1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 17 #include <linux/sunrpc/clnt.h> 18 #include <linux/nfs_fs.h> 19 #include <linux/nfs_mount.h> 20 #include <linux/nfs_page.h> 21 #include <linux/backing-dev.h> 22 23 #include <asm/uaccess.h> 24 25 #include "delegation.h" 26 #include "internal.h" 27 #include "iostat.h" 28 29 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 30 31 #define MIN_POOL_WRITE (32) 32 #define MIN_POOL_COMMIT (4) 33 34 /* 35 * Local function declarations 36 */ 37 static struct nfs_page * nfs_update_request(struct nfs_open_context*, 38 struct page *, 39 unsigned int, unsigned int); 40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 41 struct inode *inode, int ioflags); 42 static void nfs_redirty_request(struct nfs_page *req); 43 static const struct rpc_call_ops nfs_write_partial_ops; 44 static const struct rpc_call_ops nfs_write_full_ops; 45 static const struct rpc_call_ops nfs_commit_ops; 46 47 static struct kmem_cache *nfs_wdata_cachep; 48 static mempool_t *nfs_wdata_mempool; 49 static mempool_t *nfs_commit_mempool; 50 51 struct nfs_write_data *nfs_commit_alloc(void) 52 { 53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 54 55 if (p) { 56 memset(p, 0, sizeof(*p)); 57 INIT_LIST_HEAD(&p->pages); 58 } 59 return p; 60 } 61 62 static void nfs_commit_rcu_free(struct rcu_head *head) 63 { 64 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu); 65 if (p && (p->pagevec != &p->page_array[0])) 66 kfree(p->pagevec); 67 mempool_free(p, nfs_commit_mempool); 68 } 69 70 void nfs_commit_free(struct nfs_write_data *wdata) 71 { 72 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_commit_rcu_free); 73 } 74 75 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 76 { 77 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 78 79 if (p) { 80 memset(p, 0, sizeof(*p)); 81 INIT_LIST_HEAD(&p->pages); 82 p->npages = pagecount; 83 if (pagecount <= ARRAY_SIZE(p->page_array)) 84 p->pagevec = p->page_array; 85 else { 86 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 87 if (!p->pagevec) { 88 mempool_free(p, nfs_wdata_mempool); 89 p = NULL; 90 } 91 } 92 } 93 return p; 94 } 95 96 static void nfs_writedata_rcu_free(struct rcu_head *head) 97 { 98 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu); 99 if (p && (p->pagevec != &p->page_array[0])) 100 kfree(p->pagevec); 101 mempool_free(p, nfs_wdata_mempool); 102 } 103 104 static void nfs_writedata_free(struct nfs_write_data *wdata) 105 { 106 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_writedata_rcu_free); 107 } 108 109 void nfs_writedata_release(void *wdata) 110 { 111 nfs_writedata_free(wdata); 112 } 113 114 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 115 { 116 ctx->error = error; 117 smp_wmb(); 118 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 119 } 120 121 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 122 { 123 struct nfs_page *req = NULL; 124 125 if (PagePrivate(page)) { 126 req = (struct nfs_page *)page_private(page); 127 if (req != NULL) 128 kref_get(&req->wb_kref); 129 } 130 return req; 131 } 132 133 static struct nfs_page *nfs_page_find_request(struct page *page) 134 { 135 struct inode *inode = page->mapping->host; 136 struct nfs_page *req = NULL; 137 138 spin_lock(&inode->i_lock); 139 req = nfs_page_find_request_locked(page); 140 spin_unlock(&inode->i_lock); 141 return req; 142 } 143 144 /* Adjust the file length if we're writing beyond the end */ 145 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 146 { 147 struct inode *inode = page->mapping->host; 148 loff_t end, i_size = i_size_read(inode); 149 pgoff_t end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 150 151 if (i_size > 0 && page->index < end_index) 152 return; 153 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 154 if (i_size >= end) 155 return; 156 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 157 i_size_write(inode, end); 158 } 159 160 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 161 static void nfs_set_pageerror(struct page *page) 162 { 163 SetPageError(page); 164 nfs_zap_mapping(page->mapping->host, page->mapping); 165 } 166 167 /* We can set the PG_uptodate flag if we see that a write request 168 * covers the full page. 169 */ 170 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 171 { 172 if (PageUptodate(page)) 173 return; 174 if (base != 0) 175 return; 176 if (count != nfs_page_length(page)) 177 return; 178 SetPageUptodate(page); 179 } 180 181 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 182 unsigned int offset, unsigned int count) 183 { 184 struct nfs_page *req; 185 int ret; 186 187 for (;;) { 188 req = nfs_update_request(ctx, page, offset, count); 189 if (!IS_ERR(req)) 190 break; 191 ret = PTR_ERR(req); 192 if (ret != -EBUSY) 193 return ret; 194 ret = nfs_wb_page(page->mapping->host, page); 195 if (ret != 0) 196 return ret; 197 } 198 /* Update file length */ 199 nfs_grow_file(page, offset, count); 200 nfs_clear_page_tag_locked(req); 201 return 0; 202 } 203 204 static int wb_priority(struct writeback_control *wbc) 205 { 206 if (wbc->for_reclaim) 207 return FLUSH_HIGHPRI | FLUSH_STABLE; 208 if (wbc->for_kupdate) 209 return FLUSH_LOWPRI; 210 return 0; 211 } 212 213 /* 214 * NFS congestion control 215 */ 216 217 int nfs_congestion_kb; 218 219 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 220 #define NFS_CONGESTION_OFF_THRESH \ 221 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 