xref: /openbmc/linux/fs/nfs/write.c (revision 980b4503)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24 #include <linux/freezer.h>
25 #include <linux/wait.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "delegation.h"
30 #include "internal.h"
31 #include "iostat.h"
32 #include "nfs4_fs.h"
33 #include "fscache.h"
34 #include "pnfs.h"
35 
36 #include "nfstrace.h"
37 
38 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
39 
40 #define MIN_POOL_WRITE		(32)
41 #define MIN_POOL_COMMIT		(4)
42 
43 struct nfs_io_completion {
44 	void (*complete)(void *data);
45 	void *data;
46 	struct kref refcount;
47 };
48 
49 /*
50  * Local function declarations
51  */
52 static void nfs_redirty_request(struct nfs_page *req);
53 static const struct rpc_call_ops nfs_commit_ops;
54 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
55 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
56 static const struct nfs_rw_ops nfs_rw_write_ops;
57 static void nfs_clear_request_commit(struct nfs_page *req);
58 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
59 				      struct inode *inode);
60 static struct nfs_page *
61 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
62 						struct page *page);
63 
64 static struct kmem_cache *nfs_wdata_cachep;
65 static mempool_t *nfs_wdata_mempool;
66 static struct kmem_cache *nfs_cdata_cachep;
67 static mempool_t *nfs_commit_mempool;
68 
69 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
70 {
71 	struct nfs_commit_data *p;
72 
73 	if (never_fail)
74 		p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
75 	else {
76 		/* It is OK to do some reclaim, not no safe to wait
77 		 * for anything to be returned to the pool.
78 		 * mempool_alloc() cannot handle that particular combination,
79 		 * so we need two separate attempts.
80 		 */
81 		p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
82 		if (!p)
83 			p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
84 					     __GFP_NOWARN | __GFP_NORETRY);
85 		if (!p)
86 			return NULL;
87 	}
88 
89 	memset(p, 0, sizeof(*p));
90 	INIT_LIST_HEAD(&p->pages);
91 	return p;
92 }
93 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
94 
95 void nfs_commit_free(struct nfs_commit_data *p)
96 {
97 	mempool_free(p, nfs_commit_mempool);
98 }
99 EXPORT_SYMBOL_GPL(nfs_commit_free);
100 
101 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
102 {
103 	struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
104 
105 	if (p) {
106 		memset(p, 0, sizeof(*p));
107 		p->rw_mode = FMODE_WRITE;
108 	}
109 	return p;
110 }
111 
112 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
113 {
114 	mempool_free(hdr, nfs_wdata_mempool);
115 }
116 
117 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
118 {
119 	return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
120 }
121 
122 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
123 		void (*complete)(void *), void *data)
124 {
125 	ioc->complete = complete;
126 	ioc->data = data;
127 	kref_init(&ioc->refcount);
128 }
129 
130 static void nfs_io_completion_release(struct kref *kref)
131 {
132 	struct nfs_io_completion *ioc = container_of(kref,
133 			struct nfs_io_completion, refcount);
134 	ioc->complete(ioc->data);
135 	kfree(ioc);
136 }
137 
138 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
139 {
140 	if (ioc != NULL)
141 		kref_get(&ioc->refcount);
142 }
143 
144 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
145 {
146 	if (ioc != NULL)
147 		kref_put(&ioc->refcount, nfs_io_completion_release);
148 }
149 
150 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
151 {
152 	ctx->error = error;
153 	smp_wmb();
154 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
155 }
156 
157 /*
158  * nfs_page_find_head_request_locked - find head request associated with @page
159  *
160  * must be called while holding the inode lock.
161  *
162  * returns matching head request with reference held, or NULL if not found.
163  */
164 static struct nfs_page *
165 nfs_page_find_head_request_locked(struct nfs_inode *nfsi, struct page *page)
166 {
167 	struct nfs_page *req = NULL;
168 
169 	if (PagePrivate(page))
170 		req = (struct nfs_page *)page_private(page);
171 	else if (unlikely(PageSwapCache(page)))
172 		req = nfs_page_search_commits_for_head_request_locked(nfsi,
173 			page);
174 
175 	if (req) {
176 		WARN_ON_ONCE(req->wb_head != req);
177 		kref_get(&req->wb_kref);
178 	}
179 
180 	return req;
181 }
182 
183 /*
184  * nfs_page_find_head_request - find head request associated with @page
185  *
186  * returns matching head request with reference held, or NULL if not found.
187  */
188 static struct nfs_page *nfs_page_find_head_request(struct page *page)
189 {
190 	struct inode *inode = page_file_mapping(page)->host;
191 	struct nfs_page *req = NULL;
192 
193 	spin_lock(&inode->i_lock);
194 	req = nfs_page_find_head_request_locked(NFS_I(inode), page);
195 	spin_unlock(&inode->i_lock);
196 	return req;
197 }
198 
199 /* Adjust the file length if we're writing beyond the end */
200 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
201 {
202 	struct inode *inode = page_file_mapping(page)->host;
203 	loff_t end, i_size;
204 	pgoff_t end_index;
205 
206 	spin_lock(&inode->i_lock);
207 	i_size = i_size_read(inode);
208 	end_index = (i_size - 1) >> PAGE_SHIFT;
209 	if (i_size > 0 && page_index(page) < end_index)
210 		goto out;
211 	end = page_file_offset(page) + ((loff_t)offset+count);
212 	if (i_size >= end)
213 		goto out;
214 	i_size_write(inode, end);
215 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
216 out:
217 	spin_unlock(&inode->i_lock);
218 }
219 
220 /* A writeback failed: mark the page as bad, and invalidate the page cache */
221 static void nfs_set_pageerror(struct page *page)
222 {
223 	nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page));
224 }
225 
226 /*
227  * nfs_page_group_search_locked
228  * @head - head request of page group
229  * @page_offset - offset into page
230  *
231  * Search page group with head @head to find a request that contains the
232  * page offset @page_offset.
233  *
234  * Returns a pointer to the first matching nfs request, or NULL if no
235  * match is found.
236  *
237  * Must be called with the page group lock held
238  */
239 static struct nfs_page *
240 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
241 {
242 	struct nfs_page *req;
243 
244 	WARN_ON_ONCE(head != head->wb_head);
245 	WARN_ON_ONCE(!test_bit(PG_HEADLOCK, &head->wb_head->wb_flags));
246 
247 	req = head;
248 	do {
249 		if (page_offset >= req->wb_pgbase &&
250 		    page_offset < (req->wb_pgbase + req->wb_bytes))
251 			return req;
252 
253 		req = req->wb_this_page;
254 	} while (req != head);
255 
256 	return NULL;
257 }
258 
259 /*
260  * nfs_page_group_covers_page
261  * @head - head request of page group
262  *
263  * Return true if the page group with head @head covers the whole page,
264  * returns false otherwise
265  */
266 static bool nfs_page_group_covers_page(struct nfs_page *req)
267 {
268 	struct nfs_page *tmp;
269 	unsigned int pos = 0;
270 	unsigned int len = nfs_page_length(req->wb_page);
271 
272 	nfs_page_group_lock(req, false);
273 
274 	do {
275 		tmp = nfs_page_group_search_locked(req->wb_head, pos);
276 		if (tmp) {
277 			/* no way this should happen */
278 			WARN_ON_ONCE(tmp->wb_pgbase != pos);
279 			pos += tmp->wb_bytes - (pos - tmp->wb_pgbase);
280 		}
281 	} while (tmp && pos < len);
282 
283 	nfs_page_group_unlock(req);
284 	WARN_ON_ONCE(pos > len);
285 	return pos == len;
286 }
287 
288 /* We can set the PG_uptodate flag if we see that a write request
289  * covers the full page.
