_write_pageuptodate(page, inode))
1297 		return 0;
1298 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1299 		return 1;
1300 	if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1301 		       list_empty_careful(&flctx->flc_posix)))
1302 		return 1;
1303 
1304 	/* Check to see if there are whole file write locks */
1305 	ret = 0;
1306 	spin_lock(&flctx->flc_lock);
1307 	if (!list_empty(&flctx->flc_posix)) {
1308 		fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1309 					fl_list);
1310 		if (is_whole_file_wrlock(fl))
1311 			ret = 1;
1312 	} else if (!list_empty(&flctx->flc_flock)) {
1313 		fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1314 					fl_list);
1315 		if (fl->fl_type == F_WRLCK)
1316 			ret = 1;
1317 	}
1318 	spin_unlock(&flctx->flc_lock);
1319 	return ret;
1320 }
1321 
1322 /*
1323  * Update and possibly write a cached page of an NFS file.
1324  *
1325  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1326  * things with a page scheduled for an RPC call (e.g. invalidate it).
1327  */
1328 int nfs_updatepage(struct file *file, struct page *page,
1329 		unsigned int offset, unsigned int count)
1330 {
1331 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1332 	struct inode	*inode = page_file_mapping(page)->host;
1333 	int		status = 0;
1334 
1335 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1336 
1337 	dprintk("NFS:       nfs_updatepage(%pD2 %d@%lld)\n",
1338 		file, count, (long long)(page_file_offset(page) + offset));
1339 
1340 	if (!count)
1341 		goto out;
1342 
1343 	if (nfs_can_extend_write(file, page, inode)) {
1344 		count = max(count + offset, nfs_page_length(page));
1345 		offset = 0;
1346 	}
1347 
1348 	status = nfs_writepage_setup(ctx, page, offset, count);
1349 	if (status < 0)
1350 		nfs_set_pageerror(page);
1351 	else
1352 		__set_page_dirty_nobuffers(page);
1353 out:
1354 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
1355 			status, (long long)i_size_read(inode));
1356 	return status;
1357 }
1358 
1359 static int flush_task_priority(int how)
1360 {
1361 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1362 		case FLUSH_HIGHPRI:
1363 			return RPC_PRIORITY_HIGH;
1364 		case FLUSH_LOWPRI:
1365 			return RPC_PRIORITY_LOW;
1366 	}
1367 	return RPC_PRIORITY_NORMAL;
1368 }
1369 
1370 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1371 			       struct rpc_message *msg,
1372 			       const struct nfs_rpc_ops *rpc_ops,
1373 			       struct rpc_task_setup *task_setup_data, int how)
1374 {
1375 	int priority = flush_task_priority(how);
1376 
1377 	task_setup_data->priority = priority;
1378 	rpc_ops->write_setup(hdr, msg);
1379 	trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes,
1380 				 hdr->args.stable);
1381 
1382 	nfs4_state_protect_write(NFS_SERVER(hdr->inode)->nfs_client,
1383 				 &task_setup_data->rpc_client, msg, hdr);
1384 }
1385 
1386 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1387  * call this on each, which will prepare them to be retried on next
1388  * writeback using standard nfs.