222 223 static int nfs_set_page_writeback(struct page *page) 224 { 225 int ret = test_set_page_writeback(page); 226 227 if (!ret) { 228 struct inode *inode = page->mapping->host; 229 struct nfs_server *nfss = NFS_SERVER(inode); 230 231 if (atomic_long_inc_return(&nfss->writeback) > 232 NFS_CONGESTION_ON_THRESH) 233 set_bdi_congested(&nfss->backing_dev_info, WRITE); 234 } 235 return ret; 236 } 237 238 static void nfs_end_page_writeback(struct page *page) 239 { 240 struct inode *inode = page->mapping->host; 241 struct nfs_server *nfss = NFS_SERVER(inode); 242 243 end_page_writeback(page); 244 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 245 clear_bdi_congested(&nfss->backing_dev_info, WRITE); 246 } 247 248 /* 249 * Find an associated nfs write request, and prepare to flush it out 250 * May return an error if the user signalled nfs_wait_on_request(). 251 */ 252 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 253 struct page *page) 254 { 255 struct inode *inode = page->mapping->host; 256 struct nfs_page *req; 257 int ret; 258 259 spin_lock(&inode->i_lock); 260 for(;;) { 261 req = nfs_page_find_request_locked(page); 262 if (req == NULL) { 263 spin_unlock(&inode->i_lock); 264 return 0; 265 } 266 if (nfs_set_page_tag_locked(req)) 267 break; 268 /* Note: If we hold the page lock, as is the case in nfs_writepage, 269 * then the call to nfs_set_page_tag_locked() will always 270 * succeed provided that someone hasn't already marked the 271 * request as dirty (in which case we don't care). 272 */ 273 spin_unlock(&inode->i_lock); 274 ret = nfs_wait_on_request(req); 275 nfs_release_request(req); 276 if (ret != 0) 277 return ret; 278 spin_lock(&inode->i_lock); 279 } 280 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) { 281 /* This request is marked for commit */ 282 spin_unlock(&inode->i_lock); 283 nfs_clear_page_tag_locked(req); 284 nfs_pageio_complete(pgio); 285 return 0; 286 } 287 if (nfs_set_page_writeback(page) != 0) { 288 spin_unlock(&inode->i_lock); 289 BUG(); 290 } 291 spin_unlock(&inode->i_lock); 292 if (!nfs_pageio_add_request(pgio, req)) { 293 nfs_redirty_request(req); 294 nfs_end_page_writeback(page); 295 nfs_clear_page_tag_locked(req); 296 return pgio->pg_error; 297 } 298 return 0; 299 } 300 301 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 302 { 303 struct inode *inode = page->mapping->host; 304 305 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 306 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 307 308 nfs_pageio_cond_complete(pgio, page->index); 309 return nfs_page_async_flush(pgio, page); 310 } 311 312 /* 313 * Write an mmapped page to the server. 314 */ 315 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 316 { 317 struct nfs_pageio_descriptor pgio; 318 int err; 319 320 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 321 err = nfs_do_writepage(page, wbc, &pgio); 322 nfs_pageio_complete(&pgio); 323 if (err < 0) 324 return err; 325 if (pgio.pg_error < 0) 326 return pgio.pg_error; 327 return 0; 328 } 329 330 int nfs_writepage(struct page *page, struct writeback_control *wbc) 331 { 332 int ret; 333 334 ret = nfs_writepage_locked(page, wbc); 335 unlock_page(page); 336 return ret; 337 } 338 339 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 340 { 341 int ret; 342 343 ret = nfs_do_writepage(page, wbc, data); 344 unlock_page(page); 345 return ret; 346 } 347 348 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 349 { 350 struct inode *inode = mapping->host; 351 struct nfs_pageio_descriptor pgio; 352 int err; 353 354 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 355 356 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 357 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 358 nfs_pageio_complete(&pgio); 359 if (err < 0) 360 return err; 361 if (pgio.pg_error < 0) 362 return pgio.pg_error; 363 return 0; 364 } 365 366 /* 367 * Insert a write request into an inode 368 */ 369 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 370 { 371 struct nfs_inode *nfsi = NFS_I(inode); 372 int error; 373 374 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 375 BUG_ON(error == -EEXIST); 376 if (error) 377 return error; 378 if (!nfsi->npages) { 379 igrab(inode); 380 if (nfs_have_delegation(inode, FMODE_WRITE)) 381 nfsi->change_attr++; 382 } 383 SetPagePrivate(req->wb_page); 384 set_page_private(req->wb_page, (unsigned long)req); 385 nfsi->npages++; 386 kref_get(&req->wb_kref); 387 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, NFS_PAGE_TAG_LOCKED); 388 return 0; 389 } 390 391 /* 392 * Remove a write request from an inode 393 */ 394 static void nfs_inode_remove_request(struct nfs_page *req) 395 { 396 struct inode *inode = req->wb_context->path.dentry->d_inode; 397 struct nfs_inode *nfsi = NFS_I(inode); 398 399 BUG_ON (!NFS_WBACK_BUSY(req)); 400 401 spin_lock(&inode->i_lock); 402 set_page_private(req->wb_page, 0); 403 ClearPagePrivate(req->wb_page); 404 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 405 nfsi->npages--; 406 if (!nfsi->npages) { 407 spin_unlock(&inode->i_lock); 408 iput(inode); 409 } else 410 spin_unlock(&inode->i_lock); 411 nfs_clear_request(req); 412 nfs_release_request(req); 413 } 414 415 static void 416 nfs_redirty_request(struct nfs_page *req) 417 { 418 __set_page_dirty_nobuffers(req->wb_page); 419 } 420 421 /* 422 * Check if a request is dirty 423 */ 424 static inline int 425 nfs_dirty_request(struct