290  */
291 static void nfs_mark_uptodate(struct nfs_page *req)
292 {
293 	if (PageUptodate(req->wb_page))
294 		return;
295 	if (!nfs_page_group_covers_page(req))
296 		return;
297 	SetPageUptodate(req->wb_page);
298 }
299 
300 static int wb_priority(struct writeback_control *wbc)
301 {
302 	int ret = 0;
303 
304 	if (wbc->sync_mode == WB_SYNC_ALL)
305 		ret = FLUSH_COND_STABLE;
306 	return ret;
307 }
308 
309 /*
310  * NFS congestion control
311  */
312 
313 int nfs_congestion_kb;
314 
315 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
316 #define NFS_CONGESTION_OFF_THRESH	\
317 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
318 
319 static void nfs_set_page_writeback(struct page *page)
320 {
321 	struct inode *inode = page_file_mapping(page)->host;
322 	struct nfs_server *nfss = NFS_SERVER(inode);
323 	int ret = test_set_page_writeback(page);
324 
325 	WARN_ON_ONCE(ret != 0);
326 
327 	if (atomic_long_inc_return(&nfss->writeback) >
328 			NFS_CONGESTION_ON_THRESH)
329 		set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
330 }
331 
332 static void nfs_end_page_writeback(struct nfs_page *req)
333 {
334 	struct inode *inode = page_file_mapping(req->wb_page)->host;
335 	struct nfs_server *nfss = NFS_SERVER(inode);
336 
337 	if (!nfs_page_group_sync_on_bit(req, PG_WB_END))
338 		return;
339 
340 	end_page_writeback(req->wb_page);
341 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
342 		clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
343 }
344 
345 
346 /* nfs_page_group_clear_bits
347  *   @req - an nfs request
348  * clears all page group related bits from @req
349  */
350 static void
351 nfs_page_group_clear_bits(struct nfs_page *req)
352 {
353 	clear_bit(PG_TEARDOWN, &req->wb_flags);
354 	clear_bit(PG_UNLOCKPAGE, &req->wb_flags);
355 	clear_bit(PG_UPTODATE, &req->wb_flags);
356 	clear_bit(PG_WB_END, &req->wb_flags);
357 	clear_bit(PG_REMOVE, &req->wb_flags);
358 }
359 
360 
361 /*
362  * nfs_unroll_locks_and_wait -  unlock all newly locked reqs and wait on @req
363  *
364  * this is a helper function for nfs_lock_and_join_requests
365  *
366  * @inode - inode associated with request page group, must be holding inode lock
367  * @head  - head request of page group, must be holding head lock
368  * @req   - request that couldn't lock and needs to wait on the req bit lock
369  * @nonblock - if true, don't actually wait
370  *
371  * NOTE: this must be called holding page_group bit lock and inode spin lock
372  *       and BOTH will be released before returning.
373  *
374  * returns 0 on success, < 0 on error.
375  */
376 static int
377 nfs_unroll_locks_and_wait(struct inode *inode, struct nfs_page *head,
378 			  struct nfs_page *req, bool nonblock)
379 	__releases(&inode->i_lock)
380 {
381 	struct nfs_page *tmp;
382 	int ret;
383 
384 	/* relinquish all the locks successfully grabbed this run */
385 	for (tmp = head ; tmp != req; tmp = tmp->wb_this_page)
386 		nfs_unlock_request(tmp);
387 
388 	WARN_ON_ONCE(test_bit(PG_TEARDOWN, &req->wb_flags));
389 
390 	/* grab a ref on the request that will be waited on */
391 	kref_get(&req->wb_kref);
392 
393 	nfs_page_group_unlock(head);
394 	spin_unlock(&inode->i_lock);
395 
396 	/* release ref from nfs_page_find_head_request_locked */
397 	nfs_release_request(head);
398 
399 	if (!nonblock)
400 		ret = nfs_wait_on_request(req);
401 	else
402 		ret = -EAGAIN;
403 	nfs_release_request(req);
404 
405 	return ret;
406 }
407 
408 /*
409  * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
410  *
411  * @destroy_list - request list (using wb_this_page) terminated by @old_head
412  * @old_head - the old head of the list
413  *
414  * All subrequests must be locked and removed from all lists, so at this point
415  * they are only "active" in this function, and possibly in nfs_wait_on_request
416  * with a reference held by some other context.
417  */
418 static void
419 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
420 				 struct nfs_page *old_head)
421 {
422 	while (destroy_list) {
423 		struct nfs_page *subreq = destroy_list;
424 
425 		destroy_list = (subreq->wb_this_page == old_head) ?
426 				   NULL : subreq->wb_this_page;
427 
428 		WARN_ON_ONCE(old_head != subreq->wb_head);
429 
430 		/* make sure old group is not used */
431 		subreq->wb_head = subreq;
432 		subreq->wb_this_page = subreq;
433 
434 		/* subreq is now totally disconnected from page group or any
435 		 * write / commit lists. last chance to wake any waiters */
436 		nfs_unlock_request(subreq);
437 
438 		if (!test_bit(PG_TEARDOWN, &subreq->wb_flags)) {
439 			/* release ref on old head request */
440 			nfs_release_request(old_head);
441 
442 			nfs_page_group_clear_bits(subreq);
443 
444 			/* release the PG_INODE_REF reference */
445 			if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags))
446 				nfs_release_request(subreq);
447 			else
448 				WARN_ON_ONCE(1);
449 		} else {
450 			WARN_ON_ONCE(test_bit(PG_CLEAN, &subreq->wb_flags));
451 			/* zombie requests have already released the last
452 			 * reference and were waiting on the rest of the
453 			 * group to complete. Since it's no longer part of a
454 			 * group, simply free the request */
455 			nfs_page_group_clear_bits(subreq);
456 			nfs_free_request(subreq);
457 		}
458 	}
459 }
460 
461 /*
462  * nfs_lock_and_join_requests - join all subreqs to the head req and return
463  *                              a locked reference, cancelling any pending
464  *                              operations for this page.
465  *
466  * @page - the page used to lookup the "page group" of nfs_page structures
467  * @nonblock - if true, don't block waiting for request locks
468  *
469  * This function joins all sub requests to the head request by first
470  * locking all requests in the group, cancelling any pending operations
471  * and finally updating the head request to cover the whole range covered by
472  * the (former) group.  All subrequests are removed from any write or commit
473  * lists, unlinked from the group and destroyed.
474  *
475  * Returns a locked, referenced pointer to the head request - which after
476  * this call is guaranteed to be the only request associated with the page.
477  * Returns NULL if no requests are found for @page, or a ERR_PTR if an
478  * error was encountered.
479  */
480 static struct nfs_page *
481 nfs_lock_and_join_requests(struct page *page, bool nonblock)
482 {
483 	struct inode *inode = page_file_mapping(page)->host;
484 	struct nfs_page *head, *subreq;
485 	struct nfs_page *destroy_list = NULL;
486 	unsigned int total_bytes;
487 	int ret;
488 
489 try_again:
490 	total_bytes = 0;
491 
492 	WARN_ON_ONCE(destroy_list);
493 
494 	spin_lock(&inode->i_lock);
495 
496 	/*
497 	 * A reference is taken only on the head request which acts as a
498 	 * reference to the whole page group - the group will not be destroyed
499 	 * until the head reference is released.
500 	 */
501 	head = nfs_page_find_head_request_locked(NFS_I(inode), page);
502 
503 	if (!head) {
504 		spin_unlock(&inode->i_lock);
505 		return NULL;
506 	}
507 
508 	/* holding inode lock, so always make a non-blocking call to try the
509 	 * page group lock */
510 	ret = nfs_page_group_lock(head, true);
511 	if (ret < 0) {
512 		spin_unlock(&inode->i_lock);
513 
514 		if (!nonblock && ret == -EAGAIN) {
515 			nfs_page_group_lock_wait(head);
516 			nfs_release_request(head);
517 			goto try_again;
518 		}
519 
520 		nfs_release_request(head);
521 		return ERR_PTR(ret);
522 	}
523 
524 	/* lock each request in the page group */
525 	subreq = head;
526 	do {
527 		/*
528 		 * Subrequests are always contiguous, non overlapping
529 		 * and in order - but may be repeated (mirrored writes).
530 		 */
531 		if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
532 			/* keep track of how many bytes this group covers */
533 			total_bytes += subreq->wb_bytes;
534 		} else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
535 			    ((subreq->wb_offset + subreq->wb_bytes) >
536 			     (head->wb_offset + total_bytes)))) {
537 			nfs_page_group_unlock(head);
538 			spin_unlock(&inode->i_lock);
539 			return ERR_PTR(-EIO);
540 		}
541 
542 		if (!nfs_lock_request(subreq)) {
543 			/* releases page group bit lock and
544 			 * inode spin lock and all references */
545 			ret = nfs_unroll_locks_and_wait(inode, head,
546 				subreq, nonblock);
547 
548 			if (ret == 0)
549 				goto try_again;
550 
551 			return ERR_PTR(ret);
552 		}
553 
554 		subreq = subreq->wb_this_page;
555 	} while (subreq != head);
556 
557 	/* Now that all requests are locked, make sure they aren't on any list.
558 	 * Commit list removal accounting is done after locks are dropped */
559 	subreq = head;
560 	do {
561 		nfs_clear_request_commit(subreq);
562 		subreq = subreq->wb_this_page;
563 	} while (subreq != head);
564 
565 	/* unlink subrequests from head, destroy them later */
566 	if (head->wb_this_page != head) {
567 		/* destroy list will be terminated by head */
568 		destroy_list = head->wb_this_page;
569 		head->wb_this_page = head;
570 
571 		/* change head request to cover whole range that
572 		 * the former page group covered */
573 		head->wb_bytes = total_bytes;
574 	}
575 
576 	/*
577 	 * prepare head request to be added to new pgio descriptor
578 	 */
579 	nfs_page_group_clear_bits(head);
580 
581 	/*
582 	 * some part of the group was still on the inode list - otherwise
583 	 * the group wouldn't be involved in async write.
