xref: /openbmc/linux/fs/nfs/write.c (revision 92ed1a76)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 
24 #include <asm/uaccess.h>
25 
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31 
32 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
33 
34 #define MIN_POOL_WRITE		(32)
35 #define MIN_POOL_COMMIT		(4)
36 
37 /*
38  * Local function declarations
39  */
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 				  struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
46 
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
50 
51 struct nfs_write_data *nfs_commitdata_alloc(void)
52 {
53 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
54 
55 	if (p) {
56 		memset(p, 0, sizeof(*p));
57 		INIT_LIST_HEAD(&p->pages);
58 	}
59 	return p;
60 }
61 
62 void nfs_commit_free(struct nfs_write_data *p)
63 {
64 	if (p && (p->pagevec != &p->page_array[0]))
65 		kfree(p->pagevec);
66 	mempool_free(p, nfs_commit_mempool);
67 }
68 
69 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
70 {
71 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
72 
73 	if (p) {
74 		memset(p, 0, sizeof(*p));
75 		INIT_LIST_HEAD(&p->pages);
76 		p->npages = pagecount;
77 		if (pagecount <= ARRAY_SIZE(p->page_array))
78 			p->pagevec = p->page_array;
79 		else {
80 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
81 			if (!p->pagevec) {
82 				mempool_free(p, nfs_wdata_mempool);
83 				p = NULL;
84 			}
85 		}
86 	}
87 	return p;
88 }
89 
90 void nfs_writedata_free(struct nfs_write_data *p)
91 {
92 	if (p && (p->pagevec != &p->page_array[0]))
93 		kfree(p->pagevec);
94 	mempool_free(p, nfs_wdata_mempool);
95 }
96 
97 static void nfs_writedata_release(struct nfs_write_data *wdata)
98 {
99 	put_nfs_open_context(wdata->args.context);
100 	nfs_writedata_free(wdata);
101 }
102 
103 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
104 {
105 	ctx->error = error;
106 	smp_wmb();
107 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
108 }
109 
110 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
111 {
112 	struct nfs_page *req = NULL;
113 
114 	if (PagePrivate(page)) {
115 		req = (struct nfs_page *)page_private(page);
116 		if (req != NULL)
117 			kref_get(&req->wb_kref);
118 	}
119 	return req;
120 }
121 
122 static struct nfs_page *nfs_page_find_request(struct page *page)
123 {
124 	struct inode *inode = page->mapping->host;
125 	struct nfs_page *req = NULL;
126 
127 	spin_lock(&inode->i_lock);
128 	req = nfs_page_find_request_locked(page);
129 	spin_unlock(&inode->i_lock);
130 	return req;
131 }
132 
133 /* Adjust the file length if we're writing beyond the end */
134 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
135 {
136 	struct inode *inode = page->mapping->host;
137 	loff_t end, i_size;
138 	pgoff_t end_index;
139 
140 	spin_lock(&inode->i_lock);
141 	i_size = i_size_read(inode);
142 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
143 	if (i_size > 0 && page->index < end_index)
144 		goto out;
145 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
146 	if (i_size >= end)
147 		goto out;
148 	i_size_write(inode, end);
149 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
150 out:
151 	spin_unlock(&inode->i_lock);
152 }
153 
154 /* A writeback failed: mark the page as bad, and invalidate the page cache */
155 static void nfs_set_pageerror(struct page *page)
156 {
157 	SetPageError(page);
158 	nfs_zap_mapping(page->mapping->host, page->mapping);
159 }
160 
161 /* We can set the PG_uptodate flag if we see that a write request
162  * covers the full page.
163  */
164 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
165 {
166 	if (PageUptodate(page))
167 		return;
168 	if (base != 0)
169 		return;
170 	if (count != nfs_page_length(page))
171 		return;
172 	SetPageUptodate(page);
173 }
174 
175 static int wb_priority(struct writeback_control *wbc)
176 {
177 	if (wbc->for_reclaim)
178 		return FLUSH_HIGHPRI | FLUSH_STABLE;
179 	if (wbc->for_kupdate || wbc->for_background)
180 		return FLUSH_LOWPRI;
181 	return 0;
182 }
183 
184 /*
185  * NFS congestion control
186  */
187 
188 int nfs_congestion_kb;
189 
190 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
191 #define NFS_CONGESTION_OFF_THRESH	\
192 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
193 
194 static int nfs_set_page_writeback(struct page *page)
195 {
196 	int ret = test_set_page_writeback(page);
197 
198 	if (!ret) {
199 		struct inode *inode = page->mapping->host;
200 		struct nfs_server *nfss = NFS_SERVER(inode);
201 
202 		page_cache_get(page);
203 		if (atomic_long_inc_return(&nfss->writeback) >
204 				NFS_CONGESTION_ON_THRESH) {
205 			set_bdi_congested(&nfss->backing_dev_info,
206 						BLK_RW_ASYNC);
207 		}
208 	}
209 	return ret;
210 }
211 
212 static void nfs_end_page_writeback(struct page *page)
213 {
214 	struct inode *inode = page->mapping->host;
215 	struct nfs_server *nfss = NFS_SERVER(inode);
216 
217 	end_page_writeback(page);
218 	page_cache_release(page);
219 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
220 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
221 }
222 
223 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
224 {
225 	struct inode *inode = page->mapping->host;
226 	struct nfs_page *req;
227 	int ret;
228 
229 	spin_lock(&inode->i_lock);
230 	for (;;) {
231 		req = nfs_page_find_request_locked(page);
232 		if (req == NULL)
233 			break;
234 		if (nfs_set_page_tag_locked(req))
235 			break;
236 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
237 		 *	 then the call to nfs_set_page_tag_locked() will always
238 		 *	 succeed provided that someone hasn't already marked the
239 		 *	 request as dirty (in which case we don't care).
240 		 */
241 		spin_unlock(&inode->i_lock);
242 		if (!nonblock)
243 			ret = nfs_wait_on_request(req);
244 		else
245 			ret = -EAGAIN;
246 		nfs_release_request(req);
247 		if (ret != 0)
248 			return ERR_PTR(ret);
249 		spin_lock(&inode->i_lock);
250 	}
251 	spin_unlock(&inode->i_lock);
252 	return req;
253 }
254 
255 /*
256  * Find an associated nfs write request, and prepare to flush it out
257  * May return an error if the user signalled nfs_wait_on_request().
