1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 24 #include <asm/uaccess.h> 25 26 #include "delegation.h" 27 #include "internal.h" 28 #include "iostat.h" 29 #include "nfs4_fs.h" 30 #include "fscache.h" 31 #include "pnfs.h" 32 33 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 34 35 #define MIN_POOL_WRITE (32) 36 #define MIN_POOL_COMMIT (4) 37 38 /* 39 * Local function declarations 40 */ 41 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 42 struct inode *inode, int ioflags); 43 static void nfs_redirty_request(struct nfs_page *req); 44 static const struct rpc_call_ops nfs_write_partial_ops; 45 static const struct rpc_call_ops nfs_write_full_ops; 46 static const struct rpc_call_ops nfs_commit_ops; 47 48 static struct kmem_cache *nfs_wdata_cachep; 49 static mempool_t *nfs_wdata_mempool; 50 static mempool_t *nfs_commit_mempool; 51 52 struct nfs_write_data *nfs_commitdata_alloc(void) 53 { 54 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 55 56 if (p) { 57 memset(p, 0, sizeof(*p)); 58 INIT_LIST_HEAD(&p->pages); 59 } 60 return p; 61 } 62 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc); 63 64 void nfs_commit_free(struct nfs_write_data *p) 65 { 66 if (p && (p->pagevec != &p->page_array[0])) 67 kfree(p->pagevec); 68 mempool_free(p, nfs_commit_mempool); 69 } 70 EXPORT_SYMBOL_GPL(nfs_commit_free); 71 72 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 73 { 74 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 75 76 if (p) { 77 memset(p, 0, sizeof(*p)); 78 INIT_LIST_HEAD(&p->pages); 79 p->npages = pagecount; 80 if (pagecount <= ARRAY_SIZE(p->page_array)) 81 p->pagevec = p->page_array; 82 else { 83 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 84 if (!p->pagevec) { 85 mempool_free(p, nfs_wdata_mempool); 86 p = NULL; 87 } 88 } 89 } 90 return p; 91 } 92 93 void nfs_writedata_free(struct nfs_write_data *p) 94 { 95 if (p && (p->pagevec != &p->page_array[0])) 96 kfree(p->pagevec); 97 mempool_free(p, nfs_wdata_mempool); 98 } 99 100 static void nfs_writedata_release(struct nfs_write_data *wdata) 101 { 102 put_lseg(wdata->lseg); 103 put_nfs_open_context(wdata->args.context); 104 nfs_writedata_free(wdata); 105 } 106 107 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 108 { 109 ctx->error = error; 110 smp_wmb(); 111 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 112 } 113 114 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 115 { 116 struct nfs_page *req = NULL; 117 118 if (PagePrivate(page)) { 119 req = (struct nfs_page *)page_private(page); 120 if (req != NULL) 121 kref_get(&req->wb_kref); 122 } 123 return req; 124 } 125 126 static struct nfs_page *nfs_page_find_request(struct page *page) 127 { 128 struct inode *inode = page->mapping->host; 129 struct nfs_page *req = NULL; 130 131 spin_lock(&inode->i_lock); 132 req = nfs_page_find_request_locked(page); 133 spin_unlock(&inode->i_lock); 134 return req; 135 } 136 137 /* Adjust the file length if we're writing beyond the end */ 138 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 139 { 140 struct inode *inode = page->mapping->host; 141 loff_t end, i_size; 142 pgoff_t end_index; 143 144 spin_lock(&inode->i_lock); 145 i_size = i_size_read(inode); 146 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 147 if (i_size > 0 && page->index < end_index) 148 goto out; 149 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 150 if (i_size >= end) 151 goto out; 152 i_size_write(inode, end); 153 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 154 out: 155 spin_unlock(&inode->i_lock); 156 } 157 158 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 159 static void nfs_set_pageerror(struct page *page) 160 { 161 SetPageError(page); 162 nfs_zap_mapping(page->mapping->host, page->mapping); 163 } 164 165 /* We can set the PG_uptodate flag if we see that a write request 166 * covers the full page. 167 */ 168 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 169 { 170 if (PageUptodate(page)) 171 return; 172 if (base != 0) 173 return; 174 if (count != nfs_page_length(page)) 175 return; 176 SetPageUptodate(page); 177 } 178 179 static int wb_priority(struct writeback_control *wbc) 180 { 181 if (wbc->for_reclaim) 182 return FLUSH_HIGHPRI | FLUSH_STABLE; 183 if (wbc->for_kupdate || wbc->for_background) 184 return FLUSH_LOWPRI | FLUSH_COND_STABLE; 185 return FLUSH_COND_STABLE; 186 } 187 188 /* 189 * NFS congestion control 190 */ 191 192 int nfs_congestion_kb; 193 194 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 195 #define NFS_CONGESTION_OFF_THRESH \ 196 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 197 198 static int nfs_set_page_writeback(struct page *page) 199 { 200 int ret = test_set_page_writeback(page); 201 202 if (!ret) { 203 struct inode *inode = page->mapping->host; 204 struct nfs_server *nfss = NFS_SERVER(inode); 205 206 page_cache_get(page); 207 if (atomic_long_inc_return(&nfss->writeback) > 208 NFS_CONGESTION_ON_THRESH) { 209 set_bdi_congested(&nfss->backing_dev_info, 210 BLK_RW_ASYNC); 211 } 212 } 213 return ret; 214 } 215 216 static void nfs_end_page_writeback(struct page *page) 217 { 218 struct inode *inode = page->mapping->host; 219 struct nfs_server *nfss = NFS_SERVER(inode); 220 221 end_page_writeback(page); 222 page_cache_release(page); 223 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 224 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC); 225 } 226 227 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock) 228 { 229 struct inode *inode = page->mapping->host; 230 struct nfs_page *req; 231 int ret; 232 233 spin_lock(&inode->i_lock); 234 for (;;) { 235 req = nfs_page_find_request_locked(page); 236 if (req == NULL) 237 break; 238 if (nfs_set_page_tag_locked(req)) 239 break; 240 /* Note: If we hold the page lock, as is the case in nfs_writepage, 241 * then the call to nfs_set_page_tag_locked() will always 242 * succeed provided that someone hasn't already marked the 243 * request as dirty (in which case we don't care). 