1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 #include <linux/export.h> 24 25 #include <asm/uaccess.h> 26 27 #include "delegation.h" 28 #include "internal.h" 29 #include "iostat.h" 30 #include "nfs4_fs.h" 31 #include "fscache.h" 32 #include "pnfs.h" 33 34 #include "nfstrace.h" 35 36 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 37 38 #define MIN_POOL_WRITE (32) 39 #define MIN_POOL_COMMIT (4) 40 41 /* 42 * Local function declarations 43 */ 44 static void nfs_redirty_request(struct nfs_page *req); 45 static const struct rpc_call_ops nfs_write_common_ops; 46 static const struct rpc_call_ops nfs_commit_ops; 47 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops; 48 static const struct nfs_commit_completion_ops nfs_commit_completion_ops; 49 50 static struct kmem_cache *nfs_wdata_cachep; 51 static mempool_t *nfs_wdata_mempool; 52 static struct kmem_cache *nfs_cdata_cachep; 53 static mempool_t *nfs_commit_mempool; 54 55 struct nfs_commit_data *nfs_commitdata_alloc(void) 56 { 57 struct nfs_commit_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOIO); 58 59 if (p) { 60 memset(p, 0, sizeof(*p)); 61 INIT_LIST_HEAD(&p->pages); 62 } 63 return p; 64 } 65 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc); 66 67 void nfs_commit_free(struct nfs_commit_data *p) 68 { 69 mempool_free(p, nfs_commit_mempool); 70 } 71 EXPORT_SYMBOL_GPL(nfs_commit_free); 72 73 struct nfs_write_header *nfs_writehdr_alloc(void) 74 { 75 struct nfs_write_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO); 76 77 if (p) { 78 struct nfs_pgio_header *hdr = &p->header; 79 80 memset(p, 0, sizeof(*p)); 81 INIT_LIST_HEAD(&hdr->pages); 82 INIT_LIST_HEAD(&hdr->rpc_list); 83 spin_lock_init(&hdr->lock); 84 atomic_set(&hdr->refcnt, 0); 85 hdr->verf = &p->verf; 86 } 87 return p; 88 } 89 EXPORT_SYMBOL_GPL(nfs_writehdr_alloc); 90 91 static struct nfs_write_data *nfs_writedata_alloc(struct nfs_pgio_header *hdr, 92 unsigned int pagecount) 93 { 94 struct nfs_write_data *data, *prealloc; 95 96 prealloc = &container_of(hdr, struct nfs_write_header, header)->rpc_data; 97 if (prealloc->header == NULL) 98 data = prealloc; 99 else 100 data = kzalloc(sizeof(*data), GFP_KERNEL); 101 if (!data) 102 goto out; 103 104 if (nfs_pgarray_set(&data->pages, pagecount)) { 105 data->header = hdr; 106 atomic_inc(&hdr->refcnt); 107 } else { 108 if (data != prealloc) 109 kfree(data); 110 data = NULL; 111 } 112 out: 113 return data; 114 } 115 116 void nfs_writehdr_free(struct nfs_pgio_header *hdr) 117 { 118 struct nfs_write_header *whdr = container_of(hdr, struct nfs_write_header, header); 119 mempool_free(whdr, nfs_wdata_mempool); 120 } 121 EXPORT_SYMBOL_GPL(nfs_writehdr_free); 122 123 void nfs_writedata_release(struct nfs_write_data *wdata) 124 { 125 struct nfs_pgio_header *hdr = wdata->header; 126 struct nfs_write_header *write_header = container_of(hdr, struct nfs_write_header, header); 127 128 put_nfs_open_context(wdata->args.context); 129 if (wdata->pages.pagevec != wdata->pages.page_array) 130 kfree(wdata->pages.pagevec); 131 if (wdata == &write_header->rpc_data) { 132 wdata->header = NULL; 133 wdata = NULL; 134 } 135 if (atomic_dec_and_test(&hdr->refcnt)) 136 hdr->completion_ops->completion(hdr); 137 /* Note: we only free the rpc_task after callbacks are done. 138 * See the comment in rpc_free_task() for why 139 */ 140 kfree(wdata); 141 } 142 EXPORT_SYMBOL_GPL(nfs_writedata_release); 143 144 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 145 { 146 ctx->error = error; 147 smp_wmb(); 148 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 149 } 150 151 static struct nfs_page * 152 nfs_page_find_request_locked(struct nfs_inode *nfsi, struct page *page) 153 { 154 struct nfs_page *req = NULL; 155 156 if (PagePrivate(page)) 157 req = (struct nfs_page *)page_private(page); 158 else if (unlikely(PageSwapCache(page))) { 159 struct nfs_page *freq, *t; 160 161 /* Linearly search the commit list for the correct req */ 162 list_for_each_entry_safe(freq, t, &nfsi->commit_info.list, wb_list) { 163 if (freq->wb_page == page) { 164 req = freq; 165 break; 166 } 167 } 168 } 169 170 if (req) 171 kref_get(&req->wb_kref); 172 173 return req; 174 } 175 176 static struct nfs_page *nfs_page_find_request(struct page *page) 177 { 178 struct inode *inode = page_file_mapping(page)->host; 179 struct nfs_page *req = NULL; 180 181 spin_lock(&inode->i_lock); 182 req = nfs_page_find_request_locked(NFS_I(inode), page); 183 spin_unlock(&inode->i_lock); 184 return req; 185 } 186 187 /* Adjust the file length if we're writing beyond the end */ 188 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 189 { 190 struct inode *inode = page_file_mapping(page)->host; 191 loff_t end, i_size; 192 pgoff_t end_index; 193 194 spin_lock(&inode->i_lock); 195 i_size = i_size_read(inode); 196 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 197 if (i_size > 0 && page_file_index(page) < end_index) 198 goto out; 199 end = page_file_offset(page) + ((loff_t)offset+count); 200 if (i_size >= end) 201 goto out; 202 i_size_write(inode, end); 203 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 204 out: 205 spin_unlock(&inode->i_lock); 206 } 207 208 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 209 static void nfs_set_pageerror(struct page *page) 210 { 211 nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page)); 212 } 213 214 /* We can set the PG_uptodate flag if we see that a write request 215 * covers the full page. 216 */ 217 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 218 { 219 if (PageUptodate(page)) 220 return; 221 if (base != 0) 222 return; 223 if (count != nfs_page_length(page)) 224 return; 225 SetPageUptodate(page); 226 } 227 228 static int wb_priority(struct writeback_control *wbc) 229 { 230 if (wbc->for_reclaim) 231 return FLUSH_HIGHPRI | FLUSH_STABLE; 232 if (wbc->for_kupdate || wbc->for_background) 233 return FLUSH_LOWPRI | FLUSH_COND_STABLE; 234 return FLUSH_COND_STABLE; 235 } 236 237 /* 238 * NFS congestion control 239 */ 240 241 int nfs_congestion_kb; 242 243 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 244 #define NFS_CONGESTION_OFF_THRESH \ 245 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 246 247 static void nfs_set_page_writeback(struct page *page) 248 { 249 struct nfs_server *nfss = NFS_SERVER(page_file_mapping(page)->host); 250 int ret = test_set_page_writeback(page); 251 252 WARN_ON_ONCE(ret != 0); 253 254 if (atomic_long_inc_return(&nfss->writeback) > 255 NFS_CONGESTION_ON_THRESH) { 256 set_bdi_congested(&nfss->backing_dev_info, 257 BLK_RW_ASYNC); 258 } 259 } 260 261 static void nfs_end_page_writeback(struct page *page) 262 { 263 struct inode *inode = page_file_mapping(page)->host; 264 struct nfs_server *nfss = NFS_SERVER(inode); 265 266 end_page_writeback(page); 267 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 268 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC); 269 } 270 271 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock) 272 { 273 struct inode *inode = page_file_mapping(page)->host; 274 struct nfs_page *req; 275 int ret; 276 277 spin_lock(&inode->i_lock); 278 for (;;) { 279 req = nfs_page_find_request_locked(NFS_I(inode), page); 280 if (req == NULL) 281 break; 282 if (nfs_lock_request(req)) 283 break; 284 /* Note: If we hold the page lock, as is the case in nfs_writepage, 285 * then the call to nfs_lock_request() will always 286 * succeed provided that someone hasn't already marked the 287 * request as dirty (in which case we don't care). 