xref: /openbmc/linux/fs/nfs/write.c (revision 81d67439)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 
24 #include <asm/uaccess.h>
25 
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31 #include "pnfs.h"
32 
33 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
34 
35 #define MIN_POOL_WRITE		(32)
36 #define MIN_POOL_COMMIT		(4)
37 
38 /*
39  * Local function declarations
40  */
41 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
42 				  struct inode *inode, int ioflags);
43 static void nfs_redirty_request(struct nfs_page *req);
44 static const struct rpc_call_ops nfs_write_partial_ops;
45 static const struct rpc_call_ops nfs_write_full_ops;
46 static const struct rpc_call_ops nfs_commit_ops;
47 
48 static struct kmem_cache *nfs_wdata_cachep;
49 static mempool_t *nfs_wdata_mempool;
50 static mempool_t *nfs_commit_mempool;
51 
52 struct nfs_write_data *nfs_commitdata_alloc(void)
53 {
54 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
55 
56 	if (p) {
57 		memset(p, 0, sizeof(*p));
58 		INIT_LIST_HEAD(&p->pages);
59 	}
60 	return p;
61 }
62 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
63 
64 void nfs_commit_free(struct nfs_write_data *p)
65 {
66 	if (p && (p->pagevec != &p->page_array[0]))
67 		kfree(p->pagevec);
68 	mempool_free(p, nfs_commit_mempool);
69 }
70 EXPORT_SYMBOL_GPL(nfs_commit_free);
71 
72 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
73 {
74 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
75 
76 	if (p) {
77 		memset(p, 0, sizeof(*p));
78 		INIT_LIST_HEAD(&p->pages);
79 		p->npages = pagecount;
80 		if (pagecount <= ARRAY_SIZE(p->page_array))
81 			p->pagevec = p->page_array;
82 		else {
83 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
84 			if (!p->pagevec) {
85 				mempool_free(p, nfs_wdata_mempool);
86 				p = NULL;
87 			}
88 		}
89 	}
90 	return p;
91 }
92 
93 void nfs_writedata_free(struct nfs_write_data *p)
94 {
95 	if (p && (p->pagevec != &p->page_array[0]))
96 		kfree(p->pagevec);
97 	mempool_free(p, nfs_wdata_mempool);
98 }
99 
100 static void nfs_writedata_release(struct nfs_write_data *wdata)
101 {
102 	put_lseg(wdata->lseg);
103 	put_nfs_open_context(wdata->args.context);
104 	nfs_writedata_free(wdata);
105 }
106 
107 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
108 {
109 	ctx->error = error;
110 	smp_wmb();
111 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
112 }
113 
114 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
115 {
116 	struct nfs_page *req = NULL;
117 
118 	if (PagePrivate(page)) {
119 		req = (struct nfs_page *)page_private(page);
120 		if (req != NULL)
121 			kref_get(&req->wb_kref);
122 	}
123 	return req;
124 }
125 
126 static struct nfs_page *nfs_page_find_request(struct page *page)
127 {
128 	struct inode *inode = page->mapping->host;
129 	struct nfs_page *req = NULL;
130 
131 	spin_lock(&inode->i_lock);
132 	req = nfs_page_find_request_locked(page);
133 	spin_unlock(&inode->i_lock);
134 	return req;
135 }
136 
137 /* Adjust the file length if we're writing beyond the end */
138 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
139 {
140 	struct inode *inode = page->mapping->host;
141 	loff_t end, i_size;
142 	pgoff_t end_index;
143 
144 	spin_lock(&inode->i_lock);
145 	i_size = i_size_read(inode);
146 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
147 	if (i_size > 0 && page->index < end_index)
148 		goto out;
149 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
150 	if (i_size >= end)
151 		goto out;
152 	i_size_write(inode, end);
153 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
154 out:
155 	spin_unlock(&inode->i_lock);
156 }
157 
158 /* A writeback failed: mark the page as bad, and invalidate the page cache */
159 static void nfs_set_pageerror(struct page *page)
160 {
161 	SetPageError(page);
162 	nfs_zap_mapping(page->mapping->host, page->mapping);
163 }
164 
165 /* We can set the PG_uptodate flag if we see that a write request
166  * covers the full page.
167  */
168 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
169 {
170 	if (PageUptodate(page))
171 		return;
172 	if (base != 0)
173 		return;
174 	if (count != nfs_page_length(page))
175 		return;
176 	SetPageUptodate(page);
177 }
178 
179 static int wb_priority(struct writeback_control *wbc)
180 {
181 	if (wbc->for_reclaim)
182 		return FLUSH_HIGHPRI | FLUSH_STABLE;
183 	if (wbc->for_kupdate || wbc->for_background)
184 		return FLUSH_LOWPRI | FLUSH_COND_STABLE;
185 	return FLUSH_COND_STABLE;
186 }
187 
188 /*
189  * NFS congestion control
190  */
191 
192 int nfs_congestion_kb;
193 
194 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
195 #define NFS_CONGESTION_OFF_THRESH	\
196 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
197 
198 static int nfs_set_page_writeback(struct page *page)
199 {
200 	int ret = test_set_page_writeback(page);
201 
202 	if (!ret) {
203 		struct inode *inode = page->mapping->host;
204 		struct nfs_server *nfss = NFS_SERVER(inode);
205 
206 		page_cache_get(page);
207 		if (atomic_long_inc_return(&nfss->writeback) >
208 				NFS_CONGESTION_ON_THRESH) {
209 			set_bdi_congested(&nfss->backing_dev_info,
210 						BLK_RW_ASYNC);
211 		}
212 	}
213 	return ret;
214 }
215 
216 static void nfs_end_page_writeback(struct page *page)
217 {
218 	struct inode *inode = page->mapping->host;
219 	struct nfs_server *nfss = NFS_SERVER(inode);
220 
221 	end_page_writeback(page);
222 	page_cache_release(page);
223 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
224 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
225 }
226 
227 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
228 {
229 	struct inode *inode = page->mapping->host;
230 	struct nfs_page *req;
231 	int ret;
232 
233 	spin_lock(&inode->i_lock);
234 	for (;;) {
235 		req = nfs_page_find_request_locked(page);
236 		if (req == NULL)
237 			break;
238 		if (nfs_set_page_tag_locked(req))
239 			break;
240 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
241 		 *	 then the call to nfs_set_page_tag_locked() will always
242 		 *	 succeed provided that someone hasn't already marked the
243 		 *	 request as dirty (in which case we don't care).
244 		 */
245 		spin_unlock(&inode->i_lock);
246 		if (!nonblock)
247 			ret = nfs_wait_on_request(req);
248 		else
249 			ret = -EAGAIN;
250 		nfs_release_request(req);
251 		if (ret != 0)
252 			return ERR_PTR(ret);
253 		spin_lock(&inode->i_lock);
254 	}
255 	spin_unlock(&inode->i_lock);
256 	return req;
257 }
258 
259 /*
260  * Find an associated nfs write request, and prepare to flush it out
261  * May return an error if the user signalled nfs_wait_on_request().