258  */
259 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
260 				struct page *page, bool nonblock)
261 {
262 	struct nfs_page *req;
263 	int ret = 0;
264 
265 	req = nfs_find_and_lock_request(page, nonblock);
266 	if (!req)
267 		goto out;
268 	ret = PTR_ERR(req);
269 	if (IS_ERR(req))
270 		goto out;
271 
272 	ret = nfs_set_page_writeback(page);
273 	BUG_ON(ret != 0);
274 	BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
275 
276 	if (!nfs_pageio_add_request(pgio, req)) {
277 		nfs_redirty_request(req);
278 		ret = pgio->pg_error;
279 	}
280 out:
281 	return ret;
282 }
283 
284 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
285 {
286 	struct inode *inode = page->mapping->host;
287 	int ret;
288 
289 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
290 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
291 
292 	nfs_pageio_cond_complete(pgio, page->index);
293 	ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
294 	if (ret == -EAGAIN) {
295 		redirty_page_for_writepage(wbc, page);
296 		ret = 0;
297 	}
298 	return ret;
299 }
300 
301 /*
302  * Write an mmapped page to the server.
303  */
304 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
305 {
306 	struct nfs_pageio_descriptor pgio;
307 	int err;
308 
309 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
310 	err = nfs_do_writepage(page, wbc, &pgio);
311 	nfs_pageio_complete(&pgio);
312 	if (err < 0)
313 		return err;
314 	if (pgio.pg_error < 0)
315 		return pgio.pg_error;
316 	return 0;
317 }
318 
319 int nfs_writepage(struct page *page, struct writeback_control *wbc)
320 {
321 	int ret;
322 
323 	ret = nfs_writepage_locked(page, wbc);
324 	unlock_page(page);
325 	return ret;
326 }
327 
328 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
329 {
330 	int ret;
331 
332 	ret = nfs_do_writepage(page, wbc, data);
333 	unlock_page(page);
334 	return ret;
335 }
336 
337 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
338 {
339 	struct inode *inode = mapping->host;
340 	unsigned long *bitlock = &NFS_I(inode)->flags;
341 	struct nfs_pageio_descriptor pgio;
342 	int err;
343 
344 	/* Stop dirtying of new pages while we sync */
345 	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
346 			nfs_wait_bit_killable, TASK_KILLABLE);
347 	if (err)
348 		goto out_err;
349 
350 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
351 
352 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
353 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
354 	nfs_pageio_complete(&pgio);
355 
356 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
357 	smp_mb__after_clear_bit();
358 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
359 
360 	if (err < 0)
361 		goto out_err;
362 	err = pgio.pg_error;
363 	if (err < 0)
364 		goto out_err;
365 	return 0;
366 out_err:
367 	return err;
368 }
369 
370 /*
371  * Insert a write request into an inode
372  */
373 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
374 {
375 	struct nfs_inode *nfsi = NFS_I(inode);
376 	int error;
377 
378 	error = radix_tree_preload(GFP_NOFS);
379 	if (error != 0)
380 		goto out;
381 
382 	/* Lock the request! */
383 	nfs_lock_request_dontget(req);
384 
385 	spin_lock(&inode->i_lock);
386 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
387 	BUG_ON(error);
388 	if (!nfsi->npages) {
389 		igrab(inode);
390 		if (nfs_have_delegation(inode, FMODE_WRITE))
391 			nfsi->change_attr++;
392 	}
393 	set_bit(PG_MAPPED, &req->wb_flags);
394 	SetPagePrivate(req->wb_page);
395 	set_page_private(req->wb_page, (unsigned long)req);
396 	nfsi->npages++;
397 	kref_get(&req->wb_kref);
398 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
399 				NFS_PAGE_TAG_LOCKED);
400 	spin_unlock(&inode->i_lock);
401 	radix_tree_preload_end();
402 out:
403 	return error;
404 }
405 
406 /*
407  * Remove a write request from an inode
408  */
409 static void nfs_inode_remove_request(struct nfs_page *req)
410 {
411 	struct inode *inode = req->wb_context->path.dentry->d_inode;
412 	struct nfs_inode *nfsi = NFS_I(inode);
413 
414 	BUG_ON (!NFS_WBACK_BUSY(req));
415 
416 	spin_lock(&inode->i_lock);
417 	set_page_private(req->wb_page, 0);
418 	ClearPagePrivate(req->wb_page);
419 	clear_bit(PG_MAPPED, &req->wb_flags);
420 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
421 	nfsi->npages--;
422 	if (!nfsi->npages) {
423 		spin_unlock(&inode->i_lock);
424 		iput(inode);
425 	} else
426 		spin_unlock(&inode->i_lock);
427 	nfs_release_request(req);
428 }
429 
430 static void
431 nfs_mark_request_dirty(struct nfs_page *req)
432 {
433 	__set_page_dirty_nobuffers(req->wb_page);
434 	__mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
435 }
436 
437 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
438 /*
439  * Add a request to the inode's commit list.
