xref: /openbmc/linux/fs/nfs/write.c (revision 68198dca)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24 #include <linux/freezer.h>
25 #include <linux/wait.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "delegation.h"
30 #include "internal.h"
31 #include "iostat.h"
32 #include "nfs4_fs.h"
33 #include "fscache.h"
34 #include "pnfs.h"
35 
36 #include "nfstrace.h"
37 
38 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
39 
40 #define MIN_POOL_WRITE		(32)
41 #define MIN_POOL_COMMIT		(4)
42 
43 struct nfs_io_completion {
44 	void (*complete)(void *data);
45 	void *data;
46 	struct kref refcount;
47 };
48 
49 /*
50  * Local function declarations
51  */
52 static void nfs_redirty_request(struct nfs_page *req);
53 static const struct rpc_call_ops nfs_commit_ops;
54 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
55 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
56 static const struct nfs_rw_ops nfs_rw_write_ops;
57 static void nfs_clear_request_commit(struct nfs_page *req);
58 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
59 				      struct inode *inode);
60 static struct nfs_page *
61 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
62 						struct page *page);
63 
64 static struct kmem_cache *nfs_wdata_cachep;
65 static mempool_t *nfs_wdata_mempool;
66 static struct kmem_cache *nfs_cdata_cachep;
67 static mempool_t *nfs_commit_mempool;
68 
69 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
70 {
71 	struct nfs_commit_data *p;
72 
73 	if (never_fail)
74 		p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
75 	else {
76 		/* It is OK to do some reclaim, not no safe to wait
77 		 * for anything to be returned to the pool.
78 		 * mempool_alloc() cannot handle that particular combination,
79 		 * so we need two separate attempts.
80 		 */
81 		p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
82 		if (!p)
83 			p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
84 					     __GFP_NOWARN | __GFP_NORETRY);
85 		if (!p)
86 			return NULL;
87 	}
88 
89 	memset(p, 0, sizeof(*p));
90 	INIT_LIST_HEAD(&p->pages);
91 	return p;
92 }
93 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
94 
95 void nfs_commit_free(struct nfs_commit_data *p)
96 {
97 	mempool_free(p, nfs_commit_mempool);
98 }
99 EXPORT_SYMBOL_GPL(nfs_commit_free);
100 
101 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
102 {
103 	struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
104 
105 	memset(p, 0, sizeof(*p));
106 	p->rw_mode = FMODE_WRITE;
107 	return p;
108 }
109 
110 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
111 {
112 	mempool_free(hdr, nfs_wdata_mempool);
113 }
114 
115 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
116 {
117 	return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
118 }
119 
120 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
121 		void (*complete)(void *), void *data)
122 {
123 	ioc->complete = complete;
124 	ioc->data = data;
125 	kref_init(&ioc->refcount);
126 }
127 
128 static void nfs_io_completion_release(struct kref *kref)
129 {
130 	struct nfs_io_completion *ioc = container_of(kref,
131 			struct nfs_io_completion, refcount);
132 	ioc->complete(ioc->data);
133 	kfree(ioc);
134 }
135 
136 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
137 {
138 	if (ioc != NULL)
139 		kref_get(&ioc->refcount);
140 }
141 
142 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
143 {
144 	if (ioc != NULL)
145 		kref_put(&ioc->refcount, nfs_io_completion_release);
146 }
147 
148 static struct nfs_page *
149 nfs_page_private_request(struct page *page)
150 {
151 	if (!PagePrivate(page))
152 		return NULL;
153 	return (struct nfs_page *)page_private(page);
154 }
155 
156 /*
157  * nfs_page_find_head_request_locked - find head request associated with @page
158  *
159  * must be called while holding the inode lock.
160  *
161  * returns matching head request with reference held, or NULL if not found.
162  */
163 static struct nfs_page *
164 nfs_page_find_private_request(struct page *page)
165 {
166 	struct address_space *mapping = page_file_mapping(page);
167 	struct nfs_page *req;
168 
169 	if (!PagePrivate(page))
170 		return NULL;
171 	spin_lock(&mapping->private_lock);
172 	req = nfs_page_private_request(page);
173 	if (req) {
174 		WARN_ON_ONCE(req->wb_head != req);
175 		kref_get(&req->wb_kref);
176 	}
177 	spin_unlock(&mapping->private_lock);
178 	return req;
179 }
180 
181 static struct nfs_page *
182 nfs_page_find_swap_request(struct page *page)
183 {
184 	struct inode *inode = page_file_mapping(page)->host;
185 	struct nfs_inode *nfsi = NFS_I(inode);
186 	struct nfs_page *req = NULL;
187 	if (!PageSwapCache(page))
188 		return NULL;
189 	mutex_lock(&nfsi->commit_mutex);
190 	if (PageSwapCache(page)) {
191 		req = nfs_page_search_commits_for_head_request_locked(nfsi,
192 			page);
193 		if (req) {
194 			WARN_ON_ONCE(req->wb_head != req);
195 			kref_get(&req->wb_kref);
196 		}
197 	}
198 	mutex_unlock(&nfsi->commit_mutex);
199 	return req;
200 }
201 
202 /*
203  * nfs_page_find_head_request - find head request associated with @page
204  *
205  * returns matching head request with reference held, or NULL if not found.
206  */
207 static struct nfs_page *nfs_page_find_head_request(struct page *page)
208 {
209 	struct nfs_page *req;
210 
211 	req = nfs_page_find_private_request(page);
212 	if (!req)
213 		req = nfs_page_find_swap_request(page);
214 	return req;
215 }
216 
217 /* Adjust the file length if we're writing beyond the end */
218 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
219 {
220 	struct inode *inode = page_file_mapping(page)->host;
221 	loff_t end, i_size;
222 	pgoff_t end_index;
223 
224 	spin_lock(&inode->i_lock);
225 	i_size = i_size_read(inode);
226 	end_index = (i_size - 1) >> PAGE_SHIFT;
227 	if (i_size > 0 && page_index(page) < end_index)
228 		goto out;
229 	end = page_file_offset(page) + ((loff_t)offset+count);
230 	if (i_size >= end)
231 		goto out;
232 	i_size_write(inode, end);
233 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
234 out:
235 	spin_unlock(&inode->i_lock);
236 }
237 
238 /* A writeback failed: mark the page as bad, and invalidate the page cache */
239 static void nfs_set_pageerror(struct page *page)
240 {
241 	nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page));
242 }
243 
244 /*
245  * nfs_page_group_search_locked
246  * @head - head request of page group
247  * @page_offset - offset into page
248  *
249  * Search page group with head @head to find a request that contains the
250  * page offset @page_offset.
