xref: /openbmc/linux/fs/nfs/write.c (revision 8db70d3d)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 
17 #include <linux/sunrpc/clnt.h>
18 #include <linux/nfs_fs.h>
19 #include <linux/nfs_mount.h>
20 #include <linux/nfs_page.h>
21 #include <linux/backing-dev.h>
22 
23 #include <asm/uaccess.h>
24 
25 #include "delegation.h"
26 #include "internal.h"
27 #include "iostat.h"
28 
29 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
30 
31 #define MIN_POOL_WRITE		(32)
32 #define MIN_POOL_COMMIT		(4)
33 
34 /*
35  * Local function declarations
36  */
37 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
38 				  struct inode *inode, int ioflags);
39 static void nfs_redirty_request(struct nfs_page *req);
40 static const struct rpc_call_ops nfs_write_partial_ops;
41 static const struct rpc_call_ops nfs_write_full_ops;
42 static const struct rpc_call_ops nfs_commit_ops;
43 
44 static struct kmem_cache *nfs_wdata_cachep;
45 static mempool_t *nfs_wdata_mempool;
46 static mempool_t *nfs_commit_mempool;
47 
48 struct nfs_write_data *nfs_commitdata_alloc(void)
49 {
50 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
51 
52 	if (p) {
53 		memset(p, 0, sizeof(*p));
54 		INIT_LIST_HEAD(&p->pages);
55 	}
56 	return p;
57 }
58 
59 void nfs_commit_free(struct nfs_write_data *p)
60 {
61 	if (p && (p->pagevec != &p->page_array[0]))
62 		kfree(p->pagevec);
63 	mempool_free(p, nfs_commit_mempool);
64 }
65 
66 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
67 {
68 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
69 
70 	if (p) {
71 		memset(p, 0, sizeof(*p));
72 		INIT_LIST_HEAD(&p->pages);
73 		p->npages = pagecount;
74 		if (pagecount <= ARRAY_SIZE(p->page_array))
75 			p->pagevec = p->page_array;
76 		else {
77 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
78 			if (!p->pagevec) {
79 				mempool_free(p, nfs_wdata_mempool);
80 				p = NULL;
81 			}
82 		}
83 	}
84 	return p;
85 }
86 
87 static void nfs_writedata_free(struct nfs_write_data *p)
88 {
89 	if (p && (p->pagevec != &p->page_array[0]))
90 		kfree(p->pagevec);
91 	mempool_free(p, nfs_wdata_mempool);
92 }
93 
94 void nfs_writedata_release(void *data)
95 {
96 	struct nfs_write_data *wdata = data;
97 
98 	put_nfs_open_context(wdata->args.context);
99 	nfs_writedata_free(wdata);
100 }
101 
102 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
103 {
104 	ctx->error = error;
105 	smp_wmb();
106 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
107 }
108 
109 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
110 {
111 	struct nfs_page *req = NULL;
112 
113 	if (PagePrivate(page)) {
114 		req = (struct nfs_page *)page_private(page);
115 		if (req != NULL)
116 			kref_get(&req->wb_kref);
117 	}
118 	return req;
119 }
120 
121 static struct nfs_page *nfs_page_find_request(struct page *page)
122 {
123 	struct inode *inode = page->mapping->host;
124 	struct nfs_page *req = NULL;
125 
126 	spin_lock(&inode->i_lock);
127 	req = nfs_page_find_request_locked(page);
128 	spin_unlock(&inode->i_lock);
129 	return req;
130 }
131 
132 /* Adjust the file length if we're writing beyond the end */
133 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
134 {
135 	struct inode *inode = page->mapping->host;
136 	loff_t end, i_size;
137 	pgoff_t end_index;
138 
139 	spin_lock(&inode->i_lock);
140 	i_size = i_size_read(inode);
141 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
142 	if (i_size > 0 && page->index < end_index)
143 		goto out;
144 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
145 	if (i_size >= end)
146 		goto out;
147 	i_size_write(inode, end);
148 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
149 out:
150 	spin_unlock(&inode->i_lock);
151 }
152 
153 /* A writeback failed: mark the page as bad, and invalidate the page cache */
154 static void nfs_set_pageerror(struct page *page)
155 {
156 	SetPageError(page);
157 	nfs_zap_mapping(page->mapping->host, page->mapping);
158 }
159 
160 /* We can set the PG_uptodate flag if we see that a write request
161  * covers the full page.
162  */
163 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
164 {
165 	if (PageUptodate(page))
166 		return;
167 	if (base != 0)
168 		return;
169 	if (count != nfs_page_length(page))
170 		return;
171 	SetPageUptodate(page);
172 }
173 
174 static int wb_priority(struct writeback_control *wbc)
175 {
176 	if (wbc->for_reclaim)
177 		return FLUSH_HIGHPRI | FLUSH_STABLE;
178 	if (wbc->for_kupdate)
179 		return FLUSH_LOWPRI;
180 	return 0;
181 }
182 
183 /*
184  * NFS congestion control
185  */
186 
187 int nfs_congestion_kb;
188 
189 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
190 #define NFS_CONGESTION_OFF_THRESH	\
191 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
192 
193 static int nfs_set_page_writeback(struct page *page)
194 {
195 	int ret = test_set_page_writeback(page);
196 
197 	if (!ret) {
198 		struct inode *inode = page->mapping->host;
199 		struct nfs_server *nfss = NFS_SERVER(inode);
200 
201 		if (atomic_long_inc_return(&nfss->writeback) >
202 				NFS_CONGESTION_ON_THRESH)
203 			set_bdi_congested(&nfss->backing_dev_info, WRITE);
204 	}
205 	return ret;
206 }
207 
208 static void nfs_end_page_writeback(struct page *page)
209 {
210 	struct inode *inode = page->mapping->host;
211 	struct nfs_server *nfss = NFS_SERVER(inode);
212 
213 	end_page_writeback(page);
214 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
215 		clear_bdi_congested(&nfss->backing_dev_info, WRITE);
216 }
217 
218 /*
219  * Find an associated nfs write request, and prepare to flush it out
220  * May return an error if the user signalled nfs_wait_on_request().