440  */
441 static void
442 nfs_mark_request_commit(struct nfs_page *req)
443 {
444 	struct inode *inode = req->wb_context->path.dentry->d_inode;
445 	struct nfs_inode *nfsi = NFS_I(inode);
446 
447 	spin_lock(&inode->i_lock);
448 	set_bit(PG_CLEAN, &(req)->wb_flags);
449 	radix_tree_tag_set(&nfsi->nfs_page_tree,
450 			req->wb_index,
451 			NFS_PAGE_TAG_COMMIT);
452 	nfsi->ncommit++;
453 	spin_unlock(&inode->i_lock);
454 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
455 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
456 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
457 }
458 
459 static int
460 nfs_clear_request_commit(struct nfs_page *req)
461 {
462 	struct page *page = req->wb_page;
463 
464 	if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
465 		dec_zone_page_state(page, NR_UNSTABLE_NFS);
466 		dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
467 		return 1;
468 	}
469 	return 0;
470 }
471 
472 static inline
473 int nfs_write_need_commit(struct nfs_write_data *data)
474 {
475 	return data->verf.committed != NFS_FILE_SYNC;
476 }
477 
478 static inline
479 int nfs_reschedule_unstable_write(struct nfs_page *req)
480 {
481 	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
482 		nfs_mark_request_commit(req);
483 		return 1;
484 	}
485 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
486 		nfs_mark_request_dirty(req);
487 		return 1;
488 	}
489 	return 0;
490 }
491 #else
492 static inline void
493 nfs_mark_request_commit(struct nfs_page *req)
494 {
495 }
496 
497 static inline int
498 nfs_clear_request_commit(struct nfs_page *req)
499 {
500 	return 0;
501 }
502 
503 static inline
504 int nfs_write_need_commit(struct nfs_write_data *data)
505 {
506 	return 0;
507 }
508 
509 static inline
510 int nfs_reschedule_unstable_write(struct nfs_page *req)
511 {
512 	return 0;
513 }
514 #endif
515 
516 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
517 static int
518 nfs_need_commit(struct nfs_inode *nfsi)
519 {
520 	return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
521 }
522 
523 /*
524  * nfs_scan_commit - Scan an inode for commit requests
525  * @inode: NFS inode to scan
526  * @dst: destination list
527  * @idx_start: lower bound of page->index to scan.
528  * @npages: idx_start + npages sets the upper bound to scan.
529  *
530  * Moves requests from the inode's 'commit' request list.
531  * The requests are *not* checked to ensure that they form a contiguous set.
532  */
533 static int
534 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
535 {
536 	struct nfs_inode *nfsi = NFS_I(inode);
537 	int ret;
538 
539 	if (!nfs_need_commit(nfsi))
540 		return 0;
541 
542 	ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
543 	if (ret > 0)
544 		nfsi->ncommit -= ret;
545 	if (nfs_need_commit(NFS_I(inode)))
546 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
547 	return ret;
548 }
549 #else
550 static inline int nfs_need_commit(struct nfs_inode *nfsi)
551 {
552 	return 0;
553 }
554 
555 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
556 {
557 	return 0;
558 }
559 #endif
560 
561 /*
562  * Search for an existing write request, and attempt to update
563  * it to reflect a new dirty region on a given page.
564  *
565  * If the attempt fails, then the existing request is flushed out
566  * to disk.
567  */
568 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
569 		struct page *page,
570 		unsigned int offset,
571 		unsigned int bytes)
572 {
573 	struct nfs_page *req;
574 	unsigned int rqend;
575 	unsigned int end;
576 	int error;
577 
578 	if (!PagePrivate(page))
579 		return NULL;
580 
581 	end = offset + bytes;
582 	spin_lock(&inode->i_lock);
583 
584 	for (;;) {
585 		req = nfs_page_find_request_locked(page);
586 		if (req == NULL)
587 			goto out_unlock;
588 
589 		rqend = req->wb_offset + req->wb_bytes;
590 		/*
591 		 * Tell the caller to flush out the request if
592 		 * the offsets are non-contiguous.
593 		 * Note: nfs_flush_incompatible() will already
594 		 * have flushed out requests having wrong owners.
595 		 */
596 		if (offset > rqend
597 		    || end < req->wb_offset)
598 			goto out_flushme;
599 
600 		if (nfs_set_page_tag_locked(req))
601 			break;
602 
603 		/* The request is locked, so wait and then retry */
604 		spin_unlock(&inode->i_lock);
605 		error = nfs_wait_on_request(req);
606 		nfs_release_request(req);
607 		if (error != 0)
608 			goto out_err;
609 		spin_lock(&inode->i_lock);
610 	}
611 
612 	if (nfs_clear_request_commit(req) &&
613 			radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
614 				req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
615 		NFS_I(inode)->ncommit--;
616 
617 	/* Okay, the request matches. Update the region */
618 	if (offset < req->wb_offset) {
619 		req->wb_offset = offset;
620 		req->wb_pgbase = offset;
621 	}
622 	if (end > rqend)
623 		req->wb_bytes = end - req->wb_offset;
624 	else
625 		req->wb_bytes = rqend - req->wb_offset;
626 out_unlock:
627 	spin_unlock(&inode->i_lock);
628 	return req;
629 out_flushme:
630 	spin_unlock(&inode->i_lock);
631 	nfs_release_request(req);
632 	error = nfs_wb_page(inode, page);
633 out_err:
634 	return ERR_PTR(error);
635 }
636 
637 /*
638  * Try to update an existing write request, or create one if there is none.
639  *
640  * Note: Should always be called with the Page Lock held to prevent races
641  * if we have to add a new request. Also assumes that the caller has
642  * already called nfs_flush_incompatible() if necessary.
643  */
644 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
645 		struct page *page, unsigned int offset, unsigned int bytes)
646 {
647 	struct inode *inode = page->mapping->host;
648 	struct nfs_page	*req;
649 	int error;
650 
651 	req = nfs_try_to_update_request(inode, page, offset, bytes);
652 	if (req != NULL)
653 		goto out;
654 	req = nfs_create_request(ctx, inode, page, offset, bytes);
655 	if (IS_ERR(req))
656 		goto out;
657 	error = nfs_inode_add_request(inode, req);
658 	if (error != 0) {
659 		nfs_release_request(req);
660 		req = ERR_PTR(error);
661 	}
662 out:
663 	return req;
664 }
665 
666 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
667 		unsigned int offset, unsigned int count)
668 {
669 	struct nfs_page	*req;
670 
671 	req = nfs_setup_write_request(ctx, page, offset, count);
672 	if (IS_ERR(req))
673 		return PTR_ERR(req);
674 	nfs_mark_request_dirty(req);
675 	/* Update file length */
676 	nfs_grow_file(page, offset, count);
677 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
678 	nfs_mark_request_dirty(req);
679 	nfs_clear_page_tag_locked(req);
680 	return 0;
681 }
682 
683 int nfs_flush_incompatible(struct file *file, struct page *page)
684 {
685 	struct nfs_open_context *ctx = nfs_file_open_context(file);
686 	struct nfs_page	*req;
687 	int do_flush, status;
688 	/*
689 	 * Look for a request corresponding to this page. If there
690 	 * is one, and it belongs to another file, we flush it out
691 	 * before we try to copy anything into the page. Do this
692 	 * due to the lack of an ACCESS-type call in NFSv2.