262  */
263 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
264 				struct page *page, bool nonblock)
265 {
266 	struct nfs_page *req;
267 	int ret = 0;
268 
269 	req = nfs_find_and_lock_request(page, nonblock);
270 	if (!req)
271 		goto out;
272 	ret = PTR_ERR(req);
273 	if (IS_ERR(req))
274 		goto out;
275 
276 	ret = nfs_set_page_writeback(page);
277 	BUG_ON(ret != 0);
278 	BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
279 
280 	if (!nfs_pageio_add_request(pgio, req)) {
281 		nfs_redirty_request(req);
282 		ret = pgio->pg_error;
283 	}
284 out:
285 	return ret;
286 }
287 
288 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
289 {
290 	struct inode *inode = page->mapping->host;
291 	int ret;
292 
293 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
294 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
295 
296 	nfs_pageio_cond_complete(pgio, page->index);
297 	ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
298 	if (ret == -EAGAIN) {
299 		redirty_page_for_writepage(wbc, page);
300 		ret = 0;
301 	}
302 	return ret;
303 }
304 
305 /*
306  * Write an mmapped page to the server.
307  */
308 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
309 {
310 	struct nfs_pageio_descriptor pgio;
311 	int err;
312 
313 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
314 	err = nfs_do_writepage(page, wbc, &pgio);
315 	nfs_pageio_complete(&pgio);
316 	if (err < 0)
317 		return err;
318 	if (pgio.pg_error < 0)
319 		return pgio.pg_error;
320 	return 0;
321 }
322 
323 int nfs_writepage(struct page *page, struct writeback_control *wbc)
324 {
325 	int ret;
326 
327 	ret = nfs_writepage_locked(page, wbc);
328 	unlock_page(page);
329 	return ret;
330 }
331 
332 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
333 {
334 	int ret;
335 
336 	ret = nfs_do_writepage(page, wbc, data);
337 	unlock_page(page);
338 	return ret;
339 }
340 
341 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
342 {
343 	struct inode *inode = mapping->host;
344 	unsigned long *bitlock = &NFS_I(inode)->flags;
345 	struct nfs_pageio_descriptor pgio;
346 	int err;
347 
348 	/* Stop dirtying of new pages while we sync */
349 	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
350 			nfs_wait_bit_killable, TASK_KILLABLE);
351 	if (err)
352 		goto out_err;
353 
354 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
355 
356 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
357 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
358 	nfs_pageio_complete(&pgio);
359 
360 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
361 	smp_mb__after_clear_bit();
362 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
363 
364 	if (err < 0)
365 		goto out_err;
366 	err = pgio.pg_error;
367 	if (err < 0)
368 		goto out_err;
369 	return 0;
370 out_err:
371 	return err;
372 }
373 
374 /*
375  * Insert a write request into an inode
376  */
377 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
378 {
379 	struct nfs_inode *nfsi = NFS_I(inode);
380 	int error;
381 
382 	error = radix_tree_preload(GFP_NOFS);
383 	if (error != 0)
384 		goto out;
385 
386 	/* Lock the request! */
387 	nfs_lock_request_dontget(req);
388 
389 	spin_lock(&inode->i_lock);
390 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
391 	BUG_ON(error);
392 	if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
393 		nfsi->change_attr++;
394 	set_bit(PG_MAPPED, &req->wb_flags);
395 	SetPagePrivate(req->wb_page);
396 	set_page_private(req->wb_page, (unsigned long)req);
397 	nfsi->npages++;
398 	kref_get(&req->wb_kref);
399 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
400 				NFS_PAGE_TAG_LOCKED);
401 	spin_unlock(&inode->i_lock);
402 	radix_tree_preload_end();
403 out:
404 	return error;
405 }
406 
407 /*
408  * Remove a write request from an inode
409  */
410 static void nfs_inode_remove_request(struct nfs_page *req)
411 {
412 	struct inode *inode = req->wb_context->dentry->d_inode;
413 	struct nfs_inode *nfsi = NFS_I(inode);
414 
415 	BUG_ON (!NFS_WBACK_BUSY(req));
416 
417 	spin_lock(&inode->i_lock);
418 	set_page_private(req->wb_page, 0);
419 	ClearPagePrivate(req->wb_page);
420 	clear_bit(PG_MAPPED, &req->wb_flags);
421 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
422 	nfsi->npages--;
423 	spin_unlock(&inode->i_lock);
424 	nfs_release_request(req);
425 }
426 
427 static void
428 nfs_mark_request_dirty(struct nfs_page *req)
429 {
430 	__set_page_dirty_nobuffers(req->wb_page);
431 	__mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
432 }
433 
434 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
435 /*
436  * Add a request to the inode's commit list.
437  */
438 static void
439 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
440 {
441 	struct inode *inode = req->wb_context->dentry->d_inode;
442 	struct nfs_inode *nfsi = NFS_I(inode);
443 
444 	spin_lock(&inode->i_lock);
445 	set_bit(PG_CLEAN, &(req)->wb_flags);
446 	radix_tree_tag_set(&nfsi->nfs_page_tree,
447 			req->wb_index,
448 			NFS_PAGE_TAG_COMMIT);
449 	nfsi->ncommit++;
450 	spin_unlock(&inode->i_lock);
451 	pnfs_mark_request_commit(req, lseg);
452 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
453 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
454 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
455 }
456 
457 static int
458 nfs_clear_request_commit(struct nfs_page *req)
459 {
460 	struct page *page = req->wb_page;
461 
462 	if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
463 		dec_zone_page_state(page, NR_UNSTABLE_NFS);
464 		dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
465 		return 1;
466 	}
467 	return 0;
468 }
469 
470 static inline
471 int nfs_write_need_commit(struct nfs_write_data *data)
472 {
473 	if (data->verf.committed == NFS_DATA_SYNC)
474 		return data->lseg == NULL;
475 	else
476 		return data->verf.committed != NFS_FILE_SYNC;
477 }
478 
479 static inline
480 int nfs_reschedule_unstable_write(struct nfs_page *req,
481 				  struct nfs_write_data *data)
482 {
483 	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
484 		nfs_mark_request_commit(req, data->lseg);
485 		return 1;
486 	}
487 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
488 		nfs_mark_request_dirty(req);
489 		return 1;
490 	}
491 	return 0;
492 }
493 #else
494 static inline void
495 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
496 {
497 }
498 
499 static inline int
500 nfs_clear_request_commit(struct nfs_page *req)
501 {
502 	return 0;
503 }
504 
505 static inline
506 int nfs_write_need_commit(struct nfs_write_data *data)
507 {
508 	return 0;
509 }
510 
511 static inline
512 int nfs_reschedule_unstable_write(struct nfs_page *req,
513 				  struct nfs_write_data *data)
514 {
515 	return 0;
516 }
517 #endif
518 
519 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
520 static int
521 nfs_need_commit(struct nfs_inode *nfsi)
522 {
523 	return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
524 }
525 
526 /*
527  * nfs_scan_commit - Scan an inode for commit requests
528  * @inode: NFS inode to scan
529  * @dst: destination list
530  * @idx_start: lower bound of page->index to scan.