251  *
252  * Returns a pointer to the first matching nfs request, or NULL if no
253  * match is found.
254  *
255  * Must be called with the page group lock held
256  */
257 static struct nfs_page *
258 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
259 {
260 	struct nfs_page *req;
261 
262 	req = head;
263 	do {
264 		if (page_offset >= req->wb_pgbase &&
265 		    page_offset < (req->wb_pgbase + req->wb_bytes))
266 			return req;
267 
268 		req = req->wb_this_page;
269 	} while (req != head);
270 
271 	return NULL;
272 }
273 
274 /*
275  * nfs_page_group_covers_page
276  * @head - head request of page group
277  *
278  * Return true if the page group with head @head covers the whole page,
279  * returns false otherwise
280  */
281 static bool nfs_page_group_covers_page(struct nfs_page *req)
282 {
283 	struct nfs_page *tmp;
284 	unsigned int pos = 0;
285 	unsigned int len = nfs_page_length(req->wb_page);
286 
287 	nfs_page_group_lock(req);
288 
289 	for (;;) {
290 		tmp = nfs_page_group_search_locked(req->wb_head, pos);
291 		if (!tmp)
292 			break;
293 		pos = tmp->wb_pgbase + tmp->wb_bytes;
294 	}
295 
296 	nfs_page_group_unlock(req);
297 	return pos >= len;
298 }
299 
300 /* We can set the PG_uptodate flag if we see that a write request
301  * covers the full page.
302  */
303 static void nfs_mark_uptodate(struct nfs_page *req)
304 {
305 	if (PageUptodate(req->wb_page))
306 		return;
307 	if (!nfs_page_group_covers_page(req))
308 		return;
309 	SetPageUptodate(req->wb_page);
310 }
311 
312 static int wb_priority(struct writeback_control *wbc)
313 {
314 	int ret = 0;
315 
316 	if (wbc->sync_mode == WB_SYNC_ALL)
317 		ret = FLUSH_COND_STABLE;
318 	return ret;
319 }
320 
321 /*
322  * NFS congestion control
323  */
324 
325 int nfs_congestion_kb;
326 
327 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
328 #define NFS_CONGESTION_OFF_THRESH	\
329 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
330 
331 static void nfs_set_page_writeback(struct page *page)
332 {
333 	struct inode *inode = page_file_mapping(page)->host;
334 	struct nfs_server *nfss = NFS_SERVER(inode);
335 	int ret = test_set_page_writeback(page);
336 
337 	WARN_ON_ONCE(ret != 0);
338 
339 	if (atomic_long_inc_return(&nfss->writeback) >
340 			NFS_CONGESTION_ON_THRESH)
341 		set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
342 }
343 
344 static void nfs_end_page_writeback(struct nfs_page *req)
345 {
346 	struct inode *inode = page_file_mapping(req->wb_page)->host;
347 	struct nfs_server *nfss = NFS_SERVER(inode);
348 	bool is_done;
349 
350 	is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
351 	nfs_unlock_request(req);
352 	if (!is_done)
353 		return;
354 
355 	end_page_writeback(req->wb_page);
356 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
357 		clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
358 }
359 
360 /*
361  * nfs_unroll_locks_and_wait -  unlock all newly locked reqs and wait on @req
362  *
363  * this is a helper function for nfs_lock_and_join_requests
364  *
365  * @inode - inode associated with request page group, must be holding inode lock
366  * @head  - head request of page group, must be holding head lock
367  * @req   - request that couldn't lock and needs to wait on the req bit lock
368  *
369  * NOTE: this must be called holding page_group bit lock
370  *       which will be released before returning.
371  *
372  * returns 0 on success, < 0 on error.
373  */
374 static void
375 nfs_unroll_locks(struct inode *inode, struct nfs_page *head,
376 			  struct nfs_page *req)
377 {
378 	struct nfs_page *tmp;
379 
380 	/* relinquish all the locks successfully grabbed this run */
381 	for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) {
382 		if (!kref_read(&tmp->wb_kref))
383 			continue;
384 		nfs_unlock_and_release_request(tmp);
385 	}
386 }
387 
388 /*
389  * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
390  *
391  * @destroy_list - request list (using wb_this_page) terminated by @old_head
392  * @old_head - the old head of the list
393  *
394  * All subrequests must be locked and removed from all lists, so at this point
395  * they are only "active" in this function, and possibly in nfs_wait_on_request
396  * with a reference held by some other context.
397  */
398 static void
399 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
400 				 struct nfs_page *old_head,
401 				 struct inode *inode)
402 {
403 	while (destroy_list) {
404 		struct nfs_page *subreq = destroy_list;
405 
406 		destroy_list = (subreq->wb_this_page == old_head) ?
407 				   NULL : subreq->wb_this_page;
408 
409 		WARN_ON_ONCE(old_head != subreq->wb_head);
410 
411 		/* make sure old group is not used */
412 		subreq->wb_this_page = subreq;
413 
414 		clear_bit(PG_REMOVE, &subreq->wb_flags);
415 
416 		/* Note: races with nfs_page_group_destroy() */
417 		if (!kref_read(&subreq->wb_kref)) {
418 			/* Check if we raced with nfs_page_group_destroy() */
419 			if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags))
420 				nfs_free_request(subreq);
421 			continue;
422 		}
423 
424 		subreq->wb_head = subreq;
425 
426 		if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
427 			nfs_release_request(subreq);
428 			atomic_long_dec(&NFS_I(inode)->nrequests);
429 		}
430 
431 		/* subreq is now totally disconnected from page group or any
432 		 * write / commit lists. last chance to wake any waiters */
433 		nfs_unlock_and_release_request(subreq);
434 	}
435 }
436 
437 /*
438  * nfs_lock_and_join_requests - join all subreqs to the head req and return
439  *                              a locked reference, cancelling any pending
440  *                              operations for this page.