693 	 * Also do the same if we find a request from an existing
694 	 * dropped page.
695 	 */
696 	do {
697 		req = nfs_page_find_request(page);
698 		if (req == NULL)
699 			return 0;
700 		do_flush = req->wb_page != page || req->wb_context != ctx ||
701 			req->wb_lock_context->lockowner != current->files ||
702 			req->wb_lock_context->pid != current->tgid;
703 		nfs_release_request(req);
704 		if (!do_flush)
705 			return 0;
706 		status = nfs_wb_page(page->mapping->host, page);
707 	} while (status == 0);
708 	return status;
709 }
710 
711 /*
712  * If the page cache is marked as unsafe or invalid, then we can't rely on
713  * the PageUptodate() flag. In this case, we will need to turn off
714  * write optimisations that depend on the page contents being correct.
715  */
716 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
717 {
718 	return PageUptodate(page) &&
719 		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
720 }
721 
722 /*
723  * Update and possibly write a cached page of an NFS file.
724  *
725  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
726  * things with a page scheduled for an RPC call (e.g. invalidate it).
727  */
728 int nfs_updatepage(struct file *file, struct page *page,
729 		unsigned int offset, unsigned int count)
730 {
731 	struct nfs_open_context *ctx = nfs_file_open_context(file);
732 	struct inode	*inode = page->mapping->host;
733 	int		status = 0;
734 
735 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
736 
737 	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
738 		file->f_path.dentry->d_parent->d_name.name,
739 		file->f_path.dentry->d_name.name, count,
740 		(long long)(page_offset(page) + offset));
741 
742 	/* If we're not using byte range locks, and we know the page
743 	 * is up to date, it may be more efficient to extend the write
744 	 * to cover the entire page in order to avoid fragmentation
745 	 * inefficiencies.
746 	 */
747 	if (nfs_write_pageuptodate(page, inode) &&
748 			inode->i_flock == NULL &&
749 			!(file->f_flags & O_DSYNC)) {
750 		count = max(count + offset, nfs_page_length(page));
751 		offset = 0;
752 	}
753 
754 	status = nfs_writepage_setup(ctx, page, offset, count);
755 	if (status < 0)
756 		nfs_set_pageerror(page);
757 
758 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
759 			status, (long long)i_size_read(inode));
760 	return status;
761 }
762 
763 static void nfs_writepage_release(struct nfs_page *req)
764 {
765 	struct page *page = req->wb_page;
766 
767 	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req))
768 		nfs_inode_remove_request(req);
769 	nfs_clear_page_tag_locked(req);
770 	nfs_end_page_writeback(page);
771 }
772 
773 static int flush_task_priority(int how)
774 {
775 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
776 		case FLUSH_HIGHPRI:
777 			return RPC_PRIORITY_HIGH;
778 		case FLUSH_LOWPRI:
779 			return RPC_PRIORITY_LOW;
780 	}
781 	return RPC_PRIORITY_NORMAL;
782 }
783 
784 /*
785  * Set up the argument/result storage required for the RPC call.
786  */
787 static int nfs_write_rpcsetup(struct nfs_page *req,
788 		struct nfs_write_data *data,
789 		const struct rpc_call_ops *call_ops,
790 		unsigned int count, unsigned int offset,
791 		int how)
792 {
793 	struct inode *inode = req->wb_context->path.dentry->d_inode;
794 	int priority = flush_task_priority(how);
795 	struct rpc_task *task;
796 	struct rpc_message msg = {
797 		.rpc_argp = &data->args,
798 		.rpc_resp = &data->res,
799 		.rpc_cred = req->wb_context->cred,
800 	};
801 	struct rpc_task_setup task_setup_data = {
802 		.rpc_client = NFS_CLIENT(inode),
803 		.task = &data->task,
804 		.rpc_message = &msg,
805 		.callback_ops = call_ops,
806 		.callback_data = data,
807 		.workqueue = nfsiod_workqueue,
808 		.flags = RPC_TASK_ASYNC,
809 		.priority = priority,
810 	};
811 	int ret = 0;
812 
813 	/* Set up the RPC argument and reply structs
814 	 * NB: take care not to mess about with data->commit et al. */
815 
816 	data->req = req;
817 	data->inode = inode = req->wb_context->path.dentry->d_inode;
818 	data->cred = msg.rpc_cred;
819 
820 	data->args.fh     = NFS_FH(inode);
821 	data->args.offset = req_offset(req) + offset;
822 	data->args.pgbase = req->wb_pgbase + offset;
823 	data->args.pages  = data->pagevec;
824 	data->args.count  = count;
825 	data->args.context = get_nfs_open_context(req->wb_context);
826 	data->args.lock_context = req->wb_lock_context;
827 	data->args.stable  = NFS_UNSTABLE;
828 	if (how & FLUSH_STABLE) {
829 		data->args.stable = NFS_DATA_SYNC;
830 		if (!nfs_need_commit(NFS_I(inode)))
831 			data->args.stable = NFS_FILE_SYNC;
832 	}
833 
834 	data->res.fattr   = &data->fattr;
835 	data->res.count   = count;
836 	data->res.verf    = &data->verf;
837 	nfs_fattr_init(&data->fattr);
838 
839 	/* Set up the initial task struct.  */
840 	NFS_PROTO(inode)->write_setup(data, &msg);
841 
842 	dprintk("NFS: %5u initiated write call "
843 		"(req %s/%lld, %u bytes @ offset %llu)\n",
844 		data->task.tk_pid,
845 		inode->i_sb->s_id,
846 		(long long)NFS_FILEID(inode),
847 		count,
848 		(unsigned long long)data->args.offset);
849 
850 	task = rpc_run_task(&task_setup_data);
851 	if (IS_ERR(task)) {
852 		ret = PTR_ERR(task);
853 		goto out;
854 	}
855 	if (how & FLUSH_SYNC) {
856 		ret = rpc_wait_for_completion_task(task);
857 		if (ret == 0)
858 			ret = task->tk_status;
859 	}
860 	rpc_put_task(task);
861 out:
862 	return ret;
863 }
864 
865 /* If a nfs_flush_* function fails, it should remove reqs from @head and
866  * call this on each, which will prepare them to be retried on next
867  * writeback using standard nfs.