288 */ 289 spin_unlock(&inode->i_lock); 290 if (!nonblock) 291 ret = nfs_wait_on_request(req); 292 else 293 ret = -EAGAIN; 294 nfs_release_request(req); 295 if (ret != 0) 296 return ERR_PTR(ret); 297 spin_lock(&inode->i_lock); 298 } 299 spin_unlock(&inode->i_lock); 300 return req; 301 } 302 303 /* 304 * Find an associated nfs write request, and prepare to flush it out 305 * May return an error if the user signalled nfs_wait_on_request(). 306 */ 307 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 308 struct page *page, bool nonblock) 309 { 310 struct nfs_page *req; 311 int ret = 0; 312 313 req = nfs_find_and_lock_request(page, nonblock); 314 if (!req) 315 goto out; 316 ret = PTR_ERR(req); 317 if (IS_ERR(req)) 318 goto out; 319 320 nfs_set_page_writeback(page); 321 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags)); 322 323 ret = 0; 324 if (!nfs_pageio_add_request(pgio, req)) { 325 nfs_redirty_request(req); 326 ret = pgio->pg_error; 327 } 328 out: 329 return ret; 330 } 331 332 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 333 { 334 struct inode *inode = page_file_mapping(page)->host; 335 int ret; 336 337 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 338 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 339 340 nfs_pageio_cond_complete(pgio, page_file_index(page)); 341 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE); 342 if (ret == -EAGAIN) { 343 redirty_page_for_writepage(wbc, page); 344 ret = 0; 345 } 346 return ret; 347 } 348 349 /* 350 * Write an mmapped page to the server. 351 */ 352 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 353 { 354 struct nfs_pageio_descriptor pgio; 355 int err; 356 357 NFS_PROTO(page_file_mapping(page)->host)->write_pageio_init(&pgio, 358 page->mapping->host, 359 wb_priority(wbc), 360 &nfs_async_write_completion_ops); 361 err = nfs_do_writepage(page, wbc, &pgio); 362 nfs_pageio_complete(&pgio); 363 if (err < 0) 364 return err; 365 if (pgio.pg_error < 0) 366 return pgio.pg_error; 367 return 0; 368 } 369 370 int nfs_writepage(struct page *page, struct writeback_control *wbc) 371 { 372 int ret; 373 374 ret = nfs_writepage_locked(page, wbc); 375 unlock_page(page); 376 return ret; 377 } 378 379 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 380 { 381 int ret; 382 383 ret = nfs_do_writepage(page, wbc, data); 384 unlock_page(page); 385 return ret; 386 } 387 388 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 389 { 390 struct inode *inode = mapping->host; 391 unsigned long *bitlock = &NFS_I(inode)->flags; 392 struct nfs_pageio_descriptor pgio; 393 int err; 394 395 /* Stop dirtying of new pages while we sync */ 396 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING, 397 nfs_wait_bit_killable, TASK_KILLABLE); 398 if (err) 399 goto out_err; 400 401 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 402 403 NFS_PROTO(inode)->write_pageio_init(&pgio, inode, wb_priority(wbc), &nfs_async_write_completion_ops); 404 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 405 nfs_pageio_complete(&pgio); 406 407 clear_bit_unlock(NFS_INO_FLUSHING, bitlock); 408 smp_mb__after_clear_bit(); 409 wake_up_bit(bitlock, NFS_INO_FLUSHING); 410 411 if (err < 0) 412 goto out_err; 413 err = pgio.pg_error; 414 if (err < 0) 415 goto out_err; 416 return 0; 417 out_err: 418 return err; 419 } 420 421 /* 422 * Insert a write request into an inode 423 */ 424 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 425 { 426 struct nfs_inode *nfsi = NFS_I(inode); 427 428 /* Lock the request! */ 429 nfs_lock_request(req); 430 431 spin_lock(&inode->i_lock); 432 if (!nfsi->npages && NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 433 inode->i_version++; 434 /* 435 * Swap-space should not get truncated. Hence no need to plug the race 436 * with invalidate/truncate. 437 */ 438 if (likely(!PageSwapCache(req->wb_page))) { 439 set_bit(PG_MAPPED, &req->wb_flags); 440 SetPagePrivate(req->wb_page); 441 set_page_private(req->wb_page, (unsigned long)req); 442 } 443 nfsi->npages++; 444 kref_get(&req->wb_kref); 445 spin_unlock(&inode->i_lock); 446 } 447 448 /* 449 * Remove a write request from an inode 450 */ 451 static void nfs_inode_remove_request(struct nfs_page *req) 452 { 453 struct inode *inode = req->wb_context->dentry->d_inode; 454 struct nfs_inode *nfsi = NFS_I(inode); 455 456 spin_lock(&inode->i_lock); 457 if (likely(!PageSwapCache(req->wb_page))) { 458 set_page_private(req->wb_page, 0); 459 ClearPagePrivate(req->wb_page); 460 clear_bit(PG_MAPPED, &req->wb_flags); 461 } 462 nfsi->npages--; 463 spin_unlock(&inode->i_lock); 464 nfs_release_request(req); 465 } 466 467 static void 468 nfs_mark_request_dirty(struct nfs_page *req) 469 { 470 __set_page_dirty_nobuffers(req->wb_page); 471 } 472 473 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 474 /** 475 * nfs_request_add_commit_list - add request to a commit list 476 * @req: pointer to a struct nfs_page 477 * @dst: commit list head 478 * @cinfo: holds list lock and accounting info 479 * 480 * This sets the PG_CLEAN bit, updates the cinfo count of 481 * number of outstanding requests requiring a commit as well as 482 * the MM page stats. 483 * 484 * The caller must _not_ hold the cinfo->lock, but must be 485 * holding the nfs_page lock. 486 */ 487 void 488 nfs_request_add_commit_list(struct nfs_page *req, struct list_head *dst, 489 struct nfs_commit_info *cinfo) 490 { 491 set_bit(PG_CLEAN, &(req)->wb_flags); 492 spin_lock(cinfo->lock); 493 nfs_list_add_request(req, dst); 494 cinfo->mds->ncommit++; 495 spin_unlock(cinfo->lock); 496 if (!cinfo->dreq) { 497 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 498 inc_bdi_stat(page_file_mapping(req->wb_page)->backing_dev_info, 499 BDI_RECLAIMABLE); 500 __mark_inode_dirty(req->wb_context->dentry->d_inode, 501 I_DIRTY_DATASYNC); 502 } 503 } 504 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list); 505 506 /** 507 * nfs_request_remove_commit_list - Remove request from a commit list 508 * @req: pointer to a nfs_page 509 * @cinfo: holds list lock and accounting info 510 * 511 * This clears the PG_CLEAN bit, and updates the cinfo's count of 512 * number of outstanding requests requiring a commit 513 * It does not update the MM page stats. 