1389  */
1390 static void nfs_redirty_request(struct nfs_page *req)
1391 {
1392 	nfs_mark_request_dirty(req);
1393 	set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1394 	nfs_end_page_writeback(req);
1395 	nfs_release_request(req);
1396 }
1397 
1398 static void nfs_async_write_error(struct list_head *head)
1399 {
1400 	struct nfs_page	*req;
1401 
1402 	while (!list_empty(head)) {
1403 		req = nfs_list_entry(head->next);
1404 		nfs_list_remove_request(req);
1405 		nfs_redirty_request(req);
1406 	}
1407 }
1408 
1409 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1410 {
1411 	nfs_async_write_error(&hdr->pages);
1412 }
1413 
1414 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1415 	.init_hdr = nfs_async_write_init,
1416 	.error_cleanup = nfs_async_write_error,
1417 	.completion = nfs_write_completion,
1418 	.reschedule_io = nfs_async_write_reschedule_io,
1419 };
1420 
1421 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1422 			       struct inode *inode, int ioflags, bool force_mds,
1423 			       const struct nfs_pgio_completion_ops *compl_ops)
1424 {
1425 	struct nfs_server *server = NFS_SERVER(inode);
1426 	const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1427 
1428 #ifdef CONFIG_NFS_V4_1
1429 	if (server->pnfs_curr_ld && !force_mds)
1430 		pg_ops = server->pnfs_curr_ld->pg_write_ops;
1431 #endif
1432 	nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1433 			server->wsize, ioflags);
1434 }
1435 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1436 
1437 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1438 {
1439 	struct nfs_pgio_mirror *mirror;
1440 
1441 	if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1442 		pgio->pg_ops->pg_cleanup(pgio);
1443 
1444 	pgio->pg_ops = &nfs_pgio_rw_ops;
1445 
1446 	nfs_pageio_stop_mirroring(pgio);
1447 
1448 	mirror = &pgio->pg_mirrors[0];
1449 	mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1450 }
1451 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1452 
1453 
1454 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1455 {
1456 	struct nfs_commit_data *data = calldata;
1457 
1458 	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1459 }
1460 
1461 /*
1462  * Special version of should_remove_suid() that ignores capabilities.
1463  */
1464 static int nfs_should_remove_suid(const struct inode *inode)
1465 {
1466 	umode_t mode = inode->i_mode;
1467 	int kill = 0;
1468 
1469 	/* suid always must be killed */
1470 	if (unlikely(mode & S_ISUID))
1471 		kill = ATTR_KILL_SUID;
1472 
1473 	/*
1474 	 * sgid without any exec bits is just a mandatory locking mark; leave
1475 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1476 	 */
1477 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1478 		kill |= ATTR_KILL_SGID;
1479 
1480 	if (unlikely(kill && S_ISREG(mode)))
1481 		return kill;
1482 
1483 	return 0;
1484 }
1485 
1486 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1487 		struct nfs_fattr *fattr)
1488 {
1489 	struct nfs_pgio_args *argp = &hdr->args;
1490 	struct nfs_pgio_res *resp = &hdr->res;
1491 	u64 size = argp->offset + resp->count;
1492 
1493 	if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1494 		fattr->size = size;
1495 	if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1496 		fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1497 		return;
1498 	}
1499 	if (size != fattr->size)
1500 		return;
1501 	/* Set attribute barrier */
1502 	nfs_fattr_set_barrier(fattr);
1503 	/* ...and update size */
1504 	fattr->valid |= NFS_ATTR_FATTR_SIZE;
1505 }
1506 
1507 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1508 {
1509 	struct nfs_fattr *fattr = &hdr->fattr;
1510 	struct inode *inode = hdr->inode;
1511 
1512 	spin_lock(&inode->i_lock);
1513 	nfs_writeback_check_extend(hdr, fattr);
1514 	nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1515 	spin_unlock(&inode->i_lock);
1516 }
1517 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1518 
1519 /*
1520  * This function is called when the WRITE call is complete.
1521  */
1522 static int nfs_writeback_done(struct rpc_task *task,
1523 			      struct nfs_pgio_header *hdr,
1524 			      struct inode *inode)
1525 {
1526 	int status;
1527 
1528 	/*
1529 	 * ->write_done will attempt to use post-op attributes to detect
1530 	 * conflicting writes by other clients.  A strict interpretation
1531 	 * of close-to-open would allow us to continue caching even if
1532 	 * another writer had changed the file, but some applications
1533 	 * depend on tighter cache coherency when writing.
1534 	 */
1535 	status = NFS_PROTO(inode)->write_done(task, hdr);
1536 	if (status != 0)
1537 		return status;
1538 
1539 	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1540 	trace_nfs_writeback_done(inode, task->tk_status,
1541 				 hdr->args.offset, hdr->res.verf);
1542 
1543 	if (hdr->res.verf->committed < hdr->args.stable &&
1544 	    task->tk_status >= 0) {
1545 		/* We tried a write call, but the server did not
1546 		 * commit data to stable storage even though we
1547 		 * requested it.
1548 		 * Note: There is a known bug in Tru64 < 5.0 in which
1549 		 *	 the server reports NFS_DATA_SYNC, but performs
1550 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1551 		 *	 as a dprintk() in order to avoid filling syslog.