868  */
869 static void nfs_redirty_request(struct nfs_page *req)
870 {
871 	struct page *page = req->wb_page;
872 
873 	nfs_mark_request_dirty(req);
874 	nfs_clear_page_tag_locked(req);
875 	nfs_end_page_writeback(page);
876 }
877 
878 /*
879  * Generate multiple small requests to write out a single
880  * contiguous dirty area on one page.
881  */
882 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
883 {
884 	struct nfs_page *req = nfs_list_entry(head->next);
885 	struct page *page = req->wb_page;
886 	struct nfs_write_data *data;
887 	size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
888 	unsigned int offset;
889 	int requests = 0;
890 	int ret = 0;
891 	LIST_HEAD(list);
892 
893 	nfs_list_remove_request(req);
894 
895 	nbytes = count;
896 	do {
897 		size_t len = min(nbytes, wsize);
898 
899 		data = nfs_writedata_alloc(1);
900 		if (!data)
901 			goto out_bad;
902 		list_add(&data->pages, &list);
903 		requests++;
904 		nbytes -= len;
905 	} while (nbytes != 0);
906 	atomic_set(&req->wb_complete, requests);
907 
908 	ClearPageError(page);
909 	offset = 0;
910 	nbytes = count;
911 	do {
912 		int ret2;
913 
914 		data = list_entry(list.next, struct nfs_write_data, pages);
915 		list_del_init(&data->pages);
916 
917 		data->pagevec[0] = page;
918 
919 		if (nbytes < wsize)
920 			wsize = nbytes;
921 		ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
922 				   wsize, offset, how);
923 		if (ret == 0)
924 			ret = ret2;
925 		offset += wsize;
926 		nbytes -= wsize;
927 	} while (nbytes != 0);
928 
929 	return ret;
930 
931 out_bad:
932 	while (!list_empty(&list)) {
933 		data = list_entry(list.next, struct nfs_write_data, pages);
934 		list_del(&data->pages);
935 		nfs_writedata_release(data);
936 	}
937 	nfs_redirty_request(req);
938 	return -ENOMEM;
939 }
940 
941 /*
942  * Create an RPC task for the given write request and kick it.
943  * The page must have been locked by the caller.
944  *
945  * It may happen that the page we're passed is not marked dirty.
946  * This is the case if nfs_updatepage detects a conflicting request
947  * that has been written but not committed.
948  */
949 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
950 {
951 	struct nfs_page		*req;
952 	struct page		**pages;
953 	struct nfs_write_data	*data;
954 
955 	data = nfs_writedata_alloc(npages);
956 	if (!data)
957 		goto out_bad;
958 
959 	pages = data->pagevec;
960 	while (!list_empty(head)) {
961 		req = nfs_list_entry(head->next);
962 		nfs_list_remove_request(req);
963 		nfs_list_add_request(req, &data->pages);
964 		ClearPageError(req->wb_page);
965 		*pages++ = req->wb_page;
966 	}
967 	req = nfs_list_entry(data->pages.next);
968 
969 	/* Set up the argument struct */
970 	return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
971  out_bad:
972 	while (!list_empty(head)) {
973 		req = nfs_list_entry(head->next);
974 		nfs_list_remove_request(req);
975 		nfs_redirty_request(req);
976 	}
977 	return -ENOMEM;
978 }
979 
980 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
981 				  struct inode *inode, int ioflags)
982 {
983 	size_t wsize = NFS_SERVER(inode)->wsize;
984 
985 	if (wsize < PAGE_CACHE_SIZE)
986 		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
987 	else
988 		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
989 }
990 
991 /*
992  * Handle a write reply that flushed part of a page.
993  */
994 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
995 {
996 	struct nfs_write_data	*data = calldata;
997 
998 	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
999 		task->tk_pid,
1000 		data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1001 		(long long)
1002 		  NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1003 		data->req->wb_bytes, (long long)req_offset(data->req));
1004 
1005 	nfs_writeback_done(task, data);
1006 }
1007 
1008 static void nfs_writeback_release_partial(void *calldata)
1009 {
1010 	struct nfs_write_data	*data = calldata;
1011 	struct nfs_page		*req = data->req;
1012 	struct page		*page = req->wb_page;
1013 	int status = data->task.tk_status;
1014 
1015 	if (status < 0) {
1016 		nfs_set_pageerror(page);
1017 		nfs_context_set_write_error(req->wb_context, status);
1018 		dprintk(", error = %d\n", status);
1019 		goto out;
1020 	}
1021 
1022 	if (nfs_write_need_commit(data)) {
1023 		struct inode *inode = page->mapping->host;
1024 
1025 		spin_lock(&inode->i_lock);
1026 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1027 			/* Do nothing we need to resend the writes */
1028 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1029 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1030 			dprintk(" defer commit\n");
1031 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1032 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1033 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1034 			dprintk(" server reboot detected\n");
1035 		}
1036 		spin_unlock(&inode->i_lock);
1037 	} else
1038 		dprintk(" OK\n");
1039 
1040 out:
1041 	if (atomic_dec_and_test(&req->wb_complete))
1042 		nfs_writepage_release(req);
1043 	nfs_writedata_release(calldata);
1044 }
1045 
1046 #if defined(CONFIG_NFS_V4_1)
1047 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1048 {
1049 	struct nfs_write_data *data = calldata;
1050 
1051 	if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1052 				&data->args.seq_args,
1053 				&data->res.seq_res, 1, task))
1054 		return;
1055 	rpc_call_start(task);
1056 }
1057 #endif /* CONFIG_NFS_V4_1 */
1058 
1059 static const struct rpc_call_ops nfs_write_partial_ops = {
1060 #if defined(CONFIG_NFS_V4_1)
1061 	.rpc_call_prepare = nfs_write_prepare,
1062 #endif /* CONFIG_NFS_V4_1 */
1063 	.rpc_call_done = nfs_writeback_done_partial,
1064 	.rpc_release = nfs_writeback_release_partial,
1065 };
1066 
1067 /*
1068  * Handle a write reply that flushes a whole page.
1069  *
1070  * FIXME: There is an inherent race with invalidate_inode_pages and
1071  *	  writebacks since the page->count is kept > 1 for as long
1072  *	  as the page has a write request pending.