514 * 515 * The caller _must_ hold the cinfo->lock and the nfs_page lock. 516 */ 517 void 518 nfs_request_remove_commit_list(struct nfs_page *req, 519 struct nfs_commit_info *cinfo) 520 { 521 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) 522 return; 523 nfs_list_remove_request(req); 524 cinfo->mds->ncommit--; 525 } 526 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list); 527 528 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 529 struct inode *inode) 530 { 531 cinfo->lock = &inode->i_lock; 532 cinfo->mds = &NFS_I(inode)->commit_info; 533 cinfo->ds = pnfs_get_ds_info(inode); 534 cinfo->dreq = NULL; 535 cinfo->completion_ops = &nfs_commit_completion_ops; 536 } 537 538 void nfs_init_cinfo(struct nfs_commit_info *cinfo, 539 struct inode *inode, 540 struct nfs_direct_req *dreq) 541 { 542 if (dreq) 543 nfs_init_cinfo_from_dreq(cinfo, dreq); 544 else 545 nfs_init_cinfo_from_inode(cinfo, inode); 546 } 547 EXPORT_SYMBOL_GPL(nfs_init_cinfo); 548 549 /* 550 * Add a request to the inode's commit list. 551 */ 552 void 553 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, 554 struct nfs_commit_info *cinfo) 555 { 556 if (pnfs_mark_request_commit(req, lseg, cinfo)) 557 return; 558 nfs_request_add_commit_list(req, &cinfo->mds->list, cinfo); 559 } 560 561 static void 562 nfs_clear_page_commit(struct page *page) 563 { 564 dec_zone_page_state(page, NR_UNSTABLE_NFS); 565 dec_bdi_stat(page_file_mapping(page)->backing_dev_info, BDI_RECLAIMABLE); 566 } 567 568 static void 569 nfs_clear_request_commit(struct nfs_page *req) 570 { 571 if (test_bit(PG_CLEAN, &req->wb_flags)) { 572 struct inode *inode = req->wb_context->dentry->d_inode; 573 struct nfs_commit_info cinfo; 574 575 nfs_init_cinfo_from_inode(&cinfo, inode); 576 if (!pnfs_clear_request_commit(req, &cinfo)) { 577 spin_lock(cinfo.lock); 578 nfs_request_remove_commit_list(req, &cinfo); 579 spin_unlock(cinfo.lock); 580 } 581 nfs_clear_page_commit(req->wb_page); 582 } 583 } 584 585 static inline 586 int nfs_write_need_commit(struct nfs_write_data *data) 587 { 588 if (data->verf.committed == NFS_DATA_SYNC) 589 return data->header->lseg == NULL; 590 return data->verf.committed != NFS_FILE_SYNC; 591 } 592 593 #else 594 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 595 struct inode *inode) 596 { 597 } 598 599 void nfs_init_cinfo(struct nfs_commit_info *cinfo, 600 struct inode *inode, 601 struct nfs_direct_req *dreq) 602 { 603 } 604 605 void 606 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, 607 struct nfs_commit_info *cinfo) 608 { 609 } 610 611 static void 612 nfs_clear_request_commit(struct nfs_page *req) 613 { 614 } 615 616 static inline 617 int nfs_write_need_commit(struct nfs_write_data *data) 618 { 619 return 0; 620 } 621 622 #endif 623 624 static void nfs_write_completion(struct nfs_pgio_header *hdr) 625 { 626 struct nfs_commit_info cinfo; 627 unsigned long bytes = 0; 628 629 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 630 goto out; 631 nfs_init_cinfo_from_inode(&cinfo, hdr->inode); 632 while (!list_empty(&hdr->pages)) { 633 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 634 635 bytes += req->wb_bytes; 636 nfs_list_remove_request(req); 637 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && 638 (hdr->good_bytes < bytes)) { 639 nfs_set_pageerror(req->wb_page); 640 nfs_context_set_write_error(req->wb_context, hdr->error); 641 goto remove_req; 642 } 643 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) { 644 nfs_mark_request_dirty(req); 645 goto next; 646 } 647 if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) { 648 memcpy(&req->wb_verf, &hdr->verf->verifier, sizeof(req->wb_verf)); 649 nfs_mark_request_commit(req, hdr->lseg, &cinfo); 650 goto next; 651 } 652 remove_req: 653 nfs_inode_remove_request(req); 654 next: 655 nfs_unlock_request(req); 656 nfs_end_page_writeback(req->wb_page); 657 nfs_release_request(req); 658 } 659 out: 660 hdr->release(hdr); 661 } 662 663 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 664 static unsigned long 665 nfs_reqs_to_commit(struct nfs_commit_info *cinfo) 666 { 667 return cinfo->mds->ncommit; 668 } 669 670 /* cinfo->lock held by caller */ 671 int 672 nfs_scan_commit_list(struct list_head *src, struct list_head *dst, 673 struct nfs_commit_info *cinfo, int max) 674 { 675 struct nfs_page *req, *tmp; 676 int ret = 0; 677 678 list_for_each_entry_safe(req, tmp, src, wb_list) { 679 if (!nfs_lock_request(req)) 680 continue; 681 kref_get(&req->wb_kref); 682 if (cond_resched_lock(cinfo->lock)) 683 list_safe_reset_next(req, tmp, wb_list); 684 nfs_request_remove_commit_list(req, cinfo); 685 nfs_list_add_request(req, dst); 686 ret++; 687 if ((ret == max) && !cinfo->dreq) 688 break; 689 } 690 return ret; 691 } 692 693 /* 694 * nfs_scan_commit - Scan an inode for commit requests 695 * @inode: NFS inode to scan 696 * @dst: mds destination list 697 * @cinfo: mds and ds lists of reqs ready to commit 698 * 699 * Moves requests from the inode's 'commit' request list. 700 * The requests are *not* checked to ensure that they form a contiguous set. 701 */ 702 int 703 nfs_scan_commit(struct inode *inode, struct list_head *dst, 704 struct nfs_commit_info *cinfo) 705 { 706 int ret = 0; 707 708 spin_lock(cinfo->lock); 709 if (cinfo->mds->ncommit > 0) { 710 const int max = INT_MAX; 711 712 ret = nfs_scan_commit_list(&cinfo->mds->list, dst, 713 cinfo, max); 714 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret); 715 } 716 spin_unlock(cinfo->lock); 717 return ret; 718 } 719 720 #else 721 static unsigned long nfs_reqs_to_commit(struct nfs_commit_info *cinfo) 722 { 723 return 0; 724 } 725 726 int nfs_scan_commit(struct inode *inode, struct list_head *dst, 727 struct nfs_commit_info *cinfo) 728 { 729 return 0; 730 } 731 #endif 732 733 /* 734 * Search for an existing write request, and attempt to update 735 * it to reflect a new dirty region on a given page. 736 * 737 * If the attempt fails, then the existing request is flushed out 738 * to disk. 739 */ 740 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 741 struct page *page, 742 unsigned int offset, 743 unsigned int bytes) 744 { 745 struct nfs_page *req; 746 unsigned int rqend; 747 unsigned int end; 748 int error; 749 750 if (!PagePrivate(page)) 751 return NULL; 752 753 end = offset + bytes; 754 spin_lock(&inode->i_lock); 755 756 for (;;) { 757 req = nfs_page_find_request_locked(NFS_I(inode), page); 758 if (req == NULL) 759 goto out_unlock; 760 761 rqend = req->wb_offset + req->wb_bytes; 762 /* 763 * Tell the caller to flush out the request if 764 * the offsets are non-contiguous. 765 * Note: nfs_flush_incompatible() will already 766 * have flushed out requests having wrong owners. 