441  *
442  * @page - the page used to lookup the "page group" of nfs_page structures
443  *
444  * This function joins all sub requests to the head request by first
445  * locking all requests in the group, cancelling any pending operations
446  * and finally updating the head request to cover the whole range covered by
447  * the (former) group.  All subrequests are removed from any write or commit
448  * lists, unlinked from the group and destroyed.
449  *
450  * Returns a locked, referenced pointer to the head request - which after
451  * this call is guaranteed to be the only request associated with the page.
452  * Returns NULL if no requests are found for @page, or a ERR_PTR if an
453  * error was encountered.
454  */
455 static struct nfs_page *
456 nfs_lock_and_join_requests(struct page *page)
457 {
458 	struct inode *inode = page_file_mapping(page)->host;
459 	struct nfs_page *head, *subreq;
460 	struct nfs_page *destroy_list = NULL;
461 	unsigned int total_bytes;
462 	int ret;
463 
464 try_again:
465 	/*
466 	 * A reference is taken only on the head request which acts as a
467 	 * reference to the whole page group - the group will not be destroyed
468 	 * until the head reference is released.
469 	 */
470 	head = nfs_page_find_head_request(page);
471 	if (!head)
472 		return NULL;
473 
474 	/* lock the page head first in order to avoid an ABBA inefficiency */
475 	if (!nfs_lock_request(head)) {
476 		ret = nfs_wait_on_request(head);
477 		nfs_release_request(head);
478 		if (ret < 0)
479 			return ERR_PTR(ret);
480 		goto try_again;
481 	}
482 
483 	/* Ensure that nobody removed the request before we locked it */
484 	if (head != nfs_page_private_request(page) && !PageSwapCache(page)) {
485 		nfs_unlock_and_release_request(head);
486 		goto try_again;
487 	}
488 
489 	ret = nfs_page_group_lock(head);
490 	if (ret < 0)
491 		goto release_request;
492 
493 	/* lock each request in the page group */
494 	total_bytes = head->wb_bytes;
495 	for (subreq = head->wb_this_page; subreq != head;
496 			subreq = subreq->wb_this_page) {
497 
498 		if (!kref_get_unless_zero(&subreq->wb_kref)) {
499 			if (subreq->wb_offset == head->wb_offset + total_bytes)
500 				total_bytes += subreq->wb_bytes;
501 			continue;
502 		}
503 
504 		while (!nfs_lock_request(subreq)) {
505 			/*
506 			 * Unlock page to allow nfs_page_group_sync_on_bit()
507 			 * to succeed
508 			 */
509 			nfs_page_group_unlock(head);
510 			ret = nfs_wait_on_request(subreq);
511 			if (!ret)
512 				ret = nfs_page_group_lock(head);
513 			if (ret < 0) {
514 				nfs_unroll_locks(inode, head, subreq);
515 				nfs_release_request(subreq);
516 				goto release_request;
517 			}
518 		}
519 		/*
520 		 * Subrequests are always contiguous, non overlapping
521 		 * and in order - but may be repeated (mirrored writes).
522 		 */
523 		if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
524 			/* keep track of how many bytes this group covers */
525 			total_bytes += subreq->wb_bytes;
526 		} else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
527 			    ((subreq->wb_offset + subreq->wb_bytes) >
528 			     (head->wb_offset + total_bytes)))) {
529 			nfs_page_group_unlock(head);
530 			nfs_unroll_locks(inode, head, subreq);
531 			nfs_unlock_and_release_request(subreq);
532 			ret = -EIO;
533 			goto release_request;
534 		}
535 	}
536 
537 	/* Now that all requests are locked, make sure they aren't on any list.
538 	 * Commit list removal accounting is done after locks are dropped */
539 	subreq = head;
540 	do {
541 		nfs_clear_request_commit(subreq);
542 		subreq = subreq->wb_this_page;
543 	} while (subreq != head);
544 
545 	/* unlink subrequests from head, destroy them later */
546 	if (head->wb_this_page != head) {
547 		/* destroy list will be terminated by head */
548 		destroy_list = head->wb_this_page;
549 		head->wb_this_page = head;
550 
551 		/* change head request to cover whole range that
552 		 * the former page group covered */
553 		head->wb_bytes = total_bytes;
554 	}
555 
556 	/* Postpone destruction of this request */
557 	if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) {
558 		set_bit(PG_INODE_REF, &head->wb_flags);
559 		kref_get(&head->wb_kref);
560 		atomic_long_inc(&NFS_I(inode)->nrequests);
561 	}
562 
563 	nfs_page_group_unlock(head);
564 
565 	nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
566 
567 	/* Did we lose a race with nfs_inode_remove_request()? */
568 	if (!(PagePrivate(page) || PageSwapCache(page))) {
569 		nfs_unlock_and_release_request(head);
570 		return NULL;
571 	}
572 
573 	/* still holds ref on head from nfs_page_find_head_request
574 	 * and still has lock on head from lock loop */
575 	return head;
576 
577 release_request:
578 	nfs_unlock_and_release_request(head);
579 	return ERR_PTR(ret);
580 }
581 
582 static void nfs_write_error_remove_page(struct nfs_page *req)
583 {
584 	nfs_end_page_writeback(req);
585 	generic_error_remove_page(page_file_mapping(req->wb_page),
586 				  req->wb_page);
587 	nfs_release_request(req);
588 }
589 
590 static bool
591 nfs_error_is_fatal_on_server(int err)
592 {
593 	switch (err) {
594 	case 0:
595 	case -ERESTARTSYS:
596 	case -EINTR:
597 		return false;
598 	}
599 	return nfs_error_is_fatal(err);
600 }
601 
602 /*
603  * Find an associated nfs write request, and prepare to flush it out
604  * May return an error if the user signalled nfs_wait_on_request().