1073  */
1074 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1075 {
1076 	struct nfs_write_data	*data = calldata;
1077 
1078 	nfs_writeback_done(task, data);
1079 }
1080 
1081 static void nfs_writeback_release_full(void *calldata)
1082 {
1083 	struct nfs_write_data	*data = calldata;
1084 	int status = data->task.tk_status;
1085 
1086 	/* Update attributes as result of writeback. */
1087 	while (!list_empty(&data->pages)) {
1088 		struct nfs_page *req = nfs_list_entry(data->pages.next);
1089 		struct page *page = req->wb_page;
1090 
1091 		nfs_list_remove_request(req);
1092 
1093 		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1094 			data->task.tk_pid,
1095 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1096 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1097 			req->wb_bytes,
1098 			(long long)req_offset(req));
1099 
1100 		if (status < 0) {
1101 			nfs_set_pageerror(page);
1102 			nfs_context_set_write_error(req->wb_context, status);
1103 			dprintk(", error = %d\n", status);
1104 			goto remove_request;
1105 		}
1106 
1107 		if (nfs_write_need_commit(data)) {
1108 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1109 			nfs_mark_request_commit(req);
1110 			dprintk(" marked for commit\n");
1111 			goto next;
1112 		}
1113 		dprintk(" OK\n");
1114 remove_request:
1115 		nfs_inode_remove_request(req);
1116 	next:
1117 		nfs_clear_page_tag_locked(req);
1118 		nfs_end_page_writeback(page);
1119 	}
1120 	nfs_writedata_release(calldata);
1121 }
1122 
1123 static const struct rpc_call_ops nfs_write_full_ops = {
1124 #if defined(CONFIG_NFS_V4_1)
1125 	.rpc_call_prepare = nfs_write_prepare,
1126 #endif /* CONFIG_NFS_V4_1 */
1127 	.rpc_call_done = nfs_writeback_done_full,
1128 	.rpc_release = nfs_writeback_release_full,
1129 };
1130 
1131 
1132 /*
1133  * This function is called when the WRITE call is complete.
1134  */
1135 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1136 {
1137 	struct nfs_writeargs	*argp = &data->args;
1138 	struct nfs_writeres	*resp = &data->res;
1139 	struct nfs_server	*server = NFS_SERVER(data->inode);
1140 	int status;
1141 
1142 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1143 		task->tk_pid, task->tk_status);
1144 
1145 	/*
1146 	 * ->write_done will attempt to use post-op attributes to detect
1147 	 * conflicting writes by other clients.  A strict interpretation
1148 	 * of close-to-open would allow us to continue caching even if
1149 	 * another writer had changed the file, but some applications
1150 	 * depend on tighter cache coherency when writing.
1151 	 */
1152 	status = NFS_PROTO(data->inode)->write_done(task, data);
1153 	if (status != 0)
1154 		return status;
1155 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1156 
1157 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1158 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1159 		/* We tried a write call, but the server did not
1160 		 * commit data to stable storage even though we
1161 		 * requested it.
1162 		 * Note: There is a known bug in Tru64 < 5.0 in which
1163 		 *	 the server reports NFS_DATA_SYNC, but performs
1164 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1165 		 *	 as a dprintk() in order to avoid filling syslog.
1166 		 */
1167 		static unsigned long    complain;
1168 
1169 		if (time_before(complain, jiffies)) {
1170 			dprintk("NFS:       faulty NFS server %s:"
1171 				" (committed = %d) != (stable = %d)\n",
1172 				server->nfs_client->cl_hostname,
1173 				resp->verf->committed, argp->stable);
1174 			complain = jiffies + 300 * HZ;
1175 		}
1176 	}
1177 #endif
1178 	/* Is this a short write? */
1179 	if (task->tk_status >= 0 && resp->count < argp->count) {
1180 		static unsigned long    complain;
1181 
1182 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1183 
1184 		/* Has the server at least made some progress? */
1185 		if (resp->count != 0) {
1186 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1187 			if (resp->verf->committed != NFS_UNSTABLE) {
1188 				/* Resend from where the server left off */
1189 				argp->offset += resp->count;
1190 				argp->pgbase += resp->count;
1191 				argp->count -= resp->count;
1192 			} else {
1193 				/* Resend as a stable write in order to avoid
1194 				 * headaches in the case of a server crash.
1195 				 */
1196 				argp->stable = NFS_FILE_SYNC;
1197 			}
1198 			nfs_restart_rpc(task, server->nfs_client);
1199 			return -EAGAIN;
1200 		}
1201 		if (time_before(complain, jiffies)) {
1202 			printk(KERN_WARNING
1203 			       "NFS: Server wrote zero bytes, expected %u.\n",
1204 					argp->count);
1205 			complain = jiffies + 300 * HZ;
1206 		}
1207 		/* Can't do anything about it except throw an error. */
1208 		task->tk_status = -EIO;
1209 	}
1210 	return 0;
1211 }
1212 
1213 
1214 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1215 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1216 {
1217 	if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1218 		return 1;
1219 	if (may_wait && !out_of_line_wait_on_bit_lock(&nfsi->flags,
1220 				NFS_INO_COMMIT, nfs_wait_bit_killable,
1221 				TASK_KILLABLE))
1222 		return 1;
1223 	return 0;
1224 }
1225 
1226 static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1227 {
1228 	clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1229 	smp_mb__after_clear_bit();
1230 	wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1231 }
1232 
1233 
1234 static void nfs_commitdata_release(void *data)
1235 {
1236 	struct nfs_write_data *wdata = data;
1237 
1238 	put_nfs_open_context(wdata->args.context);
1239 	nfs_commit_free(wdata);
1240 }
1241 
1242 /*
1243  * Set up the argument/result storage required for the RPC call.