nfs_page *req) 426 { 427 struct page *page = req->wb_page; 428 429 if (page == NULL || test_bit(PG_NEED_COMMIT, &req->wb_flags)) 430 return 0; 431 return !PageWriteback(req->wb_page); 432 } 433 434 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 435 /* 436 * Add a request to the inode's commit list. 437 */ 438 static void 439 nfs_mark_request_commit(struct nfs_page *req) 440 { 441 struct inode *inode = req->wb_context->path.dentry->d_inode; 442 struct nfs_inode *nfsi = NFS_I(inode); 443 444 spin_lock(&inode->i_lock); 445 nfsi->ncommit++; 446 set_bit(PG_NEED_COMMIT, &(req)->wb_flags); 447 radix_tree_tag_set(&nfsi->nfs_page_tree, 448 req->wb_index, 449 NFS_PAGE_TAG_COMMIT); 450 spin_unlock(&inode->i_lock); 451 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 452 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 453 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 454 } 455 456 static inline 457 int nfs_write_need_commit(struct nfs_write_data *data) 458 { 459 return data->verf.committed != NFS_FILE_SYNC; 460 } 461 462 static inline 463 int nfs_reschedule_unstable_write(struct nfs_page *req) 464 { 465 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) { 466 nfs_mark_request_commit(req); 467 return 1; 468 } 469 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 470 nfs_redirty_request(req); 471 return 1; 472 } 473 return 0; 474 } 475 #else 476 static inline void 477 nfs_mark_request_commit(struct nfs_page *req) 478 { 479 } 480 481 static inline 482 int nfs_write_need_commit(struct nfs_write_data *data) 483 { 484 return 0; 485 } 486 487 static inline 488 int nfs_reschedule_unstable_write(struct nfs_page *req) 489 { 490 return 0; 491 } 492 #endif 493 494 /* 495 * Wait for a request to complete. 496 * 497 * Interruptible by fatal signals only. 498 */ 499 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages) 500 { 501 struct nfs_inode *nfsi = NFS_I(inode); 502 struct nfs_page *req; 503 pgoff_t idx_end, next; 504 unsigned int res = 0; 505 int error; 506 507 if (npages == 0) 508 idx_end = ~0; 509 else 510 idx_end = idx_start + npages - 1; 511 512 next = idx_start; 513 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) { 514 if (req->wb_index > idx_end) 515 break; 516 517 next = req->wb_index + 1; 518 BUG_ON(!NFS_WBACK_BUSY(req)); 519 520 kref_get(&req->wb_kref); 521 spin_unlock(&inode->i_lock); 522 error = nfs_wait_on_request(req); 523 nfs_release_request(req); 524 spin_lock(&inode->i_lock); 525 if (error < 0) 526 return error; 527 res++; 528 } 529 return res; 530 } 531 532 static void nfs_cancel_commit_list(struct list_head *head) 533 { 534 struct nfs_page *req; 535 536 while(!list_empty(head)) { 537 req = nfs_list_entry(head->next); 538 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 539 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 540 BDI_RECLAIMABLE); 541 nfs_list_remove_request(req); 542 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags); 543 nfs_inode_remove_request(req); 544 nfs_unlock_request(req); 545 } 546 } 547 548 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 549 /* 550 * nfs_scan_commit - Scan an inode for commit requests 551 * @inode: NFS inode to scan 552 * @dst: destination list 553 * @idx_start: lower bound of page->index to scan. 554 * @npages: idx_start + npages sets the upper bound to scan. 555 * 556 * Moves requests from the inode's 'commit' request list. 557 * The requests are *not* checked to ensure that they form a contiguous set. 558 */ 559 static int 560 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 561 { 562 struct nfs_inode *nfsi = NFS_I(inode); 563 int res = 0; 564 565 if (nfsi->ncommit != 0) { 566 res = nfs_scan_list(nfsi, dst, idx_start, npages, 567 NFS_PAGE_TAG_COMMIT); 568 nfsi->ncommit -= res; 569 } 570 return res; 571 } 572 #else 573 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 574 { 575 return 0; 576 } 577 #endif 578 579 /* 580 * Try to update any existing write request, or create one if there is none. 581 * In order to match, the request's credentials must match those of 582 * the calling process. 583 * 584 * Note: Should always be called with the Page Lock held! 585 */ 586 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx, 587 struct page *page, unsigned int offset, unsigned int bytes) 588 { 589 struct address_space *mapping = page->mapping; 590 struct inode *inode = mapping->host; 591 struct nfs_page *req, *new = NULL; 592 pgoff_t rqend, end; 593 594 end = offset + bytes; 595 596 for (;;) { 597 /* Loop over all inode entries and see if we find 598 * A request for the page we wish to update 599 */ 600 spin_lock(&inode->i_lock); 601 req = nfs_page_find_request_locked(page); 602 if (req) { 603 if (!nfs_set_page_tag_locked(req)) { 604 int error; 605 606 spin_unlock(&inode->i_lock); 607 error = nfs_wait_on_request(req); 608 nfs_release_request(req); 609 if (error < 0) { 610 if (new) 611 nfs_release_request(new); 612 return ERR_PTR(error); 613 } 614 continue; 615 } 616 spin_unlock(&inode->i_lock); 617 if (new) 618 nfs_release_request(new); 619 break; 620 } 621 622 if (new) { 623 int error; 624 nfs_lock_request_dontget(new); 625 error = nfs_inode_add_request(inode, new); 626 if (error) { 627 spin_unlock(&inode->i_lock); 628 nfs_unlock_request(new); 629 return ERR_PTR(error); 630 } 631 spin_unlock(&inode->i_lock); 632 req = new; 633 goto zero_page; 634 } 635 spin_unlock(&inode->i_lock); 636 637 new = nfs_create_request(ctx, inode, page, offset, bytes); 638 if (IS_ERR(new)) 639 return new; 640 } 641 642 /* We have a request for our page. 643 * If the creds don't match, or the 644 * page addresses don't match, 645 * tell the caller to wait on the conflicting 646 * request. 