531  * @npages: idx_start + npages sets the upper bound to scan.
532  *
533  * Moves requests from the inode's 'commit' request list.
534  * The requests are *not* checked to ensure that they form a contiguous set.
535  */
536 static int
537 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
538 {
539 	struct nfs_inode *nfsi = NFS_I(inode);
540 	int ret;
541 
542 	if (!nfs_need_commit(nfsi))
543 		return 0;
544 
545 	spin_lock(&inode->i_lock);
546 	ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
547 	if (ret > 0)
548 		nfsi->ncommit -= ret;
549 	spin_unlock(&inode->i_lock);
550 
551 	if (nfs_need_commit(NFS_I(inode)))
552 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
553 
554 	return ret;
555 }
556 #else
557 static inline int nfs_need_commit(struct nfs_inode *nfsi)
558 {
559 	return 0;
560 }
561 
562 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
563 {
564 	return 0;
565 }
566 #endif
567 
568 /*
569  * Search for an existing write request, and attempt to update
570  * it to reflect a new dirty region on a given page.
571  *
572  * If the attempt fails, then the existing request is flushed out
573  * to disk.
574  */
575 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
576 		struct page *page,
577 		unsigned int offset,
578 		unsigned int bytes)
579 {
580 	struct nfs_page *req;
581 	unsigned int rqend;
582 	unsigned int end;
583 	int error;
584 
585 	if (!PagePrivate(page))
586 		return NULL;
587 
588 	end = offset + bytes;
589 	spin_lock(&inode->i_lock);
590 
591 	for (;;) {
592 		req = nfs_page_find_request_locked(page);
593 		if (req == NULL)
594 			goto out_unlock;
595 
596 		rqend = req->wb_offset + req->wb_bytes;
597 		/*
598 		 * Tell the caller to flush out the request if
599 		 * the offsets are non-contiguous.
600 		 * Note: nfs_flush_incompatible() will already
601 		 * have flushed out requests having wrong owners.
602 		 */
603 		if (offset > rqend
604 		    || end < req->wb_offset)
605 			goto out_flushme;
606 
607 		if (nfs_set_page_tag_locked(req))
608 			break;
609 
610 		/* The request is locked, so wait and then retry */
611 		spin_unlock(&inode->i_lock);
612 		error = nfs_wait_on_request(req);
613 		nfs_release_request(req);
614 		if (error != 0)
615 			goto out_err;
616 		spin_lock(&inode->i_lock);
617 	}
618 
619 	if (nfs_clear_request_commit(req) &&
620 	    radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
621 				 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
622 		NFS_I(inode)->ncommit--;
623 		pnfs_clear_request_commit(req);
624 	}
625 
626 	/* Okay, the request matches. Update the region */
627 	if (offset < req->wb_offset) {
628 		req->wb_offset = offset;
629 		req->wb_pgbase = offset;
630 	}
631 	if (end > rqend)
632 		req->wb_bytes = end - req->wb_offset;
633 	else
634 		req->wb_bytes = rqend - req->wb_offset;
635 out_unlock:
636 	spin_unlock(&inode->i_lock);
637 	return req;
638 out_flushme:
639 	spin_unlock(&inode->i_lock);
640 	nfs_release_request(req);
641 	error = nfs_wb_page(inode, page);
642 out_err:
643 	return ERR_PTR(error);
644 }
645 
646 /*
647  * Try to update an existing write request, or create one if there is none.
648  *
649  * Note: Should always be called with the Page Lock held to prevent races
650  * if we have to add a new request. Also assumes that the caller has
651  * already called nfs_flush_incompatible() if necessary.
652  */
653 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
654 		struct page *page, unsigned int offset, unsigned int bytes)
655 {
656 	struct inode *inode = page->mapping->host;
657 	struct nfs_page	*req;
658 	int error;
659 
660 	req = nfs_try_to_update_request(inode, page, offset, bytes);
661 	if (req != NULL)
662 		goto out;
663 	req = nfs_create_request(ctx, inode, page, offset, bytes);
664 	if (IS_ERR(req))
665 		goto out;
666 	error = nfs_inode_add_request(inode, req);
667 	if (error != 0) {
668 		nfs_release_request(req);
669 		req = ERR_PTR(error);
670 	}
671 out:
672 	return req;
673 }
674 
675 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
676 		unsigned int offset, unsigned int count)
677 {
678 	struct nfs_page	*req;
679 
680 	req = nfs_setup_write_request(ctx, page, offset, count);
681 	if (IS_ERR(req))
682 		return PTR_ERR(req);
683 	/* Update file length */
684 	nfs_grow_file(page, offset, count);
685 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
686 	nfs_mark_request_dirty(req);
687 	nfs_clear_page_tag_locked(req);
688 	return 0;
689 }
690 
691 int nfs_flush_incompatible(struct file *file, struct page *page)
692 {
693 	struct nfs_open_context *ctx = nfs_file_open_context(file);
694 	struct nfs_page	*req;
695 	int do_flush, status;
696 	/*
697 	 * Look for a request corresponding to this page. If there
698 	 * is one, and it belongs to another file, we flush it out
699 	 * before we try to copy anything into the page. Do this
700 	 * due to the lack of an ACCESS-type call in NFSv2.
701 	 * Also do the same if we find a request from an existing
702 	 * dropped page.
703 	 */
704 	do {
705 		req = nfs_page_find_request(page);
706 		if (req == NULL)
707 			return 0;
708 		do_flush = req->wb_page != page || req->wb_context != ctx ||
709 			req->wb_lock_context->lockowner != current->files ||
710 			req->wb_lock_context->pid != current->tgid;
711 		nfs_release_request(req);
712 		if (!do_flush)
713 			return 0;
714 		status = nfs_wb_page(page->mapping->host, page);
715 	} while (status == 0);
716 	return status;
717 }
718 
719 /*
720  * If the page cache is marked as unsafe or invalid, then we can't rely on
721  * the PageUptodate() flag. In this case, we will need to turn off
722  * write optimisations that depend on the page contents being correct.
723  */
724 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
725 {
726 	return PageUptodate(page) &&
727 		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
728 }
729 
730 /*
731  * Update and possibly write a cached page of an NFS file.
732  *
733  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
734  * things with a page scheduled for an RPC call (e.g. invalidate it).