1244  */
1245 static int nfs_commit_rpcsetup(struct list_head *head,
1246 		struct nfs_write_data *data,
1247 		int how)
1248 {
1249 	struct nfs_page *first = nfs_list_entry(head->next);
1250 	struct inode *inode = first->wb_context->path.dentry->d_inode;
1251 	int priority = flush_task_priority(how);
1252 	struct rpc_task *task;
1253 	struct rpc_message msg = {
1254 		.rpc_argp = &data->args,
1255 		.rpc_resp = &data->res,
1256 		.rpc_cred = first->wb_context->cred,
1257 	};
1258 	struct rpc_task_setup task_setup_data = {
1259 		.task = &data->task,
1260 		.rpc_client = NFS_CLIENT(inode),
1261 		.rpc_message = &msg,
1262 		.callback_ops = &nfs_commit_ops,
1263 		.callback_data = data,
1264 		.workqueue = nfsiod_workqueue,
1265 		.flags = RPC_TASK_ASYNC,
1266 		.priority = priority,
1267 	};
1268 
1269 	/* Set up the RPC argument and reply structs
1270 	 * NB: take care not to mess about with data->commit et al. */
1271 
1272 	list_splice_init(head, &data->pages);
1273 
1274 	data->inode	  = inode;
1275 	data->cred	  = msg.rpc_cred;
1276 
1277 	data->args.fh     = NFS_FH(data->inode);
1278 	/* Note: we always request a commit of the entire inode */
1279 	data->args.offset = 0;
1280 	data->args.count  = 0;
1281 	data->args.context = get_nfs_open_context(first->wb_context);
1282 	data->res.count   = 0;
1283 	data->res.fattr   = &data->fattr;
1284 	data->res.verf    = &data->verf;
1285 	nfs_fattr_init(&data->fattr);
1286 
1287 	/* Set up the initial task struct.  */
1288 	NFS_PROTO(inode)->commit_setup(data, &msg);
1289 
1290 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1291 
1292 	task = rpc_run_task(&task_setup_data);
1293 	if (IS_ERR(task))
1294 		return PTR_ERR(task);
1295 	rpc_put_task(task);
1296 	return 0;
1297 }
1298 
1299 /*
1300  * Commit dirty pages
1301  */
1302 static int
1303 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1304 {
1305 	struct nfs_write_data	*data;
1306 	struct nfs_page         *req;
1307 
1308 	data = nfs_commitdata_alloc();
1309 
1310 	if (!data)
1311 		goto out_bad;
1312 
1313 	/* Set up the argument struct */
1314 	return nfs_commit_rpcsetup(head, data, how);
1315  out_bad:
1316 	while (!list_empty(head)) {
1317 		req = nfs_list_entry(head->next);
1318 		nfs_list_remove_request(req);
1319 		nfs_mark_request_commit(req);
1320 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1321 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1322 				BDI_RECLAIMABLE);
1323 		nfs_clear_page_tag_locked(req);
1324 	}
1325 	nfs_commit_clear_lock(NFS_I(inode));
1326 	return -ENOMEM;
1327 }
1328 
1329 /*
1330  * COMMIT call returned
1331  */
1332 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1333 {
1334 	struct nfs_write_data	*data = calldata;
1335 
1336         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1337                                 task->tk_pid, task->tk_status);
1338 
1339 	/* Call the NFS version-specific code */
1340 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1341 		return;
1342 }
1343 
1344 static void nfs_commit_release(void *calldata)
1345 {
1346 	struct nfs_write_data	*data = calldata;
1347 	struct nfs_page		*req;
1348 	int status = data->task.tk_status;
1349 
1350 	while (!list_empty(&data->pages)) {
1351 		req = nfs_list_entry(data->pages.next);
1352 		nfs_list_remove_request(req);
1353 		nfs_clear_request_commit(req);
1354 
1355 		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1356 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1357 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1358 			req->wb_bytes,
1359 			(long long)req_offset(req));
1360 		if (status < 0) {
1361 			nfs_context_set_write_error(req->wb_context, status);
1362 			nfs_inode_remove_request(req);
1363 			dprintk(", error = %d\n", status);
1364 			goto next;
1365 		}
1366 
1367 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1368 		 * returned by the server against all stored verfs. */
1369 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1370 			/* We have a match */
1371 			nfs_inode_remove_request(req);
1372 			dprintk(" OK\n");
1373 			goto next;
1374 		}
1375 		/* We have a mismatch. Write the page again */
1376 		dprintk(" mismatch\n");
1377 		nfs_mark_request_dirty(req);
1378 	next:
1379 		nfs_clear_page_tag_locked(req);
1380 	}
1381 	nfs_commit_clear_lock(NFS_I(data->inode));
1382 	nfs_commitdata_release(calldata);
1383 }
1384 
1385 static const struct rpc_call_ops nfs_commit_ops = {
1386 #if defined(CONFIG_NFS_V4_1)
1387 	.rpc_call_prepare = nfs_write_prepare,
1388 #endif /* CONFIG_NFS_V4_1 */
1389 	.rpc_call_done = nfs_commit_done,
1390 	.rpc_release = nfs_commit_release,
1391 };
1392 
1393 int nfs_commit_inode(struct inode *inode, int how)
1394 {
1395 	LIST_HEAD(head);
1396 	int may_wait = how & FLUSH_SYNC;
1397 	int res = 0;
1398 
1399 	if (!nfs_commit_set_lock(NFS_I(inode), may_wait))
1400 		goto out_mark_dirty;
1401 	spin_lock(&inode->i_lock);
1402 	res = nfs_scan_commit(inode, &head, 0, 0);
1403 	spin_unlock(&inode->i_lock);
1404 	if (res) {
1405 		int error = nfs_commit_list(inode, &head, how);
1406 		if (error < 0)
1407 			return error;
1408 		if (may_wait)
1409 			wait_on_bit(&NFS_I(inode)->flags, NFS_INO_COMMIT,
1410 					nfs_wait_bit_killable,
1411 					TASK_KILLABLE);
1412 		else
1413 			goto out_mark_dirty;
1414 	} else
1415 		nfs_commit_clear_lock(NFS_I(inode));
1416 	return res;
1417 	/* Note: If we exit without ensuring that the commit is complete,
1418 	 * we must mark the inode as dirty. Otherwise, future calls to
1419 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1420 	 * that the data is on the disk.
1421 	 */
1422 out_mark_dirty:
1423 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1424 	return res;
1425 }
1426 
1427 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1428 {
1429 	struct nfs_inode *nfsi = NFS_I(inode);
1430 	int flags = FLUSH_SYNC;
1431 	int ret = 0;
1432 
1433 	if (wbc->sync_mode == WB_SYNC_NONE) {
1434 		/* Don't commit yet if this is a non-blocking flush and there
1435 		 * are a lot of outstanding writes for this mapping.