1552 		 */
1553 		static unsigned long    complain;
1554 
1555 		/* Note this will print the MDS for a DS write */
1556 		if (time_before(complain, jiffies)) {
1557 			dprintk("NFS:       faulty NFS server %s:"
1558 				" (committed = %d) != (stable = %d)\n",
1559 				NFS_SERVER(inode)->nfs_client->cl_hostname,
1560 				hdr->res.verf->committed, hdr->args.stable);
1561 			complain = jiffies + 300 * HZ;
1562 		}
1563 	}
1564 
1565 	/* Deal with the suid/sgid bit corner case */
1566 	if (nfs_should_remove_suid(inode))
1567 		nfs_mark_for_revalidate(inode);
1568 	return 0;
1569 }
1570 
1571 /*
1572  * This function is called when the WRITE call is complete.
1573  */
1574 static void nfs_writeback_result(struct rpc_task *task,
1575 				 struct nfs_pgio_header *hdr)
1576 {
1577 	struct nfs_pgio_args	*argp = &hdr->args;
1578 	struct nfs_pgio_res	*resp = &hdr->res;
1579 
1580 	if (resp->count < argp->count) {
1581 		static unsigned long    complain;
1582 
1583 		/* This a short write! */
1584 		nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1585 
1586 		/* Has the server at least made some progress? */
1587 		if (resp->count == 0) {
1588 			if (time_before(complain, jiffies)) {
1589 				printk(KERN_WARNING
1590 				       "NFS: Server wrote zero bytes, expected %u.\n",
1591 				       argp->count);
1592 				complain = jiffies + 300 * HZ;
1593 			}
1594 			nfs_set_pgio_error(hdr, -EIO, argp->offset);
1595 			task->tk_status = -EIO;
1596 			return;
1597 		}
1598 
1599 		/* For non rpc-based layout drivers, retry-through-MDS */
1600 		if (!task->tk_ops) {
1601 			hdr->pnfs_error = -EAGAIN;
1602 			return;
1603 		}
1604 
1605 		/* Was this an NFSv2 write or an NFSv3 stable write? */
1606 		if (resp->verf->committed != NFS_UNSTABLE) {
1607 			/* Resend from where the server left off */
1608 			hdr->mds_offset += resp->count;
1609 			argp->offset += resp->count;
1610 			argp->pgbase += resp->count;
1611 			argp->count -= resp->count;
1612 		} else {
1613 			/* Resend as a stable write in order to avoid
1614 			 * headaches in the case of a server crash.
1615 			 */
1616 			argp->stable = NFS_FILE_SYNC;
1617 		}
1618 		rpc_restart_call_prepare(task);
1619 	}
1620 }
1621 
1622 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1623 {
1624 	return wait_on_atomic_t(&cinfo->rpcs_out,
1625 			nfs_wait_atomic_killable, TASK_KILLABLE);
1626 }
1627 
1628 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1629 {
1630 	atomic_inc(&cinfo->rpcs_out);
1631 }
1632 
1633 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1634 {
1635 	if (atomic_dec_and_test(&cinfo->rpcs_out))
1636 		wake_up_atomic_t(&cinfo->rpcs_out);
1637 }
1638 
1639 void nfs_commitdata_release(struct nfs_commit_data *data)
1640 {
1641 	put_nfs_open_context(data->context);
1642 	nfs_commit_free(data);
1643 }
1644 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1645 
1646 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1647 			const struct nfs_rpc_ops *nfs_ops,
1648 			const struct rpc_call_ops *call_ops,
1649 			int how, int flags)
1650 {
1651 	struct rpc_task *task;
1652 	int priority = flush_task_priority(how);
1653 	struct rpc_message msg = {
1654 		.rpc_argp = &data->args,
1655 		.rpc_resp = &data->res,
1656 		.rpc_cred = data->cred,
1657 	};
1658 	struct rpc_task_setup task_setup_data = {
1659 		.task = &data->task,
1660 		.rpc_client = clnt,
1661 		.rpc_message = &msg,
1662 		.callback_ops = call_ops,
1663 		.callback_data = data,
1664 		.workqueue = nfsiod_workqueue,
1665 		.flags = RPC_TASK_ASYNC | flags,
1666 		.priority = priority,
1667 	};
1668 	/* Set up the initial task struct.  */
1669 	nfs_ops->commit_setup(data, &msg);
1670 	trace_nfs_initiate_commit(data);
1671 
1672 	dprintk("NFS: initiated commit call\n");
1673 
1674 	nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client,
1675 		NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg);
1676 
1677 	task = rpc_run_task(&task_setup_data);
1678 	if (IS_ERR(task))
1679 		return PTR_ERR(task);
1680 	if (how & FLUSH_SYNC)
1681 		rpc_wait_for_completion_task(task);
1682 	rpc_put_task(task);
1683 	return 0;
1684 }
1685 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1686 
1687 static loff_t nfs_get_lwb(struct list_head *head)
1688 {
1689 	loff_t lwb = 0;
1690 	struct nfs_page *req;
1691 
1692 	list_for_each_entry(req, head, wb_list)
1693 		if (lwb < (req_offset(req) + req->wb_bytes))
1694 			lwb = req_offset(req) + req->wb_bytes;
1695 
1696 	return lwb;
1697 }
1698 
1699 /*
1700  * Set up the argument/result storage required for the RPC call.