221  */
222 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
223 				struct page *page)
224 {
225 	struct inode *inode = page->mapping->host;
226 	struct nfs_page *req;
227 	int ret;
228 
229 	spin_lock(&inode->i_lock);
230 	for(;;) {
231 		req = nfs_page_find_request_locked(page);
232 		if (req == NULL) {
233 			spin_unlock(&inode->i_lock);
234 			return 0;
235 		}
236 		if (nfs_set_page_tag_locked(req))
237 			break;
238 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
239 		 *	 then the call to nfs_set_page_tag_locked() will always
240 		 *	 succeed provided that someone hasn't already marked the
241 		 *	 request as dirty (in which case we don't care).
242 		 */
243 		spin_unlock(&inode->i_lock);
244 		ret = nfs_wait_on_request(req);
245 		nfs_release_request(req);
246 		if (ret != 0)
247 			return ret;
248 		spin_lock(&inode->i_lock);
249 	}
250 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
251 		spin_unlock(&inode->i_lock);
252 		BUG();
253 	}
254 	if (nfs_set_page_writeback(page) != 0) {
255 		spin_unlock(&inode->i_lock);
256 		BUG();
257 	}
258 	spin_unlock(&inode->i_lock);
259 	if (!nfs_pageio_add_request(pgio, req)) {
260 		nfs_redirty_request(req);
261 		return pgio->pg_error;
262 	}
263 	return 0;
264 }
265 
266 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
267 {
268 	struct inode *inode = page->mapping->host;
269 
270 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
271 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
272 
273 	nfs_pageio_cond_complete(pgio, page->index);
274 	return nfs_page_async_flush(pgio, page);
275 }
276 
277 /*
278  * Write an mmapped page to the server.
279  */
280 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
281 {
282 	struct nfs_pageio_descriptor pgio;
283 	int err;
284 
285 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
286 	err = nfs_do_writepage(page, wbc, &pgio);
287 	nfs_pageio_complete(&pgio);
288 	if (err < 0)
289 		return err;
290 	if (pgio.pg_error < 0)
291 		return pgio.pg_error;
292 	return 0;
293 }
294 
295 int nfs_writepage(struct page *page, struct writeback_control *wbc)
296 {
297 	int ret;
298 
299 	ret = nfs_writepage_locked(page, wbc);
300 	unlock_page(page);
301 	return ret;
302 }
303 
304 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
305 {
306 	int ret;
307 
308 	ret = nfs_do_writepage(page, wbc, data);
309 	unlock_page(page);
310 	return ret;
311 }
312 
313 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
314 {
315 	struct inode *inode = mapping->host;
316 	unsigned long *bitlock = &NFS_I(inode)->flags;
317 	struct nfs_pageio_descriptor pgio;
318 	int err;
319 
320 	/* Stop dirtying of new pages while we sync */
321 	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
322 			nfs_wait_bit_killable, TASK_KILLABLE);
323 	if (err)
324 		goto out_err;
325 
326 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
327 
328 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
329 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
330 	nfs_pageio_complete(&pgio);
331 
332 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
333 	smp_mb__after_clear_bit();
334 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
335 
336 	if (err < 0)
337 		goto out_err;
338 	err = pgio.pg_error;
339 	if (err < 0)
340 		goto out_err;
341 	return 0;
342 out_err:
343 	return err;
344 }
345 
346 /*
347  * Insert a write request into an inode
348  */
349 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
350 {
351 	struct nfs_inode *nfsi = NFS_I(inode);
352 	int error;
353 
354 	error = radix_tree_preload(GFP_NOFS);
355 	if (error != 0)
356 		goto out;
357 
358 	/* Lock the request! */
359 	nfs_lock_request_dontget(req);
360 
361 	spin_lock(&inode->i_lock);
362 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
363 	BUG_ON(error);
364 	if (!nfsi->npages) {
365 		igrab(inode);
366 		if (nfs_have_delegation(inode, FMODE_WRITE))
367 			nfsi->change_attr++;
368 	}
369 	SetPagePrivate(req->wb_page);
370 	set_page_private(req->wb_page, (unsigned long)req);
371 	nfsi->npages++;
372 	kref_get(&req->wb_kref);
373 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
374 				NFS_PAGE_TAG_LOCKED);
375 	spin_unlock(&inode->i_lock);
376 	radix_tree_preload_end();
377 out:
378 	return error;
379 }
380 
381 /*
382  * Remove a write request from an inode
383  */
384 static void nfs_inode_remove_request(struct nfs_page *req)
385 {
386 	struct inode *inode = req->wb_context->path.dentry->d_inode;
387 	struct nfs_inode *nfsi = NFS_I(inode);
388 
389 	BUG_ON (!NFS_WBACK_BUSY(req));
390 
391 	spin_lock(&inode->i_lock);
392 	set_page_private(req->wb_page, 0);
393 	ClearPagePrivate(req->wb_page);
394 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
395 	nfsi->npages--;
396 	if (!nfsi->npages) {
397 		spin_unlock(&inode->i_lock);
398 		iput(inode);
399 	} else
400 		spin_unlock(&inode->i_lock);
401 	nfs_clear_request(req);
402 	nfs_release_request(req);
403 }
404 
405 static void
406 nfs_mark_request_dirty(struct nfs_page *req)
407 {
408 	__set_page_dirty_nobuffers(req->wb_page);
409 }
410 
411 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
412 /*
413  * Add a request to the inode's commit list.
