xref: /openbmc/linux/fs/nfs/write.c (revision 8bf3cbe32b180836720f735e6de5dee700052317)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/write.c
4  *
5  * Write file data over NFS.
6  *
7  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
8  */
9 
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/pagemap.h>
14 #include <linux/file.h>
15 #include <linux/writeback.h>
16 #include <linux/swap.h>
17 #include <linux/migrate.h>
18 
19 #include <linux/sunrpc/clnt.h>
20 #include <linux/nfs_fs.h>
21 #include <linux/nfs_mount.h>
22 #include <linux/nfs_page.h>
23 #include <linux/backing-dev.h>
24 #include <linux/export.h>
25 #include <linux/freezer.h>
26 #include <linux/wait.h>
27 #include <linux/iversion.h>
28 
29 #include <linux/uaccess.h>
30 #include <linux/sched/mm.h>
31 
32 #include "delegation.h"
33 #include "internal.h"
34 #include "iostat.h"
35 #include "nfs4_fs.h"
36 #include "fscache.h"
37 #include "pnfs.h"
38 
39 #include "nfstrace.h"
40 
41 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
42 
43 #define MIN_POOL_WRITE		(32)
44 #define MIN_POOL_COMMIT		(4)
45 
46 struct nfs_io_completion {
47 	void (*complete)(void *data);
48 	void *data;
49 	struct kref refcount;
50 };
51 
52 /*
53  * Local function declarations
54  */
55 static void nfs_redirty_request(struct nfs_page *req);
56 static const struct rpc_call_ops nfs_commit_ops;
57 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
58 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
59 static const struct nfs_rw_ops nfs_rw_write_ops;
60 static void nfs_inode_remove_request(struct nfs_page *req);
61 static void nfs_clear_request_commit(struct nfs_page *req);
62 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
63 				      struct inode *inode);
64 static struct nfs_page *
65 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
66 						struct page *page);
67 
68 static struct kmem_cache *nfs_wdata_cachep;
69 static mempool_t *nfs_wdata_mempool;
70 static struct kmem_cache *nfs_cdata_cachep;
71 static mempool_t *nfs_commit_mempool;
72 
73 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
74 {
75 	struct nfs_commit_data *p;
76 
77 	if (never_fail)
78 		p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
79 	else {
80 		/* It is OK to do some reclaim, not no safe to wait
81 		 * for anything to be returned to the pool.
82 		 * mempool_alloc() cannot handle that particular combination,
83 		 * so we need two separate attempts.
84 		 */
85 		p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
86 		if (!p)
87 			p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
88 					     __GFP_NOWARN | __GFP_NORETRY);
89 		if (!p)
90 			return NULL;
91 	}
92 
93 	memset(p, 0, sizeof(*p));
94 	INIT_LIST_HEAD(&p->pages);
95 	return p;
96 }
97 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
98 
99 void nfs_commit_free(struct nfs_commit_data *p)
100 {
101 	mempool_free(p, nfs_commit_mempool);
102 }
103 EXPORT_SYMBOL_GPL(nfs_commit_free);
104 
105 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
106 {
107 	struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_KERNEL);
108 
109 	memset(p, 0, sizeof(*p));
110 	p->rw_mode = FMODE_WRITE;
111 	return p;
112 }
113 
114 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
115 {
116 	mempool_free(hdr, nfs_wdata_mempool);
117 }
118 
119 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
120 {
121 	return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
122 }
123 
124 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
125 		void (*complete)(void *), void *data)
126 {
127 	ioc->complete = complete;
128 	ioc->data = data;
129 	kref_init(&ioc->refcount);
130 }
131 
132 static void nfs_io_completion_release(struct kref *kref)
133 {
134 	struct nfs_io_completion *ioc = container_of(kref,
135 			struct nfs_io_completion, refcount);
136 	ioc->complete(ioc->data);
137 	kfree(ioc);
138 }
139 
140 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
141 {
142 	if (ioc != NULL)
143 		kref_get(&ioc->refcount);
144 }
145 
146 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
147 {
148 	if (ioc != NULL)
149 		kref_put(&ioc->refcount, nfs_io_completion_release);
150 }
151 
152 static struct nfs_page *
153 nfs_page_private_request(struct page *page)
154 {
155 	if (!PagePrivate(page))
156 		return NULL;
157 	return (struct nfs_page *)page_private(page);
158 }
159 
160 /*
161  * nfs_page_find_head_request_locked - find head request associated with @page
162  *
163  * must be called while holding the inode lock.
164  *
165  * returns matching head request with reference held, or NULL if not found.
166  */
167 static struct nfs_page *
168 nfs_page_find_private_request(struct page *page)
169 {
170 	struct address_space *mapping = page_file_mapping(page);
171 	struct nfs_page *req;
172 
173 	if (!PagePrivate(page))
174 		return NULL;
175 	spin_lock(&mapping->private_lock);
176 	req = nfs_page_private_request(page);
177 	if (req) {
178 		WARN_ON_ONCE(req->wb_head != req);
179 		kref_get(&req->wb_kref);
180 	}
181 	spin_unlock(&mapping->private_lock);
182 	return req;
183 }
184 
185 static struct nfs_page *
186 nfs_page_find_swap_request(struct page *page)
187 {
188 	struct inode *inode = page_file_mapping(page)->host;
189 	struct nfs_inode *nfsi = NFS_I(inode);
190 	struct nfs_page *req = NULL;
191 	if (!PageSwapCache(page))
192 		return NULL;
193 	mutex_lock(&nfsi->commit_mutex);
194 	if (PageSwapCache(page)) {
195 		req = nfs_page_search_commits_for_head_request_locked(nfsi,
196 			page);
197 		if (req) {
198 			WARN_ON_ONCE(req->wb_head != req);
199 			kref_get(&req->wb_kref);
200 		}
201 	}
202 	mutex_unlock(&nfsi->commit_mutex);
203 	return req;
204 }
205 
206 /*
207  * nfs_page_find_head_request - find head request associated with @page
208  *
209  * returns matching head request with reference held, or NULL if not found.
210  */
211 static struct nfs_page *nfs_page_find_head_request(struct page *page)
212 {
213 	struct nfs_page *req;
214 
215 	req = nfs_page_find_private_request(page);
216 	if (!req)
217 		req = nfs_page_find_swap_request(page);
218 	return req;
219 }
220 
221 /* Adjust the file length if we're writing beyond the end */
222 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
223 {
224 	struct inode *inode = page_file_mapping(page)->host;
225 	loff_t end, i_size;
226 	pgoff_t end_index;
227 
228 	spin_lock(&inode->i_lock);
229 	i_size = i_size_read(inode);
230 	end_index = (i_size - 1) >> PAGE_SHIFT;
231 	if (i_size > 0 && page_index(page) < end_index)
232 		goto out;
233 	end = page_file_offset(page) + ((loff_t)offset+count);
234 	if (i_size >= end)
235 		goto out;
236 	i_size_write(inode, end);
237 	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE;
238 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
239 out:
240 	spin_unlock(&inode->i_lock);
241 }
242 
243 /* A writeback failed: mark the page as bad, and invalidate the page cache */
244 static void nfs_set_pageerror(struct address_space *mapping)
245 {
246 	nfs_zap_mapping(mapping->host, mapping);
247 }
248 
249 static void nfs_mapping_set_error(struct page *page, int error)
250 {
251 	SetPageError(page);
252 	mapping_set_error(page_file_mapping(page), error);
253 }
254 
255 /*
256  * nfs_page_group_search_locked
257  * @head - head request of page group
258  * @page_offset - offset into page
259  *
260  * Search page group with head @head to find a request that contains the
261  * page offset @page_offset.
262  *
263  * Returns a pointer to the first matching nfs request, or NULL if no
264  * match is found.
265  *
266  * Must be called with the page group lock held
267  */
268 static struct nfs_page *
269 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
270 {
271 	struct nfs_page *req;
272 
273 	req = head;
274 	do {
275 		if (page_offset >= req->wb_pgbase &&
276 		    page_offset < (req->wb_pgbase + req->wb_bytes))
277 			return req;
278 
279 		req = req->wb_this_page;
280 	} while (req != head);
281 
282 	return NULL;
283 }
284 
285 /*
286  * nfs_page_group_covers_page
287  * @head - head request of page group
288  *
289  * Return true if the page group with head @head covers the whole page,
290  * returns false otherwise
291  */
292 static bool nfs_page_group_covers_page(struct nfs_page *req)
293 {
294 	struct nfs_page *tmp;
295 	unsigned int pos = 0;
296 	unsigned int len = nfs_page_length(req->wb_page);
297 
298 	nfs_page_group_lock(req);
299 
300 	for (;;) {
301 		tmp = nfs_page_group_search_locked(req->wb_head, pos);
302 		if (!tmp)
303 			break;
304 		pos = tmp->wb_pgbase + tmp->wb_bytes;
305 	}
306 
307 	nfs_page_group_unlock(req);
308 	return pos >= len;
309 }
310 
311 /* We can set the PG_uptodate flag if we see that a write request
312  * covers the full page.