1701  */
1702 void nfs_init_commit(struct nfs_commit_data *data,
1703 		     struct list_head *head,
1704 		     struct pnfs_layout_segment *lseg,
1705 		     struct nfs_commit_info *cinfo)
1706 {
1707 	struct nfs_page *first = nfs_list_entry(head->next);
1708 	struct inode *inode = d_inode(first->wb_context->dentry);
1709 
1710 	/* Set up the RPC argument and reply structs
1711 	 * NB: take care not to mess about with data->commit et al. */
1712 
1713 	list_splice_init(head, &data->pages);
1714 
1715 	data->inode	  = inode;
1716 	data->cred	  = first->wb_context->cred;
1717 	data->lseg	  = lseg; /* reference transferred */
1718 	/* only set lwb for pnfs commit */
1719 	if (lseg)
1720 		data->lwb = nfs_get_lwb(&data->pages);
1721 	data->mds_ops     = &nfs_commit_ops;
1722 	data->completion_ops = cinfo->completion_ops;
1723 	data->dreq	  = cinfo->dreq;
1724 
1725 	data->args.fh     = NFS_FH(data->inode);
1726 	/* Note: we always request a commit of the entire inode */
1727 	data->args.offset = 0;
1728 	data->args.count  = 0;
1729 	data->context     = get_nfs_open_context(first->wb_context);
1730 	data->res.fattr   = &data->fattr;
1731 	data->res.verf    = &data->verf;
1732 	nfs_fattr_init(&data->fattr);
1733 }
1734 EXPORT_SYMBOL_GPL(nfs_init_commit);
1735 
1736 void nfs_retry_commit(struct list_head *page_list,
1737 		      struct pnfs_layout_segment *lseg,
1738 		      struct nfs_commit_info *cinfo,
1739 		      u32 ds_commit_idx)
1740 {
1741 	struct nfs_page *req;
1742 
1743 	while (!list_empty(page_list)) {
1744 		req = nfs_list_entry(page_list->next);
1745 		nfs_list_remove_request(req);
1746 		nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1747 		if (!cinfo->dreq)
1748 			nfs_clear_page_commit(req->wb_page);
1749 		nfs_unlock_and_release_request(req);
1750 	}
1751 }
1752 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1753 
1754 static void
1755 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1756 		struct nfs_page *req)
1757 {
1758 	__set_page_dirty_nobuffers(req->wb_page);
1759 }
1760 
1761 /*
1762  * Commit dirty pages
1763  */
1764 static int
1765 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1766 		struct nfs_commit_info *cinfo)
1767 {
1768 	struct nfs_commit_data	*data;
1769 
1770 	/* another commit raced with us */
1771 	if (list_empty(head))
1772 		return 0;
1773 
1774 	data = nfs_commitdata_alloc(true);
1775 
1776 	/* Set up the argument struct */
1777 	nfs_init_commit(data, head, NULL, cinfo);
1778 	atomic_inc(&cinfo->mds->rpcs_out);
1779 	return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1780 				   data->mds_ops, how, 0);
1781 }
1782 
1783 /*
1784  * COMMIT call returned
1785  */
1786 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1787 {
1788 	struct nfs_commit_data	*data = calldata;
1789 
1790         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1791                                 task->tk_pid, task->tk_status);
1792 
1793 	/* Call the NFS version-specific code */
1794 	NFS_PROTO(data->inode)->commit_done(task, data);
1795 	trace_nfs_commit_done(data);
1796 }
1797 
1798 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1799 {
1800 	struct nfs_page	*req;
1801 	int status = data->task.tk_status;
1802 	struct nfs_commit_info cinfo;
1803 	struct nfs_server *nfss;
1804 
1805 	while (!list_empty(&data->pages)) {