584 	 * grab a reference for the head request, iff it needs one.
585 	 */
586 	if (!test_and_set_bit(PG_INODE_REF, &head->wb_flags))
587 		kref_get(&head->wb_kref);
588 
589 	nfs_page_group_unlock(head);
590 
591 	/* drop lock to clean uprequests on destroy list */
592 	spin_unlock(&inode->i_lock);
593 
594 	nfs_destroy_unlinked_subrequests(destroy_list, head);
595 
596 	/* still holds ref on head from nfs_page_find_head_request_locked
597 	 * and still has lock on head from lock loop */
598 	return head;
599 }
600 
601 static void nfs_write_error_remove_page(struct nfs_page *req)
602 {
603 	nfs_unlock_request(req);
604 	nfs_end_page_writeback(req);
605 	generic_error_remove_page(page_file_mapping(req->wb_page),
606 				  req->wb_page);
607 	nfs_release_request(req);
608 }
609 
610 static bool
611 nfs_error_is_fatal_on_server(int err)
612 {
613 	switch (err) {
614 	case 0:
615 	case -ERESTARTSYS:
616 	case -EINTR:
617 		return false;
618 	}
619 	return nfs_error_is_fatal(err);
620 }
621 
622 /*
623  * Find an associated nfs write request, and prepare to flush it out
624  * May return an error if the user signalled nfs_wait_on_request().
625  */
626 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
627 				struct page *page, bool nonblock)
628 {
629 	struct nfs_page *req;
630 	int ret = 0;
631 
632 	req = nfs_lock_and_join_requests(page, nonblock);
633 	if (!req)
634 		goto out;
635 	ret = PTR_ERR(req);
636 	if (IS_ERR(req))
637 		goto out;
638 
639 	nfs_set_page_writeback(page);
640 	WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
641 
642 	ret = 0;
643 	/* If there is a fatal error that covers this write, just exit */
644 	if (nfs_error_is_fatal_on_server(req->wb_context->error))
645 		goto out_launder;
646 
647 	if (!nfs_pageio_add_request(pgio, req)) {
648 		ret = pgio->pg_error;
649 		/*
650 		 * Remove the problematic req upon fatal errors on the server
651 		 */
652 		if (nfs_error_is_fatal(ret)) {
653 			nfs_context_set_write_error(req->wb_context, ret);
654 			if (nfs_error_is_fatal_on_server(ret))
655 				goto out_launder;
656 		}
657 		nfs_redirty_request(req);
658 		ret = -EAGAIN;
659 	} else
660 		nfs_add_stats(page_file_mapping(page)->host,
661 				NFSIOS_WRITEPAGES, 1);
662 out:
663 	return ret;
664 out_launder:
665 	nfs_write_error_remove_page(req);
666 	return ret;
667 }
668 
669 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
670 			    struct nfs_pageio_descriptor *pgio)
671 {
672 	int ret;
673 
674 	nfs_pageio_cond_complete(pgio, page_index(page));
675 	ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
676 	if (ret == -EAGAIN) {
677 		redirty_page_for_writepage(wbc, page);
678 		ret = 0;
679 	}
680 	return ret;
681 }
682 
683 /*
684  * Write an mmapped page to the server.
685  */
686 static int nfs_writepage_locked(struct page *page,
687 				struct writeback_control *wbc)
688 {
689 	struct nfs_pageio_descriptor pgio;
690 	struct inode *inode = page_file_mapping(page)->host;
691 	int err;
692 
693 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
694 	nfs_pageio_init_write(&pgio, inode, 0,
695 				false, &nfs_async_write_completion_ops);
696 	err = nfs_do_writepage(page, wbc, &pgio);
697 	nfs_pageio_complete(&pgio);
698 	if (err < 0)
699 		return err;
700 	if (pgio.pg_error < 0)
701 		return pgio.pg_error;
702 	return 0;
703 }
704 
705 int nfs_writepage(struct page *page, struct writeback_control *wbc)
706 {
707 	int ret;
708 
709 	ret = nfs_writepage_locked(page, wbc);
710 	unlock_page(page);
711 	return ret;
712 }
713 
714 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
715 {
716 	int ret;
717 
718 	ret = nfs_do_writepage(page, wbc, data);
719 	unlock_page(page);
720 	return ret;
721 }
722 
723 static void nfs_io_completion_commit(void *inode)
724 {
725 	nfs_commit_inode(inode, 0);
726 }
727 
728 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
729 {
730 	struct inode *inode = mapping->host;
731 	struct nfs_pageio_descriptor pgio;
732 	struct nfs_io_completion *ioc = nfs_io_completion_alloc(GFP_NOFS);
733 	int err;
734 
735 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
736 
737 	if (ioc)
738 		nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
739 
740 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
741 				&nfs_async_write_completion_ops);
742 	pgio.pg_io_completion = ioc;
743 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
744 	nfs_pageio_complete(&pgio);
745 	nfs_io_completion_put(ioc);
746 
747 	if (err < 0)
748 		goto out_err;
749 	err = pgio.pg_error;
750 	if (err < 0)
751 		goto out_err;
752 	return 0;
753 out_err:
754 	return err;
755 }
756 
757 /*
758  * Insert a write request into an inode
759  */
760 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
761 {
762 	struct nfs_inode *nfsi = NFS_I(inode);
763 
764 	WARN_ON_ONCE(req->wb_this_page != req);
765 
766 	/* Lock the request! */
767 	nfs_lock_request(req);
768 
769 	spin_lock(&inode->i_lock);
770 	if (!nfsi->nrequests &&
771 	    NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
772 		inode->i_version++;
773 	/*
774 	 * Swap-space should not get truncated. Hence no need to plug the race
775 	 * with invalidate/truncate.
776 	 */
777 	if (likely(!PageSwapCache(req->wb_page))) {
778 		set_bit(PG_MAPPED, &req->wb_flags);
779 		SetPagePrivate(req->wb_page);
780 		set_page_private(req->wb_page, (unsigned long)req);
781 	}
782 	nfsi->nrequests++;
783 	/* this a head request for a page group - mark it as having an
784 	 * extra reference so sub groups can follow suit.
785 	 * This flag also informs pgio layer when to bump nrequests when
786 	 * adding subrequests. */
787 	WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
788 	kref_get(&req->wb_kref);
789 	spin_unlock(&inode->i_lock);
790 }
791 
792 /*
793  * Remove a write request from an inode
794  */
795 static void nfs_inode_remove_request(struct nfs_page *req)
796 {
797 	struct inode *inode = d_inode(req->wb_context->dentry);
798 	struct nfs_inode *nfsi = NFS_I(inode);
799 	struct nfs_page *head;
800 
801 	if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
802 		head = req->wb_head;
803 
804 		spin_lock(&inode->i_lock);
805 		if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
806 			set_page_private(head->wb_page, 0);
807 			ClearPagePrivate(head->wb_page);
808 			clear_bit(PG_MAPPED, &head->wb_flags);
809 		}
810 		nfsi->nrequests--;
811 		spin_unlock(&inode->i_lock);
812 	} else {
813 		spin_lock(&inode->i_lock);
814 		nfsi->nrequests--;
815 		spin_unlock(&inode->i_lock);
816 	}
817 
818 	if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags))
819 		nfs_release_request(req);
820 }
821 
822 static void
823 nfs_mark_request_dirty(struct nfs_page *req)
824 {
825 	if (req->wb_page)
826 		__set_page_dirty_nobuffers(req->wb_page);
827 }
828 
829 /*
830  * nfs_page_search_commits_for_head_request_locked
831  *
832  * Search through commit lists on @inode for the head request for @page.
833  * Must be called while holding the inode (which is cinfo) lock.
834  *
835  * Returns the head request if found, or NULL if not found.
836  */
837 static struct nfs_page *
838 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
839 						struct page *page)
840 {
841 	struct nfs_page *freq, *t;
842 	struct nfs_commit_info cinfo;
843 	struct inode *inode = &nfsi->vfs_inode;
844 
845 	nfs_init_cinfo_from_inode(&cinfo, inode);
846 
847 	/* search through pnfs commit lists */
848 	freq = pnfs_search_commit_reqs(inode, &cinfo, page);
849 	if (freq)
850 		return freq->wb_head;
851 
852 	/* Linearly search the commit list for the correct request */
853 	list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
854 		if (freq->wb_page == page)
855 			return freq->wb_head;
856 	}
857 
858 	return NULL;
859 }
860 
861 /**
862  * nfs_request_add_commit_list_locked - add request to a commit list
863  * @req: pointer to a struct nfs_page
864  * @dst: commit list head
865  * @cinfo: holds list lock and accounting info
866  *
867  * This sets the PG_CLEAN bit, updates the cinfo count of
868  * number of outstanding requests requiring a commit as well as
869  * the MM page stats.