313  */
314 static void nfs_mark_uptodate(struct nfs_page *req)
315 {
316 	if (PageUptodate(req->wb_page))
317 		return;
318 	if (!nfs_page_group_covers_page(req))
319 		return;
320 	SetPageUptodate(req->wb_page);
321 }
322 
323 static int wb_priority(struct writeback_control *wbc)
324 {
325 	int ret = 0;
326 
327 	if (wbc->sync_mode == WB_SYNC_ALL)
328 		ret = FLUSH_COND_STABLE;
329 	return ret;
330 }
331 
332 /*
333  * NFS congestion control
334  */
335 
336 int nfs_congestion_kb;
337 
338 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
339 #define NFS_CONGESTION_OFF_THRESH	\
340 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
341 
342 static void nfs_set_page_writeback(struct page *page)
343 {
344 	struct inode *inode = page_file_mapping(page)->host;
345 	struct nfs_server *nfss = NFS_SERVER(inode);
346 	int ret = test_set_page_writeback(page);
347 
348 	WARN_ON_ONCE(ret != 0);
349 
350 	if (atomic_long_inc_return(&nfss->writeback) >
351 			NFS_CONGESTION_ON_THRESH)
352 		set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
353 }
354 
355 static void nfs_end_page_writeback(struct nfs_page *req)
356 {
357 	struct inode *inode = page_file_mapping(req->wb_page)->host;
358 	struct nfs_server *nfss = NFS_SERVER(inode);
359 	bool is_done;
360 
361 	is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
362 	nfs_unlock_request(req);
363 	if (!is_done)
364 		return;
365 
366 	end_page_writeback(req->wb_page);
367 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
368 		clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
369 }
370 
371 /*
372  * nfs_unroll_locks_and_wait -  unlock all newly locked reqs and wait on @req
373  *
374  * this is a helper function for nfs_lock_and_join_requests
375  *
376  * @inode - inode associated with request page group, must be holding inode lock
377  * @head  - head request of page group, must be holding head lock
378  * @req   - request that couldn't lock and needs to wait on the req bit lock
379  *
380  * NOTE: this must be called holding page_group bit lock
381  *       which will be released before returning.
382  *
383  * returns 0 on success, < 0 on error.
384  */
385 static void
386 nfs_unroll_locks(struct inode *inode, struct nfs_page *head,
387 			  struct nfs_page *req)
388 {
389 	struct nfs_page *tmp;
390 
391 	/* relinquish all the locks successfully grabbed this run */
392 	for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) {
393 		if (!kref_read(&tmp->wb_kref))
394 			continue;
395 		nfs_unlock_and_release_request(tmp);
396 	}
397 }
398 
399 /*
400  * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
401  *
402  * @destroy_list - request list (using wb_this_page) terminated by @old_head
403  * @old_head - the old head of the list
404  *
405  * All subrequests must be locked and removed from all lists, so at this point
406  * they are only "active" in this function, and possibly in nfs_wait_on_request
407  * with a reference held by some other context.
408  */
409 static void
410 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
411 				 struct nfs_page *old_head,
412 				 struct inode *inode)
413 {
414 	while (destroy_list) {
415 		struct nfs_page *subreq = destroy_list;
416 
417 		destroy_list = (subreq->wb_this_page == old_head) ?
418 				   NULL : subreq->wb_this_page;
419 
420 		WARN_ON_ONCE(old_head != subreq->wb_head);
421 
422 		/* make sure old group is not used */
423 		subreq->wb_this_page = subreq;
424 
425 		clear_bit(PG_REMOVE, &subreq->wb_flags);
426 
427 		/* Note: races with nfs_page_group_destroy() */
428 		if (!kref_read(&subreq->wb_kref)) {
429 			/* Check if we raced with nfs_page_group_destroy() */
430 			if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags))
431 				nfs_free_request(subreq);
432 			continue;
433 		}
434 
435 		subreq->wb_head = subreq;
436 
437 		if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
438 			nfs_release_request(subreq);
439 			atomic_long_dec(&NFS_I(inode)->nrequests);
440 		}
441 
442 		/* subreq is now totally disconnected from page group or any
443 		 * write / commit lists. last chance to wake any waiters */
444 		nfs_unlock_and_release_request(subreq);
445 	}
446 }
447 
448 /*
449  * nfs_lock_and_join_requests - join all subreqs to the head req and return
450  *                              a locked reference, cancelling any pending
451  *                              operations for this page.
452  *
453  * @page - the page used to lookup the "page group" of nfs_page structures
454  *
455  * This function joins all sub requests to the head request by first
456  * locking all requests in the group, cancelling any pending operations
457  * and finally updating the head request to cover the whole range covered by
458  * the (former) group.  All subrequests are removed from any write or commit
459  * lists, unlinked from the group and destroyed.
460  *
461  * Returns a locked, referenced pointer to the head request - which after
462  * this call is guaranteed to be the only request associated with the page.
463  * Returns NULL if no requests are found for @page, or a ERR_PTR if an
464  * error was encountered.
465  */
466 static struct nfs_page *
467 nfs_lock_and_join_requests(struct page *page)
468 {
469 	struct inode *inode = page_file_mapping(page)->host;
470 	struct nfs_page *head, *subreq;
471 	struct nfs_page *destroy_list = NULL;
472 	unsigned int total_bytes;
473 	int ret;
474 
475 try_again:
476 	/*
477 	 * A reference is taken only on the head request which acts as a
478 	 * reference to the whole page group - the group will not be destroyed
479 	 * until the head reference is released.
480 	 */
481 	head = nfs_page_find_head_request(page);
482 	if (!head)
483 		return NULL;
484 
485 	/* lock the page head first in order to avoid an ABBA inefficiency */
486 	if (!nfs_lock_request(head)) {
487 		ret = nfs_wait_on_request(head);
488 		nfs_release_request(head);
489 		if (ret < 0)
490 			return ERR_PTR(ret);
491 		goto try_again;
492 	}
493 
494 	/* Ensure that nobody removed the request before we locked it */
495 	if (head != nfs_page_private_request(page) && !PageSwapCache(page)) {
496 		nfs_unlock_and_release_request(head);
497 		goto try_again;
498 	}
499 
500 	ret = nfs_page_group_lock(head);
501 	if (ret < 0)
502 		goto release_request;
503 
504 	/* lock each request in the page group */
505 	total_bytes = head->wb_bytes;
506 	for (subreq = head->wb_this_page; subreq != head;
507 			subreq = subreq->wb_this_page) {
508 
509 		if (!kref_get_unless_zero(&subreq->wb_kref)) {
510 			if (subreq->wb_offset == head->wb_offset + total_bytes)
511 				total_bytes += subreq->wb_bytes;
512 			continue;
513 		}
514 
515 		while (!nfs_lock_request(subreq)) {
516 			/*
517 			 * Unlock page to allow nfs_page_group_sync_on_bit()
518 			 * to succeed
519 			 */
520 			nfs_page_group_unlock(head);
521 			ret = nfs_wait_on_request(subreq);
522 			if (!ret)
523 				ret = nfs_page_group_lock(head);
524 			if (ret < 0) {
525 				nfs_unroll_locks(inode, head, subreq);
526 				nfs_release_request(subreq);
527 				goto release_request;
528 			}
529 		}
530 		/*
531 		 * Subrequests are always contiguous, non overlapping
532 		 * and in order - but may be repeated (mirrored writes).
533 		 */
534 		if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
535 			/* keep track of how many bytes this group covers */
536 			total_bytes += subreq->wb_bytes;
537 		} else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
538 			    ((subreq->wb_offset + subreq->wb_bytes) >
539 			     (head->wb_offset + total_bytes)))) {
540 			nfs_page_group_unlock(head);
541 			nfs_unroll_locks(inode, head, subreq);
542 			nfs_unlock_and_release_request(subreq);
543 			ret = -EIO;
544 			goto release_request;
545 		}
546 	}
547 
548 	/* Now that all requests are locked, make sure they aren't on any list.