414  */
415 static void
416 nfs_mark_request_commit(struct nfs_page *req)
417 {
418 	struct inode *inode = req->wb_context->path.dentry->d_inode;
419 	struct nfs_inode *nfsi = NFS_I(inode);
420 
421 	spin_lock(&inode->i_lock);
422 	set_bit(PG_CLEAN, &(req)->wb_flags);
423 	radix_tree_tag_set(&nfsi->nfs_page_tree,
424 			req->wb_index,
425 			NFS_PAGE_TAG_COMMIT);
426 	spin_unlock(&inode->i_lock);
427 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
428 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
429 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
430 }
431 
432 static int
433 nfs_clear_request_commit(struct nfs_page *req)
434 {
435 	struct page *page = req->wb_page;
436 
437 	if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
438 		dec_zone_page_state(page, NR_UNSTABLE_NFS);
439 		dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
440 		return 1;
441 	}
442 	return 0;
443 }
444 
445 static inline
446 int nfs_write_need_commit(struct nfs_write_data *data)
447 {
448 	return data->verf.committed != NFS_FILE_SYNC;
449 }
450 
451 static inline
452 int nfs_reschedule_unstable_write(struct nfs_page *req)
453 {
454 	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
455 		nfs_mark_request_commit(req);
456 		return 1;
457 	}
458 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
459 		nfs_mark_request_dirty(req);
460 		return 1;
461 	}
462 	return 0;
463 }
464 #else
465 static inline void
466 nfs_mark_request_commit(struct nfs_page *req)
467 {
468 }
469 
470 static inline int
471 nfs_clear_request_commit(struct nfs_page *req)
472 {
473 	return 0;
474 }
475 
476 static inline
477 int nfs_write_need_commit(struct nfs_write_data *data)
478 {
479 	return 0;
480 }
481 
482 static inline
483 int nfs_reschedule_unstable_write(struct nfs_page *req)
484 {
485 	return 0;
486 }
487 #endif
488 
489 /*
490  * Wait for a request to complete.
491  *
492  * Interruptible by fatal signals only.
493  */
494 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
495 {
496 	struct nfs_inode *nfsi = NFS_I(inode);
497 	struct nfs_page *req;
498 	pgoff_t idx_end, next;
499 	unsigned int		res = 0;
500 	int			error;
501 
502 	if (npages == 0)
503 		idx_end = ~0;
504 	else
505 		idx_end = idx_start + npages - 1;
506 
507 	next = idx_start;
508 	while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
509 		if (req->wb_index > idx_end)
510 			break;
511 
512 		next = req->wb_index + 1;
513 		BUG_ON(!NFS_WBACK_BUSY(req));
514 
515 		kref_get(&req->wb_kref);
516 		spin_unlock(&inode->i_lock);
517 		error = nfs_wait_on_request(req);
518 		nfs_release_request(req);
519 		spin_lock(&inode->i_lock);
520 		if (error < 0)
521 			return error;
522 		res++;
523 	}
524 	return res;
525 }
526 
527 static void nfs_cancel_commit_list(struct list_head *head)
528 {
529 	struct nfs_page *req;
530 
531 	while(!list_empty(head)) {
532 		req = nfs_list_entry(head->next);
533 		nfs_list_remove_request(req);
534 		nfs_clear_request_commit(req);
535 		nfs_inode_remove_request(req);
536 		nfs_unlock_request(req);
537 	}
538 }
539 
540 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
541 static int
542 nfs_need_commit(struct nfs_inode *nfsi)
543 {
544 	return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
545 }
546 
547 /*
548  * nfs_scan_commit - Scan an inode for commit requests
549  * @inode: NFS inode to scan
550  * @dst: destination list
551  * @idx_start: lower bound of page->index to scan.
552  * @npages: idx_start + npages sets the upper bound to scan.
553  *
554  * Moves requests from the inode's 'commit' request list.
555  * The requests are *not* checked to ensure that they form a contiguous set.
556  */
557 static int
558 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
559 {
560 	struct nfs_inode *nfsi = NFS_I(inode);
561 
562 	if (!nfs_need_commit(nfsi))
563 		return 0;
564 
565 	return nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
566 }
567 #else
568 static inline int nfs_need_commit(struct nfs_inode *nfsi)
569 {
570 	return 0;
571 }
572 
573 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
574 {
575 	return 0;
576 }
577 #endif
578 
579 /*
580  * Search for an existing write request, and attempt to update
581  * it to reflect a new dirty region on a given page.
582  *
583  * If the attempt fails, then the existing request is flushed out
584  * to disk.
585  */
586 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
587 		struct page *page,
588 		unsigned int offset,
589 		unsigned int bytes)
590 {
591 	struct nfs_page *req;
592 	unsigned int rqend;
593 	unsigned int end;
594 	int error;
595 
596 	if (!PagePrivate(page))
597 		return NULL;
598 
599 	end = offset + bytes;
600 	spin_lock(&inode->i_lock);
601 
602 	for (;;) {
603 		req = nfs_page_find_request_locked(page);
604 		if (req == NULL)
605 			goto out_unlock;
606 
607 		rqend = req->wb_offset + req->wb_bytes;
608 		/*
609 		 * Tell the caller to flush out the request if
610 		 * the offsets are non-contiguous.
611 		 * Note: nfs_flush_incompatible() will already
612 		 * have flushed out requests having wrong owners.
613 		 */
614 		if (offset > rqend
615 		    || end < req->wb_offset)
616 			goto out_flushme;
617 
618 		if (nfs_set_page_tag_locked(req))
619 			break;
620 
621 		/* The request is locked, so wait and then retry */
622 		spin_unlock(&inode->i_lock);
623 		error = nfs_wait_on_request(req);
624 		nfs_release_request(req);
625 		if (error != 0)
626 			goto out_err;
627 		spin_lock(&inode->i_lock);
628 	}
629 
630 	if (nfs_clear_request_commit(req))
631 		radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
632 				req->wb_index, NFS_PAGE_TAG_COMMIT);
633 
634 	/* Okay, the request matches. Update the region */
635 	if (offset < req->wb_offset) {
636 		req->wb_offset = offset;
637 		req->wb_pgbase = offset;
638 	}
639 	if (end > rqend)
640 		req->wb_bytes = end - req->wb_offset;
641 	else
642 		req->wb_bytes = rqend - req->wb_offset;
643 out_unlock:
644 	spin_unlock(&inode->i_lock);
645 	return req;
646 out_flushme:
647 	spin_unlock(&inode->i_lock);
648 	nfs_release_request(req);
649 	error = nfs_wb_page(inode, page);
650 out_err:
651 	return ERR_PTR(error);
652 }
653 
654 /*
655  * Try to update an existing write request, or create one if there is none.
656  *
657  * Note: Should always be called with the Page Lock held to prevent races
658  * if we have to add a new request. Also assumes that the caller has
659  * already called nfs_flush_incompatible() if necessary.