1806 		req = nfs_list_entry(data->pages.next);
1807 		nfs_list_remove_request(req);
1808 		if (req->wb_page)
1809 			nfs_clear_page_commit(req->wb_page);
1810 
1811 		dprintk("NFS:       commit (%s/%llu %d@%lld)",
1812 			req->wb_context->dentry->d_sb->s_id,
1813 			(unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
1814 			req->wb_bytes,
1815 			(long long)req_offset(req));
1816 		if (status < 0) {
1817 			nfs_context_set_write_error(req->wb_context, status);
1818 			if (req->wb_page)
1819 				nfs_inode_remove_request(req);
1820 			dprintk_cont(", error = %d\n", status);
1821 			goto next;
1822 		}
1823 
1824 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1825 		 * returned by the server against all stored verfs. */
1826 		if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) {
1827 			/* We have a match */
1828 			if (req->wb_page)
1829 				nfs_inode_remove_request(req);
1830 			dprintk_cont(" OK\n");
1831 			goto next;
1832 		}
1833 		/* We have a mismatch. Write the page again */
1834 		dprintk_cont(" mismatch\n");
1835 		nfs_mark_request_dirty(req);
1836 		set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1837 	next:
1838 		nfs_unlock_and_release_request(req);
1839 	}
1840 	nfss = NFS_SERVER(data->inode);
1841 	if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1842 		clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1843 
1844 	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1845 	nfs_commit_end(cinfo.mds);
1846 }
1847 
1848 static void nfs_commit_release(void *calldata)
1849 {
1850 	struct nfs_commit_data *data = calldata;
1851 
1852 	data->completion_ops->completion(data);
1853 	nfs_commitdata_release(calldata);
1854 }
1855 
1856 static const struct rpc_call_ops nfs_commit_ops = {
1857 	.rpc_call_prepare = nfs_commit_prepare,
1858 	.rpc_call_done = nfs_commit_done,
1859 	.rpc_release = nfs_commit_release,
1860 };
1861 
1862 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1863 	.completion = nfs_commit_release_pages,
1864 	.resched_write = nfs_commit_resched_write,
1865 };
1866 
1867 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1868 			    int how, struct nfs_commit_info *cinfo)
1869 {
1870 	int status;
1871 
1872 	status = pnfs_commit_list(inode, head, how, cinfo);
1873 	if (status == PNFS_NOT_ATTEMPTED)
1874 		status = nfs_commit_list(inode, head, how, cinfo);
1875 	return status;
1876 }
1877 
1878 int nfs_commit_inode(struct inode *inode, int how)
1879 {
1880 	LIST_HEAD(head);
1881 	struct nfs_commit_info cinfo;
1882 	int may_wait = how & FLUSH_SYNC;
1883 	int error = 0;
1884 	int res;
1885 
1886 	nfs_init_cinfo_from_inode(&cinfo, inode);
1887 	nfs_commit_begin(cinfo.mds);
1888 	res = nfs_scan_commit(inode, &head, &cinfo);
1889 	if (res)
1890 		error = nfs_generic_commit_list(inode, &head, how, &cinfo);
1891 	nfs_commit_end(cinfo.mds);
1892 	if (error < 0)
1893 		goto out_error;
1894 	if (!may_wait)
1895 		goto out_mark_dirty;
1896 	error = wait_on_commit(cinfo.mds);
1897 	if (error < 0)
1898 		return error;
1899 	return res;
1900 out_error:
1901 	res = error;
1902 	/* Note: If we exit without ensuring that the commit is complete,
1903 	 * we must mark the inode as dirty. Otherwise, future calls to
1904 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1905 	 * that the data is on the disk.