647 */ 648 rqend = req->wb_offset + req->wb_bytes; 649 if (req->wb_context != ctx 650 || req->wb_page != page 651 || !nfs_dirty_request(req) 652 || offset > rqend || end < req->wb_offset) { 653 nfs_clear_page_tag_locked(req); 654 return ERR_PTR(-EBUSY); 655 } 656 657 /* Okay, the request matches. Update the region */ 658 if (offset < req->wb_offset) { 659 req->wb_offset = offset; 660 req->wb_pgbase = offset; 661 req->wb_bytes = max(end, rqend) - req->wb_offset; 662 goto zero_page; 663 } 664 665 if (end > rqend) 666 req->wb_bytes = end - req->wb_offset; 667 668 return req; 669 zero_page: 670 /* If this page might potentially be marked as up to date, 671 * then we need to zero any uninitalised data. */ 672 if (req->wb_pgbase == 0 && req->wb_bytes != PAGE_CACHE_SIZE 673 && !PageUptodate(req->wb_page)) 674 zero_user_segment(req->wb_page, req->wb_bytes, PAGE_CACHE_SIZE); 675 return req; 676 } 677 678 int nfs_flush_incompatible(struct file *file, struct page *page) 679 { 680 struct nfs_open_context *ctx = nfs_file_open_context(file); 681 struct nfs_page *req; 682 int do_flush, status; 683 /* 684 * Look for a request corresponding to this page. If there 685 * is one, and it belongs to another file, we flush it out 686 * before we try to copy anything into the page. Do this 687 * due to the lack of an ACCESS-type call in NFSv2. 688 * Also do the same if we find a request from an existing 689 * dropped page. 690 */ 691 do { 692 req = nfs_page_find_request(page); 693 if (req == NULL) 694 return 0; 695 do_flush = req->wb_page != page || req->wb_context != ctx 696 || !nfs_dirty_request(req); 697 nfs_release_request(req); 698 if (!do_flush) 699 return 0; 700 status = nfs_wb_page(page->mapping->host, page); 701 } while (status == 0); 702 return status; 703 } 704 705 /* 706 * If the page cache is marked as unsafe or invalid, then we can't rely on 707 * the PageUptodate() flag. In this case, we will need to turn off 708 * write optimisations that depend on the page contents being correct. 709 */ 710 static int nfs_write_pageuptodate(struct page *page, struct inode *inode) 711 { 712 return PageUptodate(page) && 713 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA)); 714 } 715 716 /* 717 * Update and possibly write a cached page of an NFS file. 718 * 719 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 720 * things with a page scheduled for an RPC call (e.g. invalidate it). 721 */ 722 int nfs_updatepage(struct file *file, struct page *page, 723 unsigned int offset, unsigned int count) 724 { 725 struct nfs_open_context *ctx = nfs_file_open_context(file); 726 struct inode *inode = page->mapping->host; 727 int status = 0; 728 729 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 730 731 dprintk("NFS: nfs_updatepage(%s/%s %d@%Ld)\n", 732 file->f_path.dentry->d_parent->d_name.name, 733 file->f_path.dentry->d_name.name, count, 734 (long long)(page_offset(page) +offset)); 735 736 /* If we're not using byte range locks, and we know the page 737 * is up to date, it may be more efficient to extend the write 738 * to cover the entire page in order to avoid fragmentation 739 * inefficiencies. 740 */ 741 if (nfs_write_pageuptodate(page, inode) && 742 inode->i_flock == NULL && 743 !(file->f_flags & O_SYNC)) { 744 count = max(count + offset, nfs_page_length(page)); 745 offset = 0; 746 } 747 748 status = nfs_writepage_setup(ctx, page, offset, count); 749 __set_page_dirty_nobuffers(page); 750 751 dprintk("NFS: nfs_updatepage returns %d (isize %Ld)\n", 752 status, (long long)i_size_read(inode)); 753 if (status < 0) 754 nfs_set_pageerror(page); 755 return status; 756 } 757 758 static void nfs_writepage_release(struct nfs_page *req) 759 { 760 761 if (PageError(req->wb_page)) { 762 nfs_end_page_writeback(req->wb_page); 763 nfs_inode_remove_request(req); 764 } else if (!nfs_reschedule_unstable_write(req)) { 765 /* Set the PG_uptodate flag */ 766 nfs_mark_uptodate(req->wb_page, req->wb_pgbase, req->wb_bytes); 767 nfs_end_page_writeback(req->wb_page); 768 nfs_inode_remove_request(req); 769 } else 770 nfs_end_page_writeback(req->wb_page); 771 nfs_clear_page_tag_locked(req); 772 } 773 774 static int flush_task_priority(int how) 775 { 776 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 777 case FLUSH_HIGHPRI: 778 return RPC_PRIORITY_HIGH; 779 case FLUSH_LOWPRI: 780 return RPC_PRIORITY_LOW; 781 } 782 return RPC_PRIORITY_NORMAL; 783 } 784 785 /* 786 * Set up the argument/result storage required for the RPC call. 787 */ 788 static void nfs_write_rpcsetup(struct nfs_page *req, 789 struct nfs_write_data *data, 790 const struct rpc_call_ops *call_ops, 791 unsigned int count, unsigned int offset, 792 int how) 793 { 794 struct inode *inode = req->wb_context->path.dentry->d_inode; 795 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 796 int priority = flush_task_priority(how); 797 struct rpc_task *task; 798 struct rpc_message msg = { 799 .rpc_argp = &data->args, 800 .rpc_resp = &data->res, 801 .rpc_cred = req->wb_context->cred, 802 }; 803 struct rpc_task_setup task_setup_data = { 804 .rpc_client = NFS_CLIENT(inode), 805 .task = &data->task, 806 .rpc_message = &msg, 807 .callback_ops = call_ops, 808 .callback_data = data, 809 .flags = flags, 810 .priority = priority, 811 }; 812 813 /* Set up the RPC argument and reply structs 814 * NB: take care not to mess about with data->commit et al. */ 815 816 data->req = req; 817 data->inode = inode = req->wb_context->path.dentry->d_inode; 818 data->cred = msg.rpc_cred; 819 820 data->args.fh = NFS_FH(inode); 821 data->args.offset = req_offset(req) + offset; 822 data->args.pgbase = req->wb_pgbase + offset; 823 data->args.pages = data->pagevec; 824 data->args.count = count; 825 data->args.context = req->wb_context; 826 data->args.stable = NFS_UNSTABLE; 827 if (how & FLUSH_STABLE) { 828 data->args.stable = NFS_DATA_SYNC; 829 if (!NFS_I(inode)->ncommit) 830 data->args.stable = NFS_FILE_SYNC; 831 } 832 833 data->res.fattr = &data->fattr; 834 data->res.count = count; 835 data->res.verf = &data->verf; 836 nfs_fattr_init(&data->fattr); 837 838 /* Set up the initial task struct. */ 839 NFS_PROTO(inode)->write_setup(data, &msg); 840 841 dprintk("NFS: %5u initiated write call " 842 "(req %s/%Ld, %u bytes @ offset %Lu)\n", 843 data->task.tk_pid, 844 inode->i_sb->s_id, 845 (long long)NFS_FILEID(inode), 846 count, 847 (unsigned long long)data->args.offset); 848 849 task = rpc_run_task(&task_setup_data); 850 if (!IS_ERR(task)) 851 rpc_put_task(task); 852 } 853 854 /* 855 * Generate multiple small requests to write out a single 856 * contiguous dirty area on one page. 857 */ 858 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 859 { 860 struct nfs_page *req = nfs_list_entry(head->next); 861 struct page *page = req->wb_page; 862 struct nfs_write_data *data; 863 size_t wsize = NFS_SERVER(inode)->wsize, nbytes; 864 unsigned int offset; 865 int requests = 0; 866 LIST_HEAD(list); 867 868 nfs_list_remove_request(req); 869 870 nbytes = count; 871 do { 872 size_t len = min(nbytes, wsize); 873 874 data = nfs_writedata_alloc(1); 875 if (!data) 876 goto out_bad; 877 list_add(&data->pages, &list); 878 requests++; 879 nbytes -= len; 880 } while (nbytes != 0); 881 atomic_set(&req->wb_complete, requests); 882 883 ClearPageError(page); 884 offset = 0; 885 nbytes = count; 886 do { 887 data = list_entry(list.next, struct nfs_write_data, pages); 888 list_del_init(&data->pages); 889 890 data->pagevec[0] = page; 891 892 if (nbytes < wsize) 893 wsize = nbytes; 894 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 895 wsize, offset, how); 896 offset += wsize; 897 nbytes -= wsize; 898 } while (nbytes != 0); 899 900 return 0; 901 902 out_bad: 903 while (!list_empty(&list)) { 904 data = list_entry(list.next, struct nfs_write_data, pages); 905 list_del(&data->pages); 906 nfs_writedata_release(data); 907 } 908 nfs_redirty_request(req); 909 nfs_end_page_writeback(req->wb_page); 910 nfs_clear_page_tag_locked(req); 911 return -ENOMEM; 912 } 913 914 /* 915 * Create an RPC task for the given write request and kick it. 916 * The page must have been locked by the caller. 917 * 918 * It may happen that the page we're passed is not marked dirty. 919 * This is the case if nfs_updatepage detects a conflicting request 920 * that has been written but not committed. 921 */ 922 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 923 { 924 struct nfs_page *req; 925 struct page **pages; 926 struct nfs_write_data *data; 927 928 data = nfs_writedata_alloc(npages); 929 if (!data) 930 goto out_bad; 931 932 pages = data->pagevec; 933 while (!list_empty(head)) { 934 req = nfs_list_entry(head->next); 935 nfs_list_remove_request(req); 936 nfs_list_add_request(req, &data->pages); 937 ClearPageError(req->wb_page); 938 *pages++ = req->wb_page; 939 } 940 req = nfs_list_entry(data->pages.next); 941 942 /* Set up the argument struct */ 943 nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 944 945 return 0; 946 out_bad: 947 while (!list_empty(head)) { 948 req = nfs_list_entry(head->next); 949 nfs_list_remove_request(req); 950 nfs_redirty_request(req); 951 nfs_end_page_writeback(req->wb_page); 952 nfs_clear_page_tag_locked(req); 953 } 954 return -ENOMEM; 955 } 956 957 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 958 struct inode *inode, int ioflags) 959 { 960 size_t wsize = NFS_SERVER(inode)->wsize; 961 962 if (wsize < PAGE_CACHE_SIZE) 963 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); 964 else 965 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); 966 } 967 968 /* 969 * Handle a write reply that flushed part of a page. 970 */ 971 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 972 { 973 struct nfs_write_data *data = calldata; 974 struct nfs_page *req = data->req; 975 struct page *page = req->wb_page; 976 977 dprintk("NFS: write (%s/%Ld %d@%Ld)", 978 req->wb_context->path.dentry->d_inode->i_sb->s_id, 979 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 980 req->wb_bytes, 981 (long long)req_offset(req)); 982 983 if (nfs_writeback_done(task, data) != 0) 984 return; 985 986 if (task->tk_status < 0) { 987 nfs_set_pageerror(page); 988 nfs_context_set_write_error(req->wb_context, task->tk_status); 989 dprintk(", error = %d\n", task->tk_status); 990 goto out; 991 } 992 993 if (nfs_write_need_commit(data)) { 994 struct inode *inode = page->mapping->host; 995 996 spin_lock(&inode->i_lock); 997 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 998 /* Do nothing we need to resend the writes */ 999 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1000 