244 */ 245 spin_unlock(&inode->i_lock); 246 if (!nonblock) 247 ret = nfs_wait_on_request(req); 248 else 249 ret = -EAGAIN; 250 nfs_release_request(req); 251 if (ret != 0) 252 return ERR_PTR(ret); 253 spin_lock(&inode->i_lock); 254 } 255 spin_unlock(&inode->i_lock); 256 return req; 257 } 258 259 /* 260 * Find an associated nfs write request, and prepare to flush it out 261 * May return an error if the user signalled nfs_wait_on_request(). 262 */ 263 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 264 struct page *page, bool nonblock) 265 { 266 struct nfs_page *req; 267 int ret = 0; 268 269 req = nfs_find_and_lock_request(page, nonblock); 270 if (!req) 271 goto out; 272 ret = PTR_ERR(req); 273 if (IS_ERR(req)) 274 goto out; 275 276 ret = nfs_set_page_writeback(page); 277 BUG_ON(ret != 0); 278 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags)); 279 280 if (!nfs_pageio_add_request(pgio, req)) { 281 nfs_redirty_request(req); 282 ret = pgio->pg_error; 283 } 284 out: 285 return ret; 286 } 287 288 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 289 { 290 struct inode *inode = page->mapping->host; 291 int ret; 292 293 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 294 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 295 296 nfs_pageio_cond_complete(pgio, page->index); 297 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE); 298 if (ret == -EAGAIN) { 299 redirty_page_for_writepage(wbc, page); 300 ret = 0; 301 } 302 return ret; 303 } 304 305 /* 306 * Write an mmapped page to the server. 307 */ 308 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 309 { 310 struct nfs_pageio_descriptor pgio; 311 int err; 312 313 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 314 err = nfs_do_writepage(page, wbc, &pgio); 315 nfs_pageio_complete(&pgio); 316 if (err < 0) 317 return err; 318 if (pgio.pg_error < 0) 319 return pgio.pg_error; 320 return 0; 321 } 322 323 int nfs_writepage(struct page *page, struct writeback_control *wbc) 324 { 325 int ret; 326 327 ret = nfs_writepage_locked(page, wbc); 328 unlock_page(page); 329 return ret; 330 } 331 332 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 333 { 334 int ret; 335 336 ret = nfs_do_writepage(page, wbc, data); 337 unlock_page(page); 338 return ret; 339 } 340 341 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 342 { 343 struct inode *inode = mapping->host; 344 unsigned long *bitlock = &NFS_I(inode)->flags; 345 struct nfs_pageio_descriptor pgio; 346 int err; 347 348 /* Stop dirtying of new pages while we sync */ 349 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING, 350 nfs_wait_bit_killable, TASK_KILLABLE); 351 if (err) 352 goto out_err; 353 354 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 355 356 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 357 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 358 nfs_pageio_complete(&pgio); 359 360 clear_bit_unlock(NFS_INO_FLUSHING, bitlock); 361 smp_mb__after_clear_bit(); 362 wake_up_bit(bitlock, NFS_INO_FLUSHING); 363 364 if (err < 0) 365 goto out_err; 366 err = pgio.pg_error; 367 if (err < 0) 368 goto out_err; 369 return 0; 370 out_err: 371 return err; 372 } 373 374 /* 375 * Insert a write request into an inode 376 */ 377 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 378 { 379 struct nfs_inode *nfsi = NFS_I(inode); 380 int error; 381 382 error = radix_tree_preload(GFP_NOFS); 383 if (error != 0) 384 goto out; 385 386 /* Lock the request! */ 387 nfs_lock_request_dontget(req); 388 389 spin_lock(&inode->i_lock); 390 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 391 BUG_ON(error); 392 if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE)) 393 nfsi->change_attr++; 394 set_bit(PG_MAPPED, &req->wb_flags); 395 SetPagePrivate(req->wb_page); 396 set_page_private(req->wb_page, (unsigned long)req); 397 nfsi->npages++; 398 kref_get(&req->wb_kref); 399 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, 400 NFS_PAGE_TAG_LOCKED); 401 spin_unlock(&inode->i_lock); 402 radix_tree_preload_end(); 403 out: 404 return error; 405 } 406 407 /* 408 * Remove a write request from an inode 409 */ 410 static void nfs_inode_remove_request(struct nfs_page *req) 411 { 412 struct inode *inode = req->wb_context->dentry->d_inode; 413 struct nfs_inode *nfsi = NFS_I(inode); 414 415 BUG_ON (!NFS_WBACK_BUSY(req)); 416 417 spin_lock(&inode->i_lock); 418 set_page_private(req->wb_page, 0); 419 ClearPagePrivate(req->wb_page); 420 clear_bit(PG_MAPPED, &req->wb_flags); 421 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 422 nfsi->npages--; 423 spin_unlock(&inode->i_lock); 424 nfs_release_request(req); 425 } 426 427 static void 428 nfs_mark_request_dirty(struct nfs_page *req) 429 { 430 __set_page_dirty_nobuffers(req->wb_page); 431 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC); 432 } 433 434 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 435 /* 436 * Add a request to the inode's commit list. 437 */ 438 static void 439 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg) 440 { 441 struct inode *inode = req->wb_context->dentry->d_inode; 442 struct nfs_inode *nfsi = NFS_I(inode); 443 444 spin_lock(&inode->i_lock); 445 set_bit(PG_CLEAN, &(req)->wb_flags); 446 radix_tree_tag_set(&nfsi->nfs_page_tree, 447 req->wb_index, 448 NFS_PAGE_TAG_COMMIT); 449 nfsi->ncommit++; 450 spin_unlock(&inode->i_lock); 451 pnfs_mark_request_commit(req, lseg); 452 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 453 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 454 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 455 } 456 457 static int 458 nfs_clear_request_commit(struct nfs_page *req) 459 { 460 struct page *page = req->wb_page; 461 462 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) { 463 dec_zone_page_state(page, NR_UNSTABLE_NFS); 464 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE); 465 return 1; 466 } 467 return 0; 468 } 469 470 static inline 471 int nfs_write_need_commit(struct nfs_write_data *data) 472 { 473 if (data->verf.committed == NFS_DATA_SYNC) 474 return data->lseg == NULL; 475 else 476 return data->verf.committed != NFS_FILE_SYNC; 477 } 478 479 static