767 */ 768 if (offset > rqend 769 || end < req->wb_offset) 770 goto out_flushme; 771 772 if (nfs_lock_request(req)) 773 break; 774 775 /* The request is locked, so wait and then retry */ 776 spin_unlock(&inode->i_lock); 777 error = nfs_wait_on_request(req); 778 nfs_release_request(req); 779 if (error != 0) 780 goto out_err; 781 spin_lock(&inode->i_lock); 782 } 783 784 /* Okay, the request matches. Update the region */ 785 if (offset < req->wb_offset) { 786 req->wb_offset = offset; 787 req->wb_pgbase = offset; 788 } 789 if (end > rqend) 790 req->wb_bytes = end - req->wb_offset; 791 else 792 req->wb_bytes = rqend - req->wb_offset; 793 out_unlock: 794 spin_unlock(&inode->i_lock); 795 if (req) 796 nfs_clear_request_commit(req); 797 return req; 798 out_flushme: 799 spin_unlock(&inode->i_lock); 800 nfs_release_request(req); 801 error = nfs_wb_page(inode, page); 802 out_err: 803 return ERR_PTR(error); 804 } 805 806 /* 807 * Try to update an existing write request, or create one if there is none. 808 * 809 * Note: Should always be called with the Page Lock held to prevent races 810 * if we have to add a new request. Also assumes that the caller has 811 * already called nfs_flush_incompatible() if necessary. 812 */ 813 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 814 struct page *page, unsigned int offset, unsigned int bytes) 815 { 816 struct inode *inode = page_file_mapping(page)->host; 817 struct nfs_page *req; 818 819 req = nfs_try_to_update_request(inode, page, offset, bytes); 820 if (req != NULL) 821 goto out; 822 req = nfs_create_request(ctx, inode, page, offset, bytes); 823 if (IS_ERR(req)) 824 goto out; 825 nfs_inode_add_request(inode, req); 826 out: 827 return req; 828 } 829 830 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 831 unsigned int offset, unsigned int count) 832 { 833 struct nfs_page *req; 834 835 req = nfs_setup_write_request(ctx, page, offset, count); 836 if (IS_ERR(req)) 837 return PTR_ERR(req); 838 /* Update file length */ 839 nfs_grow_file(page, offset, count); 840 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 841 nfs_mark_request_dirty(req); 842 nfs_unlock_and_release_request(req); 843 return 0; 844 } 845 846 int nfs_flush_incompatible(struct file *file, struct page *page) 847 { 848 struct nfs_open_context *ctx = nfs_file_open_context(file); 849 struct nfs_lock_context *l_ctx; 850 struct nfs_page *req; 851 int do_flush, status; 852 /* 853 * Look for a request corresponding to this page. If there 854 * is one, and it belongs to another file, we flush it out 855 * before we try to copy anything into the page. Do this 856 * due to the lack of an ACCESS-type call in NFSv2. 857 * Also do the same if we find a request from an existing 858 * dropped page. 859 */ 860 do { 861 req = nfs_page_find_request(page); 862 if (req == NULL) 863 return 0; 864 l_ctx = req->wb_lock_context; 865 do_flush = req->wb_page != page || req->wb_context != ctx; 866 if (l_ctx && ctx->dentry->d_inode->i_flock != NULL) { 867 do_flush |= l_ctx->lockowner.l_owner != current->files 868 || l_ctx->lockowner.l_pid != current->tgid; 869 } 870 nfs_release_request(req); 871 if (!do_flush) 872 return 0; 873 status = nfs_wb_page(page_file_mapping(page)->host, page); 874 } while (status == 0); 875 return status; 876 } 877 878 /* 879 * Avoid buffered writes when a open context credential's key would 880 * expire soon. 881 * 882 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL. 883 * 884 * Return 0 and set a credential flag which triggers the inode to flush 885 * and performs NFS_FILE_SYNC writes if the key will expired within 886 * RPC_KEY_EXPIRE_TIMEO. 887 */ 888 int 889 nfs_key_timeout_notify(struct file *filp, struct inode *inode) 890 { 891 struct nfs_open_context *ctx = nfs_file_open_context(filp); 892 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth; 893 894 return rpcauth_key_timeout_notify(auth, ctx->cred); 895 } 896 897 /* 898 * Test if the open context credential key is marked to expire soon. 899 */ 900 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx) 901 { 902 return rpcauth_cred_key_to_expire(ctx->cred); 903 } 904 905 /* 906 * If the page cache is marked as unsafe or invalid, then we can't rely on 907 * the PageUptodate() flag. In this case, we will need to turn off 908 * write optimisations that depend on the page contents being correct. 909 */ 910 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode) 911 { 912 if (nfs_have_delegated_attributes(inode)) 913 goto out; 914 if (NFS_I(inode)->cache_validity & (NFS_INO_INVALID_DATA|NFS_INO_REVAL_PAGECACHE)) 915 return false; 916 out: 917 return PageUptodate(page) != 0; 918 } 919 920 /* If we know the page is up to date, and we're not using byte range locks (or 921 * if we have the whole file locked for writing), it may be more efficient to 922 * extend the write to cover the entire page in order to avoid fragmentation 923 * inefficiencies. 924 * 925 * If the file is opened for synchronous writes or if we have a write delegation 926 * from the server then we can just skip the rest of the checks. 927 */ 928 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode) 929 { 930 if (file->f_flags & O_DSYNC) 931 return 0; 932 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 933 return 1; 934 if (nfs_write_pageuptodate(page, inode) && (inode->i_flock == NULL || 935 (inode->i_flock->fl_start == 0 && 936 inode->i_flock->fl_end == OFFSET_MAX && 937 inode->i_flock->fl_type != F_RDLCK))) 938 return 1; 939 return 0; 940 } 941 942 /* 943 * Update and possibly write a cached page of an NFS file. 944 * 945 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 946 * things with a page scheduled for an RPC call (e.g. invalidate it). 947 */ 948 int nfs_updatepage(struct file *file, struct page *page, 949 unsigned int offset, unsigned int count) 950 { 951 struct nfs_open_context *ctx = nfs_file_open_context(file); 952 struct inode *inode = page_file_mapping(page)->host; 953 int status = 0; 954 955 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 956 957 dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n", 958 file, count, (long long)(page_file_offset(page) + offset)); 959 960 if (nfs_can_extend_write(file, page, inode)) { 961 count = max(count + offset, nfs_page_length(page)); 962 offset = 0; 963 } 964 965 status = nfs_writepage_setup(ctx, page, offset, count); 966 if (status < 0) 967 nfs_set_pageerror(page); 968 else 969 __set_page_dirty_nobuffers(page); 970 971 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 972 status, (long long)i_size_read(inode)); 973 return status; 974 } 975 976 static int flush_task_priority(int how) 977 { 978 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 979 case FLUSH_HIGHPRI: 980 return RPC_PRIORITY_HIGH; 981 case FLUSH_LOWPRI: 982 return RPC_PRIORITY_LOW; 983 } 984 return RPC_PRIORITY_NORMAL; 985 } 986 987 int nfs_initiate_write(struct rpc_clnt *clnt, 988 struct nfs_write_data *data, 989 const struct rpc_call_ops *call_ops, 990 int how, int flags) 991 { 992 struct inode *inode = data->header->inode; 993 int priority = flush_task_priority(how); 994 struct rpc_task *task; 995 struct rpc_message msg = { 996 .rpc_argp = &data->args, 997 .rpc_resp = &data->res, 998 .rpc_cred = data->header->cred, 999 }; 1000 struct rpc_task_setup task_setup_data = { 1001 .rpc_client = clnt, 1002 .task = &data->task, 1003 .rpc_message = &msg, 1004 .callback_ops = call_ops, 1005 .callback_data = data, 1006 .workqueue = nfsiod_workqueue, 1007 .flags = RPC_TASK_ASYNC | flags, 1008 .priority = priority, 1009 }; 1010 int ret = 0; 1011 1012 /* Set up the initial task struct. */ 1013 NFS_PROTO(inode)->write_setup(data, &msg); 1014 1015 dprintk("NFS: %5u initiated write call " 1016 "(req %s/%lld, %u bytes @ offset %llu)\n", 1017 data->task.tk_pid, 1018 inode->i_sb->s_id, 1019 (long long)NFS_FILEID(inode), 1020 data->args.count, 1021 (unsigned long long)data->args.offset); 1022 1023 nfs4_state_protect_write(NFS_SERVER(inode)->nfs_client, 1024 &task_setup_data.rpc_client, &msg, data); 1025 1026 task = rpc_run_task(&task_setup_data); 1027 if (IS_ERR(task)) { 1028 ret = PTR_ERR(task); 1029 goto out; 1030 } 1031 if (how & FLUSH_SYNC) { 1032 ret = rpc_wait_for_completion_task(task); 1033 if (ret == 0) 1034 ret = task->tk_status; 1035 } 1036 rpc_put_task(task); 1037 out: 1038 return ret; 1039 } 1040 EXPORT_SYMBOL_GPL(nfs_initiate_write); 1041 1042 /* 1043 * Set up the argument/result storage required for the RPC call. 1044 */ 1045 static void nfs_write_rpcsetup(struct nfs_write_data *data, 1046 unsigned int count, unsigned int offset, 1047 int how, struct nfs_commit_info *cinfo) 1048 { 1049 struct nfs_page *req = data->header->req; 1050 1051 /* Set up the RPC argument and reply structs 1052 * NB: take care not to mess about with data->commit et al. */ 1053 1054 data->args.fh = NFS_FH(data->header->inode); 1055 data->args.offset = req_offset(req) + offset; 1056 /* pnfs_set_layoutcommit needs this */ 1057 data->mds_offset = data->args.offset; 1058 data->args.pgbase = req->wb_pgbase + offset; 1059 data->args.pages = data->pages.pagevec; 1060 data->args.count = count; 1061 data->args.context = get_nfs_open_context(req->wb_context); 1062 data->args.lock_context = req->wb_lock_context; 1063 data->args.stable = NFS_UNSTABLE; 1064 switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) { 1065 case 0: 1066 break; 1067 case FLUSH_COND_STABLE: 1068 if (nfs_reqs_to_commit(cinfo)) 1069 break; 1070 default: 1071 data->args.stable = NFS_FILE_SYNC; 1072 } 1073 1074 data->res.fattr = &data->fattr; 1075 data->res.count = count; 1076 data->res.verf = &data->verf; 1077 nfs_fattr_init(&data->fattr); 1078 } 1079 1080 static int nfs_do_write(struct nfs_write_data *data, 1081 const struct rpc_call_ops *call_ops, 1082 int how) 1083 { 1084 struct inode *inode = data->header->inode; 1085 1086 return nfs_initiate_write(NFS_CLIENT(inode), data, call_ops, how, 0); 1087 } 1088 1089 static int nfs_do_multiple_writes(struct list_head *head, 1090 const struct rpc_call_ops *call_ops, 1091 int how) 1092 { 1093 struct nfs_write_data *data; 1094 int ret = 0; 1095 1096 while (!list_empty(head)) { 1097 int ret2; 1098 1099 data = list_first_entry(head, struct nfs_write_data, list); 1100 list_del_init(&data->list); 1101 1102 ret2 = nfs_do_write(data, call_ops, how); 1103 if (ret == 0) 1104 ret = ret2; 1105 } 1106 return ret; 1107 } 1108 1109 /* If a nfs_flush_* function fails, it should remove reqs from @head and 1110 * call this on each, which will prepare them to be retried on next 1111 * writeback using standard nfs. 1112 */ 1113 static void nfs_redirty_request(struct nfs_page *req) 1114 { 1115 nfs_mark_request_dirty(req); 1116 nfs_unlock_request(req); 1117 nfs_end_page_writeback(req->wb_page); 1118 nfs_release_request(req); 1119 } 1120 1121 static void nfs_async_write_error(struct list_head *head) 1122 { 1123 struct nfs_page *req; 1124 1125 while (!list_empty(head)) { 1126 req = nfs_list_entry(head->next); 1127 nfs_list_remove_request(req); 1128 nfs_redirty_request(req); 1129 } 1130 } 1131 1132 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = { 1133 .error_cleanup = nfs_async_write_error, 1134 .completion = nfs_write_completion, 1135 }; 1136 1137 static void nfs_flush_error(struct nfs_pageio_descriptor *desc, 1138 struct nfs_pgio_header *hdr) 1139 { 1140 set_bit(NFS_IOHDR_REDO, &hdr->flags); 1141 while (!list_empty(&hdr->rpc_list)) { 1142 struct nfs_write_data *data = list_first_entry(&hdr->rpc_list, 1143 struct nfs_write_data, list); 1144 list_del(&data->list); 1145 nfs_writedata_release(data); 1146 } 1147 desc->pg_completion_ops->error_cleanup(&desc->pg_list); 1148 } 1149 1150 /* 1151 * Generate multiple small requests to write out a single 1152 * contiguous dirty area on one page. 1153 */ 1154 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, 1155 struct nfs_pgio_header *hdr) 1156 { 1157 struct nfs_page *req = hdr->req; 1158 struct page *page = req->wb_page; 1159 struct nfs_write_data *data; 1160 size_t wsize = desc->pg_bsize, nbytes; 1161 unsigned int offset; 1162 int requests = 0; 1163 struct nfs_commit_info cinfo; 1164 1165 nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq); 1166 1167 if ((desc->pg_ioflags & FLUSH_COND_STABLE) && 1168 (desc->pg_moreio || nfs_reqs_to_commit(&cinfo) || 1169 desc->pg_count > wsize)) 1170 desc->pg_ioflags &= ~FLUSH_COND_STABLE; 1171 1172 1173 offset = 0; 1174 nbytes = desc->pg_count; 1175 do { 1176 size_t len = min(nbytes, wsize); 1177 1178 data = nfs_writedata_alloc(hdr, 1); 1179 if (!data) { 1180 nfs_flush_error(desc, hdr); 1181 return -ENOMEM; 1182 } 1183 data->pages.pagevec[0] = page; 1184 nfs_write_rpcsetup(data, len, offset, desc->pg_ioflags, &cinfo); 1185 list_add(&data->list, &hdr->rpc_list); 1186 requests++; 1187 nbytes -= len; 1188 offset += len; 1189 } while (nbytes != 0); 1190 nfs_list_remove_request(req); 1191 nfs_list_add_request(req, &hdr->pages); 1192 desc->pg_rpc_callops = &nfs_write_common_ops; 1193 return 0; 1194 } 1195 1196 /* 1197 * Create an RPC task for the given write request and kick it. 1198 * The page must have been locked by the caller. 1199 * 1200 * It may happen that the page we're passed is not marked dirty. 1201 * This is the case if nfs_updatepage detects a conflicting request 1202 * that has been written but not committed. 