605  */
606 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
607 				struct page *page)
608 {
609 	struct nfs_page *req;
610 	int ret = 0;
611 
612 	req = nfs_lock_and_join_requests(page);
613 	if (!req)
614 		goto out;
615 	ret = PTR_ERR(req);
616 	if (IS_ERR(req))
617 		goto out;
618 
619 	nfs_set_page_writeback(page);
620 	WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
621 
622 	ret = 0;
623 	/* If there is a fatal error that covers this write, just exit */
624 	if (nfs_error_is_fatal_on_server(req->wb_context->error))
625 		goto out_launder;
626 
627 	if (!nfs_pageio_add_request(pgio, req)) {
628 		ret = pgio->pg_error;
629 		/*
630 		 * Remove the problematic req upon fatal errors on the server
631 		 */
632 		if (nfs_error_is_fatal(ret)) {
633 			nfs_context_set_write_error(req->wb_context, ret);
634 			if (nfs_error_is_fatal_on_server(ret))
635 				goto out_launder;
636 		}
637 		nfs_redirty_request(req);
638 		ret = -EAGAIN;
639 	} else
640 		nfs_add_stats(page_file_mapping(page)->host,
641 				NFSIOS_WRITEPAGES, 1);
642 out:
643 	return ret;
644 out_launder:
645 	nfs_write_error_remove_page(req);
646 	return ret;
647 }
648 
649 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
650 			    struct nfs_pageio_descriptor *pgio)
651 {
652 	int ret;
653 
654 	nfs_pageio_cond_complete(pgio, page_index(page));
655 	ret = nfs_page_async_flush(pgio, page);
656 	if (ret == -EAGAIN) {
657 		redirty_page_for_writepage(wbc, page);
658 		ret = 0;
659 	}
660 	return ret;
661 }
662 
663 /*
664  * Write an mmapped page to the server.
665  */
666 static int nfs_writepage_locked(struct page *page,
667 				struct writeback_control *wbc)
668 {
669 	struct nfs_pageio_descriptor pgio;
670 	struct inode *inode = page_file_mapping(page)->host;
671 	int err;
672 
673 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
674 	nfs_pageio_init_write(&pgio, inode, 0,
675 				false, &nfs_async_write_completion_ops);
676 	err = nfs_do_writepage(page, wbc, &pgio);
677 	nfs_pageio_complete(&pgio);
678 	if (err < 0)
679 		return err;
680 	if (pgio.pg_error < 0)
681 		return pgio.pg_error;
682 	return 0;
683 }
684 
685 int nfs_writepage(struct page *page, struct writeback_control *wbc)
686 {
687 	int ret;
688 
689 	ret = nfs_writepage_locked(page, wbc);
690 	unlock_page(page);
691 	return ret;
692 }
693 
694 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
695 {
696 	int ret;
697 
698 	ret = nfs_do_writepage(page, wbc, data);
699 	unlock_page(page);
700 	return ret;
701 }
702 
703 static void nfs_io_completion_commit(void *inode)
704 {
705 	nfs_commit_inode(inode, 0);
706 }
707 
708 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
709 {
710 	struct inode *inode = mapping->host;
711 	struct nfs_pageio_descriptor pgio;
712 	struct nfs_io_completion *ioc = nfs_io_completion_alloc(GFP_NOFS);
713 	int err;
714 
715 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
716 
717 	if (ioc)
718 		nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
719 
720 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
721 				&nfs_async_write_completion_ops);
722 	pgio.pg_io_completion = ioc;
723 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
724 	nfs_pageio_complete(&pgio);
725 	nfs_io_completion_put(ioc);
726 
727 	if (err < 0)
728 		goto out_err;
729 	err = pgio.pg_error;
730 	if (err < 0)
731 		goto out_err;
732 	return 0;
733 out_err:
734 	return err;
735 }
736 
737 /*
738  * Insert a write request into an inode
739  */
740 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
741 {
742 	struct address_space *mapping = page_file_mapping(req->wb_page);
743 	struct nfs_inode *nfsi = NFS_I(inode);
744 
745 	WARN_ON_ONCE(req->wb_this_page != req);
746 
747 	/* Lock the request! */
748 	nfs_lock_request(req);
749 
750 	/*
751 	 * Swap-space should not get truncated. Hence no need to plug the race
752 	 * with invalidate/truncate.
753 	 */
754 	spin_lock(&mapping->private_lock);
755 	if (!nfs_have_writebacks(inode) &&
756 	    NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) {
757 		spin_lock(&inode->i_lock);
758 		inode->i_version++;
759 		spin_unlock(&inode->i_lock);
760 	}
761 	if (likely(!PageSwapCache(req->wb_page))) {
762 		set_bit(PG_MAPPED, &req->wb_flags);
763 		SetPagePrivate(req->wb_page);
764 		set_page_private(req->wb_page, (unsigned long)req);
765 	}
766 	spin_unlock(&mapping->private_lock);
767 	atomic_long_inc(&nfsi->nrequests);
768 	/* this a head request for a page group - mark it as having an
769 	 * extra reference so sub groups can follow suit.
770 	 * This flag also informs pgio layer when to bump nrequests when
771 	 * adding subrequests. */
772 	WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
773 	kref_get(&req->wb_kref);
774 }
775 
776 /*
777  * Remove a write request from an inode
778  */
779 static void nfs_inode_remove_request(struct nfs_page *req)
780 {
781 	struct address_space *mapping = page_file_mapping(req->wb_page);
782 	struct inode *inode = mapping->host;
783 	struct nfs_inode *nfsi = NFS_I(inode);
784 	struct nfs_page *head;
785 
786 	atomic_long_dec(&nfsi->nrequests);
787 	if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
788 		head = req->wb_head;
789 
790 		spin_lock(&mapping->private_lock);
791 		if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
792 			set_page_private(head->wb_page, 0);
793 			ClearPagePrivate(head->wb_page);
794 			clear_bit(PG_MAPPED, &head->wb_flags);
795 		}
796 		spin_unlock(&mapping->private_lock);
797 	}
798 
799 	if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags))
800 		nfs_release_request(req);
801 }
802 
803 static void
804 nfs_mark_request_dirty(struct nfs_page *req)
805 {
806 	if (req->wb_page)
807 		__set_page_dirty_nobuffers(req->wb_page);
808 }
809 
810 /*
811  * nfs_page_search_commits_for_head_request_locked
812  *
813  * Search through commit lists on @inode for the head request for @page.
814  * Must be called while holding the inode (which is cinfo) lock.
815  *
816  * Returns the head request if found, or NULL if not found.