inline 480 int nfs_reschedule_unstable_write(struct nfs_page *req, 481 struct nfs_write_data *data) 482 { 483 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) { 484 nfs_mark_request_commit(req, data->lseg); 485 return 1; 486 } 487 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 488 nfs_mark_request_dirty(req); 489 return 1; 490 } 491 return 0; 492 } 493 #else 494 static inline void 495 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg) 496 { 497 } 498 499 static inline int 500 nfs_clear_request_commit(struct nfs_page *req) 501 { 502 return 0; 503 } 504 505 static inline 506 int nfs_write_need_commit(struct nfs_write_data *data) 507 { 508 return 0; 509 } 510 511 static inline 512 int nfs_reschedule_unstable_write(struct nfs_page *req, 513 struct nfs_write_data *data) 514 { 515 return 0; 516 } 517 #endif 518 519 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 520 static int 521 nfs_need_commit(struct nfs_inode *nfsi) 522 { 523 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT); 524 } 525 526 /* 527 * nfs_scan_commit - Scan an inode for commit requests 528 * @inode: NFS inode to scan 529 * @dst: destination list 530 * @idx_start: lower bound of page->index to scan. 531 * @npages: idx_start + npages sets the upper bound to scan. 532 * 533 * Moves requests from the inode's 'commit' request list. 534 * The requests are *not* checked to ensure that they form a contiguous set. 535 */ 536 static int 537 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 538 { 539 struct nfs_inode *nfsi = NFS_I(inode); 540 int ret; 541 542 if (!nfs_need_commit(nfsi)) 543 return 0; 544 545 spin_lock(&inode->i_lock); 546 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT); 547 if (ret > 0) 548 nfsi->ncommit -= ret; 549 spin_unlock(&inode->i_lock); 550 551 if (nfs_need_commit(NFS_I(inode))) 552 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 553 554 return ret; 555 } 556 #else 557 static inline int nfs_need_commit(struct nfs_inode *nfsi) 558 { 559 return 0; 560 } 561 562 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 563 { 564 return 0; 565 } 566 #endif 567 568 /* 569 * Search for an existing write request, and attempt to update 570 * it to reflect a new dirty region on a given page. 571 * 572 * If the attempt fails, then the existing request is flushed out 573 * to disk. 574 */ 575 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 576 struct page *page, 577 unsigned int offset, 578 unsigned int bytes) 579 { 580 struct nfs_page *req; 581 unsigned int rqend; 582 unsigned int end; 583 int error; 584 585 if (!PagePrivate(page)) 586 return NULL; 587 588 end = offset + bytes; 589 spin_lock(&inode->i_lock); 590 591 for (;;) { 592 req = nfs_page_find_request_locked(page); 593 if (req == NULL) 594 goto out_unlock; 595 596 rqend = req->wb_offset + req->wb_bytes; 597 /* 598 * Tell the caller to flush out the request if 599 * the offsets are non-contiguous. 600 * Note: nfs_flush_incompatible() will already 601 * have flushed out requests having wrong owners. 602 */ 603 if (offset > rqend 604 || end < req->wb_offset) 605 goto out_flushme; 606 607 if (nfs_set_page_tag_locked(req)) 608 break; 609 610 /* The request is locked, so wait and then retry */ 611 spin_unlock(&inode->i_lock); 612 error = nfs_wait_on_request(req); 613 nfs_release_request(req); 614 if (error != 0) 615 goto out_err; 616 spin_lock(&inode->i_lock); 617 } 618 619 if (nfs_clear_request_commit(req) && 620 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree, 621 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) { 622 NFS_I(inode)->ncommit--; 623 pnfs_clear_request_commit(req); 624 } 625 626 /* Okay, the request matches. Update the region */ 627 if (offset < req->wb_offset) { 628 req->wb_offset = offset; 629 req->wb_pgbase = offset; 630 } 631 if (end > rqend) 632 req->wb_bytes = end - req->wb_offset; 633 else 634 req->wb_bytes = rqend - req->wb_offset; 635 out_unlock: 636 spin_unlock(&inode->i_lock); 637 return req; 638 out_flushme: 639 spin_unlock(&inode->i_lock); 640 nfs_release_request(req); 641 error = nfs_wb_page(inode, page); 642 out_err: 643 return ERR_PTR(error); 644 } 645 646 /* 647 * Try to update an existing write request, or create one if there is none. 648 * 649 * Note: Should always be called with the Page Lock held to prevent races 650 * if we have to add a new request. Also assumes that the caller has 651 * already called nfs_flush_incompatible() if necessary. 652 */ 653 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 654 struct page *page, unsigned int offset, unsigned int bytes) 655 { 656 struct inode *inode = page->mapping->host; 657 struct nfs_page *req; 658 int error; 659 660 req = nfs_try_to_update_request(inode, page, offset, bytes); 661 if (req != NULL) 662 goto out; 663 req = nfs_create_request(ctx, inode, page, offset, bytes); 664 if (IS_ERR(req)) 665 goto out; 666 error = nfs_inode_add_request(inode, req); 667 if (error != 0) { 668 nfs_release_request(req); 669 req = ERR_PTR(error); 670 } 671 out: 672 return req; 673 } 674 675 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 676 unsigned int offset, unsigned int count) 677 { 678 struct nfs_page *req; 679 680 req = nfs_setup_write_request(ctx, page, offset, count); 681 if (IS_ERR(req)) 682 return PTR_ERR(req); 683 /* Update file length */ 684 nfs_grow_file(page, offset, count); 685 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 686 nfs_mark_request_dirty(req); 687 nfs_clear_page_tag_locked(req); 688 return 0; 689 } 690 691 int nfs_flush_incompatible(struct file *file, struct page *page) 692 { 693 struct nfs_open_context *ctx = nfs_file_open_context(file); 694 struct nfs_page *req; 695 int do_flush, status; 696 /* 697 * Look for a request corresponding to this page. If there 698 * is one, and it belongs to another file, we flush it out 699 * before we try to copy anything into the page. Do this 700 * due to the lack of an ACCESS-type call in NFSv2. 