870  *
871  * The caller must hold cinfo->inode->i_lock, and the nfs_page lock.
872  */
873 void
874 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
875 			    struct nfs_commit_info *cinfo)
876 {
877 	set_bit(PG_CLEAN, &req->wb_flags);
878 	nfs_list_add_request(req, dst);
879 	cinfo->mds->ncommit++;
880 }
881 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
882 
883 /**
884  * nfs_request_add_commit_list - add request to a commit list
885  * @req: pointer to a struct nfs_page
886  * @dst: commit list head
887  * @cinfo: holds list lock and accounting info
888  *
889  * This sets the PG_CLEAN bit, updates the cinfo count of
890  * number of outstanding requests requiring a commit as well as
891  * the MM page stats.
892  *
893  * The caller must _not_ hold the cinfo->lock, but must be
894  * holding the nfs_page lock.
895  */
896 void
897 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
898 {
899 	spin_lock(&cinfo->inode->i_lock);
900 	nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
901 	spin_unlock(&cinfo->inode->i_lock);
902 	if (req->wb_page)
903 		nfs_mark_page_unstable(req->wb_page, cinfo);
904 }
905 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
906 
907 /**
908  * nfs_request_remove_commit_list - Remove request from a commit list
909  * @req: pointer to a nfs_page
910  * @cinfo: holds list lock and accounting info
911  *
912  * This clears the PG_CLEAN bit, and updates the cinfo's count of
913  * number of outstanding requests requiring a commit
914  * It does not update the MM page stats.
915  *
916  * The caller _must_ hold the cinfo->lock and the nfs_page lock.
917  */
918 void
919 nfs_request_remove_commit_list(struct nfs_page *req,
920 			       struct nfs_commit_info *cinfo)
921 {
922 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
923 		return;
924 	nfs_list_remove_request(req);
925 	cinfo->mds->ncommit--;
926 }
927 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
928 
929 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
930 				      struct inode *inode)
931 {
932 	cinfo->inode = inode;
933 	cinfo->mds = &NFS_I(inode)->commit_info;
934 	cinfo->ds = pnfs_get_ds_info(inode);
935 	cinfo->dreq = NULL;
936 	cinfo->completion_ops = &nfs_commit_completion_ops;
937 }
938 
939 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
940 		    struct inode *inode,
941 		    struct nfs_direct_req *dreq)
942 {
943 	if (dreq)
944 		nfs_init_cinfo_from_dreq(cinfo, dreq);
945 	else
946 		nfs_init_cinfo_from_inode(cinfo, inode);
947 }
948 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
949 
950 /*
951  * Add a request to the inode's commit list.
952  */
953 void
954 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
955 			struct nfs_commit_info *cinfo, u32 ds_commit_idx)
956 {
957 	if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
958 		return;
959 	nfs_request_add_commit_list(req, cinfo);
960 }
961 
962 static void
963 nfs_clear_page_commit(struct page *page)
964 {
965 	dec_node_page_state(page, NR_UNSTABLE_NFS);
966 	dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
967 		    WB_RECLAIMABLE);
968 }
969 
970 /* Called holding inode (/cinfo) lock */
971 static void
972 nfs_clear_request_commit(struct nfs_page *req)
973 {
974 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
975 		struct inode *inode = d_inode(req->wb_context->dentry);
976 		struct nfs_commit_info cinfo;
977 
978 		nfs_init_cinfo_from_inode(&cinfo, inode);
979 		if (!pnfs_clear_request_commit(req, &cinfo)) {
980 			nfs_request_remove_commit_list(req, &cinfo);
981 		}
982 		nfs_clear_page_commit(req->wb_page);
983 	}
984 }
985 
986 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
987 {
988 	if (hdr->verf.committed == NFS_DATA_SYNC)
989 		return hdr->lseg == NULL;
990 	return hdr->verf.committed != NFS_FILE_SYNC;
991 }
992 
993 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
994 {
995 	nfs_io_completion_get(hdr->io_completion);
996 }
997 
998 static void nfs_write_completion(struct nfs_pgio_header *hdr)
999 {
1000 	struct nfs_commit_info cinfo;
1001 	unsigned long bytes = 0;
1002 
1003 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
1004 		goto out;
1005 	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
1006 	while (!list_empty(&hdr->pages)) {
1007 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
1008 
1009 		bytes += req->wb_bytes;
1010 		nfs_list_remove_request(req);
1011 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
1012 		    (hdr->good_bytes < bytes)) {
1013 			nfs_set_pageerror(req->wb_page);
1014 			nfs_context_set_write_error(req->wb_context, hdr->error);
1015 			goto remove_req;
1016 		}
1017 		if (nfs_write_need_commit(hdr)) {
1018 			memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1019 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1020 				hdr->pgio_mirror_idx);
1021 			goto next;
1022 		}
1023 remove_req:
1024 		nfs_inode_remove_request(req);
1025 next:
1026 		nfs_unlock_request(req);
1027 		nfs_end_page_writeback(req);
1028 		nfs_release_request(req);
1029 	}
1030 out:
1031 	nfs_io_completion_put(hdr->io_completion);
1032 	hdr->release(hdr);
1033 }
1034 
1035 unsigned long
1036 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1037 {
1038 	return cinfo->mds->ncommit;
1039 }
1040 
1041 /* cinfo->inode->i_lock held by caller */
1042 int
1043 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1044 		     struct nfs_commit_info *cinfo, int max)
1045 {
1046 	struct nfs_page *req, *tmp;
1047 	int ret = 0;
1048 
1049 	list_for_each_entry_safe(req, tmp, src, wb_list) {
1050 		if (!nfs_lock_request(req))
1051 			continue;
1052 		kref_get(&req->wb_kref);
1053 		if (cond_resched_lock(&cinfo->inode->i_lock))
1054 			list_safe_reset_next(req, tmp, wb_list);
1055 		nfs_request_remove_commit_list(req, cinfo);
1056 		nfs_list_add_request(req, dst);
1057 		ret++;
1058 		if ((ret == max) && !cinfo->dreq)
1059 			break;
1060 	}
1061 	return ret;
1062 }
1063 
1064 /*
1065  * nfs_scan_commit - Scan an inode for commit requests
1066  * @inode: NFS inode to scan
1067  * @dst: mds destination list
1068  * @cinfo: mds and ds lists of reqs ready to commit
1069  *
1070  * Moves requests from the inode's 'commit' request list.
1071  * The requests are *not* checked to ensure that they form a contiguous set.
1072  */
1073 int
1074 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1075 		struct nfs_commit_info *cinfo)
1076 {
1077 	int ret = 0;
1078 
1079 	spin_lock(&cinfo->inode->i_lock);
1080 	if (cinfo->mds->ncommit > 0) {
1081 		const int max = INT_MAX;
1082 
1083 		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1084 					   cinfo, max);
1085 		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1086 	}
1087 	spin_unlock(&cinfo->inode->i_lock);
1088 	return ret;
1089 }
1090 
1091 /*
1092  * Search for an existing write request, and attempt to update
1093  * it to reflect a new dirty region on a given page.
1094  *
1095  * If the attempt fails, then the existing request is flushed out
1096  * to disk.
1097  */
1098 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1099 		struct page *page,
1100 		unsigned int offset,
1101 		unsigned int bytes)
1102 {
1103 	struct nfs_page *req;
1104 	unsigned int rqend;
1105 	unsigned int end;
1106 	int error;
1107 
1108 	if (!PagePrivate(page))
1109 		return NULL;
1110 
1111 	end = offset + bytes;
1112 	spin_lock(&inode->i_lock);
1113 
1114 	for (;;) {
1115 		req = nfs_page_find_head_request_locked(NFS_I(inode), page);
1116 		if (req == NULL)
1117 			goto out_unlock;
1118 
1119 		/* should be handled by nfs_flush_incompatible */
1120 		WARN_ON_ONCE(req->wb_head != req);
1121 		WARN_ON_ONCE(req->wb_this_page != req);
1122 
1123 		rqend = req->wb_offset + req->wb_bytes;
1124 		/*
1125 		 * Tell the caller to flush out the request if
1126 		 * the offsets are non-contiguous.
1127 		 * Note: nfs_flush_incompatible() will already
1128 		 * have flushed out requests having wrong owners.