549 	 * Commit list removal accounting is done after locks are dropped */
550 	subreq = head;
551 	do {
552 		nfs_clear_request_commit(subreq);
553 		subreq = subreq->wb_this_page;
554 	} while (subreq != head);
555 
556 	/* unlink subrequests from head, destroy them later */
557 	if (head->wb_this_page != head) {
558 		/* destroy list will be terminated by head */
559 		destroy_list = head->wb_this_page;
560 		head->wb_this_page = head;
561 
562 		/* change head request to cover whole range that
563 		 * the former page group covered */
564 		head->wb_bytes = total_bytes;
565 	}
566 
567 	/* Postpone destruction of this request */
568 	if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) {
569 		set_bit(PG_INODE_REF, &head->wb_flags);
570 		kref_get(&head->wb_kref);
571 		atomic_long_inc(&NFS_I(inode)->nrequests);
572 	}
573 
574 	nfs_page_group_unlock(head);
575 
576 	nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
577 
578 	/* Did we lose a race with nfs_inode_remove_request()? */
579 	if (!(PagePrivate(page) || PageSwapCache(page))) {
580 		nfs_unlock_and_release_request(head);
581 		return NULL;
582 	}
583 
584 	/* still holds ref on head from nfs_page_find_head_request
585 	 * and still has lock on head from lock loop */
586 	return head;
587 
588 release_request:
589 	nfs_unlock_and_release_request(head);
590 	return ERR_PTR(ret);
591 }
592 
593 static void nfs_write_error(struct nfs_page *req, int error)
594 {
595 	nfs_set_pageerror(page_file_mapping(req->wb_page));
596 	nfs_mapping_set_error(req->wb_page, error);
597 	nfs_inode_remove_request(req);
598 	nfs_end_page_writeback(req);
599 	nfs_release_request(req);
600 }
601 
602 /*
603  * Find an associated nfs write request, and prepare to flush it out
604  * May return an error if the user signalled nfs_wait_on_request().
605  */
606 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
607 				struct page *page)
608 {
609 	struct nfs_page *req;
610 	int ret = 0;
611 
612 	req = nfs_lock_and_join_requests(page);
613 	if (!req)
614 		goto out;
615 	ret = PTR_ERR(req);
616 	if (IS_ERR(req))
617 		goto out;
618 
619 	nfs_set_page_writeback(page);
620 	WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
621 
622 	/* If there is a fatal error that covers this write, just exit */
623 	ret = pgio->pg_error;
624 	if (nfs_error_is_fatal_on_server(ret))
625 		goto out_launder;
626 
627 	ret = 0;
628 	if (!nfs_pageio_add_request(pgio, req)) {
629 		ret = pgio->pg_error;
630 		/*
631 		 * Remove the problematic req upon fatal errors on the server
632 		 */
633 		if (nfs_error_is_fatal(ret)) {
634 			if (nfs_error_is_fatal_on_server(ret))
635 				goto out_launder;
636 		} else
637 			ret = -EAGAIN;
638 		nfs_redirty_request(req);
639 		pgio->pg_error = 0;
640 	} else
641 		nfs_add_stats(page_file_mapping(page)->host,
642 				NFSIOS_WRITEPAGES, 1);
643 out:
644 	return ret;
645 out_launder:
646 	nfs_write_error(req, ret);
647 	return 0;
648 }
649 
650 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
651 			    struct nfs_pageio_descriptor *pgio)
652 {
653 	int ret;
654 
655 	nfs_pageio_cond_complete(pgio, page_index(page));
656 	ret = nfs_page_async_flush(pgio, page);
657 	if (ret == -EAGAIN) {
658 		redirty_page_for_writepage(wbc, page);
659 		ret = AOP_WRITEPAGE_ACTIVATE;
660 	}
661 	return ret;
662 }
663 
664 /*
665  * Write an mmapped page to the server.
666  */
667 static int nfs_writepage_locked(struct page *page,
668 				struct writeback_control *wbc)
669 {
670 	struct nfs_pageio_descriptor pgio;
671 	struct inode *inode = page_file_mapping(page)->host;
672 	int err;
673 
674 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
675 	nfs_pageio_init_write(&pgio, inode, 0,
676 				false, &nfs_async_write_completion_ops);
677 	err = nfs_do_writepage(page, wbc, &pgio);
678 	pgio.pg_error = 0;
679 	nfs_pageio_complete(&pgio);
680 	if (err < 0)
681 		return err;
682 	if (nfs_error_is_fatal(pgio.pg_error))
683 		return pgio.pg_error;
684 	return 0;
685 }
686 
687 int nfs_writepage(struct page *page, struct writeback_control *wbc)
688 {
689 	int ret;
690 
691 	ret = nfs_writepage_locked(page, wbc);
692 	if (ret != AOP_WRITEPAGE_ACTIVATE)
693 		unlock_page(page);
694 	return ret;
695 }
696 
697 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
698 {
699 	int ret;
700 
701 	ret = nfs_do_writepage(page, wbc, data);
702 	if (ret != AOP_WRITEPAGE_ACTIVATE)
703 		unlock_page(page);
704 	return ret;
705 }
706 
707 static void nfs_io_completion_commit(void *inode)
708 {
709 	nfs_commit_inode(inode, 0);
710 }
711 
712 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
713 {
714 	struct inode *inode = mapping->host;
715 	struct nfs_pageio_descriptor pgio;
716 	struct nfs_io_completion *ioc;
717 	int err;
718 
719 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
720 
721 	ioc = nfs_io_completion_alloc(GFP_KERNEL);
722 	if (ioc)
723 		nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
724 
725 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
726 				&nfs_async_write_completion_ops);
727 	pgio.pg_io_completion = ioc;
728 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
729 	pgio.pg_error = 0;
730 	nfs_pageio_complete(&pgio);
731 	nfs_io_completion_put(ioc);
732 
733 	if (err < 0)
734 		goto out_err;
735 	err = pgio.pg_error;
736 	if (nfs_error_is_fatal(err))
737 		goto out_err;
738 	return 0;
739 out_err:
740 	return err;
741 }
742 
743 /*
744  * Insert a write request into an inode
745  */
746 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
747 {
748 	struct address_space *mapping = page_file_mapping(req->wb_page);
749 	struct nfs_inode *nfsi = NFS_I(inode);
750 
751 	WARN_ON_ONCE(req->wb_this_page != req);
752 
753 	/* Lock the request! */
754 	nfs_lock_request(req);
755 
756 	/*
757 	 * Swap-space should not get truncated. Hence no need to plug the race
758 	 * with invalidate/truncate.
759 	 */
760 	spin_lock(&mapping->private_lock);
761 	if (!nfs_have_writebacks(inode) &&
762 	    NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
763 		inode_inc_iversion_raw(inode);
764 	if (likely(!PageSwapCache(req->wb_page))) {
765 		set_bit(PG_MAPPED, &req->wb_flags);
766 		SetPagePrivate(req->wb_page);
767 		set_page_private(req->wb_page, (unsigned long)req);
768 	}
769 	spin_unlock(&mapping->private_lock);
770 	atomic_long_inc(&nfsi->nrequests);
771 	/* this a head request for a page group - mark it as having an
772 	 * extra reference so sub groups can follow suit.
773 	 * This flag also informs pgio layer when to bump nrequests when
774 	 * adding subrequests. */
775 	WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
776 	kref_get(&req->wb_kref);
777 }
778 
779 /*
780  * Remove a write request from an inode
781  */
782 static void nfs_inode_remove_request(struct nfs_page *req)
783 {
784 	struct address_space *mapping = page_file_mapping(req->wb_page);
785 	struct inode *inode = mapping->host;
786 	struct nfs_inode *nfsi = NFS_I(inode);
787 	struct nfs_page *head;
788 
789 	atomic_long_dec(&nfsi->nrequests);
790 	if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
791 		head = req->wb_head;
792 
793 		spin_lock(&mapping->private_lock);
794 		if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
795 			set_page_private(head->wb_page, 0);
796 			ClearPagePrivate(head->wb_page);
797 			clear_bit(PG_MAPPED, &head->wb_flags);
798 		}
799 		spin_unlock(&mapping->private_lock);
800 	}
801 
802 	if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags))
803 		nfs_release_request(req);
804 }
805 
806 static void
807 nfs_mark_request_dirty(struct nfs_page *req)
808 {
809 	if (req->wb_page)
810 		__set_page_dirty_nobuffers(req->wb_page);
811 }
812 
813 /*
814  * nfs_page_search_commits_for_head_request_locked
815  *
816  * Search through commit lists on @inode for the head request for @page.
817  * Must be called while holding the inode (which is cinfo) lock.
818  *
819  * Returns the head request if found, or NULL if not found.
820  */
821 static struct nfs_page *
822 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
823 						struct page *page)
824 {
825 	struct nfs_page *freq, *t;
826 	struct nfs_commit_info cinfo;
827 	struct inode *inode = &nfsi->vfs_inode;
828 
829 	nfs_init_cinfo_from_inode(&cinfo, inode);
830 
831 	/* search through pnfs commit lists */
832 	freq = pnfs_search_commit_reqs(inode, &cinfo, page);
833 	if (freq)
834 		return freq->wb_head;
835 
836 	/* Linearly search the commit list for the correct request */
837 	list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
838 		if (freq->wb_page == page)
839 			return freq->wb_head;
840 	}
841 
842 	return NULL;
843 }
844 
845 /**
846  * nfs_request_add_commit_list_locked - add request to a commit list
847  * @req: pointer to a struct nfs_page
848  * @dst: commit list head
849  * @cinfo: holds list lock and accounting info
850  *
851  * This sets the PG_CLEAN bit, updates the cinfo count of
852  * number of outstanding requests requiring a commit as well as
853  * the MM page stats.
854  *
855  * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
856  * nfs_page lock.