701 * Also do the same if we find a request from an existing 702 * dropped page. 703 */ 704 do { 705 req = nfs_page_find_request(page); 706 if (req == NULL) 707 return 0; 708 do_flush = req->wb_page != page || req->wb_context != ctx || 709 req->wb_lock_context->lockowner != current->files || 710 req->wb_lock_context->pid != current->tgid; 711 nfs_release_request(req); 712 if (!do_flush) 713 return 0; 714 status = nfs_wb_page(page->mapping->host, page); 715 } while (status == 0); 716 return status; 717 } 718 719 /* 720 * If the page cache is marked as unsafe or invalid, then we can't rely on 721 * the PageUptodate() flag. In this case, we will need to turn off 722 * write optimisations that depend on the page contents being correct. 723 */ 724 static int nfs_write_pageuptodate(struct page *page, struct inode *inode) 725 { 726 return PageUptodate(page) && 727 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA)); 728 } 729 730 /* 731 * Update and possibly write a cached page of an NFS file. 732 * 733 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 734 * things with a page scheduled for an RPC call (e.g. invalidate it). 735 */ 736 int nfs_updatepage(struct file *file, struct page *page, 737 unsigned int offset, unsigned int count) 738 { 739 struct nfs_open_context *ctx = nfs_file_open_context(file); 740 struct inode *inode = page->mapping->host; 741 int status = 0; 742 743 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 744 745 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n", 746 file->f_path.dentry->d_parent->d_name.name, 747 file->f_path.dentry->d_name.name, count, 748 (long long)(page_offset(page) + offset)); 749 750 /* If we're not using byte range locks, and we know the page 751 * is up to date, it may be more efficient to extend the write 752 * to cover the entire page in order to avoid fragmentation 753 * inefficiencies. 754 */ 755 if (nfs_write_pageuptodate(page, inode) && 756 inode->i_flock == NULL && 757 !(file->f_flags & O_DSYNC)) { 758 count = max(count + offset, nfs_page_length(page)); 759 offset = 0; 760 } 761 762 status = nfs_writepage_setup(ctx, page, offset, count); 763 if (status < 0) 764 nfs_set_pageerror(page); 765 766 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 767 status, (long long)i_size_read(inode)); 768 return status; 769 } 770 771 static void nfs_writepage_release(struct nfs_page *req, 772 struct nfs_write_data *data) 773 { 774 struct page *page = req->wb_page; 775 776 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data)) 777 nfs_inode_remove_request(req); 778 nfs_clear_page_tag_locked(req); 779 nfs_end_page_writeback(page); 780 } 781 782 static int flush_task_priority(int how) 783 { 784 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 785 case FLUSH_HIGHPRI: 786 return RPC_PRIORITY_HIGH; 787 case FLUSH_LOWPRI: 788 return RPC_PRIORITY_LOW; 789 } 790 return RPC_PRIORITY_NORMAL; 791 } 792 793 int nfs_initiate_write(struct nfs_write_data *data, 794 struct rpc_clnt *clnt, 795 const struct rpc_call_ops *call_ops, 796 int how) 797 { 798 struct inode *inode = data->inode; 799 int priority = flush_task_priority(how); 800 struct rpc_task *task; 801 struct rpc_message msg = { 802 .rpc_argp = &data->args, 803 .rpc_resp = &data->res, 804 .rpc_cred = data->cred, 805 }; 806 struct rpc_task_setup task_setup_data = { 807 .rpc_client = clnt, 808 .task = &data->task, 809 .rpc_message = &msg, 810 .callback_ops = call_ops, 811 .callback_data = data, 812 .workqueue = nfsiod_workqueue, 813 .flags = RPC_TASK_ASYNC, 814 .priority = priority, 815 }; 816 int ret = 0; 817 818 /* Set up the initial task struct. */ 819 NFS_PROTO(inode)->write_setup(data, &msg); 820 821 dprintk("NFS: %5u initiated write call " 822 "(req %s/%lld, %u bytes @ offset %llu)\n", 823 data->task.tk_pid, 824 inode->i_sb->s_id, 825 (long long)NFS_FILEID(inode), 826 data->args.count, 827 (unsigned long long)data->args.offset); 828 829 task = rpc_run_task(&task_setup_data); 830 if (IS_ERR(task)) { 831 ret = PTR_ERR(task); 832 goto out; 833 } 834 if (how & FLUSH_SYNC) { 835 ret = rpc_wait_for_completion_task(task); 836 if (ret == 0) 837 ret = task->tk_status; 838 } 839 rpc_put_task(task); 840 out: 841 return ret; 842 } 843 EXPORT_SYMBOL_GPL(nfs_initiate_write); 844 845 /* 846 * Set up the argument/result storage required for the RPC call. 847 */ 848 static int nfs_write_rpcsetup(struct nfs_page *req, 849 struct nfs_write_data *data, 850 const struct rpc_call_ops *call_ops, 851 unsigned int count, unsigned int offset, 852 struct pnfs_layout_segment *lseg, 853 int how) 854 { 855 struct inode *inode = req->wb_context->dentry->d_inode; 856 857 /* Set up the RPC argument and reply structs 858 * NB: take care not to mess about with data->commit et al. */ 859 860 data->req = req; 861 data->inode = inode = req->wb_context->dentry->d_inode; 862 data->cred = req->wb_context->cred; 863 data->lseg = get_lseg(lseg); 864 865 data->args.fh = NFS_FH(inode); 866 data->args.offset = req_offset(req) + offset; 867 /* pnfs_set_layoutcommit needs this */ 868 data->mds_offset = data->args.offset; 869 data->args.pgbase = req->wb_pgbase + offset; 870 data->args.pages = data->pagevec; 871 data->args.count = count; 872 data->args.context = get_nfs_open_context(req->wb_context); 873 data->args.lock_context = req->wb_lock_context; 874 data->args.stable = NFS_UNSTABLE; 875 if (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) { 876 data->args.stable = NFS_DATA_SYNC; 877 if (!nfs_need_commit(NFS_I(inode))) 878 data->args.stable = NFS_FILE_SYNC; 879 } 880 881 data->res.fattr = &data->fattr; 882 data->res.count = count; 883 data->res.verf = &data->verf; 884 nfs_fattr_init(&data->fattr); 885 886 if (data->lseg && 887 (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED)) 888 return 0; 889 890 return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how); 891 } 892 893 /* If a nfs_flush_* function fails, it should remove reqs from @head and 894 * call this on each, which will prepare them to be retried on next 895 * writeback using standard nfs. 896 */ 897 static void nfs_redirty_request(struct nfs_page *req) 898 { 899 struct page *page = req->wb_page; 900 901 