660  */
661 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
662 		struct page *page, unsigned int offset, unsigned int bytes)
663 {
664 	struct inode *inode = page->mapping->host;
665 	struct nfs_page	*req;
666 	int error;
667 
668 	req = nfs_try_to_update_request(inode, page, offset, bytes);
669 	if (req != NULL)
670 		goto out;
671 	req = nfs_create_request(ctx, inode, page, offset, bytes);
672 	if (IS_ERR(req))
673 		goto out;
674 	error = nfs_inode_add_request(inode, req);
675 	if (error != 0) {
676 		nfs_release_request(req);
677 		req = ERR_PTR(error);
678 	}
679 out:
680 	return req;
681 }
682 
683 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
684 		unsigned int offset, unsigned int count)
685 {
686 	struct nfs_page	*req;
687 
688 	req = nfs_setup_write_request(ctx, page, offset, count);
689 	if (IS_ERR(req))
690 		return PTR_ERR(req);
691 	/* Update file length */
692 	nfs_grow_file(page, offset, count);
693 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
694 	nfs_clear_page_tag_locked(req);
695 	return 0;
696 }
697 
698 int nfs_flush_incompatible(struct file *file, struct page *page)
699 {
700 	struct nfs_open_context *ctx = nfs_file_open_context(file);
701 	struct nfs_page	*req;
702 	int do_flush, status;
703 	/*
704 	 * Look for a request corresponding to this page. If there
705 	 * is one, and it belongs to another file, we flush it out
706 	 * before we try to copy anything into the page. Do this
707 	 * due to the lack of an ACCESS-type call in NFSv2.
708 	 * Also do the same if we find a request from an existing
709 	 * dropped page.
710 	 */
711 	do {
712 		req = nfs_page_find_request(page);
713 		if (req == NULL)
714 			return 0;
715 		do_flush = req->wb_page != page || req->wb_context != ctx;
716 		nfs_release_request(req);
717 		if (!do_flush)
718 			return 0;
719 		status = nfs_wb_page(page->mapping->host, page);
720 	} while (status == 0);
721 	return status;
722 }
723 
724 /*
725  * If the page cache is marked as unsafe or invalid, then we can't rely on
726  * the PageUptodate() flag. In this case, we will need to turn off
727  * write optimisations that depend on the page contents being correct.
728  */
729 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
730 {
731 	return PageUptodate(page) &&
732 		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
733 }
734 
735 /*
736  * Update and possibly write a cached page of an NFS file.
737  *
738  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
739  * things with a page scheduled for an RPC call (e.g. invalidate it).
740  */
741 int nfs_updatepage(struct file *file, struct page *page,
742 		unsigned int offset, unsigned int count)
743 {
744 	struct nfs_open_context *ctx = nfs_file_open_context(file);
745 	struct inode	*inode = page->mapping->host;
746 	int		status = 0;
747 
748 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
749 
750 	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
751 		file->f_path.dentry->d_parent->d_name.name,
752 		file->f_path.dentry->d_name.name, count,
753 		(long long)(page_offset(page) + offset));
754 
755 	/* If we're not using byte range locks, and we know the page
756 	 * is up to date, it may be more efficient to extend the write
757 	 * to cover the entire page in order to avoid fragmentation
758 	 * inefficiencies.
759 	 */
760 	if (nfs_write_pageuptodate(page, inode) &&
761 			inode->i_flock == NULL &&
762 			!(file->f_flags & O_SYNC)) {
763 		count = max(count + offset, nfs_page_length(page));
764 		offset = 0;
765 	}
766 
767 	status = nfs_writepage_setup(ctx, page, offset, count);
768 	if (status < 0)
769 		nfs_set_pageerror(page);
770 	else
771 		__set_page_dirty_nobuffers(page);
772 
773 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
774 			status, (long long)i_size_read(inode));
775 	return status;
776 }
777 
778 static void nfs_writepage_release(struct nfs_page *req)
779 {
780 
781 	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) {
782 		nfs_end_page_writeback(req->wb_page);
783 		nfs_inode_remove_request(req);
784 	} else
785 		nfs_end_page_writeback(req->wb_page);
786 	nfs_clear_page_tag_locked(req);
787 }
788 
789 static int flush_task_priority(int how)
790 {
791 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
792 		case FLUSH_HIGHPRI:
793 			return RPC_PRIORITY_HIGH;
794 		case FLUSH_LOWPRI:
795 			return RPC_PRIORITY_LOW;
796 	}
797 	return RPC_PRIORITY_NORMAL;
798 }
799 
800 /*
801  * Set up the argument/result storage required for the RPC call.
802  */
803 static int nfs_write_rpcsetup(struct nfs_page *req,
804 		struct nfs_write_data *data,
805 		const struct rpc_call_ops *call_ops,
806 		unsigned int count, unsigned int offset,
807 		int how)
808 {
809 	struct inode *inode = req->wb_context->path.dentry->d_inode;
810 	int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
811 	int priority = flush_task_priority(how);
812 	struct rpc_task *task;
813 	struct rpc_message msg = {
814 		.rpc_argp = &data->args,
815 		.rpc_resp = &data->res,
816 		.rpc_cred = req->wb_context->cred,
817 	};
818 	struct rpc_task_setup task_setup_data = {
819 		.rpc_client = NFS_CLIENT(inode),
820 		.task = &data->task,
821 		.rpc_message = &msg,
822 		.callback_ops = call_ops,
823 		.callback_data = data,
824 		.workqueue = nfsiod_workqueue,
825 		.flags = flags,
826 		.priority = priority,
827 	};
828 
829 	/* Set up the RPC argument and reply structs
830 	 * NB: take care not to mess about with data->commit et al. */
831 
832 	data->req = req;
833 	data->inode = inode = req->wb_context->path.dentry->d_inode;
834 	data->cred = msg.rpc_cred;
835 
836 	data->args.fh     = NFS_FH(inode);
837 	data->args.offset = req_offset(req) + offset;
838 	data->args.pgbase = req->wb_pgbase + offset;
839 	data->args.pages  = data->pagevec;
840 	data->args.count  = count;
841 	data->args.context = get_nfs_open_context(req->wb_context);
842 	data->args.stable  = NFS_UNSTABLE;
843 	if (how & FLUSH_STABLE) {
844 		data->args.stable = NFS_DATA_SYNC;
845 		if (!nfs_need_commit(NFS_I(inode)))
846 			data->args.stable = NFS_FILE_SYNC;
847 	}
848 
849 	data->res.fattr   = &data->fattr;
850 	data->res.count   = count;
851 	data->res.verf    = &data->verf;
852 	nfs_fattr_init(&data->fattr);
853 
854 	/* Set up the initial task struct.  */
855 	NFS_PROTO(inode)->write_setup(data, &msg);
856 
857 	dprintk("NFS: %5u initiated write call "
858 		"(req %s/%lld, %u bytes @ offset %llu)\n",
859 		data->task.tk_pid,
860 		inode->i_sb->s_id,
861 		(long long)NFS_FILEID(inode),
862 		count,
863 		(unsigned long long)data->args.offset);
864 
865 	task = rpc_run_task(&task_setup_data);
866 	if (IS_ERR(task))
867 		return PTR_ERR(task);
868 	rpc_put_task(task);
869 	return 0;
870 }
871 
872 /* If a nfs_flush_* function fails, it should remove reqs from @head and
873  * call this on each, which will prepare them to be retried on next
874  * writeback using standard nfs.