735  */
736 int nfs_updatepage(struct file *file, struct page *page,
737 		unsigned int offset, unsigned int count)
738 {
739 	struct nfs_open_context *ctx = nfs_file_open_context(file);
740 	struct inode	*inode = page->mapping->host;
741 	int		status = 0;
742 
743 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
744 
745 	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
746 		file->f_path.dentry->d_parent->d_name.name,
747 		file->f_path.dentry->d_name.name, count,
748 		(long long)(page_offset(page) + offset));
749 
750 	/* If we're not using byte range locks, and we know the page
751 	 * is up to date, it may be more efficient to extend the write
752 	 * to cover the entire page in order to avoid fragmentation
753 	 * inefficiencies.
754 	 */
755 	if (nfs_write_pageuptodate(page, inode) &&
756 			inode->i_flock == NULL &&
757 			!(file->f_flags & O_DSYNC)) {
758 		count = max(count + offset, nfs_page_length(page));
759 		offset = 0;
760 	}
761 
762 	status = nfs_writepage_setup(ctx, page, offset, count);
763 	if (status < 0)
764 		nfs_set_pageerror(page);
765 
766 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
767 			status, (long long)i_size_read(inode));
768 	return status;
769 }
770 
771 static void nfs_writepage_release(struct nfs_page *req,
772 				  struct nfs_write_data *data)
773 {
774 	struct page *page = req->wb_page;
775 
776 	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
777 		nfs_inode_remove_request(req);
778 	nfs_clear_page_tag_locked(req);
779 	nfs_end_page_writeback(page);
780 }
781 
782 static int flush_task_priority(int how)
783 {
784 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
785 		case FLUSH_HIGHPRI:
786 			return RPC_PRIORITY_HIGH;
787 		case FLUSH_LOWPRI:
788 			return RPC_PRIORITY_LOW;
789 	}
790 	return RPC_PRIORITY_NORMAL;
791 }
792 
793 int nfs_initiate_write(struct nfs_write_data *data,
794 		       struct rpc_clnt *clnt,
795 		       const struct rpc_call_ops *call_ops,
796 		       int how)
797 {
798 	struct inode *inode = data->inode;
799 	int priority = flush_task_priority(how);
800 	struct rpc_task *task;
801 	struct rpc_message msg = {
802 		.rpc_argp = &data->args,
803 		.rpc_resp = &data->res,
804 		.rpc_cred = data->cred,
805 	};
806 	struct rpc_task_setup task_setup_data = {
807 		.rpc_client = clnt,
808 		.task = &data->task,
809 		.rpc_message = &msg,
810 		.callback_ops = call_ops,
811 		.callback_data = data,
812 		.workqueue = nfsiod_workqueue,
813 		.flags = RPC_TASK_ASYNC,
814 		.priority = priority,
815 	};
816 	int ret = 0;
817 
818 	/* Set up the initial task struct.  */
819 	NFS_PROTO(inode)->write_setup(data, &msg);
820 
821 	dprintk("NFS: %5u initiated write call "
822 		"(req %s/%lld, %u bytes @ offset %llu)\n",
823 		data->task.tk_pid,
824 		inode->i_sb->s_id,
825 		(long long)NFS_FILEID(inode),
826 		data->args.count,
827 		(unsigned long long)data->args.offset);
828 
829 	task = rpc_run_task(&task_setup_data);
830 	if (IS_ERR(task)) {
831 		ret = PTR_ERR(task);
832 		goto out;
833 	}
834 	if (how & FLUSH_SYNC) {
835 		ret = rpc_wait_for_completion_task(task);
836 		if (ret == 0)
837 			ret = task->tk_status;
838 	}
839 	rpc_put_task(task);
840 out:
841 	return ret;
842 }
843 EXPORT_SYMBOL_GPL(nfs_initiate_write);
844 
845 /*
846  * Set up the argument/result storage required for the RPC call.
847  */
848 static int nfs_write_rpcsetup(struct nfs_page *req,
849 		struct nfs_write_data *data,
850 		const struct rpc_call_ops *call_ops,
851 		unsigned int count, unsigned int offset,
852 		struct pnfs_layout_segment *lseg,
853 		int how)
854 {
855 	struct inode *inode = req->wb_context->dentry->d_inode;
856 
857 	/* Set up the RPC argument and reply structs
858 	 * NB: take care not to mess about with data->commit et al. */
859 
860 	data->req = req;
861 	data->inode = inode = req->wb_context->dentry->d_inode;
862 	data->cred = req->wb_context->cred;
863 	data->lseg = get_lseg(lseg);
864 
865 	data->args.fh     = NFS_FH(inode);
866 	data->args.offset = req_offset(req) + offset;
867 	/* pnfs_set_layoutcommit needs this */
868 	data->mds_offset = data->args.offset;
869 	data->args.pgbase = req->wb_pgbase + offset;
870 	data->args.pages  = data->pagevec;
871 	data->args.count  = count;
872 	data->args.context = get_nfs_open_context(req->wb_context);
873 	data->args.lock_context = req->wb_lock_context;
874 	data->args.stable  = NFS_UNSTABLE;
875 	if (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
876 		data->args.stable = NFS_DATA_SYNC;
877 		if (!nfs_need_commit(NFS_I(inode)))
878 			data->args.stable = NFS_FILE_SYNC;
879 	}
880 
881 	data->res.fattr   = &data->fattr;
882 	data->res.count   = count;
883 	data->res.verf    = &data->verf;
884 	nfs_fattr_init(&data->fattr);
885 
886 	if (data->lseg &&
887 	    (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED))
888 		return 0;
889 
890 	return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
891 }
892 
893 /* If a nfs_flush_* function fails, it should remove reqs from @head and
894  * call this on each, which will prepare them to be retried on next
895  * writeback using standard nfs.
896  */
897 static void nfs_redirty_request(struct nfs_page *req)
898 {
899 	struct page *page = req->wb_page;
900 
901 	nfs_mark_request_dirty(req);
902 	nfs_clear_page_tag_locked(req);
903 	nfs_end_page_writeback(page);
904 }
905 
906 /*
907  * Generate multiple small requests to write out a single
908  * contiguous dirty area on one page.