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1001 dprintk(" defer commit\n"); 1002 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1003 set_bit(PG_NEED_RESCHED, &req->wb_flags); 1004 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 1005 dprintk(" server reboot detected\n"); 1006 } 1007 spin_unlock(&inode->i_lock); 1008 } else 1009 dprintk(" OK\n"); 1010 1011 out: 1012 if (atomic_dec_and_test(&req->wb_complete)) 1013 nfs_writepage_release(req); 1014 } 1015 1016 static const struct rpc_call_ops nfs_write_partial_ops = { 1017 .rpc_call_done = nfs_writeback_done_partial, 1018 .rpc_release = nfs_writedata_release, 1019 }; 1020 1021 /* 1022 * Handle a write reply that flushes a whole page. 1023 * 1024 * FIXME: There is an inherent race with invalidate_inode_pages and 1025 * writebacks since the page->count is kept > 1 for as long 1026 * as the page has a write request pending. 1027 */ 1028 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1029 { 1030 struct nfs_write_data *data = calldata; 1031 struct nfs_page *req; 1032 struct page *page; 1033 1034 if (nfs_writeback_done(task, data) != 0) 1035 return; 1036 1037 /* Update attributes as result of writeback. */ 1038 while (!list_empty(&data->pages)) { 1039 req = nfs_list_entry(data->pages.next); 1040 nfs_list_remove_request(req); 1041 page = req->wb_page; 1042 1043 dprintk("NFS: write (%s/%Ld %d@%Ld)", 1044 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1045 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1046 req->wb_bytes, 1047 (long long)req_offset(req)); 1048 1049 if (task->tk_status < 0) { 1050 nfs_set_pageerror(page); 1051 nfs_context_set_write_error(req->wb_context, task->tk_status); 1052 dprintk(", error = %d\n", task->tk_status); 1053 goto remove_request; 1054 } 1055 1056 if (nfs_write_need_commit(data)) { 1057 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1058 nfs_mark_request_commit(req); 1059 nfs_end_page_writeback(page); 1060 dprintk(" marked for commit\n"); 1061 goto next; 1062 } 1063 /* Set the PG_uptodate flag? */ 1064 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 1065 dprintk(" OK\n"); 1066 remove_request: 1067 nfs_end_page_writeback(page); 1068 nfs_inode_remove_request(req); 1069 next: 1070 nfs_clear_page_tag_locked(req); 1071 } 1072 } 1073 1074 static const struct rpc_call_ops nfs_write_full_ops = { 1075 .rpc_call_done = nfs_writeback_done_full, 1076 .rpc_release = nfs_writedata_release, 1077 }; 1078 1079 1080 /* 1081 * This function is called when the WRITE call is complete. 1082 */ 1083 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1084 { 1085 struct nfs_writeargs *argp = &data->args; 1086 struct nfs_writeres *resp = &data->res; 1087 int status; 1088 1089 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1090 task->tk_pid, task->tk_status); 1091 1092 /* 1093 * ->write_done will attempt to use post-op attributes to detect 1094 * conflicting writes by other clients. A strict interpretation 1095 * of close-to-open would allow us to continue caching even if 1096 * another writer had changed the file, but some applications 1097 * depend on tighter cache coherency when writing. 1098 */ 1099 status = NFS_PROTO(data->inode)->write_done(task, data); 1100 if (status != 0) 1101 return status; 1102 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1103 1104 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1105 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1106 /* We tried a write call, but the server did not 1107 * commit data to stable storage even though we 1108 * requested it. 1109 * Note: There is a known bug in Tru64 < 5.0 in which 1110 * the server reports NFS_DATA_SYNC, but performs 1111 * NFS_FILE_SYNC. We therefore implement this checking 1112 * as a dprintk() in order to avoid filling syslog. 1113 */ 1114 static unsigned long complain; 1115 1116 if (time_before(complain, jiffies)) { 1117 dprintk("NFS: faulty NFS server %s:" 1118 " (committed = %d) != (stable = %d)\n", 1119 NFS_SERVER(data->inode)->nfs_client->cl_hostname, 1120 resp->verf->committed, argp->stable); 1121 complain = jiffies + 300 * HZ; 1122 } 1123 } 1124 #endif 1125 /* Is this a short write? */ 1126 if (task->tk_status >= 0 && resp->count < argp->count) { 1127 static unsigned long complain; 1128 1129 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1130 1131 /* Has the server at least made some progress? */ 1132 if (resp->count != 0) { 1133 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1134 if (resp->verf->committed != NFS_UNSTABLE) { 1135 /* Resend from where the server left off */ 1136 argp->offset += resp->count; 1137 argp->pgbase += resp->count; 1138 argp->count -= resp->count; 1139 } else { 1140 /* Resend as a stable write in order to avoid 1141 * headaches in the case of a server crash. 1142 */ 1143 argp->stable = NFS_FILE_SYNC; 1144 } 1145 rpc_restart_call(task); 1146 return -EAGAIN; 1147 } 1148 if (time_before(complain, jiffies)) { 1149 printk(KERN_WARNING 1150 "NFS: Server wrote zero bytes, expected %u.