1906 	 */
1907 out_mark_dirty:
1908 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1909 	return res;
1910 }
1911 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1912 
1913 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1914 {
1915 	struct nfs_inode *nfsi = NFS_I(inode);
1916 	int flags = FLUSH_SYNC;
1917 	int ret = 0;
1918 
1919 	/* no commits means nothing needs to be done */
1920 	if (!atomic_long_read(&nfsi->commit_info.ncommit))
1921 		return ret;
1922 
1923 	if (wbc->sync_mode == WB_SYNC_NONE) {
1924 		/* Don't commit yet if this is a non-blocking flush and there
1925 		 * are a lot of outstanding writes for this mapping.
1926 		 */
1927 		if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1928 			goto out_mark_dirty;
1929 
1930 		/* don't wait for the COMMIT response */
1931 		flags = 0;
1932 	}
1933 
1934 	ret = nfs_commit_inode(inode, flags);
1935 	if (ret >= 0) {
1936 		if (wbc->sync_mode == WB_SYNC_NONE) {
1937 			if (ret < wbc->nr_to_write)
1938 				wbc->nr_to_write -= ret;
1939 			else
1940 				wbc->nr_to_write = 0;
1941 		}
1942 		return 0;
1943 	}
1944 out_mark_dirty:
1945 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1946 	return ret;
1947 }
1948 EXPORT_SYMBOL_GPL(nfs_write_inode);
1949 
1950 /*
1951  * Wrapper for filemap_write_and_wait_range()
1952  *
1953  * Needed for pNFS in order to ensure data becomes visible to the
1954  * client.
1955  */
1956 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
1957 		loff_t lstart, loff_t lend)
1958 {
1959 	int ret;
1960 
1961 	ret = filemap_write_and_wait_range(mapping, lstart, lend);
1962 	if (ret == 0)
1963 		ret = pnfs_sync_inode(mapping->host, true);
1964 	return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
1967 
1968 /*
1969  * flush the inode to disk.
1970  */
1971 int nfs_wb_all(struct inode *inode)
1972 {
1973 	int ret;
1974 
1975 	trace_nfs_writeback_inode_enter(inode);
1976 
1977 	ret = filemap_write_and_wait(inode->i_mapping);
1978 	if (ret)
1979 		goto out;
1980 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
1981 	if (ret < 0)
1982 		goto out;
1983 	pnfs_sync_inode(inode, true);
1984 	ret = 0;
1985 
1986 out:
1987 	trace_nfs_writeback_inode_exit(inode, ret);
1988 	return ret;
1989 }
1990 EXPORT_SYMBOL_GPL(nfs_wb_all);
1991 
1992 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1993 {
1994 	struct nfs_page *req;
1995 	int ret = 0;
1996 
1997 	wait_on_page_writeback(page);
1998 
1999 	/* blocking call to cancel all requests and join to a single (head)
2000 	 * request */
2001 	req = nfs_lock_and_join_requests(page);
2002 
2003 	if (IS_ERR(req)) {
2004 		ret = PTR_ERR(req);
2005 	} else if (req) {
2006 		/* all requests from this page have been cancelled by
2007 		 * nfs_lock_and_join_requests, so just remove the head
2008 		 * request from the inode / page_private pointer and
2009 		 * release it */
2010 		nfs_inode_remove_request(req);
2011 		nfs_unlock_and_release_request(req);
2012 	}
2013 
2014 	return ret;
2015 }
2016 
2017 /*
2018  * Write back all requests on one page - we do this before reading it.