909  */
910 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc)
911 {
912 	struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
913 	struct page *page = req->wb_page;
914 	struct nfs_write_data *data;
915 	size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes;
916 	unsigned int offset;
917 	int requests = 0;
918 	int ret = 0;
919 	struct pnfs_layout_segment *lseg;
920 	LIST_HEAD(list);
921 
922 	nfs_list_remove_request(req);
923 
924 	if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
925 	    (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
926 	     desc->pg_count > wsize))
927 		desc->pg_ioflags &= ~FLUSH_COND_STABLE;
928 
929 
930 	nbytes = desc->pg_count;
931 	do {
932 		size_t len = min(nbytes, wsize);
933 
934 		data = nfs_writedata_alloc(1);
935 		if (!data)
936 			goto out_bad;
937 		list_add(&data->pages, &list);
938 		requests++;
939 		nbytes -= len;
940 	} while (nbytes != 0);
941 	atomic_set(&req->wb_complete, requests);
942 
943 	BUG_ON(desc->pg_lseg);
944 	lseg = pnfs_update_layout(desc->pg_inode, req->wb_context,
945 				  req_offset(req), desc->pg_count,
946 				  IOMODE_RW, GFP_NOFS);
947 	ClearPageError(page);
948 	offset = 0;
949 	nbytes = desc->pg_count;
950 	do {
951 		int ret2;
952 
953 		data = list_entry(list.next, struct nfs_write_data, pages);
954 		list_del_init(&data->pages);
955 
956 		data->pagevec[0] = page;
957 
958 		if (nbytes < wsize)
959 			wsize = nbytes;
960 		ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
961 					  wsize, offset, lseg, desc->pg_ioflags);
962 		if (ret == 0)
963 			ret = ret2;
964 		offset += wsize;
965 		nbytes -= wsize;
966 	} while (nbytes != 0);
967 
968 	put_lseg(lseg);
969 	desc->pg_lseg = NULL;
970 	return ret;
971 
972 out_bad:
973 	while (!list_empty(&list)) {
974 		data = list_entry(list.next, struct nfs_write_data, pages);
975 		list_del(&data->pages);
976 		nfs_writedata_free(data);
977 	}
978 	nfs_redirty_request(req);
979 	return -ENOMEM;
980 }
981 
982 /*
983  * Create an RPC task for the given write request and kick it.
984  * The page must have been locked by the caller.
985  *
986  * It may happen that the page we're passed is not marked dirty.
987  * This is the case if nfs_updatepage detects a conflicting request
988  * that has been written but not committed.
989  */
990 static int nfs_flush_one(struct nfs_pageio_descriptor *desc)
991 {
992 	struct nfs_page		*req;
993 	struct page		**pages;
994 	struct nfs_write_data	*data;
995 	struct list_head *head = &desc->pg_list;
996 	struct pnfs_layout_segment *lseg = desc->pg_lseg;
997 	int ret;
998 
999 	data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
1000 						      desc->pg_count));
1001 	if (!data) {
1002 		while (!list_empty(head)) {
1003 			req = nfs_list_entry(head->next);
1004 			nfs_list_remove_request(req);
1005 			nfs_redirty_request(req);
1006 		}
1007 		ret = -ENOMEM;
1008 		goto out;
1009 	}
1010 	pages = data->pagevec;
1011 	while (!list_empty(head)) {
1012 		req = nfs_list_entry(head->next);
1013 		nfs_list_remove_request(req);
1014 		nfs_list_add_request(req, &data->pages);
1015 		ClearPageError(req->wb_page);
1016 		*pages++ = req->wb_page;
1017 	}
1018 	req = nfs_list_entry(data->pages.next);
1019 	if ((!lseg) && list_is_singular(&data->pages))
1020 		lseg = pnfs_update_layout(desc->pg_inode, req->wb_context,
1021 					  req_offset(req), desc->pg_count,
1022 					  IOMODE_RW, GFP_NOFS);
1023 
1024 	if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1025 	    (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
1026 		desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1027 
1028 	/* Set up the argument struct */
1029 	ret = nfs_write_rpcsetup(req, data, &nfs_write_full_ops, desc->pg_count, 0, lseg, desc->pg_ioflags);
1030 out:
1031 	put_lseg(lseg); /* Cleans any gotten in ->pg_test */
1032 	desc->pg_lseg = NULL;
1033 	return ret;
1034 }
1035 
1036 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1037 				  struct inode *inode, int ioflags)
1038 {
1039 	size_t wsize = NFS_SERVER(inode)->wsize;
1040 
1041 	if (wsize < PAGE_CACHE_SIZE)
1042 		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
1043 	else
1044 		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
1045 }
1046 
1047 /*
1048  * Handle a write reply that flushed part of a page.
1049  */
1050 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1051 {
1052 	struct nfs_write_data	*data = calldata;
1053 
1054 	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1055 		task->tk_pid,
1056 		data->req->wb_context->dentry->d_inode->i_sb->s_id,
1057 		(long long)
1058 		  NFS_FILEID(data->req->wb_context->dentry->d_inode),
1059 		data->req->wb_bytes, (long long)req_offset(data->req));
1060 
1061 	nfs_writeback_done(task, data);
1062 }
1063 
1064 static void nfs_writeback_release_partial(void *calldata)
1065 {
1066 	struct nfs_write_data	*data = calldata;
1067 	struct nfs_page		*req = data->req;
1068 	struct page		*page = req->wb_page;
1069 	int status = data->task.tk_status;
1070 
1071 	if (status < 0) {
1072 		nfs_set_pageerror(page);
1073 		nfs_context_set_write_error(req->wb_context, status);
1074 		dprintk(", error = %d\n", status);
1075 		goto out;
1076 	}
1077 
1078 	if (nfs_write_need_commit(data)) {
1079 		struct inode *inode = page->mapping->host;
1080 
1081 		spin_lock(&inode->i_lock);
1082 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1083 			/* Do nothing we need to resend the writes */
1084 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1085 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1086 			dprintk(" defer commit\n");
1087 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1088 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1089 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1090 			dprintk(" server reboot detected\n");
1091 		}
1092 		spin_unlock(&inode->i_lock);
1093 	} else
1094 		dprintk(" OK\n");
1095 
1096 out:
1097 	if (atomic_dec_and_test(&req->wb_complete))
1098 		nfs_writepage_release(req, data);
1099 	nfs_writedata_release(calldata);
1100 }
1101 
1102 #if defined(CONFIG_NFS_V4_1)
1103 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1104 {
1105 	struct nfs_write_data *data = calldata;
1106 
1107 	if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1108 				&data->args.seq_args,
1109 				&data->res.seq_res, 1, task))
1110 		return;
1111 	rpc_call_start(task);
1112 }
1113 #endif /* CONFIG_NFS_V4_1 */
1114 
1115 static const struct rpc_call_ops nfs_write_partial_ops = {
1116 #if defined(CONFIG_NFS_V4_1)
1117 	.rpc_call_prepare = nfs_write_prepare,
1118 #endif /* CONFIG_NFS_V4_1 */
1119 	.rpc_call_done = nfs_writeback_done_partial,
1120 	.rpc_release = nfs_writeback_release_partial,
1121 };
1122 
1123 /*
1124  * Handle a write reply that flushes a whole page.
1125  *
1126  * FIXME: There is an inherent race with invalidate_inode_pages and
1127  *	  writebacks since the page->count is kept > 1 for as long
1128  *	  as the page has a write request pending.