nfs_mark_request_dirty(req); 902 nfs_clear_page_tag_locked(req); 903 nfs_end_page_writeback(page); 904 } 905 906 /* 907 * Generate multiple small requests to write out a single 908 * contiguous dirty area on one page. 909 */ 910 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc) 911 { 912 struct nfs_page *req = nfs_list_entry(desc->pg_list.next); 913 struct page *page = req->wb_page; 914 struct nfs_write_data *data; 915 size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes; 916 unsigned int offset; 917 int requests = 0; 918 int ret = 0; 919 struct pnfs_layout_segment *lseg; 920 LIST_HEAD(list); 921 922 nfs_list_remove_request(req); 923 924 if ((desc->pg_ioflags & FLUSH_COND_STABLE) && 925 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit || 926 desc->pg_count > wsize)) 927 desc->pg_ioflags &= ~FLUSH_COND_STABLE; 928 929 930 nbytes = desc->pg_count; 931 do { 932 size_t len = min(nbytes, wsize); 933 934 data = nfs_writedata_alloc(1); 935 if (!data) 936 goto out_bad; 937 list_add(&data->pages, &list); 938 requests++; 939 nbytes -= len; 940 } while (nbytes != 0); 941 atomic_set(&req->wb_complete, requests); 942 943 BUG_ON(desc->pg_lseg); 944 lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, 945 req_offset(req), desc->pg_count, 946 IOMODE_RW, GFP_NOFS); 947 ClearPageError(page); 948 offset = 0; 949 nbytes = desc->pg_count; 950 do { 951 int ret2; 952 953 data = list_entry(list.next, struct nfs_write_data, pages); 954 list_del_init(&data->pages); 955 956 data->pagevec[0] = page; 957 958 if (nbytes < wsize) 959 wsize = nbytes; 960 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 961 wsize, offset, lseg, desc->pg_ioflags); 962 if (ret == 0) 963 ret = ret2; 964 offset += wsize; 965 nbytes -= wsize; 966 } while (nbytes != 0); 967 968 put_lseg(lseg); 969 desc->pg_lseg = NULL; 970 return ret; 971 972 out_bad: 973 while (!list_empty(&list)) { 974 data = list_entry(list.next, struct nfs_write_data, pages); 975 list_del(&data->pages); 976 nfs_writedata_free(data); 977 } 978 nfs_redirty_request(req); 979 return -ENOMEM; 980 } 981 982 /* 983 * Create an RPC task for the given write request and kick it. 984 * The page must have been locked by the caller. 985 * 986 * It may happen that the page we're passed is not marked dirty. 987 * This is the case if nfs_updatepage detects a conflicting request 988 * that has been written but not committed. 989 */ 990 static int nfs_flush_one(struct nfs_pageio_descriptor *desc) 991 { 992 struct nfs_page *req; 993 struct page **pages; 994 struct nfs_write_data *data; 995 struct list_head *head = &desc->pg_list; 996 struct pnfs_layout_segment *lseg = desc->pg_lseg; 997 int ret; 998 999 data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base, 1000 desc->pg_count)); 1001 if (!data) { 1002 while (!list_empty(head)) { 1003 req = nfs_list_entry(head->next); 1004 nfs_list_remove_request(req); 1005 nfs_redirty_request(req); 1006 } 1007 ret = -ENOMEM; 1008 goto out; 1009 } 1010 pages = data->pagevec; 1011 while (!list_empty(head)) { 1012 req = nfs_list_entry(head->next); 1013 nfs_list_remove_request(req); 1014 nfs_list_add_request(req, &data->pages); 1015 ClearPageError(req->wb_page); 1016 *pages++ = req->wb_page; 1017 } 1018 req = nfs_list_entry(data->pages.next); 1019 if ((!lseg) && list_is_singular(&data->pages)) 1020 lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, 1021 req_offset(req), desc->pg_count, 1022 IOMODE_RW, GFP_NOFS); 1023 1024 if ((desc->pg_ioflags & FLUSH_COND_STABLE) && 1025 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit)) 1026 desc->pg_ioflags &= ~FLUSH_COND_STABLE; 1027 1028 /* Set up the argument struct */ 1029 ret = nfs_write_rpcsetup(req, data, &nfs_write_full_ops, desc->pg_count, 0, lseg, desc->pg_ioflags); 1030 out: 1031 put_lseg(lseg); /* Cleans any gotten in ->pg_test */ 1032 desc->pg_lseg = NULL; 1033 return ret; 1034 } 1035 1036 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 1037 struct inode *inode, int ioflags) 1038 { 1039 size_t wsize = NFS_SERVER(inode)->wsize; 1040 1041 if (wsize < PAGE_CACHE_SIZE) 1042 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); 1043 else 1044 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); 1045 } 1046 1047 /* 1048 * Handle a write reply that flushed part of a page. 1049 */ 1050 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 1051 { 1052 struct nfs_write_data *data = calldata; 1053 1054 dprintk("NFS: %5u write(%s/%lld %d@%lld)", 1055 task->tk_pid, 1056 data->req->wb_context->dentry->d_inode->i_sb->s_id, 1057 (long long) 1058 NFS_FILEID(data->req->wb_context->dentry->d_inode), 1059 data->req->wb_bytes, (long long)req_offset(data->req)); 1060 1061 nfs_writeback_done(task, data); 1062 } 1063 1064 static void nfs_writeback_release_partial(void *calldata) 1065 { 1066 struct nfs_write_data *data = calldata; 1067 struct nfs_page *req = data->req; 1068 struct page *page = req->wb_page; 1069 int status = data->task.tk_status; 1070 1071 if (status < 0) { 1072 nfs_set_pageerror(page); 1073 nfs_context_set_write_error(req->wb_context, status); 1074 dprintk(", error = %d\n", status); 1075 goto out; 1076 } 1077 1078 if (nfs_write_need_commit(data)) { 1079 struct inode *inode = page->mapping->host; 1080 1081 spin_lock(&inode->i_lock); 1082 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 1083 /* Do nothing we need to resend the writes */ 1084 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1085 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1086 dprintk(" defer commit\n"); 1087 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1088 set_bit(PG_NEED_RESCHED, &req->wb_flags); 1089 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 1090 dprintk(" server reboot detected\n"); 1091 } 1092 spin_unlock(&inode->i_lock); 1093 } else 1094 dprintk(" OK\n"); 1095 1096 out: 1097 if (atomic_dec_and_test(&req->wb_complete)) 1098 nfs_writepage_release(req, data); 1099 nfs_writedata_release(calldata); 1100 } 1101 1102 #if defined(CONFIG_NFS_V4_1) 1103 void nfs_write_prepare(struct rpc_task *task, void *calldata) 1104 { 1105 struct nfs_write_data *data = calldata; 1106 1107 if (nfs4_setup_sequence(NFS_SERVER(data->inode), 1108 &data->args.seq_args, 1109 &data->res.seq_res, 1, task)) 1110 return; 1111 rpc_call_start(task); 1112 } 1113 #endif /* CONFIG_NFS_V4_1 */ 1114 1115 static const struct rpc_call_ops nfs_write_partial_ops = { 1116 #if defined(CONFIG_NFS_V4_1) 1117 .rpc_call_prepare = nfs_write_prepare, 1118 #endif /* CONFIG_NFS_V4_1 */ 1119 .rpc_call_done = nfs_writeback_done_partial, 1120 .rpc_release = nfs_writeback_release_partial, 1121 }; 1122 1123 /* 1124 * Handle a write reply that flushes a whole page. 1125 * 1126 * FIXME: There is an inherent race with invalidate_inode_pages and 1127 * writebacks since the page->count is kept > 1 for as long 1128 * as the page has a write request pending. 