1436 		 */
1437 		if (nfsi->ncommit <= (nfsi->npages >> 1))
1438 			goto out_mark_dirty;
1439 
1440 		/* don't wait for the COMMIT response */
1441 		flags = 0;
1442 	}
1443 
1444 	ret = nfs_commit_inode(inode, flags);
1445 	if (ret >= 0) {
1446 		if (wbc->sync_mode == WB_SYNC_NONE) {
1447 			if (ret < wbc->nr_to_write)
1448 				wbc->nr_to_write -= ret;
1449 			else
1450 				wbc->nr_to_write = 0;
1451 		}
1452 		return 0;
1453 	}
1454 out_mark_dirty:
1455 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1456 	return ret;
1457 }
1458 #else
1459 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1460 {
1461 	return 0;
1462 }
1463 #endif
1464 
1465 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1466 {
1467 	return nfs_commit_unstable_pages(inode, wbc);
1468 }
1469 
1470 /*
1471  * flush the inode to disk.
1472  */
1473 int nfs_wb_all(struct inode *inode)
1474 {
1475 	struct writeback_control wbc = {
1476 		.sync_mode = WB_SYNC_ALL,
1477 		.nr_to_write = LONG_MAX,
1478 		.range_start = 0,
1479 		.range_end = LLONG_MAX,
1480 	};
1481 
1482 	return sync_inode(inode, &wbc);
1483 }
1484 
1485 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1486 {
1487 	struct nfs_page *req;
1488 	int ret = 0;
1489 
1490 	BUG_ON(!PageLocked(page));
1491 	for (;;) {
1492 		wait_on_page_writeback(page);
1493 		req = nfs_page_find_request(page);
1494 		if (req == NULL)
1495 			break;
1496 		if (nfs_lock_request_dontget(req)) {
1497 			nfs_inode_remove_request(req);
1498 			/*
1499 			 * In case nfs_inode_remove_request has marked the
1500 			 * page as being dirty
1501 			 */
1502 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1503 			nfs_unlock_request(req);
1504 			break;
1505 		}
1506 		ret = nfs_wait_on_request(req);
1507 		nfs_release_request(req);
1508 		if (ret < 0)
1509 			break;
1510 	}
1511 	return ret;
1512 }
1513 
1514 /*
1515  * Write back all requests on one page - we do this before reading it.
1516  */
1517 int nfs_wb_page(struct inode *inode, struct page *page)
1518 {
1519 	loff_t range_start = page_offset(page);
1520 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1521 	struct writeback_control wbc = {
1522 		.sync_mode = WB_SYNC_ALL,
1523 		.nr_to_write = 0,
1524 		.range_start = range_start,
1525 		.range_end = range_end,
1526 	};
1527 	int ret;
1528 
1529 	for (;;) {
1530 		wait_on_page_writeback(page);
1531 		if (clear_page_dirty_for_io(page)) {
1532 			ret = nfs_writepage_locked(page, &wbc);
1533 			if (ret < 0)
1534 				goto out_error;
1535 			continue;
1536 		}
1537 		if (!PagePrivate(page))
1538 			break;
1539 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
1540 		if (ret < 0)
1541 			goto out_error;
1542 	}
1543 	return 0;
1544 out_error:
1545 	return ret;
1546 }
1547 
1548 #ifdef CONFIG_MIGRATION
1549 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1550 		struct page *page)
1551 {
1552 	struct nfs_page *req;
1553 	int ret;
1554 
1555 	nfs_fscache_release_page(page, GFP_KERNEL);
1556 
1557 	req = nfs_find_and_lock_request(page, false);
1558 	ret = PTR_ERR(req);
1559 	if (IS_ERR(req))
1560 		goto out;
1561 
1562 	ret = migrate_page(mapping, newpage, page);
1563 	if (!req)
1564 		goto out;
1565 	if (ret)
1566 		goto out_unlock;
1567 	page_cache_get(newpage);
1568 	spin_lock(&mapping->host->i_lock);
1569 	req->wb_page = newpage;
1570 	SetPagePrivate(newpage);
1571 	set_page_private(newpage, (unsigned long)req);
1572 	ClearPagePrivate(page);
1573 	set_page_private(page, 0);
1574 	spin_unlock(&mapping->host->i_lock);
1575 	page_cache_release(page);
1576 out_unlock:
1577 	nfs_clear_page_tag_locked(req);
1578 out:
1579 	return ret;
1580 }
1581 #endif
1582 
1583 int __init nfs_init_writepagecache(void)
1584 {
1585 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1586 					     sizeof(struct nfs_write_data),
1587 					     0, SLAB_HWCACHE_ALIGN,
1588 					     NULL);
1589 	if (nfs_wdata_cachep == NULL)
1590 		return -ENOMEM;
1591 
1592 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1593 						     nfs_wdata_cachep);
1594 	if (nfs_wdata_mempool == NULL)
1595 		return -ENOMEM;
1596 
1597 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1598 						      nfs_wdata_cachep);
1599 	if (nfs_commit_mempool == NULL)
1600 		return -ENOMEM;
1601 
1602 	/*
1603 	 * NFS congestion size, scale with available memory.
1604 	 *
1605 	 *  64MB:    8192k
1606 	 * 128MB:   11585k
1607 	 * 256MB:   16384k
1608 	 * 512MB:   23170k
1609 	 *   1GB:   32768k
1610 	 *   2GB:   46340k
1611 	 *   4GB:   65536k
1612 	 *   8GB:   92681k
1613 	 *  16GB:  131072k
1614 	 *
1615 	 * This allows larger machines to have larger/more transfers.
1616 	 * Limit the default to 256M
1617 	 */
1618 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1619 	if (nfs_congestion_kb > 256*1024)
1620 		nfs_congestion_kb = 256*1024;
1621 
1622 	return 0;
1623 }
1624 
1625 void nfs_destroy_writepagecache(void)
1626 {
1627 	mempool_destroy(nfs_commit_mempool);
1628 	mempool_destroy(nfs_wdata_mempool);
1629 	kmem_cache_destroy(nfs_wdata_cachep);
1630 }
1631 
1632