\n", 1151 argp->count); 1152 complain = jiffies + 300 * HZ; 1153 } 1154 /* Can't do anything about it except throw an error. */ 1155 task->tk_status = -EIO; 1156 } 1157 return 0; 1158 } 1159 1160 1161 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1162 void nfs_commit_release(void *wdata) 1163 { 1164 nfs_commit_free(wdata); 1165 } 1166 1167 /* 1168 * Set up the argument/result storage required for the RPC call. 1169 */ 1170 static void nfs_commit_rpcsetup(struct list_head *head, 1171 struct nfs_write_data *data, 1172 int how) 1173 { 1174 struct nfs_page *first = nfs_list_entry(head->next); 1175 struct inode *inode = first->wb_context->path.dentry->d_inode; 1176 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 1177 int priority = flush_task_priority(how); 1178 struct rpc_task *task; 1179 struct rpc_message msg = { 1180 .rpc_argp = &data->args, 1181 .rpc_resp = &data->res, 1182 .rpc_cred = first->wb_context->cred, 1183 }; 1184 struct rpc_task_setup task_setup_data = { 1185 .task = &data->task, 1186 .rpc_client = NFS_CLIENT(inode), 1187 .rpc_message = &msg, 1188 .callback_ops = &nfs_commit_ops, 1189 .callback_data = data, 1190 .flags = flags, 1191 .priority = priority, 1192 }; 1193 1194 /* Set up the RPC argument and reply structs 1195 * NB: take care not to mess about with data->commit et al. */ 1196 1197 list_splice_init(head, &data->pages); 1198 1199 data->inode = inode; 1200 data->cred = msg.rpc_cred; 1201 1202 data->args.fh = NFS_FH(data->inode); 1203 /* Note: we always request a commit of the entire inode */ 1204 data->args.offset = 0; 1205 data->args.count = 0; 1206 data->res.count = 0; 1207 data->res.fattr = &data->fattr; 1208 data->res.verf = &data->verf; 1209 nfs_fattr_init(&data->fattr); 1210 1211 /* Set up the initial task struct. */ 1212 NFS_PROTO(inode)->commit_setup(data, &msg); 1213 1214 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1215 1216 task = rpc_run_task(&task_setup_data); 1217 if (!IS_ERR(task)) 1218 rpc_put_task(task); 1219 } 1220 1221 /* 1222 * Commit dirty pages 1223 */ 1224 static int 1225 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1226 { 1227 struct nfs_write_data *data; 1228 struct nfs_page *req; 1229 1230 data = nfs_commit_alloc(); 1231 1232 if (!data) 1233 goto out_bad; 1234 1235 /* Set up the argument struct */ 1236 nfs_commit_rpcsetup(head, data, how); 1237 1238 return 0; 1239 out_bad: 1240 while (!list_empty(head)) { 1241 req = nfs_list_entry(head->next); 1242 nfs_list_remove_request(req); 1243 nfs_mark_request_commit(req); 1244 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1245 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1246 BDI_RECLAIMABLE); 1247 nfs_clear_page_tag_locked(req); 1248 } 1249 return -ENOMEM; 1250 } 1251 1252 /* 1253 * COMMIT call returned 1254 */ 1255 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1256 { 1257 struct nfs_write_data *data = calldata; 1258 struct nfs_page *req; 1259 1260 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1261 task->tk_pid, task->tk_status); 1262 1263 /* Call the NFS version-specific code */ 1264 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1265 return; 1266 1267 while (!list_empty(&data->pages)) { 1268 req = nfs_list_entry(data->pages.next); 1269 nfs_list_remove_request(req); 1270 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags); 1271 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1272 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1273 BDI_RECLAIMABLE); 1274 1275 dprintk("NFS: commit (%s/%Ld %d@%Ld)", 1276 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1277 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1278 req->wb_bytes, 1279 (long long)req_offset(req)); 1280 if (task->tk_status < 0) { 1281 nfs_context_set_write_error(req->wb_context, task->tk_status); 1282 nfs_inode_remove_request(req); 1283 dprintk(", error = %d\n", task->tk_status); 1284 goto next; 1285 } 1286 1287 /* Okay, COMMIT succeeded, apparently. Check the verifier 1288 * returned by the server against all stored verfs. */ 1289 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1290 /* We have a match */ 1291 /* Set the PG_uptodate flag */ 1292 nfs_mark_uptodate(req->wb_page, req->wb_pgbase, 1293 req->wb_bytes); 1294 nfs_inode_remove_request(req); 1295 dprintk(" OK\n"); 1296 goto next; 1297 } 1298 /* We have a mismatch. Write the page again */ 1299 dprintk(" mismatch\n"); 1300 nfs_redirty_request(req); 1301 next: 1302 nfs_clear_page_tag_locked(req); 1303 } 1304 } 1305 1306 static const struct rpc_call_ops nfs_commit_ops = { 1307 .rpc_call_done = nfs_commit_done, 1308 .rpc_release = nfs_commit_release, 1309 }; 1310 1311 int nfs_commit_inode(struct inode *inode, int how) 1312 { 1313 LIST_HEAD(head); 1314 int res; 1315 1316 spin_lock(&inode->i_lock); 1317 res = nfs_scan_commit(inode, &head, 0, 0); 1318 spin_unlock(&inode->i_lock); 1319 if (res) { 1320 int error = nfs_commit_list(inode, &head, how); 1321 if (error < 0) 1322 return error; 1323 } 1324 return res; 1325 } 1326 #else 1327 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1328 { 1329 return 0; 1330 } 1331 #endif 1332 1333 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how) 1334 { 1335 struct inode *inode = mapping->host; 1336 pgoff_t idx_start, idx_end; 1337 unsigned int npages = 0; 1338 LIST_HEAD(head); 1339 int nocommit = how & FLUSH_NOCOMMIT; 1340 long pages, ret; 1341 1342 /* FIXME */ 1343 if (wbc->range_cyclic) 1344 idx_start = 0; 1345 else { 1346 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT; 1347 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT; 1348 if (idx_end > idx_start) { 1349 pgoff_t l_npages = 1 + idx_end - idx_start; 1350 npages = l_npages; 1351 if (sizeof(npages) != sizeof(l_npages) && 1352 (pgoff_t)npages != l_npages) 1353 npages = 0; 1354 } 1355 } 1356 