1203 */ 1204 static int nfs_flush_one(struct nfs_pageio_descriptor *desc, 1205 struct nfs_pgio_header *hdr) 1206 { 1207 struct nfs_page *req; 1208 struct page **pages; 1209 struct nfs_write_data *data; 1210 struct list_head *head = &desc->pg_list; 1211 struct nfs_commit_info cinfo; 1212 1213 data = nfs_writedata_alloc(hdr, nfs_page_array_len(desc->pg_base, 1214 desc->pg_count)); 1215 if (!data) { 1216 nfs_flush_error(desc, hdr); 1217 return -ENOMEM; 1218 } 1219 1220 nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq); 1221 pages = data->pages.pagevec; 1222 while (!list_empty(head)) { 1223 req = nfs_list_entry(head->next); 1224 nfs_list_remove_request(req); 1225 nfs_list_add_request(req, &hdr->pages); 1226 *pages++ = req->wb_page; 1227 } 1228 1229 if ((desc->pg_ioflags & FLUSH_COND_STABLE) && 1230 (desc->pg_moreio || nfs_reqs_to_commit(&cinfo))) 1231 desc->pg_ioflags &= ~FLUSH_COND_STABLE; 1232 1233 /* Set up the argument struct */ 1234 nfs_write_rpcsetup(data, desc->pg_count, 0, desc->pg_ioflags, &cinfo); 1235 list_add(&data->list, &hdr->rpc_list); 1236 desc->pg_rpc_callops = &nfs_write_common_ops; 1237 return 0; 1238 } 1239 1240 int nfs_generic_flush(struct nfs_pageio_descriptor *desc, 1241 struct nfs_pgio_header *hdr) 1242 { 1243 if (desc->pg_bsize < PAGE_CACHE_SIZE) 1244 return nfs_flush_multi(desc, hdr); 1245 return nfs_flush_one(desc, hdr); 1246 } 1247 EXPORT_SYMBOL_GPL(nfs_generic_flush); 1248 1249 static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc) 1250 { 1251 struct nfs_write_header *whdr; 1252 struct nfs_pgio_header *hdr; 1253 int ret; 1254 1255 whdr = nfs_writehdr_alloc(); 1256 if (!whdr) { 1257 desc->pg_completion_ops->error_cleanup(&desc->pg_list); 1258 return -ENOMEM; 1259 } 1260 hdr = &whdr->header; 1261 nfs_pgheader_init(desc, hdr, nfs_writehdr_free); 1262 atomic_inc(&hdr->refcnt); 1263 ret = nfs_generic_flush(desc, hdr); 1264 if (ret == 0) 1265 ret = nfs_do_multiple_writes(&hdr->rpc_list, 1266 desc->pg_rpc_callops, 1267 desc->pg_ioflags); 1268 if (atomic_dec_and_test(&hdr->refcnt)) 1269 hdr->completion_ops->completion(hdr); 1270 return ret; 1271 } 1272 1273 static const struct nfs_pageio_ops nfs_pageio_write_ops = { 1274 .pg_test = nfs_generic_pg_test, 1275 .pg_doio = nfs_generic_pg_writepages, 1276 }; 1277 1278 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 1279 struct inode *inode, int ioflags, 1280 const struct nfs_pgio_completion_ops *compl_ops) 1281 { 1282 nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops, compl_ops, 1283 NFS_SERVER(inode)->wsize, ioflags); 1284 } 1285 EXPORT_SYMBOL_GPL(nfs_pageio_init_write); 1286 1287 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio) 1288 { 1289 pgio->pg_ops = &nfs_pageio_write_ops; 1290 pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize; 1291 } 1292 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds); 1293 1294 1295 void nfs_write_prepare(struct rpc_task *task, void *calldata) 1296 { 1297 struct nfs_write_data *data = calldata; 1298 int err; 1299 err = NFS_PROTO(data->header->inode)->write_rpc_prepare(task, data); 1300 if (err) 1301 rpc_exit(task, err); 1302 } 1303 1304 void nfs_commit_prepare(struct rpc_task *task, void *calldata) 1305 { 1306 struct nfs_commit_data *data = calldata; 1307 1308 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data); 1309 } 1310 1311 /* 1312 * Handle a write reply that flushes a whole page. 1313 * 1314 * FIXME: There is an inherent race with invalidate_inode_pages and 1315 * writebacks since the page->count is kept > 1 for as long 1316 * as the page has a write request pending. 1317 */ 1318 static void nfs_writeback_done_common(struct rpc_task *task, void *calldata) 1319 { 1320 struct nfs_write_data *data = calldata; 1321 1322 nfs_writeback_done(task, data); 1323 } 1324 1325 static void nfs_writeback_release_common(void *calldata) 1326 { 1327 struct nfs_write_data *data = calldata; 1328 struct nfs_pgio_header *hdr = data->header; 1329 int status = data->task.tk_status; 1330 1331 if ((status >= 0) && nfs_write_need_commit(data)) { 1332 spin_lock(&hdr->lock); 1333 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) 1334 ; /* Do nothing */ 1335 else if (!test_and_set_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) 1336 memcpy(hdr->verf, &data->verf, sizeof(*hdr->verf)); 1337 else if (memcmp(hdr->verf, &data->verf, sizeof(*hdr->verf))) 1338 set_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags); 1339 spin_unlock(&hdr->lock); 1340 } 1341 nfs_writedata_release(data); 1342 } 1343 1344 static const struct rpc_call_ops nfs_write_common_ops = { 1345 .rpc_call_prepare = nfs_write_prepare, 1346 .rpc_call_done = nfs_writeback_done_common, 1347 .rpc_release = nfs_writeback_release_common, 1348 }; 1349 1350 1351 /* 1352 * This function is called when the WRITE call is complete. 1353 */ 1354 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1355 { 1356 struct nfs_writeargs *argp = &data->args; 1357 struct nfs_writeres *resp = &data->res; 1358 struct inode *inode = data->header->inode; 1359 int status; 1360 1361 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1362 task->tk_pid, task->tk_status); 1363 1364 /* 1365 * ->write_done will attempt to use post-op attributes to detect 1366 * conflicting writes by other clients. A strict interpretation 1367 * of close-to-open would allow us to continue caching even if 1368 * another writer had changed the file, but some applications 1369 * depend on tighter cache coherency when writing. 1370 */ 1371 status = NFS_PROTO(inode)->write_done(task, data); 1372 if (status != 0) 1373 return; 1374 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1375 1376 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 1377 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1378 /* We tried a write call, but the server did not 1379 * commit data to stable storage even though we 1380 * requested it. 1381 * Note: There is a known bug in Tru64 < 5.0 in which 1382 * the server reports NFS_DATA_SYNC, but performs 1383 * NFS_FILE_SYNC. We therefore implement this checking 1384 * as a dprintk() in order to avoid filling syslog. 1385 */ 1386 static unsigned long complain; 1387 1388 /* Note this will print the MDS for a DS write */ 1389 if (time_before(complain, jiffies)) { 1390 dprintk("NFS: faulty NFS server %s:" 1391 " (committed = %d) != (stable = %d)\n", 1392 NFS_SERVER(inode)->nfs_client->cl_hostname, 1393 resp->verf->committed, argp->stable); 1394 complain = jiffies + 300 * HZ; 1395 } 1396 } 1397 #endif 1398 if (task->tk_status < 0) 1399 nfs_set_pgio_error(data->header, task->tk_status, argp->offset); 1400 else if (resp->count < argp->count) { 1401 static unsigned long complain; 1402 1403 /* This a short write! */ 1404 nfs_inc_stats(inode, NFSIOS_SHORTWRITE); 1405 1406 /* Has the server at least made some progress? */ 1407 if (resp->count == 0) { 1408 if (time_before(complain, jiffies)) { 1409 printk(KERN_WARNING 1410 "NFS: Server wrote zero bytes, expected %u.\n", 1411 argp->count); 1412 complain = jiffies + 300 * HZ; 1413 } 1414 nfs_set_pgio_error(data->header, -EIO, argp->offset); 1415 task->tk_status = -EIO; 1416 return; 1417 } 1418 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1419 if (resp->verf->committed != NFS_UNSTABLE) { 1420 /* Resend from where the server left off */ 1421 data->mds_offset += resp->count; 1422 argp->offset += resp->count; 1423 argp->pgbase += resp->count; 1424 argp->count -= resp->count; 1425 } else { 1426 /* Resend as a stable write in order to avoid 1427 * headaches in the case of a server crash. 