1129  */
1130 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1131 {
1132 	struct nfs_write_data	*data = calldata;
1133 
1134 	nfs_writeback_done(task, data);
1135 }
1136 
1137 static void nfs_writeback_release_full(void *calldata)
1138 {
1139 	struct nfs_write_data	*data = calldata;
1140 	int status = data->task.tk_status;
1141 
1142 	/* Update attributes as result of writeback. */
1143 	while (!list_empty(&data->pages)) {
1144 		struct nfs_page *req = nfs_list_entry(data->pages.next);
1145 		struct page *page = req->wb_page;
1146 
1147 		nfs_list_remove_request(req);
1148 
1149 		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1150 			data->task.tk_pid,
1151 			req->wb_context->dentry->d_inode->i_sb->s_id,
1152 			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1153 			req->wb_bytes,
1154 			(long long)req_offset(req));
1155 
1156 		if (status < 0) {
1157 			nfs_set_pageerror(page);
1158 			nfs_context_set_write_error(req->wb_context, status);
1159 			dprintk(", error = %d\n", status);
1160 			goto remove_request;
1161 		}
1162 
1163 		if (nfs_write_need_commit(data)) {
1164 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1165 			nfs_mark_request_commit(req, data->lseg);
1166 			dprintk(" marked for commit\n");
1167 			goto next;
1168 		}
1169 		dprintk(" OK\n");
1170 remove_request:
1171 		nfs_inode_remove_request(req);
1172 	next:
1173 		nfs_clear_page_tag_locked(req);
1174 		nfs_end_page_writeback(page);
1175 	}
1176 	nfs_writedata_release(calldata);
1177 }
1178 
1179 static const struct rpc_call_ops nfs_write_full_ops = {
1180 #if defined(CONFIG_NFS_V4_1)
1181 	.rpc_call_prepare = nfs_write_prepare,
1182 #endif /* CONFIG_NFS_V4_1 */
1183 	.rpc_call_done = nfs_writeback_done_full,
1184 	.rpc_release = nfs_writeback_release_full,
1185 };
1186 
1187 
1188 /*
1189  * This function is called when the WRITE call is complete.
1190  */
1191 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1192 {
1193 	struct nfs_writeargs	*argp = &data->args;
1194 	struct nfs_writeres	*resp = &data->res;
1195 	struct nfs_server	*server = NFS_SERVER(data->inode);
1196 	int status;
1197 
1198 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1199 		task->tk_pid, task->tk_status);
1200 
1201 	/*
1202 	 * ->write_done will attempt to use post-op attributes to detect
1203 	 * conflicting writes by other clients.  A strict interpretation
1204 	 * of close-to-open would allow us to continue caching even if
1205 	 * another writer had changed the file, but some applications
1206 	 * depend on tighter cache coherency when writing.
1207 	 */
1208 	status = NFS_PROTO(data->inode)->write_done(task, data);
1209 	if (status != 0)
1210 		return;
1211 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1212 
1213 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1214 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1215 		/* We tried a write call, but the server did not
1216 		 * commit data to stable storage even though we
1217 		 * requested it.
1218 		 * Note: There is a known bug in Tru64 < 5.0 in which
1219 		 *	 the server reports NFS_DATA_SYNC, but performs
1220 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1221 		 *	 as a dprintk() in order to avoid filling syslog.
1222 		 */
1223 		static unsigned long    complain;
1224 
1225 		/* Note this will print the MDS for a DS write */
1226 		if (time_before(complain, jiffies)) {
1227 			dprintk("NFS:       faulty NFS server %s:"
1228 				" (committed = %d) != (stable = %d)\n",
1229 				server->nfs_client->cl_hostname,
1230 				resp->verf->committed, argp->stable);
1231 			complain = jiffies + 300 * HZ;
1232 		}
1233 	}
1234 #endif
1235 	/* Is this a short write? */
1236 	if (task->tk_status >= 0 && resp->count < argp->count) {
1237 		static unsigned long    complain;
1238 
1239 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1240 
1241 		/* Has the server at least made some progress? */
1242 		if (resp->count != 0) {
1243 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1244 			if (resp->verf->committed != NFS_UNSTABLE) {
1245 				/* Resend from where the server left off */
1246 				data->mds_offset += resp->count;
1247 				argp->offset += resp->count;
1248 				argp->pgbase += resp->count;
1249 				argp->count -= resp->count;
1250 			} else {
1251 				/* Resend as a stable write in order to avoid
1252 				 * headaches in the case of a server crash.
1253 				 */
1254 				argp->stable = NFS_FILE_SYNC;
1255 			}
1256 			nfs_restart_rpc(task, server->nfs_client);
1257 			return;
1258 		}
1259 		if (time_before(complain, jiffies)) {
1260 			printk(KERN_WARNING
1261 			       "NFS: Server wrote zero bytes, expected %u.\n",
1262 					argp->count);
1263 			complain = jiffies + 300 * HZ;
1264 		}
1265 		/* Can't do anything about it except throw an error. */
1266 		task->tk_status = -EIO;
1267 	}
1268 	return;
1269 }
1270 
1271 
1272 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1273 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1274 {
1275 	int ret;
1276 
1277 	if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1278 		return 1;
1279 	if (!may_wait)
1280 		return 0;
1281 	ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1282 				NFS_INO_COMMIT,
1283 				nfs_wait_bit_killable,
1284 				TASK_KILLABLE);
1285 	return (ret < 0) ? ret : 1;
1286 }
1287 
1288 void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1289 {
1290 	clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1291 	smp_mb__after_clear_bit();
1292 	wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1293 }
1294 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
1295 
1296 void nfs_commitdata_release(void *data)
1297 {
1298 	struct nfs_write_data *wdata = data;
1299 
1300 	put_lseg(wdata->lseg);
1301 	put_nfs_open_context(wdata->args.context);
1302 	nfs_commit_free(wdata);
1303 }
1304 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1305 
1306 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
1307 			const struct rpc_call_ops *call_ops,
1308 			int how)
1309 {
1310 	struct rpc_task *task;
1311 	int priority = flush_task_priority(how);
1312 	struct rpc_message msg = {
1313 		.rpc_argp = &data->args,
1314 		.rpc_resp = &data->res,
1315 		.rpc_cred = data->cred,
1316 	};
1317 	struct rpc_task_setup task_setup_data = {
1318 		.task = &data->task,
1319 		.rpc_client = clnt,
1320 		.rpc_message = &msg,
1321 		.callback_ops = call_ops,
1322 		.callback_data = data,
1323 		.workqueue = nfsiod_workqueue,
1324 		.flags = RPC_TASK_ASYNC,
1325 		.priority = priority,
1326 	};
1327 	/* Set up the initial task struct.  */
1328 	NFS_PROTO(data->inode)->commit_setup(data, &msg);
1329 
1330 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1331 
1332 	task = rpc_run_task(&task_setup_data);
1333 	if (IS_ERR(task))
1334 		return PTR_ERR(task);
1335 	if (how & FLUSH_SYNC)
1336 		rpc_wait_for_completion_task(task);
1337 	rpc_put_task(task);
1338 	return 0;
1339 }
1340 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1341 
1342 /*
1343  * Set up the argument/result storage required for the RPC call.