857  */
858 void
859 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
860 			    struct nfs_commit_info *cinfo)
861 {
862 	set_bit(PG_CLEAN, &req->wb_flags);
863 	nfs_list_add_request(req, dst);
864 	atomic_long_inc(&cinfo->mds->ncommit);
865 }
866 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
867 
868 /**
869  * nfs_request_add_commit_list - add request to a commit list
870  * @req: pointer to a struct nfs_page
871  * @cinfo: holds list lock and accounting info
872  *
873  * This sets the PG_CLEAN bit, updates the cinfo count of
874  * number of outstanding requests requiring a commit as well as
875  * the MM page stats.
876  *
877  * The caller must _not_ hold the cinfo->lock, but must be
878  * holding the nfs_page lock.
879  */
880 void
881 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
882 {
883 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
884 	nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
885 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
886 	if (req->wb_page)
887 		nfs_mark_page_unstable(req->wb_page, cinfo);
888 }
889 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
890 
891 /**
892  * nfs_request_remove_commit_list - Remove request from a commit list
893  * @req: pointer to a nfs_page
894  * @cinfo: holds list lock and accounting info
895  *
896  * This clears the PG_CLEAN bit, and updates the cinfo's count of
897  * number of outstanding requests requiring a commit
898  * It does not update the MM page stats.
899  *
900  * The caller _must_ hold the cinfo->lock and the nfs_page lock.
901  */
902 void
903 nfs_request_remove_commit_list(struct nfs_page *req,
904 			       struct nfs_commit_info *cinfo)
905 {
906 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
907 		return;
908 	nfs_list_remove_request(req);
909 	atomic_long_dec(&cinfo->mds->ncommit);
910 }
911 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
912 
913 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
914 				      struct inode *inode)
915 {
916 	cinfo->inode = inode;
917 	cinfo->mds = &NFS_I(inode)->commit_info;
918 	cinfo->ds = pnfs_get_ds_info(inode);
919 	cinfo->dreq = NULL;
920 	cinfo->completion_ops = &nfs_commit_completion_ops;
921 }
922 
923 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
924 		    struct inode *inode,
925 		    struct nfs_direct_req *dreq)
926 {
927 	if (dreq)
928 		nfs_init_cinfo_from_dreq(cinfo, dreq);
929 	else
930 		nfs_init_cinfo_from_inode(cinfo, inode);
931 }
932 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
933 
934 /*
935  * Add a request to the inode's commit list.
936  */
937 void
938 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
939 			struct nfs_commit_info *cinfo, u32 ds_commit_idx)
940 {
941 	if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
942 		return;
943 	nfs_request_add_commit_list(req, cinfo);
944 }
945 
946 static void
947 nfs_clear_page_commit(struct page *page)
948 {
949 	dec_node_page_state(page, NR_UNSTABLE_NFS);
950 	dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
951 		    WB_RECLAIMABLE);
952 }
953 
954 /* Called holding the request lock on @req */
955 static void
956 nfs_clear_request_commit(struct nfs_page *req)
957 {
958 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
959 		struct nfs_open_context *ctx = nfs_req_openctx(req);
960 		struct inode *inode = d_inode(ctx->dentry);
961 		struct nfs_commit_info cinfo;
962 
963 		nfs_init_cinfo_from_inode(&cinfo, inode);
964 		mutex_lock(&NFS_I(inode)->commit_mutex);
965 		if (!pnfs_clear_request_commit(req, &cinfo)) {
966 			nfs_request_remove_commit_list(req, &cinfo);
967 		}
968 		mutex_unlock(&NFS_I(inode)->commit_mutex);
969 		nfs_clear_page_commit(req->wb_page);
970 	}
971 }
972 
973 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
974 {
975 	if (hdr->verf.committed == NFS_DATA_SYNC)
976 		return hdr->lseg == NULL;
977 	return hdr->verf.committed != NFS_FILE_SYNC;
978 }
979 
980 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
981 {
982 	nfs_io_completion_get(hdr->io_completion);
983 }
984 
985 static void nfs_write_completion(struct nfs_pgio_header *hdr)
986 {
987 	struct nfs_commit_info cinfo;
988 	unsigned long bytes = 0;
989 
990 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
991 		goto out;
992 	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
993 	while (!list_empty(&hdr->pages)) {
994 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
995 
996 		bytes += req->wb_bytes;
997 		nfs_list_remove_request(req);
998 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
999 		    (hdr->good_bytes < bytes)) {
1000 			nfs_set_pageerror(page_file_mapping(req->wb_page));
1001 			nfs_mapping_set_error(req->wb_page, hdr->error);
1002 			goto remove_req;
1003 		}
1004 		if (nfs_write_need_commit(hdr)) {
1005 			/* Reset wb_nio, since the write was successful. */
1006 			req->wb_nio = 0;
1007 			memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1008 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1009 				hdr->pgio_mirror_idx);
1010 			goto next;
1011 		}
1012 remove_req:
1013 		nfs_inode_remove_request(req);
1014 next:
1015 		nfs_end_page_writeback(req);
1016 		nfs_release_request(req);
1017 	}
1018 out:
1019 	nfs_io_completion_put(hdr->io_completion);
1020 	hdr->release(hdr);
1021 }
1022 
1023 unsigned long
1024 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1025 {
1026 	return atomic_long_read(&cinfo->mds->ncommit);
1027 }
1028 
1029 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1030 int
1031 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1032 		     struct nfs_commit_info *cinfo, int max)
1033 {
1034 	struct nfs_page *req, *tmp;
1035 	int ret = 0;
1036 
1037 restart:
1038 	list_for_each_entry_safe(req, tmp, src, wb_list) {
1039 		kref_get(&req->wb_kref);
1040 		if (!nfs_lock_request(req)) {
1041 			int status;
1042 
1043 			/* Prevent deadlock with nfs_lock_and_join_requests */
1044 			if (!list_empty(dst)) {
1045 				nfs_release_request(req);
1046 				continue;
1047 			}
1048 			/* Ensure we make progress to prevent livelock */
1049 			mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1050 			status = nfs_wait_on_request(req);
1051 			nfs_release_request(req);
1052 			mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1053 			if (status < 0)
1054 				break;
1055 			goto restart;
1056 		}
1057 		nfs_request_remove_commit_list(req, cinfo);
1058 		clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1059 		nfs_list_add_request(req, dst);
1060 		ret++;
1061 		if ((ret == max) && !cinfo->dreq)
1062 			break;
1063 		cond_resched();
1064 	}
1065 	return ret;
1066 }
1067 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1068 
1069 /*
1070  * nfs_scan_commit - Scan an inode for commit requests
1071  * @inode: NFS inode to scan
1072  * @dst: mds destination list
1073  * @cinfo: mds and ds lists of reqs ready to commit
1074  *
1075  * Moves requests from the inode's 'commit' request list.
1076  * The requests are *not* checked to ensure that they form a contiguous set.
1077  */
1078 int
1079 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1080 		struct nfs_commit_info *cinfo)
1081 {
1082 	int ret = 0;
1083 
1084 	if (!atomic_long_read(&cinfo->mds->ncommit))
1085 		return 0;
1086 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1087 	if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1088 		const int max = INT_MAX;
1089 
1090 		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1091 					   cinfo, max);
1092 		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1093 	}
1094 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1095 	return ret;
1096 }
1097 
1098 /*
1099  * Search for an existing write request, and attempt to update
1100  * it to reflect a new dirty region on a given page.
1101  *
1102  * If the attempt fails, then the existing request is flushed out
1103  * to disk.
1104  */
1105 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1106 		struct page *page,
1107 		unsigned int offset,
1108 		unsigned int bytes)
1109 {
1110 	struct nfs_page *req;
1111 	unsigned int rqend;
1112 	unsigned int end;
1113 	int error;
1114 
1115 	end = offset + bytes;
1116 
1117 	req = nfs_lock_and_join_requests(page);
1118 	if (IS_ERR_OR_NULL(req))
1119 		return req;
1120 
1121 	rqend = req->wb_offset + req->wb_bytes;
1122 	/*
1123 	 * Tell the caller to flush out the request if
1124 	 * the offsets are non-contiguous.
1125 	 * Note: nfs_flush_incompatible() will already
1126 	 * have flushed out requests having wrong owners.
1127 	 */
1128 	if (offset > rqend || end < req->wb_offset)
1129 		goto out_flushme;
1130 
1131 	/* Okay, the request matches. Update the region */
1132 	if (offset < req->wb_offset) {
1133 		req->wb_offset = offset;
1134 		req->wb_pgbase = offset;
1135 	}
1136 	if (end > rqend)
1137 		req->wb_bytes = end - req->wb_offset;
1138 	else
1139 		req->wb_bytes = rqend - req->wb_offset;
1140 	req->wb_nio = 0;
1141 	return req;
1142 out_flushme:
1143 	/*
1144 	 * Note: we mark the request dirty here because
1145 	 * nfs_lock_and_join_requests() cannot preserve
1146 	 * commit flags, so we have to replay the write.