875  */
876 static void nfs_redirty_request(struct nfs_page *req)
877 {
878 	nfs_mark_request_dirty(req);
879 	nfs_end_page_writeback(req->wb_page);
880 	nfs_clear_page_tag_locked(req);
881 }
882 
883 /*
884  * Generate multiple small requests to write out a single
885  * contiguous dirty area on one page.
886  */
887 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
888 {
889 	struct nfs_page *req = nfs_list_entry(head->next);
890 	struct page *page = req->wb_page;
891 	struct nfs_write_data *data;
892 	size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
893 	unsigned int offset;
894 	int requests = 0;
895 	int ret = 0;
896 	LIST_HEAD(list);
897 
898 	nfs_list_remove_request(req);
899 
900 	nbytes = count;
901 	do {
902 		size_t len = min(nbytes, wsize);
903 
904 		data = nfs_writedata_alloc(1);
905 		if (!data)
906 			goto out_bad;
907 		list_add(&data->pages, &list);
908 		requests++;
909 		nbytes -= len;
910 	} while (nbytes != 0);
911 	atomic_set(&req->wb_complete, requests);
912 
913 	ClearPageError(page);
914 	offset = 0;
915 	nbytes = count;
916 	do {
917 		int ret2;
918 
919 		data = list_entry(list.next, struct nfs_write_data, pages);
920 		list_del_init(&data->pages);
921 
922 		data->pagevec[0] = page;
923 
924 		if (nbytes < wsize)
925 			wsize = nbytes;
926 		ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
927 				   wsize, offset, how);
928 		if (ret == 0)
929 			ret = ret2;
930 		offset += wsize;
931 		nbytes -= wsize;
932 	} while (nbytes != 0);
933 
934 	return ret;
935 
936 out_bad:
937 	while (!list_empty(&list)) {
938 		data = list_entry(list.next, struct nfs_write_data, pages);
939 		list_del(&data->pages);
940 		nfs_writedata_release(data);
941 	}
942 	nfs_redirty_request(req);
943 	return -ENOMEM;
944 }
945 
946 /*
947  * Create an RPC task for the given write request and kick it.
948  * The page must have been locked by the caller.
949  *
950  * It may happen that the page we're passed is not marked dirty.
951  * This is the case if nfs_updatepage detects a conflicting request
952  * that has been written but not committed.
953  */
954 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
955 {
956 	struct nfs_page		*req;
957 	struct page		**pages;
958 	struct nfs_write_data	*data;
959 
960 	data = nfs_writedata_alloc(npages);
961 	if (!data)
962 		goto out_bad;
963 
964 	pages = data->pagevec;
965 	while (!list_empty(head)) {
966 		req = nfs_list_entry(head->next);
967 		nfs_list_remove_request(req);
968 		nfs_list_add_request(req, &data->pages);
969 		ClearPageError(req->wb_page);
970 		*pages++ = req->wb_page;
971 	}
972 	req = nfs_list_entry(data->pages.next);
973 
974 	/* Set up the argument struct */
975 	return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
976  out_bad:
977 	while (!list_empty(head)) {
978 		req = nfs_list_entry(head->next);
979 		nfs_list_remove_request(req);
980 		nfs_redirty_request(req);
981 	}
982 	return -ENOMEM;
983 }
984 
985 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
986 				  struct inode *inode, int ioflags)
987 {
988 	size_t wsize = NFS_SERVER(inode)->wsize;
989 
990 	if (wsize < PAGE_CACHE_SIZE)
991 		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
992 	else
993 		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
994 }
995 
996 /*
997  * Handle a write reply that flushed part of a page.
998  */
999 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1000 {
1001 	struct nfs_write_data	*data = calldata;
1002 
1003 	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1004 		task->tk_pid,
1005 		data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1006 		(long long)
1007 		  NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1008 		data->req->wb_bytes, (long long)req_offset(data->req));
1009 
1010 	nfs_writeback_done(task, data);
1011 }
1012 
1013 static void nfs_writeback_release_partial(void *calldata)
1014 {
1015 	struct nfs_write_data	*data = calldata;
1016 	struct nfs_page		*req = data->req;
1017 	struct page		*page = req->wb_page;
1018 	int status = data->task.tk_status;
1019 
1020 	if (status < 0) {
1021 		nfs_set_pageerror(page);
1022 		nfs_context_set_write_error(req->wb_context, status);
1023 		dprintk(", error = %d\n", status);
1024 		goto out;
1025 	}
1026 
1027 	if (nfs_write_need_commit(data)) {
1028 		struct inode *inode = page->mapping->host;
1029 
1030 		spin_lock(&inode->i_lock);
1031 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1032 			/* Do nothing we need to resend the writes */
1033 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1034 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1035 			dprintk(" defer commit\n");
1036 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1037 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1038 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1039 			dprintk(" server reboot detected\n");
1040 		}
1041 		spin_unlock(&inode->i_lock);
1042 	} else
1043 		dprintk(" OK\n");
1044 
1045 out:
1046 	if (atomic_dec_and_test(&req->wb_complete))
1047 		nfs_writepage_release(req);
1048 	nfs_writedata_release(calldata);
1049 }
1050 
1051 static const struct rpc_call_ops nfs_write_partial_ops = {
1052 	.rpc_call_done = nfs_writeback_done_partial,
1053 	.rpc_release = nfs_writeback_release_partial,
1054 };
1055 
1056 /*
1057  * Handle a write reply that flushes a whole page.