817  */
818 static struct nfs_page *
819 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
820 						struct page *page)
821 {
822 	struct nfs_page *freq, *t;
823 	struct nfs_commit_info cinfo;
824 	struct inode *inode = &nfsi->vfs_inode;
825 
826 	nfs_init_cinfo_from_inode(&cinfo, inode);
827 
828 	/* search through pnfs commit lists */
829 	freq = pnfs_search_commit_reqs(inode, &cinfo, page);
830 	if (freq)
831 		return freq->wb_head;
832 
833 	/* Linearly search the commit list for the correct request */
834 	list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
835 		if (freq->wb_page == page)
836 			return freq->wb_head;
837 	}
838 
839 	return NULL;
840 }
841 
842 /**
843  * nfs_request_add_commit_list_locked - add request to a commit list
844  * @req: pointer to a struct nfs_page
845  * @dst: commit list head
846  * @cinfo: holds list lock and accounting info
847  *
848  * This sets the PG_CLEAN bit, updates the cinfo count of
849  * number of outstanding requests requiring a commit as well as
850  * the MM page stats.
851  *
852  * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
853  * nfs_page lock.
854  */
855 void
856 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
857 			    struct nfs_commit_info *cinfo)
858 {
859 	set_bit(PG_CLEAN, &req->wb_flags);
860 	nfs_list_add_request(req, dst);
861 	atomic_long_inc(&cinfo->mds->ncommit);
862 }
863 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
864 
865 /**
866  * nfs_request_add_commit_list - add request to a commit list
867  * @req: pointer to a struct nfs_page
868  * @dst: commit list head
869  * @cinfo: holds list lock and accounting info
870  *
871  * This sets the PG_CLEAN bit, updates the cinfo count of
872  * number of outstanding requests requiring a commit as well as
873  * the MM page stats.
874  *
875  * The caller must _not_ hold the cinfo->lock, but must be
876  * holding the nfs_page lock.
877  */
878 void
879 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
880 {
881 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
882 	nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
883 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
884 	if (req->wb_page)
885 		nfs_mark_page_unstable(req->wb_page, cinfo);
886 }
887 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
888 
889 /**
890  * nfs_request_remove_commit_list - Remove request from a commit list
891  * @req: pointer to a nfs_page
892  * @cinfo: holds list lock and accounting info
893  *
894  * This clears the PG_CLEAN bit, and updates the cinfo's count of
895  * number of outstanding requests requiring a commit
896  * It does not update the MM page stats.
897  *
898  * The caller _must_ hold the cinfo->lock and the nfs_page lock.
899  */
900 void
901 nfs_request_remove_commit_list(struct nfs_page *req,
902 			       struct nfs_commit_info *cinfo)
903 {
904 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
905 		return;
906 	nfs_list_remove_request(req);
907 	atomic_long_dec(&cinfo->mds->ncommit);
908 }
909 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
910 
911 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
912 				      struct inode *inode)
913 {
914 	cinfo->inode = inode;
915 	cinfo->mds = &NFS_I(inode)->commit_info;
916 	cinfo->ds = pnfs_get_ds_info(inode);
917 	cinfo->dreq = NULL;
918 	cinfo->completion_ops = &nfs_commit_completion_ops;
919 }
920 
921 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
922 		    struct inode *inode,
923 		    struct nfs_direct_req *dreq)
924 {
925 	if (dreq)
926 		nfs_init_cinfo_from_dreq(cinfo, dreq);
927 	else
928 		nfs_init_cinfo_from_inode(cinfo, inode);
929 }
930 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
931 
932 /*
933  * Add a request to the inode's commit list.
934  */
935 void
936 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
937 			struct nfs_commit_info *cinfo, u32 ds_commit_idx)
938 {
939 	if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
940 		return;
941 	nfs_request_add_commit_list(req, cinfo);
942 }
943 
944 static void
945 nfs_clear_page_commit(struct page *page)
946 {
947 	dec_node_page_state(page, NR_UNSTABLE_NFS);
948 	dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
949 		    WB_RECLAIMABLE);
950 }
951 
952 /* Called holding the request lock on @req */
953 static void
954 nfs_clear_request_commit(struct nfs_page *req)
955 {
956 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
957 		struct inode *inode = d_inode(req->wb_context->dentry);
958 		struct nfs_commit_info cinfo;
959 
960 		nfs_init_cinfo_from_inode(&cinfo, inode);
961 		mutex_lock(&NFS_I(inode)->commit_mutex);
962 		if (!pnfs_clear_request_commit(req, &cinfo)) {
963 			nfs_request_remove_commit_list(req, &cinfo);
964 		}
965 		mutex_unlock(&NFS_I(inode)->commit_mutex);
966 		nfs_clear_page_commit(req->wb_page);
967 	}
968 }
969 
970 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
971 {
972 	if (hdr->verf.committed == NFS_DATA_SYNC)
973 		return hdr->lseg == NULL;
974 	return hdr->verf.committed != NFS_FILE_SYNC;
975 }
976 
977 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
978 {
979 	nfs_io_completion_get(hdr->io_completion);
980 }
981 
982 static void nfs_write_completion(struct nfs_pgio_header *hdr)
983 {
984 	struct nfs_commit_info cinfo;
985 	unsigned long bytes = 0;
986 
987 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
988 		goto out;
989 	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
990 	while (!list_empty(&hdr->pages)) {
991 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
992 
993 		bytes += req->wb_bytes;
994 		nfs_list_remove_request(req);
995 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
996 		    (hdr->good_bytes < bytes)) {
997 			nfs_set_pageerror(req->wb_page);
998 			nfs_context_set_write_error(req->wb_context, hdr->error);
999 			goto remove_req;
1000 		}
1001 		if (nfs_write_need_commit(hdr)) {
1002 			memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1003 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1004 				hdr->pgio_mirror_idx);
1005 			goto next;
1006 		}
1007 remove_req:
1008 		nfs_inode_remove_request(req);
1009 next:
1010 		nfs_end_page_writeback(req);
1011 		nfs_release_request(req);
1012 	}
1013 out:
1014 	nfs_io_completion_put(hdr->io_completion);
1015 	hdr->release(hdr);
1016 }
1017 
1018 unsigned long
1019 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1020 {
1021 	return atomic_long_read(&cinfo->mds->ncommit);
1022 }
1023 
1024 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1025 int
1026 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1027 		     struct nfs_commit_info *cinfo, int max)
1028 {
1029 	struct nfs_page *req, *tmp;
1030 	int ret = 0;
1031 
1032 restart:
1033 	list_for_each_entry_safe(req, tmp, src, wb_list) {
1034 		kref_get(&req->wb_kref);
1035 		if (!nfs_lock_request(req)) {
1036 			int status;
1037 
1038 			/* Prevent deadlock with nfs_lock_and_join_requests */
1039 			if (!list_empty(dst)) {
1040 				nfs_release_request(req);
1041 				continue;
1042 			}
1043 			/* Ensure we make progress to prevent livelock */
1044 			mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1045 			status = nfs_wait_on_request(req);
1046 			nfs_release_request(req);
1047 			mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1048 			if (status < 0)
1049 				break;
1050 			goto restart;
1051 		}
1052 		nfs_request_remove_commit_list(req, cinfo);
1053 		clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1054 		nfs_list_add_request(req, dst);
1055 		ret++;
1056 		if ((ret == max) && !cinfo->dreq)
1057 			break;
1058 		cond_resched();
1059 	}
1060 	return ret;
1061 }
1062 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1063 
1064 /*
1065  * nfs_scan_commit - Scan an inode for commit requests
1066  * @inode: NFS inode to scan
1067  * @dst: mds destination list
1068  * @cinfo: mds and ds lists of reqs ready to commit
1069  *
1070  * Moves requests from the inode's 'commit' request list.