1147 	 */
1148 	nfs_mark_request_dirty(req);
1149 	nfs_unlock_and_release_request(req);
1150 	error = nfs_wb_page(inode, page);
1151 	return (error < 0) ? ERR_PTR(error) : NULL;
1152 }
1153 
1154 /*
1155  * Try to update an existing write request, or create one if there is none.
1156  *
1157  * Note: Should always be called with the Page Lock held to prevent races
1158  * if we have to add a new request. Also assumes that the caller has
1159  * already called nfs_flush_incompatible() if necessary.
1160  */
1161 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1162 		struct page *page, unsigned int offset, unsigned int bytes)
1163 {
1164 	struct inode *inode = page_file_mapping(page)->host;
1165 	struct nfs_page	*req;
1166 
1167 	req = nfs_try_to_update_request(inode, page, offset, bytes);
1168 	if (req != NULL)
1169 		goto out;
1170 	req = nfs_create_request(ctx, page, offset, bytes);
1171 	if (IS_ERR(req))
1172 		goto out;
1173 	nfs_inode_add_request(inode, req);
1174 out:
1175 	return req;
1176 }
1177 
1178 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1179 		unsigned int offset, unsigned int count)
1180 {
1181 	struct nfs_page	*req;
1182 
1183 	req = nfs_setup_write_request(ctx, page, offset, count);
1184 	if (IS_ERR(req))
1185 		return PTR_ERR(req);
1186 	/* Update file length */
1187 	nfs_grow_file(page, offset, count);
1188 	nfs_mark_uptodate(req);
1189 	nfs_mark_request_dirty(req);
1190 	nfs_unlock_and_release_request(req);
1191 	return 0;
1192 }
1193 
1194 int nfs_flush_incompatible(struct file *file, struct page *page)
1195 {
1196 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1197 	struct nfs_lock_context *l_ctx;
1198 	struct file_lock_context *flctx = file_inode(file)->i_flctx;
1199 	struct nfs_page	*req;
1200 	int do_flush, status;
1201 	/*
1202 	 * Look for a request corresponding to this page. If there
1203 	 * is one, and it belongs to another file, we flush it out
1204 	 * before we try to copy anything into the page. Do this
1205 	 * due to the lack of an ACCESS-type call in NFSv2.
1206 	 * Also do the same if we find a request from an existing
1207 	 * dropped page.
1208 	 */
1209 	do {
1210 		req = nfs_page_find_head_request(page);
1211 		if (req == NULL)
1212 			return 0;
1213 		l_ctx = req->wb_lock_context;
1214 		do_flush = req->wb_page != page ||
1215 			!nfs_match_open_context(nfs_req_openctx(req), ctx);
1216 		if (l_ctx && flctx &&
1217 		    !(list_empty_careful(&flctx->flc_posix) &&
1218 		      list_empty_careful(&flctx->flc_flock))) {
1219 			do_flush |= l_ctx->lockowner != current->files;
1220 		}
1221 		nfs_release_request(req);
1222 		if (!do_flush)
1223 			return 0;
1224 		status = nfs_wb_page(page_file_mapping(page)->host, page);
1225 	} while (status == 0);
1226 	return status;
1227 }
1228 
1229 /*
1230  * Avoid buffered writes when a open context credential's key would
1231  * expire soon.
1232  *
1233  * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1234  *
1235  * Return 0 and set a credential flag which triggers the inode to flush
1236  * and performs  NFS_FILE_SYNC writes if the key will expired within
1237  * RPC_KEY_EXPIRE_TIMEO.
1238  */
1239 int
1240 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1241 {
1242 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
1243 
1244 	if (nfs_ctx_key_to_expire(ctx, inode) &&
1245 	    !ctx->ll_cred)
1246 		/* Already expired! */
1247 		return -EACCES;
1248 	return 0;
1249 }
1250 
1251 /*
1252  * Test if the open context credential key is marked to expire soon.
1253  */
1254 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1255 {
1256 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1257 	struct rpc_cred *cred = ctx->ll_cred;
1258 	struct auth_cred acred = {
1259 		.cred = ctx->cred,
1260 	};
1261 
1262 	if (cred && !cred->cr_ops->crmatch(&acred, cred, 0)) {
1263 		put_rpccred(cred);
1264 		ctx->ll_cred = NULL;
1265 		cred = NULL;
1266 	}
1267 	if (!cred)
1268 		cred = auth->au_ops->lookup_cred(auth, &acred, 0);
1269 	if (!cred || IS_ERR(cred))
1270 		return true;
1271 	ctx->ll_cred = cred;
1272 	return !!(cred->cr_ops->crkey_timeout &&
1273 		  cred->cr_ops->crkey_timeout(cred));
1274 }
1275 
1276 /*
1277  * If the page cache is marked as unsafe or invalid, then we can't rely on
1278  * the PageUptodate() flag. In this case, we will need to turn off
1279  * write optimisations that depend on the page contents being correct.
1280  */
1281 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1282 {
1283 	struct nfs_inode *nfsi = NFS_I(inode);
1284 
1285 	if (nfs_have_delegated_attributes(inode))
1286 		goto out;
1287 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1288 		return false;
1289 	smp_rmb();
1290 	if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1291 		return false;
1292 out:
1293 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1294 		return false;
1295 	return PageUptodate(page) != 0;
1296 }
1297 
1298 static bool
1299 is_whole_file_wrlock(struct file_lock *fl)
1300 {
1301 	return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1302 			fl->fl_type == F_WRLCK;
1303 }
1304 
1305 /* If we know the page is up to date, and we're not using byte range locks (or
1306  * if we have the whole file locked for writing), it may be more efficient to
1307  * extend the write to cover the entire page in order to avoid fragmentation
1308  * inefficiencies.
1309  *
1310  * If the file is opened for synchronous writes then we can just skip the rest
1311  * of the checks.
1312  */
1313 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1314 {
1315 	int ret;
1316 	struct file_lock_context *flctx = inode->i_flctx;
1317 	struct file_lock *fl;
1318 
1319 	if (file->f_flags & O_DSYNC)
1320 		return 0;
1321 	if (!nfs_write_pageuptodate(page, inode))
1322 		return 0;
1323 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1324 		return 1;
1325 	if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1326 		       list_empty_careful(&flctx->flc_posix)))
1327 		return 1;
1328 
1329 	/* Check to see if there are whole file write locks */
1330 	ret = 0;
1331 	spin_lock(&flctx->flc_lock);
1332 	if (!list_empty(&flctx->flc_posix)) {
1333 		fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1334 					fl_list);
1335 		if (is_whole_file_wrlock(fl))
1336 			ret = 1;
1337 	} else if (!list_empty(&flctx->flc_flock)) {
1338 		fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1339 					fl_list);
1340 		if (fl->fl_type == F_WRLCK)
1341 			ret = 1;
1342 	}
1343 	spin_unlock(&flctx->flc_lock);
1344 	return ret;
1345 }
1346 
1347 /*
1348  * Update and possibly write a cached page of an NFS file.
1349  *
1350  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1351  * things with a page scheduled for an RPC call (e.g. invalidate it).
1352  */
1353 int nfs_updatepage(struct file *file, struct page *page,
1354 		unsigned int offset, unsigned int count)
1355 {
1356 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1357 	struct address_space *mapping = page_file_mapping(page);
1358 	struct inode	*inode = mapping->host;
1359 	int		status = 0;
1360 
1361 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1362 
1363 	dprintk("NFS:       nfs_updatepage(%pD2 %d@%lld)\n",
1364 		file, count, (long long)(page_file_offset(page) + offset));
1365 
1366 	if (!count)
1367 		goto out;
1368 
1369 	if (nfs_can_extend_write(file, page, inode)) {
1370 		count = max(count + offset, nfs_page_length(page));
1371 		offset = 0;
1372 	}
1373 
1374 	status = nfs_writepage_setup(ctx, page, offset, count);
1375 	if (status < 0)
1376 		nfs_set_pageerror(mapping);
1377 	else
1378 		__set_page_dirty_nobuffers(page);
1379 out:
1380 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
1381 			status, (long long)i_size_read(inode));
1382 	return status;
1383 }
1384 
1385 static int flush_task_priority(int how)
1386 {
1387 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1388 		case FLUSH_HIGHPRI:
1389 			return RPC_PRIORITY_HIGH;
1390 		case FLUSH_LOWPRI:
1391 			return RPC_PRIORITY_LOW;
1392 	}
1393 	return RPC_PRIORITY_NORMAL;
1394 }
1395 
1396 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1397 			       struct rpc_message *msg,
1398 			       const struct nfs_rpc_ops *rpc_ops,
1399 			       struct rpc_task_setup *task_setup_data, int how)
1400 {
1401 	int priority = flush_task_priority(how);
1402 
1403 	task_setup_data->priority = priority;
1404 	rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client);
1405 	trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes,
1406 				 hdr->args.stable);
1407 }
1408 
1409 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1410  * call this on each, which will prepare them to be retried on next
1411  * writeback using standard nfs.