2019  */
2020 int nfs_wb_page(struct inode *inode, struct page *page)
2021 {
2022 	loff_t range_start = page_file_offset(page);
2023 	loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2024 	struct writeback_control wbc = {
2025 		.sync_mode = WB_SYNC_ALL,
2026 		.nr_to_write = 0,
2027 		.range_start = range_start,
2028 		.range_end = range_end,
2029 	};
2030 	int ret;
2031 
2032 	trace_nfs_writeback_page_enter(inode);
2033 
2034 	for (;;) {
2035 		wait_on_page_writeback(page);
2036 		if (clear_page_dirty_for_io(page)) {
2037 			ret = nfs_writepage_locked(page, &wbc);
2038 			if (ret < 0)
2039 				goto out_error;
2040 			continue;
2041 		}
2042 		ret = 0;
2043 		if (!PagePrivate(page))
2044 			break;
2045 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
2046 		if (ret < 0)
2047 			goto out_error;
2048 	}
2049 out_error:
2050 	trace_nfs_writeback_page_exit(inode, ret);
2051 	return ret;
2052 }
2053 
2054 #ifdef CONFIG_MIGRATION
2055 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2056 		struct page *page, enum migrate_mode mode)
2057 {
2058 	/*
2059 	 * If PagePrivate is set, then the page is currently associated with
2060 	 * an in-progress read or write request. Don't try to migrate it.
2061 	 *
2062 	 * FIXME: we could do this in principle, but we'll need a way to ensure
2063 	 *        that we can safely release the inode reference while holding
2064 	 *        the page lock.
2065 	 */
2066 	if (PagePrivate(page))
2067 		return -EBUSY;
2068 
2069 	if (!nfs_fscache_release_page(page, GFP_KERNEL))
2070 		return -EBUSY;
2071 
2072 	return migrate_page(mapping, newpage, page, mode);
2073 }
2074 #endif
2075 
2076 int __init nfs_init_writepagecache(void)
2077 {
2078 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2079 					     sizeof(struct nfs_pgio_header),
2080 					     0, SLAB_HWCACHE_ALIGN,
2081 					     NULL);
2082 	if (nfs_wdata_cachep == NULL)
2083 		return -ENOMEM;
2084 
2085 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2086 						     nfs_wdata_cachep);
2087 	if (nfs_wdata_mempool == NULL)
2088 		goto out_destroy_write_cache;
2089 
2090 	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2091 					     sizeof(struct nfs_commit_data),
2092 					     0, SLAB_HWCACHE_ALIGN,
2093 					     NULL);
2094 	if (nfs_cdata_cachep == NULL)
2095 		goto out_destroy_write_mempool;
2096 
2097 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2098 						      nfs_cdata_cachep);
2099 	if (nfs_commit_mempool == NULL)
2100 		goto out_destroy_commit_cache;
2101 
2102 	/*
2103 	 * NFS congestion size, scale with available memory.
2104 	 *
2105 	 *  64MB:    8192k
2106 	 * 128MB:   11585k
2107 	 * 256MB:   16384k
2108 	 * 512MB:   23170k
2109 	 *   1GB:   32768k
2110 	 *   2GB:   46340k
2111 	 *   4GB:   65536k
2112 	 *   8GB:   92681k
2113 	 *  16GB:  131072k
2114 	 *
2115 	 * This allows larger machines to have larger/more transfers.
2116 	 * Limit the default to 256M
2117 	 */
2118 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
2119 	if (nfs_congestion_kb > 256*1024)
2120 		nfs_congestion_kb = 256*1024;
2121 
2122 	return 0;
2123 
2124 out_destroy_commit_cache:
2125 	kmem_cache_destroy(nfs_cdata_cachep);
2126 out_destroy_write_mempool:
2127 	mempool_destroy(nfs_wdata_mempool);
2128 out_destroy_write_cache:
2129 	kmem_cache_destroy(nfs_wdata_cachep);
2130 	return -ENOMEM;
2131 }
2132 
2133 void nfs_destroy_writepagecache(void)
2134 {
2135 	mempool_destroy(nfs_commit_mempool);
2136 	kmem_cache_destroy(nfs_cdata_cachep);
2137 	mempool_destroy(nfs_wdata_mempool);
2138 	kmem_cache_destroy(nfs_wdata_cachep);
2139 }
2140 
2141 static const struct nfs_rw_ops nfs_rw_write_ops = {
2142 	.rw_alloc_header	= nfs_writehdr_alloc,
2143 	.rw_free_header		= nfs_writehdr_free,
2144 	.rw_done		= nfs_writeback_done,
2145 	.rw_result		= nfs_writeback_result,
2146 	.rw_initiate		= nfs_initiate_write,
2147 };
2148