1129 */ 1130 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1131 { 1132 struct nfs_write_data *data = calldata; 1133 1134 nfs_writeback_done(task, data); 1135 } 1136 1137 static void nfs_writeback_release_full(void *calldata) 1138 { 1139 struct nfs_write_data *data = calldata; 1140 int status = data->task.tk_status; 1141 1142 /* Update attributes as result of writeback. */ 1143 while (!list_empty(&data->pages)) { 1144 struct nfs_page *req = nfs_list_entry(data->pages.next); 1145 struct page *page = req->wb_page; 1146 1147 nfs_list_remove_request(req); 1148 1149 dprintk("NFS: %5u write (%s/%lld %d@%lld)", 1150 data->task.tk_pid, 1151 req->wb_context->dentry->d_inode->i_sb->s_id, 1152 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1153 req->wb_bytes, 1154 (long long)req_offset(req)); 1155 1156 if (status < 0) { 1157 nfs_set_pageerror(page); 1158 nfs_context_set_write_error(req->wb_context, status); 1159 dprintk(", error = %d\n", status); 1160 goto remove_request; 1161 } 1162 1163 if (nfs_write_need_commit(data)) { 1164 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1165 nfs_mark_request_commit(req, data->lseg); 1166 dprintk(" marked for commit\n"); 1167 goto next; 1168 } 1169 dprintk(" OK\n"); 1170 remove_request: 1171 nfs_inode_remove_request(req); 1172 next: 1173 nfs_clear_page_tag_locked(req); 1174 nfs_end_page_writeback(page); 1175 } 1176 nfs_writedata_release(calldata); 1177 } 1178 1179 static const struct rpc_call_ops nfs_write_full_ops = { 1180 #if defined(CONFIG_NFS_V4_1) 1181 .rpc_call_prepare = nfs_write_prepare, 1182 #endif /* CONFIG_NFS_V4_1 */ 1183 .rpc_call_done = nfs_writeback_done_full, 1184 .rpc_release = nfs_writeback_release_full, 1185 }; 1186 1187 1188 /* 1189 * This function is called when the WRITE call is complete. 1190 */ 1191 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1192 { 1193 struct nfs_writeargs *argp = &data->args; 1194 struct nfs_writeres *resp = &data->res; 1195 struct nfs_server *server = NFS_SERVER(data->inode); 1196 int status; 1197 1198 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1199 task->tk_pid, task->tk_status); 1200 1201 /* 1202 * ->write_done will attempt to use post-op attributes to detect 1203 * conflicting writes by other clients. A strict interpretation 1204 * of close-to-open would allow us to continue caching even if 1205 * another writer had changed the file, but some applications 1206 * depend on tighter cache coherency when writing. 1207 */ 1208 status = NFS_PROTO(data->inode)->write_done(task, data); 1209 if (status != 0) 1210 return; 1211 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1212 1213 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1214 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1215 /* We tried a write call, but the server did not 1216 * commit data to stable storage even though we 1217 * requested it. 1218 * Note: There is a known bug in Tru64 < 5.0 in which 1219 * the server reports NFS_DATA_SYNC, but performs 1220 * NFS_FILE_SYNC. We therefore implement this checking 1221 * as a dprintk() in order to avoid filling syslog. 1222 */ 1223 static unsigned long complain; 1224 1225 /* Note this will print the MDS for a DS write */ 1226 if (time_before(complain, jiffies)) { 1227 dprintk("NFS: faulty NFS server %s:" 1228 " (committed = %d) != (stable = %d)\n", 1229 server->nfs_client->cl_hostname, 1230 resp->verf->committed, argp->stable); 1231 complain = jiffies + 300 * HZ; 1232 } 1233 } 1234 #endif 1235 /* Is this a short write? */ 1236 if (task->tk_status >= 0 && resp->count < argp->count) { 1237 static unsigned long complain; 1238 1239 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1240 1241 /* Has the server at least made some progress? */ 1242 if (resp->count != 0) { 1243 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1244 if (resp->verf->committed != NFS_UNSTABLE) { 1245 /* Resend from where the server left off */ 1246 data->mds_offset += resp->count; 1247 argp->offset += resp->count; 1248 argp->pgbase += resp->count; 1249 argp->count -= resp->count; 1250 } else { 1251 /* Resend as a stable write in order to avoid 1252 * headaches in the case of a server crash. 1253 */ 1254 argp->stable = NFS_FILE_SYNC; 1255 } 1256 nfs_restart_rpc(task, server->nfs_client); 1257 return; 1258 } 1259 if (time_before(complain, jiffies)) { 1260 printk(KERN_WARNING 1261 "NFS: Server wrote zero bytes, expected %u.