1412  */
1413 static void nfs_redirty_request(struct nfs_page *req)
1414 {
1415 	/* Bump the transmission count */
1416 	req->wb_nio++;
1417 	nfs_mark_request_dirty(req);
1418 	set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
1419 	nfs_end_page_writeback(req);
1420 	nfs_release_request(req);
1421 }
1422 
1423 static void nfs_async_write_error(struct list_head *head, int error)
1424 {
1425 	struct nfs_page	*req;
1426 
1427 	while (!list_empty(head)) {
1428 		req = nfs_list_entry(head->next);
1429 		nfs_list_remove_request(req);
1430 		if (nfs_error_is_fatal(error))
1431 			nfs_write_error(req, error);
1432 		else
1433 			nfs_redirty_request(req);
1434 	}
1435 }
1436 
1437 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1438 {
1439 	nfs_async_write_error(&hdr->pages, 0);
1440 	filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset,
1441 			hdr->args.offset + hdr->args.count - 1);
1442 }
1443 
1444 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1445 	.init_hdr = nfs_async_write_init,
1446 	.error_cleanup = nfs_async_write_error,
1447 	.completion = nfs_write_completion,
1448 	.reschedule_io = nfs_async_write_reschedule_io,
1449 };
1450 
1451 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1452 			       struct inode *inode, int ioflags, bool force_mds,
1453 			       const struct nfs_pgio_completion_ops *compl_ops)
1454 {
1455 	struct nfs_server *server = NFS_SERVER(inode);
1456 	const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1457 
1458 #ifdef CONFIG_NFS_V4_1
1459 	if (server->pnfs_curr_ld && !force_mds)
1460 		pg_ops = server->pnfs_curr_ld->pg_write_ops;
1461 #endif
1462 	nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1463 			server->wsize, ioflags);
1464 }
1465 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1466 
1467 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1468 {
1469 	struct nfs_pgio_mirror *mirror;
1470 
1471 	if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1472 		pgio->pg_ops->pg_cleanup(pgio);
1473 
1474 	pgio->pg_ops = &nfs_pgio_rw_ops;
1475 
1476 	nfs_pageio_stop_mirroring(pgio);
1477 
1478 	mirror = &pgio->pg_mirrors[0];
1479 	mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1480 }
1481 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1482 
1483 
1484 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1485 {
1486 	struct nfs_commit_data *data = calldata;
1487 
1488 	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1489 }
1490 
1491 /*
1492  * Special version of should_remove_suid() that ignores capabilities.
1493  */
1494 static int nfs_should_remove_suid(const struct inode *inode)
1495 {
1496 	umode_t mode = inode->i_mode;
1497 	int kill = 0;
1498 
1499 	/* suid always must be killed */
1500 	if (unlikely(mode & S_ISUID))
1501 		kill = ATTR_KILL_SUID;
1502 
1503 	/*
1504 	 * sgid without any exec bits is just a mandatory locking mark; leave
1505 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1506 	 */
1507 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1508 		kill |= ATTR_KILL_SGID;
1509 
1510 	if (unlikely(kill && S_ISREG(mode)))
1511 		return kill;
1512 
1513 	return 0;
1514 }
1515 
1516 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1517 		struct nfs_fattr *fattr)
1518 {
1519 	struct nfs_pgio_args *argp = &hdr->args;
1520 	struct nfs_pgio_res *resp = &hdr->res;
1521 	u64 size = argp->offset + resp->count;
1522 
1523 	if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1524 		fattr->size = size;
1525 	if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1526 		fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1527 		return;
1528 	}
1529 	if (size != fattr->size)
1530 		return;
1531 	/* Set attribute barrier */
1532 	nfs_fattr_set_barrier(fattr);
1533 	/* ...and update size */
1534 	fattr->valid |= NFS_ATTR_FATTR_SIZE;
1535 }
1536 
1537 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1538 {
1539 	struct nfs_fattr *fattr = &hdr->fattr;
1540 	struct inode *inode = hdr->inode;
1541 
1542 	spin_lock(&inode->i_lock);
1543 	nfs_writeback_check_extend(hdr, fattr);
1544 	nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1545 	spin_unlock(&inode->i_lock);
1546 }
1547 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1548 
1549 /*
1550  * This function is called when the WRITE call is complete.
1551  */
1552 static int nfs_writeback_done(struct rpc_task *task,
1553 			      struct nfs_pgio_header *hdr,
1554 			      struct inode *inode)
1555 {
1556 	int status;
1557 
1558 	/*
1559 	 * ->write_done will attempt to use post-op attributes to detect
1560 	 * conflicting writes by other clients.  A strict interpretation
1561 	 * of close-to-open would allow us to continue caching even if
1562 	 * another writer had changed the file, but some applications
1563 	 * depend on tighter cache coherency when writing.
1564 	 */
1565 	status = NFS_PROTO(inode)->write_done(task, hdr);
1566 	if (status != 0)
1567 		return status;
1568 
1569 	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1570 	trace_nfs_writeback_done(inode, task->tk_status,
1571 				 hdr->args.offset, hdr->res.verf);
1572 
1573 	if (hdr->res.verf->committed < hdr->args.stable &&
1574 	    task->tk_status >= 0) {
1575 		/* We tried a write call, but the server did not
1576 		 * commit data to stable storage even though we
1577 		 * requested it.
1578 		 * Note: There is a known bug in Tru64 < 5.0 in which
1579 		 *	 the server reports NFS_DATA_SYNC, but performs
1580 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1581 		 *	 as a dprintk() in order to avoid filling syslog.
1582 		 */
1583 		static unsigned long    complain;
1584 
1585 		/* Note this will print the MDS for a DS write */
1586 		if (time_before(complain, jiffies)) {
1587 			dprintk("NFS:       faulty NFS server %s:"
1588 				" (committed = %d) != (stable = %d)\n",
1589 				NFS_SERVER(inode)->nfs_client->cl_hostname,
1590 				hdr->res.verf->committed, hdr->args.stable);
1591 			complain = jiffies + 300 * HZ;
1592 		}
1593 	}
1594 
1595 	/* Deal with the suid/sgid bit corner case */
1596 	if (nfs_should_remove_suid(inode)) {
1597 		spin_lock(&inode->i_lock);
1598 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_OTHER;
1599 		spin_unlock(&inode->i_lock);
1600 	}
1601 	return 0;
1602 }
1603 
1604 /*
1605  * This function is called when the WRITE call is complete.
1606  */
1607 static void nfs_writeback_result(struct rpc_task *task,
1608 				 struct nfs_pgio_header *hdr)
1609 {
1610 	struct nfs_pgio_args	*argp = &hdr->args;
1611 	struct nfs_pgio_res	*resp = &hdr->res;
1612 
1613 	if (resp->count < argp->count) {
1614 		static unsigned long    complain;
1615 
1616 		/* This a short write! */
1617 		nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1618 
1619 		/* Has the server at least made some progress? */
1620 		if (resp->count == 0) {
1621 			if (time_before(complain, jiffies)) {
1622 				printk(KERN_WARNING
1623 				       "NFS: Server wrote zero bytes, expected %u.\n",
1624 				       argp->count);
1625 				complain = jiffies + 300 * HZ;
1626 			}
1627 			nfs_set_pgio_error(hdr, -EIO, argp->offset);
1628 			task->tk_status = -EIO;
1629 			return;
1630 		}
1631 
1632 		/* For non rpc-based layout drivers, retry-through-MDS */
1633 		if (!task->tk_ops) {
1634 			hdr->pnfs_error = -EAGAIN;
1635 			return;
1636 		}
1637 
1638 		/* Was this an NFSv2 write or an NFSv3 stable write? */
1639 		if (resp->verf->committed != NFS_UNSTABLE) {
1640 			/* Resend from where the server left off */
1641 			hdr->mds_offset += resp->count;
1642 			argp->offset += resp->count;
1643 			argp->pgbase += resp->count;
1644 			argp->count -= resp->count;
1645 		} else {
1646 			/* Resend as a stable write in order to avoid
1647 			 * headaches in the case of a server crash.