1344  */
1345 void nfs_init_commit(struct nfs_write_data *data,
1346 			    struct list_head *head,
1347 			    struct pnfs_layout_segment *lseg)
1348 {
1349 	struct nfs_page *first = nfs_list_entry(head->next);
1350 	struct inode *inode = first->wb_context->dentry->d_inode;
1351 
1352 	/* Set up the RPC argument and reply structs
1353 	 * NB: take care not to mess about with data->commit et al. */
1354 
1355 	list_splice_init(head, &data->pages);
1356 
1357 	data->inode	  = inode;
1358 	data->cred	  = first->wb_context->cred;
1359 	data->lseg	  = lseg; /* reference transferred */
1360 	data->mds_ops     = &nfs_commit_ops;
1361 
1362 	data->args.fh     = NFS_FH(data->inode);
1363 	/* Note: we always request a commit of the entire inode */
1364 	data->args.offset = 0;
1365 	data->args.count  = 0;
1366 	data->args.context = get_nfs_open_context(first->wb_context);
1367 	data->res.count   = 0;
1368 	data->res.fattr   = &data->fattr;
1369 	data->res.verf    = &data->verf;
1370 	nfs_fattr_init(&data->fattr);
1371 }
1372 EXPORT_SYMBOL_GPL(nfs_init_commit);
1373 
1374 void nfs_retry_commit(struct list_head *page_list,
1375 		      struct pnfs_layout_segment *lseg)
1376 {
1377 	struct nfs_page *req;
1378 
1379 	while (!list_empty(page_list)) {
1380 		req = nfs_list_entry(page_list->next);
1381 		nfs_list_remove_request(req);
1382 		nfs_mark_request_commit(req, lseg);
1383 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1384 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1385 			     BDI_RECLAIMABLE);
1386 		nfs_clear_page_tag_locked(req);
1387 	}
1388 }
1389 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1390 
1391 /*
1392  * Commit dirty pages
1393  */
1394 static int
1395 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1396 {
1397 	struct nfs_write_data	*data;
1398 
1399 	data = nfs_commitdata_alloc();
1400 
1401 	if (!data)
1402 		goto out_bad;
1403 
1404 	/* Set up the argument struct */
1405 	nfs_init_commit(data, head, NULL);
1406 	return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
1407  out_bad:
1408 	nfs_retry_commit(head, NULL);
1409 	nfs_commit_clear_lock(NFS_I(inode));
1410 	return -ENOMEM;
1411 }
1412 
1413 /*
1414  * COMMIT call returned
1415  */
1416 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1417 {
1418 	struct nfs_write_data	*data = calldata;
1419 
1420         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1421                                 task->tk_pid, task->tk_status);
1422 
1423 	/* Call the NFS version-specific code */
1424 	NFS_PROTO(data->inode)->commit_done(task, data);
1425 }
1426 
1427 void nfs_commit_release_pages(struct nfs_write_data *data)
1428 {
1429 	struct nfs_page	*req;
1430 	int status = data->task.tk_status;
1431 
1432 	while (!list_empty(&data->pages)) {
1433 		req = nfs_list_entry(data->pages.next);
1434 		nfs_list_remove_request(req);
1435 		nfs_clear_request_commit(req);
1436 
1437 		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1438 			req->wb_context->dentry->d_sb->s_id,
1439 			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1440 			req->wb_bytes,
1441 			(long long)req_offset(req));
1442 		if (status < 0) {
1443 			nfs_context_set_write_error(req->wb_context, status);
1444 			nfs_inode_remove_request(req);
1445 			dprintk(", error = %d\n", status);
1446 			goto next;
1447 		}
1448 
1449 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1450 		 * returned by the server against all stored verfs. */
1451 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1452 			/* We have a match */
1453 			nfs_inode_remove_request(req);
1454 			dprintk(" OK\n");
1455 			goto next;
1456 		}
1457 		/* We have a mismatch. Write the page again */
1458 		dprintk(" mismatch\n");
1459 		nfs_mark_request_dirty(req);
1460 	next:
1461 		nfs_clear_page_tag_locked(req);
1462 	}
1463 }
1464 EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
1465 
1466 static void nfs_commit_release(void *calldata)
1467 {
1468 	struct nfs_write_data *data = calldata;
1469 
1470 	nfs_commit_release_pages(data);
1471 	nfs_commit_clear_lock(NFS_I(data->inode));
1472 	nfs_commitdata_release(calldata);
1473 }
1474 
1475 static const struct rpc_call_ops nfs_commit_ops = {
1476 #if defined(CONFIG_NFS_V4_1)
1477 	.rpc_call_prepare = nfs_write_prepare,
1478 #endif /* CONFIG_NFS_V4_1 */
1479 	.rpc_call_done = nfs_commit_done,
1480 	.rpc_release = nfs_commit_release,
1481 };
1482 
1483 int nfs_commit_inode(struct inode *inode, int how)
1484 {
1485 	LIST_HEAD(head);
1486 	int may_wait = how & FLUSH_SYNC;
1487 	int res;
1488 
1489 	res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1490 	if (res <= 0)
1491 		goto out_mark_dirty;
1492 	res = nfs_scan_commit(inode, &head, 0, 0);
1493 	if (res) {
1494 		int error;
1495 
1496 		error = pnfs_commit_list(inode, &head, how);
1497 		if (error == PNFS_NOT_ATTEMPTED)
1498 			error = nfs_commit_list(inode, &head, how);
1499 		if (error < 0)
1500 			return error;
1501 		if (!may_wait)
1502 			goto out_mark_dirty;
1503 		error = wait_on_bit(&NFS_I(inode)->flags,
1504 				NFS_INO_COMMIT,
1505 				nfs_wait_bit_killable,
1506 				TASK_KILLABLE);
1507 		if (error < 0)
1508 			return error;
1509 	} else
1510 		nfs_commit_clear_lock(NFS_I(inode));
1511 	return res;
1512 	/* Note: If we exit without ensuring that the commit is complete,
1513 	 * we must mark the inode as dirty. Otherwise, future calls to
1514 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1515 	 * that the data is on the disk.