1129 		 */
1130 		if (offset > rqend
1131 		    || end < req->wb_offset)
1132 			goto out_flushme;
1133 
1134 		if (nfs_lock_request(req))
1135 			break;
1136 
1137 		/* The request is locked, so wait and then retry */
1138 		spin_unlock(&inode->i_lock);
1139 		error = nfs_wait_on_request(req);
1140 		nfs_release_request(req);
1141 		if (error != 0)
1142 			goto out_err;
1143 		spin_lock(&inode->i_lock);
1144 	}
1145 
1146 	/* Okay, the request matches. Update the region */
1147 	if (offset < req->wb_offset) {
1148 		req->wb_offset = offset;
1149 		req->wb_pgbase = offset;
1150 	}
1151 	if (end > rqend)
1152 		req->wb_bytes = end - req->wb_offset;
1153 	else
1154 		req->wb_bytes = rqend - req->wb_offset;
1155 out_unlock:
1156 	if (req)
1157 		nfs_clear_request_commit(req);
1158 	spin_unlock(&inode->i_lock);
1159 	return req;
1160 out_flushme:
1161 	spin_unlock(&inode->i_lock);
1162 	nfs_release_request(req);
1163 	error = nfs_wb_page(inode, page);
1164 out_err:
1165 	return ERR_PTR(error);
1166 }
1167 
1168 /*
1169  * Try to update an existing write request, or create one if there is none.
1170  *
1171  * Note: Should always be called with the Page Lock held to prevent races
1172  * if we have to add a new request. Also assumes that the caller has
1173  * already called nfs_flush_incompatible() if necessary.
1174  */
1175 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1176 		struct page *page, unsigned int offset, unsigned int bytes)
1177 {
1178 	struct inode *inode = page_file_mapping(page)->host;
1179 	struct nfs_page	*req;
1180 
1181 	req = nfs_try_to_update_request(inode, page, offset, bytes);
1182 	if (req != NULL)
1183 		goto out;
1184 	req = nfs_create_request(ctx, page, NULL, offset, bytes);
1185 	if (IS_ERR(req))
1186 		goto out;
1187 	nfs_inode_add_request(inode, req);
1188 out:
1189 	return req;
1190 }
1191 
1192 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1193 		unsigned int offset, unsigned int count)
1194 {
1195 	struct nfs_page	*req;
1196 
1197 	req = nfs_setup_write_request(ctx, page, offset, count);
1198 	if (IS_ERR(req))
1199 		return PTR_ERR(req);
1200 	/* Update file length */
1201 	nfs_grow_file(page, offset, count);
1202 	nfs_mark_uptodate(req);
1203 	nfs_mark_request_dirty(req);
1204 	nfs_unlock_and_release_request(req);
1205 	return 0;
1206 }
1207 
1208 int nfs_flush_incompatible(struct file *file, struct page *page)
1209 {
1210 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1211 	struct nfs_lock_context *l_ctx;
1212 	struct file_lock_context *flctx = file_inode(file)->i_flctx;
1213 	struct nfs_page	*req;
1214 	int do_flush, status;
1215 	/*
1216 	 * Look for a request corresponding to this page. If there
1217 	 * is one, and it belongs to another file, we flush it out
1218 	 * before we try to copy anything into the page. Do this
1219 	 * due to the lack of an ACCESS-type call in NFSv2.
1220 	 * Also do the same if we find a request from an existing
1221 	 * dropped page.
1222 	 */
1223 	do {
1224 		req = nfs_page_find_head_request(page);
1225 		if (req == NULL)
1226 			return 0;
1227 		l_ctx = req->wb_lock_context;
1228 		do_flush = req->wb_page != page ||
1229 			!nfs_match_open_context(req->wb_context, ctx);
1230 		/* for now, flush if more than 1 request in page_group */
1231 		do_flush |= req->wb_this_page != req;
1232 		if (l_ctx && flctx &&
1233 		    !(list_empty_careful(&flctx->flc_posix) &&
1234 		      list_empty_careful(&flctx->flc_flock))) {
1235 			do_flush |= l_ctx->lockowner != current->files;
1236 		}
1237 		nfs_release_request(req);
1238 		if (!do_flush)
1239 			return 0;
1240 		status = nfs_wb_page(page_file_mapping(page)->host, page);
1241 	} while (status == 0);
1242 	return status;
1243 }
1244 
1245 /*
1246  * Avoid buffered writes when a open context credential's key would
1247  * expire soon.
1248  *
1249  * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1250  *
1251  * Return 0 and set a credential flag which triggers the inode to flush
1252  * and performs  NFS_FILE_SYNC writes if the key will expired within
1253  * RPC_KEY_EXPIRE_TIMEO.
1254  */
1255 int
1256 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1257 {
1258 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
1259 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1260 
1261 	return rpcauth_key_timeout_notify(auth, ctx->cred);
1262 }
1263 
1264 /*
1265  * Test if the open context credential key is marked to expire soon.
1266  */
1267 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1268 {
1269 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1270 
1271 	return rpcauth_cred_key_to_expire(auth, ctx->cred);
1272 }
1273 
1274 /*
1275  * If the page cache is marked as unsafe or invalid, then we can't rely on
1276  * the PageUptodate() flag. In this case, we will need to turn off
1277  * write optimisations that depend on the page contents being correct.
1278  */
1279 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1280 {
1281 	struct nfs_inode *nfsi = NFS_I(inode);
1282 
1283 	if (nfs_have_delegated_attributes(inode))
1284 		goto out;
1285 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1286 		return false;
1287 	smp_rmb();
1288 	if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1289 		return false;
1290 out:
1291 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1292 		return false;
1293 	return PageUptodate(page) != 0;
1294 }
1295 
1296 static bool
1297 is_whole_file_wrlock(struct file_lock *fl)
1298 {
1299 	return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1300 			fl->fl_type == F_WRLCK;
1301 }
1302 
1303 /* If we know the page is up to date, and we're not using byte range locks (or
1304  * if we have the whole file locked for writing), it may be more efficient to
1305  * extend the write to cover the entire page in order to avoid fragmentation
1306  * inefficiencies.
1307  *
1308  * If the file is opened for synchronous writes then we can just skip the rest
1309  * of the checks.
1310  */
1311 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1312 {
1313 	int ret;
1314 	struct file_lock_context *flctx = inode->i_flctx;
1315 	struct file_lock *fl;
1316 
1317 	if (file->f_flags & O_DSYNC)
1318 		return 0;
1319 	if (!nfs_write_pageuptodate(page, inode))
1320 		return 0;
1321 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1322 		return 1;
1323 	if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1324 		       list_empty_careful(&flctx->flc_posix)))
1325 		return 1;
1326 
1327 	/* Check to see if there are whole file write locks */
1328 	ret = 0;
1329 	spin_lock(&flctx->flc_lock);
1330 	if (!list_empty(&flctx->flc_posix)) {
1331 		fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1332 					fl_list);
1333 		if (is_whole_file_wrlock(fl))
1334 			ret = 1;
1335 	} else if (!list_empty(&flctx->flc_flock)) {
1336 		fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1337 					fl_list);
1338 		if (fl->fl_type == F_WRLCK)
1339 			ret = 1;
1340 	}
1341 	spin_unlock(&flctx->flc_lock);
1342 	return ret;
1343 }
1344 
1345 /*
1346  * Update and possibly write a cached page of an NFS file.
1347  *
1348  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1349  * things with a page scheduled for an RPC call (e.g. invalidate it).
1350  */
1351 int nfs_updatepage(struct file *file, struct page *page,
1352 		unsigned int offset, unsigned int count)
1353 {
1354 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1355 	struct inode	*inode = page_file_mapping(page)->host;
1356 	int		status = 0;
1357 
1358 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1359 
1360 	dprintk("NFS:       nfs_updatepage(%pD2 %d@%lld)\n",
1361 		file, count, (long long)(page_file_offset(page) + offset));
1362 
1363 	if (!count)
1364 		goto out;
1365 
1366 	if (nfs_can_extend_write(file, page, inode)) {
1367 		count = max(count + offset, nfs_page_length(page));
1368 		offset = 0;
1369 	}
1370 
1371 	status = nfs_writepage_setup(ctx, page, offset, count);
1372 	if (status < 0)
1373 		nfs_set_pageerror(page);
1374 	else
1375 		__set_page_dirty_nobuffers(page);
1376 out:
1377 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
1378 			status, (long long)i_size_read(inode));
1379 	return status;
1380 }
1381 
1382 static int flush_task_priority(int how)
1383 {
1384 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1385 		case FLUSH_HIGHPRI:
1386 			return RPC_PRIORITY_HIGH;
1387 		case FLUSH_LOWPRI:
1388 			return RPC_PRIORITY_LOW;
1389 	}
1390 	return RPC_PRIORITY_NORMAL;
1391 }
1392 
1393 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1394 			       struct rpc_message *msg,
1395 			       const struct nfs_rpc_ops *rpc_ops,
1396 			       struct rpc_task_setup *task_setup_data, int how)
1397 {
1398 	int priority = flush_task_priority(how);
1399 
1400 	task_setup_data->priority = priority;
1401 	rpc_ops->write_setup(hdr, msg);
1402 
1403 	nfs4_state_protect_write(NFS_SERVER(hdr->inode)->nfs_client,
1404 				 &task_setup_data->rpc_client, msg, hdr);
1405 }
1406 
1407 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1408  * call this on each, which will prepare them to be retried on next
1409  * writeback using standard nfs.