how &= ~FLUSH_NOCOMMIT; 1357 spin_lock(&inode->i_lock); 1358 do { 1359 ret = nfs_wait_on_requests_locked(inode, idx_start, npages); 1360 if (ret != 0) 1361 continue; 1362 if (nocommit) 1363 break; 1364 pages = nfs_scan_commit(inode, &head, idx_start, npages); 1365 if (pages == 0) 1366 break; 1367 if (how & FLUSH_INVALIDATE) { 1368 spin_unlock(&inode->i_lock); 1369 nfs_cancel_commit_list(&head); 1370 ret = pages; 1371 spin_lock(&inode->i_lock); 1372 continue; 1373 } 1374 pages += nfs_scan_commit(inode, &head, 0, 0); 1375 spin_unlock(&inode->i_lock); 1376 ret = nfs_commit_list(inode, &head, how); 1377 spin_lock(&inode->i_lock); 1378 1379 } while (ret >= 0); 1380 spin_unlock(&inode->i_lock); 1381 return ret; 1382 } 1383 1384 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how) 1385 { 1386 int ret; 1387 1388 ret = nfs_writepages(mapping, wbc); 1389 if (ret < 0) 1390 goto out; 1391 ret = nfs_sync_mapping_wait(mapping, wbc, how); 1392 if (ret < 0) 1393 goto out; 1394 return 0; 1395 out: 1396 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1397 return ret; 1398 } 1399 1400 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */ 1401 static int nfs_write_mapping(struct address_space *mapping, int how) 1402 { 1403 struct writeback_control wbc = { 1404 .bdi = mapping->backing_dev_info, 1405 .sync_mode = WB_SYNC_NONE, 1406 .nr_to_write = LONG_MAX, 1407 .for_writepages = 1, 1408 .range_cyclic = 1, 1409 }; 1410 int ret; 1411 1412 ret = __nfs_write_mapping(mapping, &wbc, how); 1413 if (ret < 0) 1414 return ret; 1415 wbc.sync_mode = WB_SYNC_ALL; 1416 return __nfs_write_mapping(mapping, &wbc, how); 1417 } 1418 1419 /* 1420 * flush the inode to disk. 1421 */ 1422 int nfs_wb_all(struct inode *inode) 1423 { 1424 return nfs_write_mapping(inode->i_mapping, 0); 1425 } 1426 1427 int nfs_wb_nocommit(struct inode *inode) 1428 { 1429 return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT); 1430 } 1431 1432 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1433 { 1434 struct nfs_page *req; 1435 loff_t range_start = page_offset(page); 1436 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1437 struct writeback_control wbc = { 1438 .bdi = page->mapping->backing_dev_info, 1439 .sync_mode = WB_SYNC_ALL, 1440 .nr_to_write = LONG_MAX, 1441 .range_start = range_start, 1442 .range_end = range_end, 1443 }; 1444 int ret = 0; 1445 1446 BUG_ON(!PageLocked(page)); 1447 for (;;) { 1448 req = nfs_page_find_request(page); 1449 if (req == NULL) 1450 goto out; 1451 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1452 nfs_release_request(req); 1453 break; 1454 } 1455 if (nfs_lock_request_dontget(req)) { 1456 nfs_inode_remove_request(req); 1457 /* 1458 * In case nfs_inode_remove_request has marked the 1459 * page as being dirty 1460 */ 1461 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1462 nfs_unlock_request(req); 1463 break; 1464 } 1465 ret = nfs_wait_on_request(req); 1466 if (ret < 0) 1467 goto out; 1468 } 1469 if (!PagePrivate(page)) 1470 return 0; 1471 ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE); 1472 out: 1473 return ret; 1474 } 1475 1476 static int nfs_wb_page_priority(struct inode *inode, struct page *page, 1477 int how) 1478 { 1479 loff_t range_start = page_offset(page); 1480 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1481 struct writeback_control wbc = { 1482 .bdi = page->mapping->backing_dev_info, 1483 .sync_mode = WB_SYNC_ALL, 1484 .nr_to_write = LONG_MAX, 1485 .range_start = range_start, 1486 .range_end = range_end, 1487 }; 1488 int ret; 1489 1490 BUG_ON(!PageLocked(page)); 1491 if (clear_page_dirty_for_io(page)) { 1492 ret = nfs_writepage_locked(page, &wbc); 1493 if (ret < 0) 1494 goto out; 1495 } 1496 if (!PagePrivate(page)) 1497 return 0; 1498 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how); 1499 if (ret >= 0) 1500 return 0; 1501 out: 1502 __mark_inode_dirty(inode, I_DIRTY_PAGES); 1503 return ret; 1504 } 1505 1506 /* 1507 * Write back all requests on one page - we do this before reading it. 1508 */ 1509 int nfs_wb_page(struct inode *inode, struct page* page) 1510 { 1511 return nfs_wb_page_priority(inode, page, FLUSH_STABLE); 1512 } 1513 1514 int __init nfs_init_writepagecache(void) 1515 { 1516 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1517 sizeof(struct nfs_write_data), 1518 0, SLAB_HWCACHE_ALIGN, 1519 NULL); 1520 if (nfs_wdata_cachep == NULL) 1521 return -ENOMEM; 1522 1523 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1524 nfs_wdata_cachep); 1525 if (nfs_wdata_mempool == NULL) 1526 return -ENOMEM; 1527 1528 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1529 nfs_wdata_cachep); 1530 if (nfs_commit_mempool == NULL) 1531 return -ENOMEM; 1532 1533 /* 1534 * NFS congestion size, scale with available memory. 1535 * 1536 * 64MB: 8192k 1537 * 128MB: 11585k 1538 * 256MB: 16384k 1539 * 512MB: 23170k 1540 * 1GB: 32768k 1541 * 2GB: 46340k 1542 * 4GB: 65536k 1543 * 8GB: 92681k 1544 * 16GB: 131072k 1545 * 1546 * This allows larger machines to have larger/more transfers. 1547 * Limit the default to 256M 1548 */ 1549 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1550 if (nfs_congestion_kb > 256*1024) 1551 nfs_congestion_kb = 256*1024; 1552 1553 return 0; 1554 } 1555 1556 void nfs_destroy_writepagecache(void) 1557 { 1558 mempool_destroy(nfs_commit_mempool); 1559 mempool_destroy(nfs_wdata_mempool); 1560 kmem_cache_destroy(nfs_wdata_cachep); 1561 } 1562 1563