1516 	 */
1517 out_mark_dirty:
1518 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1519 	return res;
1520 }
1521 
1522 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1523 {
1524 	struct nfs_inode *nfsi = NFS_I(inode);
1525 	int flags = FLUSH_SYNC;
1526 	int ret = 0;
1527 
1528 	if (wbc->sync_mode == WB_SYNC_NONE) {
1529 		/* Don't commit yet if this is a non-blocking flush and there
1530 		 * are a lot of outstanding writes for this mapping.
1531 		 */
1532 		if (nfsi->ncommit <= (nfsi->npages >> 1))
1533 			goto out_mark_dirty;
1534 
1535 		/* don't wait for the COMMIT response */
1536 		flags = 0;
1537 	}
1538 
1539 	ret = nfs_commit_inode(inode, flags);
1540 	if (ret >= 0) {
1541 		if (wbc->sync_mode == WB_SYNC_NONE) {
1542 			if (ret < wbc->nr_to_write)
1543 				wbc->nr_to_write -= ret;
1544 			else
1545 				wbc->nr_to_write = 0;
1546 		}
1547 		return 0;
1548 	}
1549 out_mark_dirty:
1550 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1551 	return ret;
1552 }
1553 #else
1554 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1555 {
1556 	return 0;
1557 }
1558 #endif
1559 
1560 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1561 {
1562 	int ret;
1563 
1564 	ret = nfs_commit_unstable_pages(inode, wbc);
1565 	if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
1566 		int status;
1567 		bool sync = true;
1568 
1569 		if (wbc->sync_mode == WB_SYNC_NONE || wbc->nonblocking ||
1570 		    wbc->for_background)
1571 			sync = false;
1572 
1573 		status = pnfs_layoutcommit_inode(inode, sync);
1574 		if (status < 0)
1575 			return status;
1576 	}
1577 	return ret;
1578 }
1579 
1580 /*
1581  * flush the inode to disk.
1582  */
1583 int nfs_wb_all(struct inode *inode)
1584 {
1585 	struct writeback_control wbc = {
1586 		.sync_mode = WB_SYNC_ALL,
1587 		.nr_to_write = LONG_MAX,
1588 		.range_start = 0,
1589 		.range_end = LLONG_MAX,
1590 	};
1591 
1592 	return sync_inode(inode, &wbc);
1593 }
1594 
1595 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1596 {
1597 	struct nfs_page *req;
1598 	int ret = 0;
1599 
1600 	BUG_ON(!PageLocked(page));
1601 	for (;;) {
1602 		wait_on_page_writeback(page);
1603 		req = nfs_page_find_request(page);
1604 		if (req == NULL)
1605 			break;
1606 		if (nfs_lock_request_dontget(req)) {
1607 			nfs_inode_remove_request(req);
1608 			/*
1609 			 * In case nfs_inode_remove_request has marked the
1610 			 * page as being dirty
1611 			 */
1612 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1613 			nfs_unlock_request(req);
1614 			break;
1615 		}
1616 		ret = nfs_wait_on_request(req);
1617 		nfs_release_request(req);
1618 		if (ret < 0)
1619 			break;
1620 	}
1621 	return ret;
1622 }
1623 
1624 /*
1625  * Write back all requests on one page - we do this before reading it.
1626  */
1627 int nfs_wb_page(struct inode *inode, struct page *page)
1628 {
1629 	loff_t range_start = page_offset(page);
1630 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1631 	struct writeback_control wbc = {
1632 		.sync_mode = WB_SYNC_ALL,
1633 		.nr_to_write = 0,
1634 		.range_start = range_start,
1635 		.range_end = range_end,
1636 	};
1637 	int ret;
1638 
1639 	for (;;) {
1640 		wait_on_page_writeback(page);
1641 		if (clear_page_dirty_for_io(page)) {
1642 			ret = nfs_writepage_locked(page, &wbc);
1643 			if (ret < 0)
1644 				goto out_error;
1645 			continue;
1646 		}
1647 		if (!PagePrivate(page))
1648 			break;
1649 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
1650 		if (ret < 0)
1651 			goto out_error;
1652 	}
1653 	return 0;
1654 out_error:
1655 	return ret;
1656 }
1657 
1658 #ifdef CONFIG_MIGRATION
1659 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1660 		struct page *page)
1661 {
1662 	struct nfs_page *req;
1663 	int ret;
1664 
1665 	nfs_fscache_release_page(page, GFP_KERNEL);
1666 
1667 	req = nfs_find_and_lock_request(page, false);
1668 	ret = PTR_ERR(req);
1669 	if (IS_ERR(req))
1670 		goto out;
1671 
1672 	ret = migrate_page(mapping, newpage, page);
1673 	if (!req)
1674 		goto out;
1675 	if (ret)
1676 		goto out_unlock;
1677 	page_cache_get(newpage);
1678 	spin_lock(&mapping->host->i_lock);
1679 	req->wb_page = newpage;
1680 	SetPagePrivate(newpage);
1681 	set_page_private(newpage, (unsigned long)req);
1682 	ClearPagePrivate(page);
1683 	set_page_private(page, 0);
1684 	spin_unlock(&mapping->host->i_lock);
1685 	page_cache_release(page);
1686 out_unlock:
1687 	nfs_clear_page_tag_locked(req);
1688 out:
1689 	return ret;
1690 }
1691 #endif
1692 
1693 int __init nfs_init_writepagecache(void)
1694 {
1695 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1696 					     sizeof(struct nfs_write_data),
1697 					     0, SLAB_HWCACHE_ALIGN,
1698 					     NULL);
1699 	if (nfs_wdata_cachep == NULL)
1700 		return -ENOMEM;
1701 
1702 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1703 						     nfs_wdata_cachep);
1704 	if (nfs_wdata_mempool == NULL)
1705 		return -ENOMEM;
1706 
1707 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1708 						      nfs_wdata_cachep);
1709 	if (nfs_commit_mempool == NULL)
1710 		return -ENOMEM;
1711 
1712 	/*
1713 	 * NFS congestion size, scale with available memory.
1714 	 *
1715 	 *  64MB:    8192k
1716 	 * 128MB:   11585k
1717 	 * 256MB:   16384k
1718 	 * 512MB:   23170k
1719 	 *   1GB:   32768k
1720 	 *   2GB:   46340k
1721 	 *   4GB:   65536k
1722 	 *   8GB:   92681k
1723 	 *  16GB:  131072k
1724 	 *
1725 	 * This allows larger machines to have larger/more transfers.
1726 	 * Limit the default to 256M
1727 	 */
1728 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1729 	if (nfs_congestion_kb > 256*1024)
1730 		nfs_congestion_kb = 256*1024;
1731 
1732 	return 0;
1733 }
1734 
1735 void nfs_destroy_writepagecache(void)
1736 {
1737 	mempool_destroy(nfs_commit_mempool);
1738 	mempool_destroy(nfs_wdata_mempool);
1739 	kmem_cache_destroy(nfs_wdata_cachep);
1740 }
1741 
1742