1410  */
1411 static void nfs_redirty_request(struct nfs_page *req)
1412 {
1413 	nfs_mark_request_dirty(req);
1414 	set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1415 	nfs_unlock_request(req);
1416 	nfs_end_page_writeback(req);
1417 	nfs_release_request(req);
1418 }
1419 
1420 static void nfs_async_write_error(struct list_head *head)
1421 {
1422 	struct nfs_page	*req;
1423 
1424 	while (!list_empty(head)) {
1425 		req = nfs_list_entry(head->next);
1426 		nfs_list_remove_request(req);
1427 		nfs_redirty_request(req);
1428 	}
1429 }
1430 
1431 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1432 {
1433 	nfs_async_write_error(&hdr->pages);
1434 }
1435 
1436 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1437 	.init_hdr = nfs_async_write_init,
1438 	.error_cleanup = nfs_async_write_error,
1439 	.completion = nfs_write_completion,
1440 	.reschedule_io = nfs_async_write_reschedule_io,
1441 };
1442 
1443 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1444 			       struct inode *inode, int ioflags, bool force_mds,
1445 			       const struct nfs_pgio_completion_ops *compl_ops)
1446 {
1447 	struct nfs_server *server = NFS_SERVER(inode);
1448 	const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1449 
1450 #ifdef CONFIG_NFS_V4_1
1451 	if (server->pnfs_curr_ld && !force_mds)
1452 		pg_ops = server->pnfs_curr_ld->pg_write_ops;
1453 #endif
1454 	nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1455 			server->wsize, ioflags, GFP_NOIO);
1456 }
1457 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1458 
1459 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1460 {
1461 	struct nfs_pgio_mirror *mirror;
1462 
1463 	if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1464 		pgio->pg_ops->pg_cleanup(pgio);
1465 
1466 	pgio->pg_ops = &nfs_pgio_rw_ops;
1467 
1468 	nfs_pageio_stop_mirroring(pgio);
1469 
1470 	mirror = &pgio->pg_mirrors[0];
1471 	mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1472 }
1473 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1474 
1475 
1476 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1477 {
1478 	struct nfs_commit_data *data = calldata;
1479 
1480 	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1481 }
1482 
1483 /*
1484  * Special version of should_remove_suid() that ignores capabilities.
1485  */
1486 static int nfs_should_remove_suid(const struct inode *inode)
1487 {
1488 	umode_t mode = inode->i_mode;
1489 	int kill = 0;
1490 
1491 	/* suid always must be killed */
1492 	if (unlikely(mode & S_ISUID))
1493 		kill = ATTR_KILL_SUID;
1494 
1495 	/*
1496 	 * sgid without any exec bits is just a mandatory locking mark; leave
1497 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1498 	 */
1499 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1500 		kill |= ATTR_KILL_SGID;
1501 
1502 	if (unlikely(kill && S_ISREG(mode)))
1503 		return kill;
1504 
1505 	return 0;
1506 }
1507 
1508 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1509 		struct nfs_fattr *fattr)
1510 {
1511 	struct nfs_pgio_args *argp = &hdr->args;
1512 	struct nfs_pgio_res *resp = &hdr->res;
1513 	u64 size = argp->offset + resp->count;
1514 
1515 	if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1516 		fattr->size = size;
1517 	if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1518 		fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1519 		return;
1520 	}
1521 	if (size != fattr->size)
1522 		return;
1523 	/* Set attribute barrier */
1524 	nfs_fattr_set_barrier(fattr);
1525 	/* ...and update size */
1526 	fattr->valid |= NFS_ATTR_FATTR_SIZE;
1527 }
1528 
1529 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1530 {
1531 	struct nfs_fattr *fattr = &hdr->fattr;
1532 	struct inode *inode = hdr->inode;
1533 
1534 	spin_lock(&inode->i_lock);
1535 	nfs_writeback_check_extend(hdr, fattr);
1536 	nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1537 	spin_unlock(&inode->i_lock);
1538 }
1539 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1540 
1541 /*
1542  * This function is called when the WRITE call is complete.
1543  */
1544 static int nfs_writeback_done(struct rpc_task *task,
1545 			      struct nfs_pgio_header *hdr,
1546 			      struct inode *inode)
1547 {
1548 	int status;
1549 
1550 	/*
1551 	 * ->write_done will attempt to use post-op attributes to detect
1552 	 * conflicting writes by other clients.  A strict interpretation
1553 	 * of close-to-open would allow us to continue caching even if
1554 	 * another writer had changed the file, but some applications
1555 	 * depend on tighter cache coherency when writing.
1556 	 */
1557 	status = NFS_PROTO(inode)->write_done(task, hdr);
1558 	if (status != 0)
1559 		return status;
1560 	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1561 
1562 	if (hdr->res.verf->committed < hdr->args.stable &&
1563 	    task->tk_status >= 0) {
1564 		/* We tried a write call, but the server did not
1565 		 * commit data to stable storage even though we
1566 		 * requested it.
1567 		 * Note: There is a known bug in Tru64 < 5.0 in which
1568 		 *	 the server reports NFS_DATA_SYNC, but performs
1569 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1570 		 *	 as a dprintk() in order to avoid filling syslog.
1571 		 */
1572 		static unsigned long    complain;
1573 
1574 		/* Note this will print the MDS for a DS write */
1575 		if (time_before(complain, jiffies)) {
1576 			dprintk("NFS:       faulty NFS server %s:"
1577 				" (committed = %d) != (stable = %d)\n",
1578 				NFS_SERVER(inode)->nfs_client->cl_hostname,
1579 				hdr->res.verf->committed, hdr->args.stable);
1580 			complain = jiffies + 300 * HZ;
1581 		}
1582 	}
1583 
1584 	/* Deal with the suid/sgid bit corner case */
1585 	if (nfs_should_remove_suid(inode))
1586 		nfs_mark_for_revalidate(inode);
1587 	return 0;
1588 }
1589 
1590 /*
1591  * This function is called when the WRITE call is complete.
1592  */
1593 static void nfs_writeback_result(struct rpc_task *task,
1594 				 struct nfs_pgio_header *hdr)
1595 {
1596 	struct nfs_pgio_args	*argp = &hdr->args;
1597 	struct nfs_pgio_res	*resp = &hdr->res;
1598 
1599 	if (resp->count < argp->count) {
1600 		static unsigned long    complain;
1601 
1602 		/* This a short write! */
1603 		nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1604 
1605 		/* Has the server at least made some progress? */
1606 		if (resp->count == 0) {
1607 			if (time_before(complain, jiffies)) {
1608 				printk(KERN_WARNING
1609 				       "NFS: Server wrote zero bytes, expected %u.\n",
1610 				       argp->count);
1611 				complain = jiffies + 300 * HZ;
1612 			}
1613 			nfs_set_pgio_error(hdr, -EIO, argp->offset);
1614 			task->tk_status = -EIO;
1615 			return;
1616 		}
1617 
1618 		/* For non rpc-based layout drivers, retry-through-MDS */
1619 		if (!task->tk_ops) {
1620 			hdr->pnfs_error = -EAGAIN;
1621 			return;
1622 		}
1623 
1624 		/* Was this an NFSv2 write or an NFSv3 stable write? */
1625 		if (resp->verf->committed != NFS_UNSTABLE) {
1626 			/* Resend from where the server left off */
1627 			hdr->mds_offset += resp->count;
1628 			argp->offset += resp->count;
1629 			argp->pgbase += resp->count;
1630 			argp->count -= resp->count;
1631 		} else {
1632 			/* Resend as a stable write in order to avoid
1633 			 * headaches in the case of a server crash.