1058  *
1059  * FIXME: There is an inherent race with invalidate_inode_pages and
1060  *	  writebacks since the page->count is kept > 1 for as long
1061  *	  as the page has a write request pending.
1062  */
1063 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1064 {
1065 	struct nfs_write_data	*data = calldata;
1066 
1067 	nfs_writeback_done(task, data);
1068 }
1069 
1070 static void nfs_writeback_release_full(void *calldata)
1071 {
1072 	struct nfs_write_data	*data = calldata;
1073 	int status = data->task.tk_status;
1074 
1075 	/* Update attributes as result of writeback. */
1076 	while (!list_empty(&data->pages)) {
1077 		struct nfs_page *req = nfs_list_entry(data->pages.next);
1078 		struct page *page = req->wb_page;
1079 
1080 		nfs_list_remove_request(req);
1081 
1082 		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1083 			data->task.tk_pid,
1084 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1085 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1086 			req->wb_bytes,
1087 			(long long)req_offset(req));
1088 
1089 		if (status < 0) {
1090 			nfs_set_pageerror(page);
1091 			nfs_context_set_write_error(req->wb_context, status);
1092 			dprintk(", error = %d\n", status);
1093 			goto remove_request;
1094 		}
1095 
1096 		if (nfs_write_need_commit(data)) {
1097 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1098 			nfs_mark_request_commit(req);
1099 			nfs_end_page_writeback(page);
1100 			dprintk(" marked for commit\n");
1101 			goto next;
1102 		}
1103 		dprintk(" OK\n");
1104 remove_request:
1105 		nfs_end_page_writeback(page);
1106 		nfs_inode_remove_request(req);
1107 	next:
1108 		nfs_clear_page_tag_locked(req);
1109 	}
1110 	nfs_writedata_release(calldata);
1111 }
1112 
1113 static const struct rpc_call_ops nfs_write_full_ops = {
1114 	.rpc_call_done = nfs_writeback_done_full,
1115 	.rpc_release = nfs_writeback_release_full,
1116 };
1117 
1118 
1119 /*
1120  * This function is called when the WRITE call is complete.
1121  */
1122 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1123 {
1124 	struct nfs_writeargs	*argp = &data->args;
1125 	struct nfs_writeres	*resp = &data->res;
1126 	int status;
1127 
1128 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1129 		task->tk_pid, task->tk_status);
1130 
1131 	/*
1132 	 * ->write_done will attempt to use post-op attributes to detect
1133 	 * conflicting writes by other clients.  A strict interpretation
1134 	 * of close-to-open would allow us to continue caching even if
1135 	 * another writer had changed the file, but some applications
1136 	 * depend on tighter cache coherency when writing.
1137 	 */
1138 	status = NFS_PROTO(data->inode)->write_done(task, data);
1139 	if (status != 0)
1140 		return status;
1141 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1142 
1143 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1144 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1145 		/* We tried a write call, but the server did not
1146 		 * commit data to stable storage even though we
1147 		 * requested it.
1148 		 * Note: There is a known bug in Tru64 < 5.0 in which
1149 		 *	 the server reports NFS_DATA_SYNC, but performs
1150 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1151 		 *	 as a dprintk() in order to avoid filling syslog.
1152 		 */
1153 		static unsigned long    complain;
1154 
1155 		if (time_before(complain, jiffies)) {
1156 			dprintk("NFS:       faulty NFS server %s:"
1157 				" (committed = %d) != (stable = %d)\n",
1158 				NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1159 				resp->verf->committed, argp->stable);
1160 			complain = jiffies + 300 * HZ;
1161 		}
1162 	}
1163 #endif
1164 	/* Is this a short write? */
1165 	if (task->tk_status >= 0 && resp->count < argp->count) {
1166 		static unsigned long    complain;
1167 
1168 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1169 
1170 		/* Has the server at least made some progress? */
1171 		if (resp->count != 0) {
1172 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1173 			if (resp->verf->committed != NFS_UNSTABLE) {
1174 				/* Resend from where the server left off */
1175 				argp->offset += resp->count;
1176 				argp->pgbase += resp->count;
1177 				argp->count -= resp->count;
1178 			} else {
1179 				/* Resend as a stable write in order to avoid
1180 				 * headaches in the case of a server crash.
1181 				 */
1182 				argp->stable = NFS_FILE_SYNC;
1183 			}
1184 			rpc_restart_call(task);
1185 			return -EAGAIN;
1186 		}
1187 		if (time_before(complain, jiffies)) {
1188 			printk(KERN_WARNING
1189 			       "NFS: Server wrote zero bytes, expected %u.\n",
1190 					argp->count);
1191 			complain = jiffies + 300 * HZ;
1192 		}
1193 		/* Can't do anything about it except throw an error. */
1194 		task->tk_status = -EIO;
1195 	}
1196 	return 0;
1197 }
1198 
1199 
1200 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1201 void nfs_commitdata_release(void *data)
1202 {
1203 	struct nfs_write_data *wdata = data;
1204 
1205 	put_nfs_open_context(wdata->args.context);
1206 	nfs_commit_free(wdata);
1207 }
1208 
1209 /*
1210  * Set up the argument/result storage required for the RPC call.