1648 			 */
1649 			argp->stable = NFS_FILE_SYNC;
1650 		}
1651 		rpc_restart_call_prepare(task);
1652 	}
1653 }
1654 
1655 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1656 {
1657 	return wait_var_event_killable(&cinfo->rpcs_out,
1658 				       !atomic_read(&cinfo->rpcs_out));
1659 }
1660 
1661 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1662 {
1663 	atomic_inc(&cinfo->rpcs_out);
1664 }
1665 
1666 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1667 {
1668 	if (atomic_dec_and_test(&cinfo->rpcs_out))
1669 		wake_up_var(&cinfo->rpcs_out);
1670 }
1671 
1672 void nfs_commitdata_release(struct nfs_commit_data *data)
1673 {
1674 	put_nfs_open_context(data->context);
1675 	nfs_commit_free(data);
1676 }
1677 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1678 
1679 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1680 			const struct nfs_rpc_ops *nfs_ops,
1681 			const struct rpc_call_ops *call_ops,
1682 			int how, int flags)
1683 {
1684 	struct rpc_task *task;
1685 	int priority = flush_task_priority(how);
1686 	struct rpc_message msg = {
1687 		.rpc_argp = &data->args,
1688 		.rpc_resp = &data->res,
1689 		.rpc_cred = data->cred,
1690 	};
1691 	struct rpc_task_setup task_setup_data = {
1692 		.task = &data->task,
1693 		.rpc_client = clnt,
1694 		.rpc_message = &msg,
1695 		.callback_ops = call_ops,
1696 		.callback_data = data,
1697 		.workqueue = nfsiod_workqueue,
1698 		.flags = RPC_TASK_ASYNC | flags,
1699 		.priority = priority,
1700 	};
1701 	/* Set up the initial task struct.  */
1702 	nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client);
1703 	trace_nfs_initiate_commit(data);
1704 
1705 	dprintk("NFS: initiated commit call\n");
1706 
1707 	task = rpc_run_task(&task_setup_data);
1708 	if (IS_ERR(task))
1709 		return PTR_ERR(task);
1710 	if (how & FLUSH_SYNC)
1711 		rpc_wait_for_completion_task(task);
1712 	rpc_put_task(task);
1713 	return 0;
1714 }
1715 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1716 
1717 static loff_t nfs_get_lwb(struct list_head *head)
1718 {
1719 	loff_t lwb = 0;
1720 	struct nfs_page *req;
1721 
1722 	list_for_each_entry(req, head, wb_list)
1723 		if (lwb < (req_offset(req) + req->wb_bytes))
1724 			lwb = req_offset(req) + req->wb_bytes;
1725 
1726 	return lwb;
1727 }
1728 
1729 /*
1730  * Set up the argument/result storage required for the RPC call.
1731  */
1732 void nfs_init_commit(struct nfs_commit_data *data,
1733 		     struct list_head *head,
1734 		     struct pnfs_layout_segment *lseg,
1735 		     struct nfs_commit_info *cinfo)
1736 {
1737 	struct nfs_page *first = nfs_list_entry(head->next);
1738 	struct nfs_open_context *ctx = nfs_req_openctx(first);
1739 	struct inode *inode = d_inode(ctx->dentry);
1740 
1741 	/* Set up the RPC argument and reply structs
1742 	 * NB: take care not to mess about with data->commit et al. */
1743 
1744 	list_splice_init(head, &data->pages);
1745 
1746 	data->inode	  = inode;
1747 	data->cred	  = ctx->cred;
1748 	data->lseg	  = lseg; /* reference transferred */
1749 	/* only set lwb for pnfs commit */
1750 	if (lseg)
1751 		data->lwb = nfs_get_lwb(&data->pages);
1752 	data->mds_ops     = &nfs_commit_ops;
1753 	data->completion_ops = cinfo->completion_ops;
1754 	data->dreq	  = cinfo->dreq;
1755 
1756 	data->args.fh     = NFS_FH(data->inode);
1757 	/* Note: we always request a commit of the entire inode */
1758 	data->args.offset = 0;
1759 	data->args.count  = 0;
1760 	data->context     = get_nfs_open_context(ctx);
1761 	data->res.fattr   = &data->fattr;
1762 	data->res.verf    = &data->verf;
1763 	nfs_fattr_init(&data->fattr);
1764 }
1765 EXPORT_SYMBOL_GPL(nfs_init_commit);
1766 
1767 void nfs_retry_commit(struct list_head *page_list,
1768 		      struct pnfs_layout_segment *lseg,
1769 		      struct nfs_commit_info *cinfo,
1770 		      u32 ds_commit_idx)
1771 {
1772 	struct nfs_page *req;
1773 
1774 	while (!list_empty(page_list)) {
1775 		req = nfs_list_entry(page_list->next);
1776 		nfs_list_remove_request(req);
1777 		nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1778 		if (!cinfo->dreq)
1779 			nfs_clear_page_commit(req->wb_page);
1780 		nfs_unlock_and_release_request(req);
1781 	}
1782 }
1783 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1784 
1785 static void
1786 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1787 		struct nfs_page *req)
1788 {
1789 	__set_page_dirty_nobuffers(req->wb_page);
1790 }
1791 
1792 /*
1793  * Commit dirty pages
1794  */
1795 static int
1796 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1797 		struct nfs_commit_info *cinfo)
1798 {
1799 	struct nfs_commit_data	*data;
1800 
1801 	/* another commit raced with us */
1802 	if (list_empty(head))
1803 		return 0;
1804 
1805 	data = nfs_commitdata_alloc(true);
1806 
1807 	/* Set up the argument struct */
1808 	nfs_init_commit(data, head, NULL, cinfo);
1809 	atomic_inc(&cinfo->mds->rpcs_out);
1810 	return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1811 				   data->mds_ops, how, 0);
1812 }
1813 
1814 /*
1815  * COMMIT call returned
1816  */
1817 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1818 {
1819 	struct nfs_commit_data	*data = calldata;
1820 
1821         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1822                                 task->tk_pid, task->tk_status);
1823 
1824 	/* Call the NFS version-specific code */
1825 	NFS_PROTO(data->inode)->commit_done(task, data);
1826 	trace_nfs_commit_done(data);
1827 }
1828 
1829 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1830 {
1831 	struct nfs_page	*req;
1832 	int status = data->task.tk_status;
1833 	struct nfs_commit_info cinfo;
1834 	struct nfs_server *nfss;
1835 
1836 	while (!list_empty(&data->pages)) {
1837 		req = nfs_list_entry(data->pages.next);
1838 		nfs_list_remove_request(req);
1839 		if (req->wb_page)
1840 			nfs_clear_page_commit(req->wb_page);
1841 
1842 		dprintk("NFS:       commit (%s/%llu %d@%lld)",
1843 			nfs_req_openctx(req)->dentry->d_sb->s_id,
1844 			(unsigned long long)NFS_FILEID(d_inode(nfs_req_openctx(req)->dentry)),
1845 			req->wb_bytes,
1846 			(long long)req_offset(req));
1847 		if (status < 0) {
1848 			if (req->wb_page) {
1849 				nfs_mapping_set_error(req->wb_page, status);
1850 				nfs_inode_remove_request(req);
1851 			}
1852 			dprintk_cont(", error = %d\n", status);
1853 			goto next;
1854 		}
1855 
1856 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1857 		 * returned by the server against all stored verfs. */
1858 		if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) {
1859 			/* We have a match */
1860 			if (req->wb_page)
1861 				nfs_inode_remove_request(req);
1862 			dprintk_cont(" OK\n");
1863 			goto next;
1864 		}
1865 		/* We have a mismatch. Write the page again */
1866 		dprintk_cont(" mismatch\n");
1867 		nfs_mark_request_dirty(req);
1868 		set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
1869 	next:
1870 		nfs_unlock_and_release_request(req);
1871 		/* Latency breaker */
1872 		cond_resched();
1873 	}
1874 	nfss = NFS_SERVER(data->inode);
1875 	if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1876 		clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1877 
1878 	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1879 	nfs_commit_end(cinfo.mds);
1880 }
1881 
1882 static void nfs_commit_release(void *calldata)
1883 {
1884 	struct nfs_commit_data *data = calldata;
1885 
1886 	data->completion_ops->completion(data);
1887 	nfs_commitdata_release(calldata);
1888 }
1889 
1890 static const struct rpc_call_ops nfs_commit_ops = {
1891 	.rpc_call_prepare = nfs_commit_prepare,
1892 	.rpc_call_done = nfs_commit_done,
1893 	.rpc_release = nfs_commit_release,
1894 };
1895 
1896 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1897 	.completion = nfs_commit_release_pages,
1898 	.resched_write = nfs_commit_resched_write,
1899 };
1900 
1901 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1902 			    int how, struct nfs_commit_info *cinfo)
1903 {
1904 	int status;
1905 
1906 	status = pnfs_commit_list(inode, head, how, cinfo);
1907 	if (status == PNFS_NOT_ATTEMPTED)
1908 		status = nfs_commit_list(inode, head, how, cinfo);
1909 	return status;
1910 }
1911 
1912 static int __nfs_commit_inode(struct inode *inode, int how,
1913 		struct writeback_control *wbc)
1914 {
1915 	LIST_HEAD(head);
1916 	struct nfs_commit_info cinfo;
1917 	int may_wait = how & FLUSH_SYNC;
1918 	int ret, nscan;
1919 
1920 	nfs_init_cinfo_from_inode(&cinfo, inode);
1921 	nfs_commit_begin(cinfo.mds);
1922 	for (;;) {
1923 		ret = nscan = nfs_scan_commit(inode, &head, &cinfo);
1924 		if (ret <= 0)
1925 			break;
1926 		ret = nfs_generic_commit_list(inode, &head, how, &cinfo);
1927 		if (ret < 0)
1928 			break;
1929 		ret = 0;
1930 		if (wbc && wbc->sync_mode == WB_SYNC_NONE) {
1931 			if (nscan < wbc->nr_to_write)
1932 				wbc->nr_to_write -= nscan;
1933 			else
1934 				wbc->nr_to_write = 0;
1935 		}
1936 		if (nscan < INT_MAX)
1937 			break;
1938 		cond_resched();
1939 	}
1940 	nfs_commit_end(cinfo.mds);
1941 	if (ret || !may_wait)
1942 		return ret;
1943 	return wait_on_commit(cinfo.mds);
1944 }
1945 
1946 int nfs_commit_inode(struct inode *inode, int how)
1947 {
1948 	return __nfs_commit_inode(inode, how, NULL);
1949 }
1950 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1951 
1952 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1953 {
1954 	struct nfs_inode *nfsi = NFS_I(inode);
1955 	int flags = FLUSH_SYNC;
1956 	int ret = 0;
1957 
1958 	if (wbc->sync_mode == WB_SYNC_NONE) {
1959 		/* no commits means nothing needs to be done */
1960 		if (!atomic_long_read(&nfsi->commit_info.ncommit))
1961 			goto check_requests_outstanding;
1962 
1963 		/* Don't commit yet if this is a non-blocking flush and there
1964 		 * are a lot of outstanding writes for this mapping.