1634 			 */
1635 			argp->stable = NFS_FILE_SYNC;
1636 		}
1637 		rpc_restart_call_prepare(task);
1638 	}
1639 }
1640 
1641 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1642 {
1643 	return wait_on_atomic_t(&cinfo->rpcs_out,
1644 			nfs_wait_atomic_killable, TASK_KILLABLE);
1645 }
1646 
1647 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1648 {
1649 	atomic_inc(&cinfo->rpcs_out);
1650 }
1651 
1652 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1653 {
1654 	if (atomic_dec_and_test(&cinfo->rpcs_out))
1655 		wake_up_atomic_t(&cinfo->rpcs_out);
1656 }
1657 
1658 void nfs_commitdata_release(struct nfs_commit_data *data)
1659 {
1660 	put_nfs_open_context(data->context);
1661 	nfs_commit_free(data);
1662 }
1663 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1664 
1665 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1666 			const struct nfs_rpc_ops *nfs_ops,
1667 			const struct rpc_call_ops *call_ops,
1668 			int how, int flags)
1669 {
1670 	struct rpc_task *task;
1671 	int priority = flush_task_priority(how);
1672 	struct rpc_message msg = {
1673 		.rpc_argp = &data->args,
1674 		.rpc_resp = &data->res,
1675 		.rpc_cred = data->cred,
1676 	};
1677 	struct rpc_task_setup task_setup_data = {
1678 		.task = &data->task,
1679 		.rpc_client = clnt,
1680 		.rpc_message = &msg,
1681 		.callback_ops = call_ops,
1682 		.callback_data = data,
1683 		.workqueue = nfsiod_workqueue,
1684 		.flags = RPC_TASK_ASYNC | flags,
1685 		.priority = priority,
1686 	};
1687 	/* Set up the initial task struct.  */
1688 	nfs_ops->commit_setup(data, &msg);
1689 
1690 	dprintk("NFS: initiated commit call\n");
1691 
1692 	nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client,
1693 		NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg);
1694 
1695 	task = rpc_run_task(&task_setup_data);
1696 	if (IS_ERR(task))
1697 		return PTR_ERR(task);
1698 	if (how & FLUSH_SYNC)
1699 		rpc_wait_for_completion_task(task);
1700 	rpc_put_task(task);
1701 	return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1704 
1705 static loff_t nfs_get_lwb(struct list_head *head)
1706 {
1707 	loff_t lwb = 0;
1708 	struct nfs_page *req;
1709 
1710 	list_for_each_entry(req, head, wb_list)
1711 		if (lwb < (req_offset(req) + req->wb_bytes))
1712 			lwb = req_offset(req) + req->wb_bytes;
1713 
1714 	return lwb;
1715 }
1716 
1717 /*
1718  * Set up the argument/result storage required for the RPC call.
1719  */
1720 void nfs_init_commit(struct nfs_commit_data *data,
1721 		     struct list_head *head,
1722 		     struct pnfs_layout_segment *lseg,
1723 		     struct nfs_commit_info *cinfo)
1724 {
1725 	struct nfs_page *first = nfs_list_entry(head->next);
1726 	struct inode *inode = d_inode(first->wb_context->dentry);
1727 
1728 	/* Set up the RPC argument and reply structs
1729 	 * NB: take care not to mess about with data->commit et al. */
1730 
1731 	list_splice_init(head, &data->pages);
1732 
1733 	data->inode	  = inode;
1734 	data->cred	  = first->wb_context->cred;
1735 	data->lseg	  = lseg; /* reference transferred */
1736 	/* only set lwb for pnfs commit */
1737 	if (lseg)
1738 		data->lwb = nfs_get_lwb(&data->pages);
1739 	data->mds_ops     = &nfs_commit_ops;
1740 	data->completion_ops = cinfo->completion_ops;
1741 	data->dreq	  = cinfo->dreq;
1742 
1743 	data->args.fh     = NFS_FH(data->inode);
1744 	/* Note: we always request a commit of the entire inode */
1745 	data->args.offset = 0;
1746 	data->args.count  = 0;
1747 	data->context     = get_nfs_open_context(first->wb_context);
1748 	data->res.fattr   = &data->fattr;
1749 	data->res.verf    = &data->verf;
1750 	nfs_fattr_init(&data->fattr);
1751 }
1752 EXPORT_SYMBOL_GPL(nfs_init_commit);
1753 
1754 void nfs_retry_commit(struct list_head *page_list,
1755 		      struct pnfs_layout_segment *lseg,
1756 		      struct nfs_commit_info *cinfo,
1757 		      u32 ds_commit_idx)
1758 {
1759 	struct nfs_page *req;
1760 
1761 	while (!list_empty(page_list)) {
1762 		req = nfs_list_entry(page_list->next);
1763 		nfs_list_remove_request(req);
1764 		nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1765 		if (!cinfo->dreq)
1766 			nfs_clear_page_commit(req->wb_page);
1767 		nfs_unlock_and_release_request(req);
1768 	}
1769 }
1770 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1771 
1772 static void
1773 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1774 		struct nfs_page *req)
1775 {
1776 	__set_page_dirty_nobuffers(req->wb_page);
1777 }
1778 
1779 /*
1780  * Commit dirty pages
1781  */
1782 static int
1783 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1784 		struct nfs_commit_info *cinfo)
1785 {
1786 	struct nfs_commit_data	*data;
1787 
1788 	/* another commit raced with us */
1789 	if (list_empty(head))
1790 		return 0;
1791 
1792 	data = nfs_commitdata_alloc(true);
1793 
1794 	/* Set up the argument struct */
1795 	nfs_init_commit(data, head, NULL, cinfo);
1796 	atomic_inc(&cinfo->mds->rpcs_out);
1797 	return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1798 				   data->mds_ops, how, 0);
1799 }
1800 
1801 /*
1802  * COMMIT call returned
1803  */
1804 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1805 {
1806 	struct nfs_commit_data	*data = calldata;
1807 
1808         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1809                                 task->tk_pid, task->tk_status);
1810 
1811 	/* Call the NFS version-specific code */
1812 	NFS_PROTO(data->inode)->commit_done(task, data);
1813 }
1814 
1815 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1816 {
1817 	struct nfs_page	*req;
1818 	int status = data->task.tk_status;
1819 	struct nfs_commit_info cinfo;
1820 	struct nfs_server *nfss;
1821 
1822 	while (!list_empty(&data->pages)) {
1823 		req = nfs_list_entry(data->pages.next);
1824 		nfs_list_remove_request(req);
1825 		if (req->wb_page)
1826 			nfs_clear_page_commit(req->wb_page);
1827 
1828 		dprintk("NFS:       commit (%s/%llu %d@%lld)",
1829 			req->wb_context->dentry->d_sb->s_id,
1830 			(unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
1831 			req->wb_bytes,
1832 			(long long)req_offset(req));
1833 		if (status < 0) {
1834 			nfs_context_set_write_error(req->wb_context, status);
1835 			if (req->wb_page)
1836 				nfs_inode_remove_request(req);
1837 			dprintk_cont(", error = %d\n", status);
1838 			goto next;
1839 		}
1840 
1841 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1842 		 * returned by the server against all stored verfs. */
1843 		if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) {
1844 			/* We have a match */
1845 			if (req->wb_page)
1846 				nfs_inode_remove_request(req);
1847 			dprintk_cont(" OK\n");
1848 			goto next;
1849 		}
1850 		/* We have a mismatch. Write the page again */
1851 		dprintk_cont(" mismatch\n");
1852 		nfs_mark_request_dirty(req);
1853 		set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1854 	next:
1855 		nfs_unlock_and_release_request(req);
1856 	}
1857 	nfss = NFS_SERVER(data->inode);
1858 	if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1859 		clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1860 
1861 	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1862 	nfs_commit_end(cinfo.mds);
1863 }
1864 
1865 static void nfs_commit_release(void *calldata)
1866 {
1867 	struct nfs_commit_data *data = calldata;
1868 
1869 	data->completion_ops->completion(data);
1870 	nfs_commitdata_release(calldata);
1871 }
1872 
1873 static const struct rpc_call_ops nfs_commit_ops = {
1874 	.rpc_call_prepare = nfs_commit_prepare,
1875 	.rpc_call_done = nfs_commit_done,
1876 	.rpc_release = nfs_commit_release,
1877 };
1878 
1879 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1880 	.completion = nfs_commit_release_pages,
1881 	.resched_write = nfs_commit_resched_write,
1882 };
1883 
1884 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1885 			    int how, struct nfs_commit_info *cinfo)
1886 {
1887 	int status;
1888 
1889 	status = pnfs_commit_list(inode, head, how, cinfo);
1890 	if (status == PNFS_NOT_ATTEMPTED)
1891 		status = nfs_commit_list(inode, head, how, cinfo);
1892 	return status;
1893 }
1894 
1895 int nfs_commit_inode(struct inode *inode, int how)
1896 {
1897 	LIST_HEAD(head);
1898 	struct nfs_commit_info cinfo;
1899 	int may_wait = how & FLUSH_SYNC;
1900 	int error = 0;
1901 	int res;
1902 
1903 	nfs_init_cinfo_from_inode(&cinfo, inode);
1904 	nfs_commit_begin(cinfo.mds);
1905 	res = nfs_scan_commit(inode, &head, &cinfo);
1906 	if (res)
1907 		error = nfs_generic_commit_list(inode, &head, how, &cinfo);
1908 	nfs_commit_end(cinfo.mds);
1909 	if (error < 0)
1910 		goto out_error;
1911 	if (!may_wait)
1912 		goto out_mark_dirty;
1913 	error = wait_on_commit(cinfo.mds);
1914 	if (error < 0)
1915 		return error;
1916 	return res;
1917 out_error:
1918 	res = error;
1919 	/* Note: If we exit without ensuring that the commit is complete,
1920 	 * we must mark the inode as dirty. Otherwise, future calls to
1921 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1922 	 * that the data is on the disk.