1071  * The requests are *not* checked to ensure that they form a contiguous set.
1072  */
1073 int
1074 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1075 		struct nfs_commit_info *cinfo)
1076 {
1077 	int ret = 0;
1078 
1079 	if (!atomic_long_read(&cinfo->mds->ncommit))
1080 		return 0;
1081 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1082 	if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1083 		const int max = INT_MAX;
1084 
1085 		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1086 					   cinfo, max);
1087 		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1088 	}
1089 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1090 	return ret;
1091 }
1092 
1093 /*
1094  * Search for an existing write request, and attempt to update
1095  * it to reflect a new dirty region on a given page.
1096  *
1097  * If the attempt fails, then the existing request is flushed out
1098  * to disk.
1099  */
1100 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1101 		struct page *page,
1102 		unsigned int offset,
1103 		unsigned int bytes)
1104 {
1105 	struct nfs_page *req;
1106 	unsigned int rqend;
1107 	unsigned int end;
1108 	int error;
1109 
1110 	end = offset + bytes;
1111 
1112 	req = nfs_lock_and_join_requests(page);
1113 	if (IS_ERR_OR_NULL(req))
1114 		return req;
1115 
1116 	rqend = req->wb_offset + req->wb_bytes;
1117 	/*
1118 	 * Tell the caller to flush out the request if
1119 	 * the offsets are non-contiguous.
1120 	 * Note: nfs_flush_incompatible() will already
1121 	 * have flushed out requests having wrong owners.
1122 	 */
1123 	if (offset > rqend || end < req->wb_offset)
1124 		goto out_flushme;
1125 
1126 	/* Okay, the request matches. Update the region */
1127 	if (offset < req->wb_offset) {
1128 		req->wb_offset = offset;
1129 		req->wb_pgbase = offset;
1130 	}
1131 	if (end > rqend)
1132 		req->wb_bytes = end - req->wb_offset;
1133 	else
1134 		req->wb_bytes = rqend - req->wb_offset;
1135 	return req;
1136 out_flushme:
1137 	/*
1138 	 * Note: we mark the request dirty here because
1139 	 * nfs_lock_and_join_requests() cannot preserve
1140 	 * commit flags, so we have to replay the write.
1141 	 */
1142 	nfs_mark_request_dirty(req);
1143 	nfs_unlock_and_release_request(req);
1144 	error = nfs_wb_page(inode, page);
1145 	return (error < 0) ? ERR_PTR(error) : NULL;
1146 }
1147 
1148 /*
1149  * Try to update an existing write request, or create one if there is none.
1150  *
1151  * Note: Should always be called with the Page Lock held to prevent races
1152  * if we have to add a new request. Also assumes that the caller has
1153  * already called nfs_flush_incompatible() if necessary.
1154  */
1155 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1156 		struct page *page, unsigned int offset, unsigned int bytes)
1157 {
1158 	struct inode *inode = page_file_mapping(page)->host;
1159 	struct nfs_page	*req;
1160 
1161 	req = nfs_try_to_update_request(inode, page, offset, bytes);
1162 	if (req != NULL)
1163 		goto out;
1164 	req = nfs_create_request(ctx, page, NULL, offset, bytes);
1165 	if (IS_ERR(req))
1166 		goto out;
1167 	nfs_inode_add_request(inode, req);
1168 out:
1169 	return req;
1170 }
1171 
1172 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1173 		unsigned int offset, unsigned int count)
1174 {
1175 	struct nfs_page	*req;
1176 
1177 	req = nfs_setup_write_request(ctx, page, offset, count);
1178 	if (IS_ERR(req))
1179 		return PTR_ERR(req);
1180 	/* Update file length */
1181 	nfs_grow_file(page, offset, count);
1182 	nfs_mark_uptodate(req);
1183 	nfs_mark_request_dirty(req);
1184 	nfs_unlock_and_release_request(req);
1185 	return 0;
1186 }
1187 
1188 int nfs_flush_incompatible(struct file *file, struct page *page)
1189 {
1190 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1191 	struct nfs_lock_context *l_ctx;
1192 	struct file_lock_context *flctx = file_inode(file)->i_flctx;
1193 	struct nfs_page	*req;
1194 	int do_flush, status;
1195 	/*
1196 	 * Look for a request corresponding to this page. If there
1197 	 * is one, and it belongs to another file, we flush it out
1198 	 * before we try to copy anything into the page. Do this
1199 	 * due to the lack of an ACCESS-type call in NFSv2.
1200 	 * Also do the same if we find a request from an existing
1201 	 * dropped page.
1202 	 */
1203 	do {
1204 		req = nfs_page_find_head_request(page);
1205 		if (req == NULL)
1206 			return 0;
1207 		l_ctx = req->wb_lock_context;
1208 		do_flush = req->wb_page != page ||
1209 			!nfs_match_open_context(req->wb_context, ctx);
1210 		if (l_ctx && flctx &&
1211 		    !(list_empty_careful(&flctx->flc_posix) &&
1212 		      list_empty_careful(&flctx->flc_flock))) {
1213 			do_flush |= l_ctx->lockowner != current->files;
1214 		}
1215 		nfs_release_request(req);
1216 		if (!do_flush)
1217 			return 0;
1218 		status = nfs_wb_page(page_file_mapping(page)->host, page);
1219 	} while (status == 0);
1220 	return status;
1221 }
1222 
1223 /*
1224  * Avoid buffered writes when a open context credential's key would
1225  * expire soon.