1428 */ 1429 argp->stable = NFS_FILE_SYNC; 1430 } 1431 rpc_restart_call_prepare(task); 1432 } 1433 } 1434 1435 1436 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 1437 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait) 1438 { 1439 int ret; 1440 1441 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags)) 1442 return 1; 1443 if (!may_wait) 1444 return 0; 1445 ret = out_of_line_wait_on_bit_lock(&nfsi->flags, 1446 NFS_INO_COMMIT, 1447 nfs_wait_bit_killable, 1448 TASK_KILLABLE); 1449 return (ret < 0) ? ret : 1; 1450 } 1451 1452 static void nfs_commit_clear_lock(struct nfs_inode *nfsi) 1453 { 1454 clear_bit(NFS_INO_COMMIT, &nfsi->flags); 1455 smp_mb__after_clear_bit(); 1456 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT); 1457 } 1458 1459 void nfs_commitdata_release(struct nfs_commit_data *data) 1460 { 1461 put_nfs_open_context(data->context); 1462 nfs_commit_free(data); 1463 } 1464 EXPORT_SYMBOL_GPL(nfs_commitdata_release); 1465 1466 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data, 1467 const struct rpc_call_ops *call_ops, 1468 int how, int flags) 1469 { 1470 struct rpc_task *task; 1471 int priority = flush_task_priority(how); 1472 struct rpc_message msg = { 1473 .rpc_argp = &data->args, 1474 .rpc_resp = &data->res, 1475 .rpc_cred = data->cred, 1476 }; 1477 struct rpc_task_setup task_setup_data = { 1478 .task = &data->task, 1479 .rpc_client = clnt, 1480 .rpc_message = &msg, 1481 .callback_ops = call_ops, 1482 .callback_data = data, 1483 .workqueue = nfsiod_workqueue, 1484 .flags = RPC_TASK_ASYNC | flags, 1485 .priority = priority, 1486 }; 1487 /* Set up the initial task struct. */ 1488 NFS_PROTO(data->inode)->commit_setup(data, &msg); 1489 1490 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1491 1492 nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client, 1493 NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg); 1494 1495 task = rpc_run_task(&task_setup_data); 1496 if (IS_ERR(task)) 1497 return PTR_ERR(task); 1498 if (how & FLUSH_SYNC) 1499 rpc_wait_for_completion_task(task); 1500 rpc_put_task(task); 1501 return 0; 1502 } 1503 EXPORT_SYMBOL_GPL(nfs_initiate_commit); 1504 1505 /* 1506 * Set up the argument/result storage required for the RPC call. 1507 */ 1508 void nfs_init_commit(struct nfs_commit_data *data, 1509 struct list_head *head, 1510 struct pnfs_layout_segment *lseg, 1511 struct nfs_commit_info *cinfo) 1512 { 1513 struct nfs_page *first = nfs_list_entry(head->next); 1514 struct inode *inode = first->wb_context->dentry->d_inode; 1515 1516 /* Set up the RPC argument and reply structs 1517 * NB: take care not to mess about with data->commit et al. */ 1518 1519 list_splice_init(head, &data->pages); 1520 1521 data->inode = inode; 1522 data->cred = first->wb_context->cred; 1523 data->lseg = lseg; /* reference transferred */ 1524 data->mds_ops = &nfs_commit_ops; 1525 data->completion_ops = cinfo->completion_ops; 1526 data->dreq = cinfo->dreq; 1527 1528 data->args.fh = NFS_FH(data->inode); 1529 /* Note: we always request a commit of the entire inode */ 1530 data->args.offset = 0; 1531 data->args.count = 0; 1532 data->context = get_nfs_open_context(first->wb_context); 1533 data->res.fattr = &data->fattr; 1534 data->res.verf = &data->verf; 1535 nfs_fattr_init(&data->fattr); 1536 } 1537 EXPORT_SYMBOL_GPL(nfs_init_commit); 1538 1539 void nfs_retry_commit(struct list_head *page_list, 1540 struct pnfs_layout_segment *lseg, 1541 struct nfs_commit_info *cinfo) 1542 { 1543 struct nfs_page *req; 1544 1545 while (!list_empty(page_list)) { 1546 req = nfs_list_entry(page_list->next); 1547 nfs_list_remove_request(req); 1548 nfs_mark_request_commit(req, lseg, cinfo); 1549 if (!cinfo->dreq) { 1550 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1551 dec_bdi_stat(page_file_mapping(req->wb_page)->backing_dev_info, 1552 BDI_RECLAIMABLE); 1553 } 1554 nfs_unlock_and_release_request(req); 1555 } 1556 } 1557 EXPORT_SYMBOL_GPL(nfs_retry_commit); 1558 1559 /* 1560 * Commit dirty pages 1561 */ 1562 static int 1563 nfs_commit_list(struct inode *inode, struct list_head *head, int how, 1564 struct nfs_commit_info *cinfo) 1565 { 1566 struct nfs_commit_data *data; 1567 1568 data = nfs_commitdata_alloc(); 1569 1570 if (!data) 1571 goto out_bad; 1572 1573 /* Set up the argument struct */ 1574 nfs_init_commit(data, head, NULL, cinfo); 1575 atomic_inc(&cinfo->mds->rpcs_out); 1576 return nfs_initiate_commit(NFS_CLIENT(inode), data, data->mds_ops, 1577 how, 0); 1578 out_bad: 1579 nfs_retry_commit(head, NULL, cinfo); 1580 cinfo->completion_ops->error_cleanup(NFS_I(inode)); 1581 return -ENOMEM; 1582 } 1583 1584 /* 1585 * COMMIT call returned 1586 */ 1587 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1588 { 1589 struct nfs_commit_data *data = calldata; 1590 1591 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1592 task->tk_pid, task->tk_status); 1593 1594 /* Call the NFS version-specific code */ 1595 NFS_PROTO(data->inode)->commit_done(task, data); 1596 } 1597 1598 static void nfs_commit_release_pages(struct nfs_commit_data *data) 1599 { 1600 struct nfs_page *req; 1601 int status = data->task.tk_status; 1602 struct nfs_commit_info cinfo; 1603 1604 while (!list_empty(&data->pages)) { 1605 req = nfs_list_entry(data->pages.next); 1606 nfs_list_remove_request(req); 1607 nfs_clear_page_commit(req->wb_page); 1608 1609 dprintk("NFS: commit (%s/%lld %d@%lld)", 1610 req->wb_context->dentry->d_sb->s_id, 1611 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1612 req->wb_bytes, 1613 (long long)req_offset(req)); 1614 if (status < 0) { 1615 nfs_context_set_write_error(req->wb_context, status); 1616 nfs_inode_remove_request(req); 1617 dprintk(", error = %d\n", status); 1618 goto next; 1619 } 1620 1621 /* Okay, COMMIT succeeded, apparently. Check the verifier 1622 * returned by the server against all stored verfs. */ 1623 if (!memcmp(&req->wb_verf, &data->verf.verifier, sizeof(req->wb_verf))) { 1624 /* We have a match */ 1625 nfs_inode_remove_request(req); 1626 dprintk(" OK\n"); 1627 goto next; 1628 } 1629 /* We have a mismatch. Write the page again */ 1630 dprintk(" mismatch\n"); 1631 nfs_mark_request_dirty(req); 1632 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags); 1633 next: 1634 nfs_unlock_and_release_request(req); 1635 } 1636 nfs_init_cinfo(&cinfo, data->inode, data->dreq); 1637 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 1638 nfs_commit_clear_lock(NFS_I(data->inode)); 1639 } 1640 1641 static void nfs_commit_release(void *calldata) 1642 { 1643 struct nfs_commit_data *data = calldata; 1644 1645 data->completion_ops->completion(data); 1646 nfs_commitdata_release(calldata); 1647 } 1648 1649 static const struct rpc_call_ops nfs_commit_ops = { 1650 .rpc_call_prepare = nfs_commit_prepare, 1651 .rpc_call_done = nfs_commit_done, 1652 .rpc_release = nfs_commit_release, 1653 }; 1654 1655 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = { 1656 .completion = nfs_commit_release_pages, 1657 .error_cleanup = nfs_commit_clear_lock, 1658 }; 1659 1660 int nfs_generic_commit_list(struct inode *inode, struct list_head *head, 1661 int how, struct nfs_commit_info *cinfo) 1662 { 1663 int status; 1664 1665 status = pnfs_commit_list(inode, head, how, cinfo); 1666 if (status == PNFS_NOT_ATTEMPTED) 1667 status = nfs_commit_list(inode, head, how, cinfo); 1668 return status; 1669 } 1670 1671 int nfs_commit_inode(struct