1965 		 */
1966 		if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1967 			goto out_mark_dirty;
1968 
1969 		/* don't wait for the COMMIT response */
1970 		flags = 0;
1971 	}
1972 
1973 	ret = __nfs_commit_inode(inode, flags, wbc);
1974 	if (!ret) {
1975 		if (flags & FLUSH_SYNC)
1976 			return 0;
1977 	} else if (atomic_long_read(&nfsi->commit_info.ncommit))
1978 		goto out_mark_dirty;
1979 
1980 check_requests_outstanding:
1981 	if (!atomic_read(&nfsi->commit_info.rpcs_out))
1982 		return ret;
1983 out_mark_dirty:
1984 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1985 	return ret;
1986 }
1987 EXPORT_SYMBOL_GPL(nfs_write_inode);
1988 
1989 /*
1990  * Wrapper for filemap_write_and_wait_range()
1991  *
1992  * Needed for pNFS in order to ensure data becomes visible to the
1993  * client.
1994  */
1995 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
1996 		loff_t lstart, loff_t lend)
1997 {
1998 	int ret;
1999 
2000 	ret = filemap_write_and_wait_range(mapping, lstart, lend);
2001 	if (ret == 0)
2002 		ret = pnfs_sync_inode(mapping->host, true);
2003 	return ret;
2004 }
2005 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
2006 
2007 /*
2008  * flush the inode to disk.
2009  */
2010 int nfs_wb_all(struct inode *inode)
2011 {
2012 	int ret;
2013 
2014 	trace_nfs_writeback_inode_enter(inode);
2015 
2016 	ret = filemap_write_and_wait(inode->i_mapping);
2017 	if (ret)
2018 		goto out;
2019 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
2020 	if (ret < 0)
2021 		goto out;
2022 	pnfs_sync_inode(inode, true);
2023 	ret = 0;
2024 
2025 out:
2026 	trace_nfs_writeback_inode_exit(inode, ret);
2027 	return ret;
2028 }
2029 EXPORT_SYMBOL_GPL(nfs_wb_all);
2030 
2031 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
2032 {
2033 	struct nfs_page *req;
2034 	int ret = 0;
2035 
2036 	wait_on_page_writeback(page);
2037 
2038 	/* blocking call to cancel all requests and join to a single (head)
2039 	 * request */
2040 	req = nfs_lock_and_join_requests(page);
2041 
2042 	if (IS_ERR(req)) {
2043 		ret = PTR_ERR(req);
2044 	} else if (req) {
2045 		/* all requests from this page have been cancelled by
2046 		 * nfs_lock_and_join_requests, so just remove the head
2047 		 * request from the inode / page_private pointer and
2048 		 * release it */
2049 		nfs_inode_remove_request(req);
2050 		nfs_unlock_and_release_request(req);
2051 	}
2052 
2053 	return ret;
2054 }
2055 
2056 /*
2057  * Write back all requests on one page - we do this before reading it.
2058  */
2059 int nfs_wb_page(struct inode *inode, struct page *page)
2060 {
2061 	loff_t range_start = page_file_offset(page);
2062 	loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2063 	struct writeback_control wbc = {
2064 		.sync_mode = WB_SYNC_ALL,
2065 		.nr_to_write = 0,
2066 		.range_start = range_start,
2067 		.range_end = range_end,
2068 	};
2069 	int ret;
2070 
2071 	trace_nfs_writeback_page_enter(inode);
2072 
2073 	for (;;) {
2074 		wait_on_page_writeback(page);
2075 		if (clear_page_dirty_for_io(page)) {
2076 			ret = nfs_writepage_locked(page, &wbc);
2077 			if (ret < 0)
2078 				goto out_error;
2079 			continue;
2080 		}
2081 		ret = 0;
2082 		if (!PagePrivate(page))
2083 			break;
2084 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
2085 		if (ret < 0)
2086 			goto out_error;
2087 	}
2088 out_error:
2089 	trace_nfs_writeback_page_exit(inode, ret);
2090 	return ret;
2091 }
2092 
2093 #ifdef CONFIG_MIGRATION
2094 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2095 		struct page *page, enum migrate_mode mode)
2096 {
2097 	/*
2098 	 * If PagePrivate is set, then the page is currently associated with
2099 	 * an in-progress read or write request. Don't try to migrate it.
2100 	 *
2101 	 * FIXME: we could do this in principle, but we'll need a way to ensure
2102 	 *        that we can safely release the inode reference while holding
2103 	 *        the page lock.
2104 	 */
2105 	if (PagePrivate(page))
2106 		return -EBUSY;
2107 
2108 	if (!nfs_fscache_release_page(page, GFP_KERNEL))
2109 		return -EBUSY;
2110 
2111 	return migrate_page(mapping, newpage, page, mode);
2112 }
2113 #endif
2114 
2115 int __init nfs_init_writepagecache(void)
2116 {
2117 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2118 					     sizeof(struct nfs_pgio_header),
2119 					     0, SLAB_HWCACHE_ALIGN,
2120 					     NULL);
2121 	if (nfs_wdata_cachep == NULL)
2122 		return -ENOMEM;
2123 
2124 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2125 						     nfs_wdata_cachep);
2126 	if (nfs_wdata_mempool == NULL)
2127 		goto out_destroy_write_cache;
2128 
2129 	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2130 					     sizeof(struct nfs_commit_data),
2131 					     0, SLAB_HWCACHE_ALIGN,
2132 					     NULL);
2133 	if (nfs_cdata_cachep == NULL)
2134 		goto out_destroy_write_mempool;
2135 
2136 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2137 						      nfs_cdata_cachep);
2138 	if (nfs_commit_mempool == NULL)
2139 		goto out_destroy_commit_cache;
2140 
2141 	/*
2142 	 * NFS congestion size, scale with available memory.
2143 	 *
2144 	 *  64MB:    8192k
2145 	 * 128MB:   11585k
2146 	 * 256MB:   16384k
2147 	 * 512MB:   23170k
2148 	 *   1GB:   32768k
2149 	 *   2GB:   46340k
2150 	 *   4GB:   65536k
2151 	 *   8GB:   92681k
2152 	 *  16GB:  131072k
2153 	 *
2154 	 * This allows larger machines to have larger/more transfers.
2155 	 * Limit the default to 256M
2156 	 */
2157 	nfs_congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10);
2158 	if (nfs_congestion_kb > 256*1024)
2159 		nfs_congestion_kb = 256*1024;
2160 
2161 	return 0;
2162 
2163 out_destroy_commit_cache:
2164 	kmem_cache_destroy(nfs_cdata_cachep);
2165 out_destroy_write_mempool:
2166 	mempool_destroy(nfs_wdata_mempool);
2167 out_destroy_write_cache:
2168 	kmem_cache_destroy(nfs_wdata_cachep);
2169 	return -ENOMEM;
2170 }
2171 
2172 void nfs_destroy_writepagecache(void)
2173 {
2174 	mempool_destroy(nfs_commit_mempool);
2175 	kmem_cache_destroy(nfs_cdata_cachep);
2176 	mempool_destroy(nfs_wdata_mempool);
2177 	kmem_cache_destroy(nfs_wdata_cachep);
2178 }
2179 
2180 static const struct nfs_rw_ops nfs_rw_write_ops = {
2181 	.rw_alloc_header	= nfs_writehdr_alloc,
2182 	.rw_free_header		= nfs_writehdr_free,
2183 	.rw_done		= nfs_writeback_done,
2184 	.rw_result		= nfs_writeback_result,
2185 	.rw_initiate		= nfs_initiate_write,
2186 };
2187