1226  *
1227  * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1228  *
1229  * Return 0 and set a credential flag which triggers the inode to flush
1230  * and performs  NFS_FILE_SYNC writes if the key will expired within
1231  * RPC_KEY_EXPIRE_TIMEO.
1232  */
1233 int
1234 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1235 {
1236 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
1237 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1238 
1239 	return rpcauth_key_timeout_notify(auth, ctx->cred);
1240 }
1241 
1242 /*
1243  * Test if the open context credential key is marked to expire soon.
1244  */
1245 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1246 {
1247 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1248 
1249 	return rpcauth_cred_key_to_expire(auth, ctx->cred);
1250 }
1251 
1252 /*
1253  * If the page cache is marked as unsafe or invalid, then we can't rely on
1254  * the PageUptodate() flag. In this case, we will need to turn off
1255  * write optimisations that depend on the page contents being correct.
1256  */
1257 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1258 {
1259 	struct nfs_inode *nfsi = NFS_I(inode);
1260 
1261 	if (nfs_have_delegated_attributes(inode))
1262 		goto out;
1263 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1264 		return false;
1265 	smp_rmb();
1266 	if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1267 		return false;
1268 out:
1269 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1270 		return false;
1271 	return PageUptodate(page) != 0;
1272 }
1273 
1274 static bool
1275 is_whole_file_wrlock(struct file_lock *fl)
1276 {
1277 	return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1278 			fl->fl_type == F_WRLCK;
1279 }
1280 
1281 /* If we know the page is up to date, and we're not using byte range locks (or
1282  * if we have the whole file locked for writing), it may be more efficient to
1283  * extend the write to cover the entire page in order to avoid fragmentation
1284  * inefficiencies.
1285  *
1286  * If the file is opened for synchronous writes then we can just skip the rest
1287  * of the checks.
1288  */
1289 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1290 {
1291 	int ret;
1292 	struct file_lock_context *flctx = inode->i_flctx;
1293 	struct file_lock *fl;
1294 
1295 	if (file->f_flags & O_DSYNC)
1296 		return 0;
1297 	if (!nfs_write_pageuptodate(page, inode))
1298 		return 0;
1299 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1300 		return 1;
1301 	if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1302 		       list_empty_careful(&flctx->flc_posix)))
1303 		return 1;
1304 
1305 	/* Check to see if there are whole file write locks */
1306 	ret = 0;
1307 	spin_lock(&flctx->flc_lock);
1308 	if (!list_empty(&flctx->flc_posix)) {
1309 		fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1310 					fl_list);
1311 		if (is_whole_file_wrlock(fl))
1312 			ret = 1;
1313 	} else if (!list_empty(&flctx->flc_flock)) {
1314 		fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1315 					fl_list);
1316 		if (fl->fl_type == F_WRLCK)
1317 			ret = 1;
1318 	}
1319 	spin_unlock(&flctx->flc_lock);
1320 	return ret;
1321 }
1322 
1323 /*
1324  * Update and possibly write a cached page of an NFS file.
1325  *
1326  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1327  * things with a page scheduled for an RPC call (e.g. invalidate it).
1328  */
1329 int nfs_updatepage(struct file *file, struct page *page,
1330 		unsigned int offset, unsigned int count)
1331 {
1332 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1333 	struct inode	*inode = page_file_mapping(page)->host;
1334 	int		status = 0;
1335 
1336 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1337 
1338 	dprintk("NFS:       nfs_updatepage(%pD2 %d@%lld)\n",
1339 		file, count, (long long)(page_file_offset(page) + offset));
1340 
1341 	if (!count)
1342 		goto out;
1343 
1344 	if (nfs_can_extend_write(file, page, inode)) {
1345 		count = max(count + offset, nfs_page_length(page));
1346 		offset = 0;
1347 	}
1348 
1349 	status = nfs_writepage_setup(ctx, page, offset, count);
1350 	if (status < 0)
1351 		nfs_set_pageerror(page);
1352 	else
1353 		__set_page_dirty_nobuffers(page);
1354 out:
1355 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
1356 			status, (long long)i_size_read(inode));
1357 	return status;
1358 }
1359 
1360 static int flush_task_priority(int how)
1361 {
1362 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1363 		case FLUSH_HIGHPRI:
1364 			return RPC_PRIORITY_HIGH;
1365 		case FLUSH_LOWPRI:
1366 			return RPC_PRIORITY_LOW;
1367 	}
1368 	return RPC_PRIORITY_NORMAL;
1369 }
1370 
1371 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1372 			       struct rpc_message *msg,
1373 			       const struct nfs_rpc_ops *rpc_ops,
1374 			       struct rpc_task_setup *task_setup_data, int how)
1375 {
1376 	int priority = flush_task_priority(how);
1377 
1378 	task_setup_data->priority = priority;
1379 	rpc_ops->write_setup(hdr, msg);
1380 	trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes,
1381 				 hdr->args.stable);
1382 
1383 	nfs4_state_protect_write(NFS_SERVER(hdr->inode)->nfs_client,
1384 				 &task_setup_data->rpc_client, msg, hdr);
1385 }
1386 
1387 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1388  * call this on each, which will prepare them to be retried on next
1389  * writeback using standard nfs.