\n", 1262 argp->count); 1263 complain = jiffies + 300 * HZ; 1264 } 1265 /* Can't do anything about it except throw an error. */ 1266 task->tk_status = -EIO; 1267 } 1268 return; 1269 } 1270 1271 1272 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1273 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait) 1274 { 1275 int ret; 1276 1277 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags)) 1278 return 1; 1279 if (!may_wait) 1280 return 0; 1281 ret = out_of_line_wait_on_bit_lock(&nfsi->flags, 1282 NFS_INO_COMMIT, 1283 nfs_wait_bit_killable, 1284 TASK_KILLABLE); 1285 return (ret < 0) ? ret : 1; 1286 } 1287 1288 void nfs_commit_clear_lock(struct nfs_inode *nfsi) 1289 { 1290 clear_bit(NFS_INO_COMMIT, &nfsi->flags); 1291 smp_mb__after_clear_bit(); 1292 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT); 1293 } 1294 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock); 1295 1296 void nfs_commitdata_release(void *data) 1297 { 1298 struct nfs_write_data *wdata = data; 1299 1300 put_lseg(wdata->lseg); 1301 put_nfs_open_context(wdata->args.context); 1302 nfs_commit_free(wdata); 1303 } 1304 EXPORT_SYMBOL_GPL(nfs_commitdata_release); 1305 1306 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt, 1307 const struct rpc_call_ops *call_ops, 1308 int how) 1309 { 1310 struct rpc_task *task; 1311 int priority = flush_task_priority(how); 1312 struct rpc_message msg = { 1313 .rpc_argp = &data->args, 1314 .rpc_resp = &data->res, 1315 .rpc_cred = data->cred, 1316 }; 1317 struct rpc_task_setup task_setup_data = { 1318 .task = &data->task, 1319 .rpc_client = clnt, 1320 .rpc_message = &msg, 1321 .callback_ops = call_ops, 1322 .callback_data = data, 1323 .workqueue = nfsiod_workqueue, 1324 .flags = RPC_TASK_ASYNC, 1325 .priority = priority, 1326 }; 1327 /* Set up the initial task struct. */ 1328 NFS_PROTO(data->inode)->commit_setup(data, &msg); 1329 1330 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1331 1332 task = rpc_run_task(&task_setup_data); 1333 if (IS_ERR(task)) 1334 return PTR_ERR(task); 1335 if (how & FLUSH_SYNC) 1336 rpc_wait_for_completion_task(task); 1337 rpc_put_task(task); 1338 return 0; 1339 } 1340 EXPORT_SYMBOL_GPL(nfs_initiate_commit); 1341 1342 /* 1343 * Set up the argument/result storage required for the RPC call. 1344 */ 1345 void nfs_init_commit(struct nfs_write_data *data, 1346 struct list_head *head, 1347 struct pnfs_layout_segment *lseg) 1348 { 1349 struct nfs_page *first = nfs_list_entry(head->next); 1350 struct inode *inode = first->wb_context->dentry->d_inode; 1351 1352 /* Set up the RPC argument and reply structs 1353 * NB: take care not to mess about with data->commit et al. */ 1354 1355 list_splice_init(head, &data->pages); 1356 1357 data->inode = inode; 1358 data->cred = first->wb_context->cred; 1359 data->lseg = lseg; /* reference transferred */ 1360 data->mds_ops = &nfs_commit_ops; 1361 1362 data->args.fh = NFS_FH(data->inode); 1363 /* Note: we always request a commit of the entire inode */ 1364 data->args.offset = 0; 1365 data->args.count = 0; 1366 data->args.context = get_nfs_open_context(first->wb_context); 1367 data->res.count = 0; 1368 data->res.fattr = &data->fattr; 1369 data->res.verf = &data->verf; 1370 nfs_fattr_init(&data->fattr); 1371 } 1372 EXPORT_SYMBOL_GPL(nfs_init_commit); 1373 1374 void nfs_retry_commit(struct list_head *page_list, 1375 struct pnfs_layout_segment *lseg) 1376 { 1377 struct nfs_page *req; 1378 1379 while (!list_empty(page_list)) { 1380 req = nfs_list_entry(page_list->next); 1381 nfs_list_remove_request(req); 1382 nfs_mark_request_commit(req, lseg); 1383 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1384 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1385 BDI_RECLAIMABLE); 1386 nfs_clear_page_tag_locked(req); 1387 } 1388 } 1389 EXPORT_SYMBOL_GPL(nfs_retry_commit); 1390 1391 /* 1392 * Commit dirty pages 1393 */ 1394 static int 1395 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1396 { 1397 struct nfs_write_data *data; 1398 1399 data = nfs_commitdata_alloc(); 1400 1401 if (!data) 1402 goto out_bad; 1403 1404 /* Set up the argument struct */ 1405 nfs_init_commit(data, head, NULL); 1406 return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how); 1407 out_bad: 1408 nfs_retry_commit(head, NULL); 1409 nfs_commit_clear_lock(NFS_I(inode)); 1410 return -ENOMEM; 1411 } 1412 1413 /* 1414 * COMMIT call returned 1415 */ 1416 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1417 { 1418 struct nfs_write_data *data = calldata; 1419 1420 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1421 task->tk_pid, task->tk_status); 1422 1423 /* Call the NFS version-specific code */ 1424 NFS_PROTO(data->inode)->commit_done(task, data); 1425 } 1426 1427 void nfs_commit_release_pages(struct nfs_write_data *data) 1428 { 1429 struct nfs_page *req; 1430 int status = data->task.tk_status; 1431 1432 while (!list_empty(&data->pages)) { 1433 req = nfs_list_entry(data->pages.next); 1434 nfs_list_remove_request(req); 1435 nfs_clear_request_commit(req); 1436 1437 dprintk("NFS: commit (%s/%lld %d@%lld)", 1438 req->wb_context->dentry->d_sb->s_id, 1439 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1440 req->wb_bytes, 1441 (long long)req_offset(req)); 1442 if (status < 0) { 1443 nfs_context_set_write_error(req->wb_context, status); 1444 nfs_inode_remove_request(req); 1445 dprintk(", error = %d\n", status); 1446 goto next; 1447 } 1448 1449 /* Okay, COMMIT succeeded, apparently. Check the verifier 1450 * returned by the server against all stored verfs. */ 1451 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1452 /* We have a match */ 1453 nfs_inode_remove_request(req); 1454 dprintk(" OK\n"); 1455 goto next; 1456 } 1457 /* We have a mismatch. Write the page again */ 1458 dprintk(" mismatch\n"); 1459 nfs_mark_request_dirty(req); 1460 next: 1461 nfs_clear_page_tag_locked(req); 1462 } 1463 } 1464 EXPORT_SYMBOL_GPL(nfs_commit_release_pages); 1465 1466 static void nfs_commit_release(void *calldata) 1467 { 1468 struct nfs_write_data *data = calldata; 1469 1470 nfs_commit_release_pages(data); 1471 nfs_commit_clear_lock(NFS_I(data->inode)); 1472 nfs_commitdata_release(calldata); 1473 } 1474 1475 static const struct rpc_call_ops nfs_commit_ops = { 1476 #if defined(CONFIG_NFS_V4_1) 1477 .rpc_call_prepare = nfs_write_prepare, 1478 #endif /* CONFIG_NFS_V4_1 */ 1479 .rpc_call_done = nfs_commit_done, 1480 .rpc_release = nfs_commit_release, 1481 }; 1482 1483 int nfs_commit_inode(struct inode *inode, int how) 1484 { 1485 LIST_HEAD(head); 1486 int may_wait = how & FLUSH_SYNC; 1487 int res; 1488 1489 res = nfs_commit_set_lock(NFS_I(inode), may_wait); 1490 if (res <= 0) 1491 goto out_mark_dirty; 1492 res = nfs_scan_commit(inode, &head, 0, 0); 1493 if (res) { 1494 int error; 1495 1496 error = pnfs_commit_list(inode, &head, how); 1497 if (error == PNFS_NOT_ATTEMPTED) 1498 error = nfs_commit_list(inode, &head, how); 1499 if (error < 0) 1500 return error; 1501 if (!may_wait) 1502 goto out_mark_dirty; 1503 error = wait_on_bit(&NFS_I(inode)->flags, 1504 NFS_INO_COMMIT, 1505 nfs_wait_bit_killable, 1506 TASK_KILLABLE); 1507 if (error < 0) 1508 return error; 1509 } else 1510 nfs_commit_clear_lock(NFS_I(inode)); 1511 return res; 1512 /* Note: If we exit without ensuring that the commit is complete, 1513 * we must mark the inode as dirty. Otherwise, future calls to 1514 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure 1515 * that the data is on the disk. 1516 */ 1517 out_mark_dirty: 1518 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1519 return res; 1520 } 1521 1522 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1523 { 1524 struct nfs_inode *nfsi = NFS_I(inode); 1525 int flags = FLUSH_SYNC; 1526 int ret = 0; 1527 1528 if (wbc->sync_mode == WB_SYNC_NONE) { 1529 /* Don't commit yet if this is a non-blocking flush and there 1530 * are a lot of outstanding writes for this mapping. 1531 */ 1532 if (nfsi->ncommit <= (nfsi->npages >> 1)) 1533 goto out_mark_dirty; 1534 1535 /* don't wait for the COMMIT response */ 1536 flags = 0; 1537 } 1538 1539 ret = nfs_commit_inode(inode, flags); 1540 if (ret >= 0) { 1541 if (wbc->sync_mode == WB_SYNC_NONE) { 1542 if (ret < wbc->nr_to_write) 1543 wbc->nr_to_write -= ret; 1544 else 1545 wbc->nr_to_write = 0; 1546 } 1547 return 0; 1548 } 1549 out_mark_dirty: 1550 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1551 return ret; 1552 } 1553 #else 1554 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1555 { 1556 return 0; 1557 } 1558 #endif 1559 1560 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1561 { 1562 int ret; 1563 1564 ret = nfs_commit_unstable_pages(inode, wbc); 1565 if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) { 1566 int status; 1567 bool sync = true; 1568 1569 if (wbc->sync_mode == WB_SYNC_NONE || wbc->nonblocking || 1570 wbc->for_background) 1571 sync = false; 1572 1573 status = pnfs_layoutcommit_inode(inode, sync); 1574 if (status < 0) 1575 return status; 1576 } 1577 return ret; 1578 } 1579 1580 /* 1581 * flush the inode to disk. 1582 */ 1583 int nfs_wb_all(struct inode *inode) 1584 { 1585 struct writeback_control wbc = { 1586 .sync_mode = WB_SYNC_ALL, 1587 .nr_to_write = LONG_MAX, 1588 .range_start = 0, 1589 .range_end = LLONG_MAX, 1590 }; 1591 1592 return sync_inode(inode, &wbc); 1593 } 1594 1595 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1596 { 1597 struct nfs_page *req; 1598 int ret = 0; 1599 1600 BUG_ON(!PageLocked(page)); 1601 for (;;) { 1602 wait_on_page_writeback(page); 1603 req = nfs_page_find_request(page); 1604 if (req == NULL) 1605 break; 1606 if (nfs_lock_request_dontget(req)) { 1607 nfs_inode_remove_request(req); 1608 /* 1609 * In case nfs_inode_remove_request has marked the 1610 * page as being dirty 1611 */ 1612 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1613 nfs_unlock_request(req); 1614 break; 1615 } 1616 ret = nfs_wait_on_request(req); 1617 nfs_release_request(req); 1618 if (ret < 0) 1619 break; 1620 } 1621 return ret; 1622 } 1623 1624 /* 1625 * Write back all requests on one page - we do this before reading it. 1626 */ 1627 int nfs_wb_page(struct inode *inode, struct page *page) 1628 { 1629 loff_t range_start = page_offset(page); 1630 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1631 struct writeback_control wbc = { 1632 .sync_mode = WB_SYNC_ALL, 1633 .nr_to_write = 0, 1634 .range_start = range_start, 1635 .range_end = range_end, 1636 }; 1637 int ret; 1638 1639 for (;;) { 1640 wait_on_page_writeback(page); 1641 if (clear_page_dirty_for_io(page)) { 1642 ret = nfs_writepage_locked(page, &wbc); 1643 if (ret < 0) 1644 goto out_error; 1645 continue; 1646 } 1647 if (!PagePrivate(page)) 1648 break; 1649 ret = nfs_commit_inode(inode, FLUSH_SYNC); 1650 if (ret < 0) 1651 goto out_error; 1652 } 1653 return 0; 1654 out_error: 1655 return ret; 1656 } 1657 1658 #ifdef CONFIG_MIGRATION 1659 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 1660 struct page *page) 1661 { 1662 struct nfs_page *req; 1663 int ret; 1664 1665 nfs_fscache_release_page(page, GFP_KERNEL); 1666 1667 req = nfs_find_and_lock_request(page, false); 1668 ret = PTR_ERR(req); 1669 if (IS_ERR(req)) 1670 goto out; 1671 1672 ret = migrate_page(mapping, newpage, page); 1673 if (!req) 1674 goto out; 1675 if (ret) 1676 goto out_unlock; 1677 page_cache_get(newpage); 1678 spin_lock(&mapping->host->i_lock); 1679 req->wb_page = newpage; 1680 SetPagePrivate(newpage); 1681 set_page_private(newpage, (unsigned long)req); 1682 ClearPagePrivate(page); 1683 set_page_private(page, 0); 1684 spin_unlock(&mapping->host->i_lock); 1685 page_cache_release(page); 1686 out_unlock: 1687 nfs_clear_page_tag_locked(req); 1688 out: 1689 return ret; 1690 } 1691 #endif 1692 1693 int __init nfs_init_writepagecache(void) 1694 { 1695 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1696 sizeof(struct nfs_write_data), 1697 0, SLAB_HWCACHE_ALIGN, 1698 NULL); 1699 if (nfs_wdata_cachep == NULL) 1700 return -ENOMEM; 1701 1702 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1703 nfs_wdata_cachep); 1704 if (nfs_wdata_mempool == NULL) 1705 return -ENOMEM; 1706 1707 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1708 nfs_wdata_cachep); 1709 if (nfs_commit_mempool == NULL) 1710 return -ENOMEM; 1711 1712 /* 1713 * NFS congestion size, scale with available memory. 1714 * 1715 * 64MB: 8192k 1716 * 128MB: 11585k 1717 * 256MB: 16384k 1718 * 512MB: 23170k 1719 * 1GB: 32768k 1720 * 2GB: 46340k 1721 * 4GB: 65536k 1722 * 8GB: 92681k 1723 * 16GB: 131072k 1724 * 1725 * This allows larger machines to have larger/more transfers. 1726 * Limit the default to 256M 1727 */ 1728 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1729 if (nfs_congestion_kb > 256*1024) 1730 nfs_congestion_kb = 256*1024; 1731 1732 return 0; 1733 } 1734 1735 void nfs_destroy_writepagecache(void) 1736 { 1737 mempool_destroy(nfs_commit_mempool); 1738 mempool_destroy(nfs_wdata_mempool); 1739 kmem_cache_destroy(nfs_wdata_cachep); 1740 } 1741 1742