inode *inode, int how) 1672 { 1673 LIST_HEAD(head); 1674 struct nfs_commit_info cinfo; 1675 int may_wait = how & FLUSH_SYNC; 1676 int res; 1677 1678 res = nfs_commit_set_lock(NFS_I(inode), may_wait); 1679 if (res <= 0) 1680 goto out_mark_dirty; 1681 nfs_init_cinfo_from_inode(&cinfo, inode); 1682 res = nfs_scan_commit(inode, &head, &cinfo); 1683 if (res) { 1684 int error; 1685 1686 error = nfs_generic_commit_list(inode, &head, how, &cinfo); 1687 if (error < 0) 1688 return error; 1689 if (!may_wait) 1690 goto out_mark_dirty; 1691 error = wait_on_bit(&NFS_I(inode)->flags, 1692 NFS_INO_COMMIT, 1693 nfs_wait_bit_killable, 1694 TASK_KILLABLE); 1695 if (error < 0) 1696 return error; 1697 } else 1698 nfs_commit_clear_lock(NFS_I(inode)); 1699 return res; 1700 /* Note: If we exit without ensuring that the commit is complete, 1701 * we must mark the inode as dirty. Otherwise, future calls to 1702 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure 1703 * that the data is on the disk. 1704 */ 1705 out_mark_dirty: 1706 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1707 return res; 1708 } 1709 1710 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1711 { 1712 struct nfs_inode *nfsi = NFS_I(inode); 1713 int flags = FLUSH_SYNC; 1714 int ret = 0; 1715 1716 /* no commits means nothing needs to be done */ 1717 if (!nfsi->commit_info.ncommit) 1718 return ret; 1719 1720 if (wbc->sync_mode == WB_SYNC_NONE) { 1721 /* Don't commit yet if this is a non-blocking flush and there 1722 * are a lot of outstanding writes for this mapping. 1723 */ 1724 if (nfsi->commit_info.ncommit <= (nfsi->npages >> 1)) 1725 goto out_mark_dirty; 1726 1727 /* don't wait for the COMMIT response */ 1728 flags = 0; 1729 } 1730 1731 ret = nfs_commit_inode(inode, flags); 1732 if (ret >= 0) { 1733 if (wbc->sync_mode == WB_SYNC_NONE) { 1734 if (ret < wbc->nr_to_write) 1735 wbc->nr_to_write -= ret; 1736 else 1737 wbc->nr_to_write = 0; 1738 } 1739 return 0; 1740 } 1741 out_mark_dirty: 1742 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1743 return ret; 1744 } 1745 #else 1746 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1747 { 1748 return 0; 1749 } 1750 #endif 1751 1752 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1753 { 1754 return nfs_commit_unstable_pages(inode, wbc); 1755 } 1756 EXPORT_SYMBOL_GPL(nfs_write_inode); 1757 1758 /* 1759 * flush the inode to disk. 1760 */ 1761 int nfs_wb_all(struct inode *inode) 1762 { 1763 struct writeback_control wbc = { 1764 .sync_mode = WB_SYNC_ALL, 1765 .nr_to_write = LONG_MAX, 1766 .range_start = 0, 1767 .range_end = LLONG_MAX, 1768 }; 1769 int ret; 1770 1771 trace_nfs_writeback_inode_enter(inode); 1772 1773 ret = sync_inode(inode, &wbc); 1774 1775 trace_nfs_writeback_inode_exit(inode, ret); 1776 return ret; 1777 } 1778 EXPORT_SYMBOL_GPL(nfs_wb_all); 1779 1780 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1781 { 1782 struct nfs_page *req; 1783 int ret = 0; 1784 1785 for (;;) { 1786 wait_on_page_writeback(page); 1787 req = nfs_page_find_request(page); 1788 if (req == NULL) 1789 break; 1790 if (nfs_lock_request(req)) { 1791 nfs_clear_request_commit(req); 1792 nfs_inode_remove_request(req); 1793 /* 1794 * In case nfs_inode_remove_request has marked the 1795 * page as being dirty 1796 */ 1797 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1798 nfs_unlock_and_release_request(req); 1799 break; 1800 } 1801 ret = nfs_wait_on_request(req); 1802 nfs_release_request(req); 1803 if (ret < 0) 1804 break; 1805 } 1806 return ret; 1807 } 1808 1809 /* 1810 * Write back all requests on one page - we do this before reading it. 1811 */ 1812 int nfs_wb_page(struct inode *inode, struct page *page) 1813 { 1814 loff_t range_start = page_file_offset(page); 1815 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1816 struct writeback_control wbc = { 1817 .sync_mode = WB_SYNC_ALL, 1818 .nr_to_write = 0, 1819 .range_start = range_start, 1820 .range_end = range_end, 1821 }; 1822 int ret; 1823 1824 trace_nfs_writeback_page_enter(inode); 1825 1826 for (;;) { 1827 wait_on_page_writeback(page); 1828 if (clear_page_dirty_for_io(page)) { 1829 ret = nfs_writepage_locked(page, &wbc); 1830 if (ret < 0) 1831 goto out_error; 1832 continue; 1833 } 1834 ret = 0; 1835 if (!PagePrivate(page)) 1836 break; 1837 ret = nfs_commit_inode(inode, FLUSH_SYNC); 1838 if (ret < 0) 1839 goto out_error; 1840 } 1841 out_error: 1842 trace_nfs_writeback_page_exit(inode, ret); 1843 return ret; 1844 } 1845 1846 #ifdef CONFIG_MIGRATION 1847 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 1848 struct page *page, enum migrate_mode mode) 1849 { 1850 /* 1851 * If PagePrivate is set, then the page is currently associated with 1852 * an in-progress read or write request. Don't try to migrate it. 1853 * 1854 * FIXME: we could do this in principle, but we'll need a way to ensure 1855 * that we can safely release the inode reference while holding 1856 * the page lock. 1857 */ 1858 if (PagePrivate(page)) 1859 return -EBUSY; 1860 1861 if (!nfs_fscache_release_page(page, GFP_KERNEL)) 1862 return -EBUSY; 1863 1864 return migrate_page(mapping, newpage, page, mode); 1865 } 1866 #endif 1867 1868 int __init nfs_init_writepagecache(void) 1869 { 1870 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1871 sizeof(struct nfs_write_header), 1872 0, SLAB_HWCACHE_ALIGN, 1873 NULL); 1874 if (nfs_wdata_cachep == NULL) 1875 return -ENOMEM; 1876 1877 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1878 nfs_wdata_cachep); 1879 if (nfs_wdata_mempool == NULL) 1880 goto out_destroy_write_cache; 1881 1882 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data", 1883 sizeof(struct nfs_commit_data), 1884 0, SLAB_HWCACHE_ALIGN, 1885 NULL); 1886 if (nfs_cdata_cachep == NULL) 1887 goto out_destroy_write_mempool; 1888 1889 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1890 nfs_cdata_cachep); 1891 if (nfs_commit_mempool == NULL) 1892 goto out_destroy_commit_cache; 1893 1894 /* 1895 * NFS congestion size, scale with available memory. 1896 * 1897 * 64MB: 8192k 1898 * 128MB: 11585k 1899 * 256MB: 16384k 1900 * 512MB: 23170k 1901 * 1GB: 32768k 1902 * 2GB: 46340k 1903 * 4GB: 65536k 1904 * 8GB: 92681k 1905 * 16GB: 131072k 1906 * 1907 * This allows larger machines to have larger/more transfers. 1908 * Limit the default to 256M 1909 */ 1910 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1911 if (nfs_congestion_kb > 256*1024) 1912 nfs_congestion_kb = 256*1024; 1913 1914 return 0; 1915 1916 out_destroy_commit_cache: 1917 kmem_cache_destroy(nfs_cdata_cachep); 1918 out_destroy_write_mempool: 1919 mempool_destroy(nfs_wdata_mempool); 1920 out_destroy_write_cache: 1921 kmem_cache_destroy(nfs_wdata_cachep); 1922 return -ENOMEM; 1923 } 1924 1925 void nfs_destroy_writepagecache(void) 1926 { 1927 mempool_destroy(nfs_commit_mempool); 1928 kmem_cache_destroy(nfs_cdata_cachep); 1929 mempool_destroy(nfs_wdata_mempool); 1930 kmem_cache_destroy(nfs_wdata_cachep); 1931 } 1932 1933