1211  */
1212 static int nfs_commit_rpcsetup(struct list_head *head,
1213 		struct nfs_write_data *data,
1214 		int how)
1215 {
1216 	struct nfs_page *first = nfs_list_entry(head->next);
1217 	struct inode *inode = first->wb_context->path.dentry->d_inode;
1218 	int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1219 	int priority = flush_task_priority(how);
1220 	struct rpc_task *task;
1221 	struct rpc_message msg = {
1222 		.rpc_argp = &data->args,
1223 		.rpc_resp = &data->res,
1224 		.rpc_cred = first->wb_context->cred,
1225 	};
1226 	struct rpc_task_setup task_setup_data = {
1227 		.task = &data->task,
1228 		.rpc_client = NFS_CLIENT(inode),
1229 		.rpc_message = &msg,
1230 		.callback_ops = &nfs_commit_ops,
1231 		.callback_data = data,
1232 		.workqueue = nfsiod_workqueue,
1233 		.flags = flags,
1234 		.priority = priority,
1235 	};
1236 
1237 	/* Set up the RPC argument and reply structs
1238 	 * NB: take care not to mess about with data->commit et al. */
1239 
1240 	list_splice_init(head, &data->pages);
1241 
1242 	data->inode	  = inode;
1243 	data->cred	  = msg.rpc_cred;
1244 
1245 	data->args.fh     = NFS_FH(data->inode);
1246 	/* Note: we always request a commit of the entire inode */
1247 	data->args.offset = 0;
1248 	data->args.count  = 0;
1249 	data->args.context = get_nfs_open_context(first->wb_context);
1250 	data->res.count   = 0;
1251 	data->res.fattr   = &data->fattr;
1252 	data->res.verf    = &data->verf;
1253 	nfs_fattr_init(&data->fattr);
1254 
1255 	/* Set up the initial task struct.  */
1256 	NFS_PROTO(inode)->commit_setup(data, &msg);
1257 
1258 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1259 
1260 	task = rpc_run_task(&task_setup_data);
1261 	if (IS_ERR(task))
1262 		return PTR_ERR(task);
1263 	rpc_put_task(task);
1264 	return 0;
1265 }
1266 
1267 /*
1268  * Commit dirty pages
1269  */
1270 static int
1271 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1272 {
1273 	struct nfs_write_data	*data;
1274 	struct nfs_page         *req;
1275 
1276 	data = nfs_commitdata_alloc();
1277 
1278 	if (!data)
1279 		goto out_bad;
1280 
1281 	/* Set up the argument struct */
1282 	return nfs_commit_rpcsetup(head, data, how);
1283  out_bad:
1284 	while (!list_empty(head)) {
1285 		req = nfs_list_entry(head->next);
1286 		nfs_list_remove_request(req);
1287 		nfs_mark_request_commit(req);
1288 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1289 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1290 				BDI_RECLAIMABLE);
1291 		nfs_clear_page_tag_locked(req);
1292 	}
1293 	return -ENOMEM;
1294 }
1295 
1296 /*
1297  * COMMIT call returned
1298  */
1299 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1300 {
1301 	struct nfs_write_data	*data = calldata;
1302 
1303         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1304                                 task->tk_pid, task->tk_status);
1305 
1306 	/* Call the NFS version-specific code */
1307 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1308 		return;
1309 }
1310 
1311 static void nfs_commit_release(void *calldata)
1312 {
1313 	struct nfs_write_data	*data = calldata;
1314 	struct nfs_page		*req;
1315 	int status = data->task.tk_status;
1316 
1317 	while (!list_empty(&data->pages)) {
1318 		req = nfs_list_entry(data->pages.next);
1319 		nfs_list_remove_request(req);
1320 		nfs_clear_request_commit(req);
1321 
1322 		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1323 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1324 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1325 			req->wb_bytes,
1326 			(long long)req_offset(req));
1327 		if (status < 0) {
1328 			nfs_context_set_write_error(req->wb_context, status);
1329 			nfs_inode_remove_request(req);
1330 			dprintk(", error = %d\n", status);
1331 			goto next;
1332 		}
1333 
1334 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1335 		 * returned by the server against all stored verfs. */
1336 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1337 			/* We have a match */
1338 			nfs_inode_remove_request(req);
1339 			dprintk(" OK\n");
1340 			goto next;
1341 		}
1342 		/* We have a mismatch. Write the page again */
1343 		dprintk(" mismatch\n");
1344 		nfs_mark_request_dirty(req);
1345 	next:
1346 		nfs_clear_page_tag_locked(req);
1347 	}
1348 	nfs_commitdata_release(calldata);
1349 }
1350 
1351 static const struct rpc_call_ops nfs_commit_ops = {
1352 	.rpc_call_done = nfs_commit_done,
1353 	.rpc_release = nfs_commit_release,
1354 };
1355 
1356 int nfs_commit_inode(struct inode *inode, int how)
1357 {
1358 	LIST_HEAD(head);
1359 	int res;
1360 
1361 	spin_lock(&inode->i_lock);
1362 	res = nfs_scan_commit(inode, &head, 0, 0);
1363 	spin_unlock(&inode->i_lock);
1364 	if (res) {
1365 		int error = nfs_commit_list(inode, &head, how);
1366 		if (error < 0)
1367 			return error;
1368 	}
1369 	return res;
1370 }
1371 #else
1372 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1373 {
1374 	return 0;
1375 }
1376 #endif
1377 
1378 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1379 {
1380 	struct inode *inode = mapping->host;
1381 	pgoff_t idx_start, idx_end;
1382 	unsigned int npages = 0;
1383 	LIST_HEAD(head);
1384 	int nocommit = how & FLUSH_NOCOMMIT;
1385 	long pages, ret;
1386 
1387 	/* FIXME */
1388 	if (wbc->range_cyclic)
1389 		idx_start = 0;
1390 	else {
1391 		idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1392 		idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1393 		if (idx_end > idx_start) {
1394 			pgoff_t l_npages = 1 + idx_end - idx_start;
1395 			npages = l_npages;
1396 			if (sizeof(npages) != sizeof(l_npages) &&
1397 					(pgoff_t)npages != l_npages)
1398 				npages = 0;
1399 		}
1400 	}
1401 	how &= ~FLUSH_NOCOMMIT;
1402 	spin_lock(&inode->i_lock);
1403 	do {
1404 		ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1405 		if (ret != 0)
1406 			continue;
1407 		if (nocommit)
1408 			break;
1409 		pages = nfs_scan_commit(inode, &head, idx_start, npages);
1410 		if (pages == 0)
1411 			break;
1412 		if (how & FLUSH_INVALIDATE) {
1413 			spin_unlock(&inode->i_lock);
1414 			nfs_cancel_commit_list(&head);
1415 			ret = pages;
1416 			spin_lock(&inode->i_lock);
1417 			continue;
1418 		}
1419 		pages += nfs_scan_commit(inode, &head, 0, 0);
1420 		spin_unlock(&inode->i_lock);
1421 		ret = nfs_commit_list(inode, &head, how);
1422 		spin_lock(&inode->i_lock);
1423 
1424 	} while (ret >= 0);
1425 	spin_unlock(&inode->i_lock);
1426 	return ret;
1427 }
1428 
1429 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
1430 {
1431 	int ret;
1432 
1433 	ret = nfs_writepages(mapping, wbc);
1434 	if (ret < 0)
1435 		goto out;
1436 	ret = nfs_sync_mapping_wait(mapping, wbc, how);
1437 	if (ret < 0)
1438 		goto out;
1439 	return 0;
1440 out:
1441 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1442 	return ret;
1443 }
1444 
1445 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
1446 static int nfs_write_mapping(struct address_space *mapping, int how)
1447 {
1448 	struct writeback_control wbc = {
1449 		.bdi = mapping->backing_dev_info,
1450 		.sync_mode = WB_SYNC_ALL,
1451 		.nr_to_write = LONG_MAX,
1452 		.range_start = 0,
1453 		.range_end = LLONG_MAX,
1454 		.for_writepages = 1,
1455 	};
1456 
1457 	return __nfs_write_mapping(mapping, &wbc, how);
1458 }
1459 
1460 /*
1461  * flush the inode to disk.