1923 	 */
1924 out_mark_dirty:
1925 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1926 	return res;
1927 }
1928 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1929 
1930 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1931 {
1932 	struct nfs_inode *nfsi = NFS_I(inode);
1933 	int flags = FLUSH_SYNC;
1934 	int ret = 0;
1935 
1936 	/* no commits means nothing needs to be done */
1937 	if (!nfsi->commit_info.ncommit)
1938 		return ret;
1939 
1940 	if (wbc->sync_mode == WB_SYNC_NONE) {
1941 		/* Don't commit yet if this is a non-blocking flush and there
1942 		 * are a lot of outstanding writes for this mapping.
1943 		 */
1944 		if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1945 			goto out_mark_dirty;
1946 
1947 		/* don't wait for the COMMIT response */
1948 		flags = 0;
1949 	}
1950 
1951 	ret = nfs_commit_inode(inode, flags);
1952 	if (ret >= 0) {
1953 		if (wbc->sync_mode == WB_SYNC_NONE) {
1954 			if (ret < wbc->nr_to_write)
1955 				wbc->nr_to_write -= ret;
1956 			else
1957 				wbc->nr_to_write = 0;
1958 		}
1959 		return 0;
1960 	}
1961 out_mark_dirty:
1962 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1963 	return ret;
1964 }
1965 EXPORT_SYMBOL_GPL(nfs_write_inode);
1966 
1967 /*
1968  * Wrapper for filemap_write_and_wait_range()
1969  *
1970  * Needed for pNFS in order to ensure data becomes visible to the
1971  * client.
1972  */
1973 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
1974 		loff_t lstart, loff_t lend)
1975 {
1976 	int ret;
1977 
1978 	ret = filemap_write_and_wait_range(mapping, lstart, lend);
1979 	if (ret == 0)
1980 		ret = pnfs_sync_inode(mapping->host, true);
1981 	return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
1984 
1985 /*
1986  * flush the inode to disk.
1987  */
1988 int nfs_wb_all(struct inode *inode)
1989 {
1990 	int ret;
1991 
1992 	trace_nfs_writeback_inode_enter(inode);
1993 
1994 	ret = filemap_write_and_wait(inode->i_mapping);
1995 	if (ret)
1996 		goto out;
1997 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
1998 	if (ret < 0)
1999 		goto out;
2000 	pnfs_sync_inode(inode, true);
2001 	ret = 0;
2002 
2003 out:
2004 	trace_nfs_writeback_inode_exit(inode, ret);
2005 	return ret;
2006 }
2007 EXPORT_SYMBOL_GPL(nfs_wb_all);
2008 
2009 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
2010 {
2011 	struct nfs_page *req;
2012 	int ret = 0;
2013 
2014 	wait_on_page_writeback(page);
2015 
2016 	/* blocking call to cancel all requests and join to a single (head)
2017 	 * request */
2018 	req = nfs_lock_and_join_requests(page, false);
2019 
2020 	if (IS_ERR(req)) {
2021 		ret = PTR_ERR(req);
2022 	} else if (req) {
2023 		/* all requests from this page have been cancelled by
2024 		 * nfs_lock_and_join_requests, so just remove the head
2025 		 * request from the inode / page_private pointer and
2026 		 * release it */
2027 		nfs_inode_remove_request(req);
2028 		nfs_unlock_and_release_request(req);
2029 	}
2030 
2031 	return ret;
2032 }
2033 
2034 /*
2035  * Write back all requests on one page - we do this before reading it.
2036  */
2037 int nfs_wb_page(struct inode *inode, struct page *page)
2038 {
2039 	loff_t range_start = page_file_offset(page);
2040 	loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2041 	struct writeback_control wbc = {
2042 		.sync_mode = WB_SYNC_ALL,
2043 		.nr_to_write = 0,
2044 		.range_start = range_start,
2045 		.range_end = range_end,
2046 	};
2047 	int ret;
2048 
2049 	trace_nfs_writeback_page_enter(inode);
2050 
2051 	for (;;) {
2052 		wait_on_page_writeback(page);
2053 		if (clear_page_dirty_for_io(page)) {
2054 			ret = nfs_writepage_locked(page, &wbc);
2055 			if (ret < 0)
2056 				goto out_error;
2057 			continue;
2058 		}
2059 		ret = 0;
2060 		if (!PagePrivate(page))
2061 			break;
2062 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
2063 		if (ret < 0)
2064 			goto out_error;
2065 	}
2066 out_error:
2067 	trace_nfs_writeback_page_exit(inode, ret);
2068 	return ret;
2069 }
2070 
2071 #ifdef CONFIG_MIGRATION
2072 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2073 		struct page *page, enum migrate_mode mode)
2074 {
2075 	/*
2076 	 * If PagePrivate is set, then the page is currently associated with
2077 	 * an in-progress read or write request. Don't try to migrate it.
2078 	 *
2079 	 * FIXME: we could do this in principle, but we'll need a way to ensure
2080 	 *        that we can safely release the inode reference while holding
2081 	 *        the page lock.
2082 	 */
2083 	if (PagePrivate(page))
2084 		return -EBUSY;
2085 
2086 	if (!nfs_fscache_release_page(page, GFP_KERNEL))
2087 		return -EBUSY;
2088 
2089 	return migrate_page(mapping, newpage, page, mode);
2090 }
2091 #endif
2092 
2093 int __init nfs_init_writepagecache(void)
2094 {
2095 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2096 					     sizeof(struct nfs_pgio_header),
2097 					     0, SLAB_HWCACHE_ALIGN,
2098 					     NULL);
2099 	if (nfs_wdata_cachep == NULL)
2100 		return -ENOMEM;
2101 
2102 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2103 						     nfs_wdata_cachep);
2104 	if (nfs_wdata_mempool == NULL)
2105 		goto out_destroy_write_cache;
2106 
2107 	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2108 					     sizeof(struct nfs_commit_data),
2109 					     0, SLAB_HWCACHE_ALIGN,
2110 					     NULL);
2111 	if (nfs_cdata_cachep == NULL)
2112 		goto out_destroy_write_mempool;
2113 
2114 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2115 						      nfs_cdata_cachep);
2116 	if (nfs_commit_mempool == NULL)
2117 		goto out_destroy_commit_cache;
2118 
2119 	/*
2120 	 * NFS congestion size, scale with available memory.
2121 	 *
2122 	 *  64MB:    8192k
2123 	 * 128MB:   11585k
2124 	 * 256MB:   16384k
2125 	 * 512MB:   23170k
2126 	 *   1GB:   32768k
2127 	 *   2GB:   46340k
2128 	 *   4GB:   65536k
2129 	 *   8GB:   92681k
2130 	 *  16GB:  131072k
2131 	 *
2132 	 * This allows larger machines to have larger/more transfers.
2133 	 * Limit the default to 256M
2134 	 */
2135 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
2136 	if (nfs_congestion_kb > 256*1024)
2137 		nfs_congestion_kb = 256*1024;
2138 
2139 	return 0;
2140 
2141 out_destroy_commit_cache:
2142 	kmem_cache_destroy(nfs_cdata_cachep);
2143 out_destroy_write_mempool:
2144 	mempool_destroy(nfs_wdata_mempool);
2145 out_destroy_write_cache:
2146 	kmem_cache_destroy(nfs_wdata_cachep);
2147 	return -ENOMEM;
2148 }
2149 
2150 void nfs_destroy_writepagecache(void)
2151 {
2152 	mempool_destroy(nfs_commit_mempool);
2153 	kmem_cache_destroy(nfs_cdata_cachep);
2154 	mempool_destroy(nfs_wdata_mempool);
2155 	kmem_cache_destroy(nfs_wdata_cachep);
2156 }
2157 
2158 static const struct nfs_rw_ops nfs_rw_write_ops = {
2159 	.rw_alloc_header	= nfs_writehdr_alloc,
2160 	.rw_free_header		= nfs_writehdr_free,
2161 	.rw_done		= nfs_writeback_done,
2162 	.rw_result		= nfs_writeback_result,
2163 	.rw_initiate		= nfs_initiate_write,
2164 };
2165