1462  */
1463 int nfs_wb_all(struct inode *inode)
1464 {
1465 	return nfs_write_mapping(inode->i_mapping, 0);
1466 }
1467 
1468 int nfs_wb_nocommit(struct inode *inode)
1469 {
1470 	return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
1471 }
1472 
1473 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1474 {
1475 	struct nfs_page *req;
1476 	loff_t range_start = page_offset(page);
1477 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1478 	struct writeback_control wbc = {
1479 		.bdi = page->mapping->backing_dev_info,
1480 		.sync_mode = WB_SYNC_ALL,
1481 		.nr_to_write = LONG_MAX,
1482 		.range_start = range_start,
1483 		.range_end = range_end,
1484 	};
1485 	int ret = 0;
1486 
1487 	BUG_ON(!PageLocked(page));
1488 	for (;;) {
1489 		req = nfs_page_find_request(page);
1490 		if (req == NULL)
1491 			goto out;
1492 		if (test_bit(PG_CLEAN, &req->wb_flags)) {
1493 			nfs_release_request(req);
1494 			break;
1495 		}
1496 		if (nfs_lock_request_dontget(req)) {
1497 			nfs_inode_remove_request(req);
1498 			/*
1499 			 * In case nfs_inode_remove_request has marked the
1500 			 * page as being dirty
1501 			 */
1502 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1503 			nfs_unlock_request(req);
1504 			break;
1505 		}
1506 		ret = nfs_wait_on_request(req);
1507 		if (ret < 0)
1508 			goto out;
1509 	}
1510 	if (!PagePrivate(page))
1511 		return 0;
1512 	ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
1513 out:
1514 	return ret;
1515 }
1516 
1517 static int nfs_wb_page_priority(struct inode *inode, struct page *page,
1518 				int how)
1519 {
1520 	loff_t range_start = page_offset(page);
1521 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1522 	struct writeback_control wbc = {
1523 		.bdi = page->mapping->backing_dev_info,
1524 		.sync_mode = WB_SYNC_ALL,
1525 		.nr_to_write = LONG_MAX,
1526 		.range_start = range_start,
1527 		.range_end = range_end,
1528 	};
1529 	int ret;
1530 
1531 	do {
1532 		if (clear_page_dirty_for_io(page)) {
1533 			ret = nfs_writepage_locked(page, &wbc);
1534 			if (ret < 0)
1535 				goto out_error;
1536 		} else if (!PagePrivate(page))
1537 			break;
1538 		ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1539 		if (ret < 0)
1540 			goto out_error;
1541 	} while (PagePrivate(page));
1542 	return 0;
1543 out_error:
1544 	__mark_inode_dirty(inode, I_DIRTY_PAGES);
1545 	return ret;
1546 }
1547 
1548 /*
1549  * Write back all requests on one page - we do this before reading it.
1550  */
1551 int nfs_wb_page(struct inode *inode, struct page* page)
1552 {
1553 	return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1554 }
1555 
1556 int __init nfs_init_writepagecache(void)
1557 {
1558 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1559 					     sizeof(struct nfs_write_data),
1560 					     0, SLAB_HWCACHE_ALIGN,
1561 					     NULL);
1562 	if (nfs_wdata_cachep == NULL)
1563 		return -ENOMEM;
1564 
1565 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1566 						     nfs_wdata_cachep);
1567 	if (nfs_wdata_mempool == NULL)
1568 		return -ENOMEM;
1569 
1570 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1571 						      nfs_wdata_cachep);
1572 	if (nfs_commit_mempool == NULL)
1573 		return -ENOMEM;
1574 
1575 	/*
1576 	 * NFS congestion size, scale with available memory.
1577 	 *
1578 	 *  64MB:    8192k
1579 	 * 128MB:   11585k
1580 	 * 256MB:   16384k
1581 	 * 512MB:   23170k
1582 	 *   1GB:   32768k
1583 	 *   2GB:   46340k
1584 	 *   4GB:   65536k
1585 	 *   8GB:   92681k
1586 	 *  16GB:  131072k
1587 	 *
1588 	 * This allows larger machines to have larger/more transfers.
1589 	 * Limit the default to 256M
1590 	 */
1591 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1592 	if (nfs_congestion_kb > 256*1024)
1593 		nfs_congestion_kb = 256*1024;
1594 
1595 	return 0;
1596 }
1597 
1598 void nfs_destroy_writepagecache(void)
1599 {
1600 	mempool_destroy(nfs_commit_mempool);
1601 	mempool_destroy(nfs_wdata_mempool);
1602 	kmem_cache_destroy(nfs_wdata_cachep);
1603 }
1604 
1605