1390  */
1391 static void nfs_redirty_request(struct nfs_page *req)
1392 {
1393 	nfs_mark_request_dirty(req);
1394 	set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1395 	nfs_end_page_writeback(req);
1396 	nfs_release_request(req);
1397 }
1398 
1399 static void nfs_async_write_error(struct list_head *head)
1400 {
1401 	struct nfs_page	*req;
1402 
1403 	while (!list_empty(head)) {
1404 		req = nfs_list_entry(head->next);
1405 		nfs_list_remove_request(req);
1406 		nfs_redirty_request(req);
1407 	}
1408 }
1409 
1410 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1411 {
1412 	nfs_async_write_error(&hdr->pages);
1413 }
1414 
1415 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1416 	.init_hdr = nfs_async_write_init,
1417 	.error_cleanup = nfs_async_write_error,
1418 	.completion = nfs_write_completion,
1419 	.reschedule_io = nfs_async_write_reschedule_io,
1420 };
1421 
1422 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1423 			       struct inode *inode, int ioflags, bool force_mds,
1424 			       const struct nfs_pgio_completion_ops *compl_ops)
1425 {
1426 	struct nfs_server *server = NFS_SERVER(inode);
1427 	const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1428 
1429 #ifdef CONFIG_NFS_V4_1
1430 	if (server->pnfs_curr_ld && !force_mds)
1431 		pg_ops = server->pnfs_curr_ld->pg_write_ops;
1432 #endif
1433 	nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1434 			server->wsize, ioflags);
1435 }
1436 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1437 
1438 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1439 {
1440 	struct nfs_pgio_mirror *mirror;
1441 
1442 	if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1443 		pgio->pg_ops->pg_cleanup(pgio);
1444 
1445 	pgio->pg_ops = &nfs_pgio_rw_ops;
1446 
1447 	nfs_pageio_stop_mirroring(pgio);
1448 
1449 	mirror = &pgio->pg_mirrors[0];
1450 	mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1451 }
1452 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1453 
1454 
1455 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1456 {
1457 	struct nfs_commit_data *data = calldata;
1458 
1459 	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1460 }
1461 
1462 /*
1463  * Special version of should_remove_suid() that ignores capabilities.
1464  */
1465 static int nfs_should_remove_suid(const struct inode *inode)
1466 {
1467 	umode_t mode = inode->i_mode;
1468 	int kill = 0;
1469 
1470 	/* suid always must be killed */
1471 	if (unlikely(mode & S_ISUID))
1472 		kill = ATTR_KILL_SUID;
1473 
1474 	/*
1475 	 * sgid without any exec bits is just a mandatory locking mark; leave
1476 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1477 	 */
1478 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1479 		kill |= ATTR_KILL_SGID;
1480 
1481 	if (unlikely(kill && S_ISREG(mode)))
1482 		return kill;
1483 
1484 	return 0;
1485 }
1486 
1487 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1488 		struct nfs_fattr *fattr)
1489 {
1490 	struct nfs_pgio_args *argp = &hdr->args;
1491 	struct nfs_pgio_res *resp = &hdr->res;
1492 	u64 size = argp->offset + resp->count;
1493 
1494 	if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1495 		fattr->size = size;
1496 	if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1497 		fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1498 		return;
1499 	}
1500 	if (size != fattr->size)
1501 		return;
1502 	/* Set attribute barrier */
1503 	nfs_fattr_set_barrier(fattr);
1504 	/* ...and update size */
1505 	fattr->valid |= NFS_ATTR_FATTR_SIZE;
1506 }
1507 
1508 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1509 {
1510 	struct nfs_fattr *fattr = &hdr->fattr;
1511 	struct inode *inode = hdr->inode;
1512 
1513 	spin_lock(&inode->i_lock);
1514 	nfs_writeback_check_extend(hdr, fattr);
1515 	nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1516 	spin_unlock(&inode->i_lock);
1517 }
1518 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1519 
1520 /*
1521  * This function is called when the WRITE call is complete.
1522  */
1523 static int nfs_writeback_done(struct rpc_task *task,
1524 			      struct nfs_pgio_header *hdr,
1525 			      struct inode *inode)
1526 {
1527 	int status;
1528 
1529 	/*
1530 	 * ->write_done will attempt to use post-op attributes to detect
1531 	 * conflicting writes by other clients.  A strict interpretation
1532 	 * of close-to-open would allow us to continue caching even if
1533 	 * another writer had changed the file, but some applications
1534 	 * depend on tighter cache coherency when writing.
1535 	 */
1536 	status = NFS_PROTO(inode)->write_done(task, hdr);
1537 	if (status != 0)
1538 		return status;
1539 
1540 	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1541 	trace_nfs_writeback_done(inode, task->tk_status,
1542 				 hdr->args.offset, hdr->res.verf);
1543 
1544 	if (hdr->res.verf->committed < hdr->args.stable &&
1545 	    task->tk_status >= 0) {
1546 		/* We tried a write call, but the server did not
1547 		 * commit data to stable storage even though we
1548 		 * requested it.
1549 		 * Note: There is a known bug in Tru64 < 5.0 in which
1550 		 *	 the server reports NFS_DATA_SYNC, but performs
1551 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1552 		 *	 as a dprintk() in order to avoid filling syslog.
1553 		 */
1554 		static unsigned long    complain;
1555 
1556 		/* Note this will print the MDS for a DS write */
1557 		if (time_before(complain, jiffies)) {
1558 			dprintk("NFS:       faulty NFS server %s:"
1559 				" (committed = %d) != (stable = %d)\n",
1560 				NFS_SERVER(inode)->nfs_client->cl_hostname,
1561 				hdr->res.verf->committed, hdr->args.stable);
1562 			complain = jiffies + 300 * HZ;
1563 		}
1564 	}
1565 
1566 	/* Deal with the suid/sgid bit corner case */
1567 	if (nfs_should_remove_suid(inode))
1568 		nfs_mark_for_revalidate(inode);
1569 	return 0;
1570 }
1571 
1572 /*
1573  * This function is called when the WRITE call is complete.
1574  */
1575 static void nfs_writeback_result(struct rpc_task *task,
1576 				 struct nfs_pgio_header *hdr)
1577 {
1578 	struct nfs_pgio_args	*argp = &hdr->args;
1579 	struct nfs_pgio_res	*resp = &hdr->res;
1580 
1581 	if (resp->count < argp->count) {
1582 		static unsigned long    complain;
1583 
1584 		/* This a short write! */
1585 		nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1586 
1587 		/* Has the server at least made some progress? */
1588 		if (resp->count == 0) {
1589 			if (time_before(complain, jiffies)) {
1590 				printk(KERN_WARNING
1591 				       "NFS: Server wrote zero bytes, expected %u.\n",
1592 				       argp->count);
1593 				complain = jiffies + 300 * HZ;
1594 			}
1595 			nfs_set_pgio_error(hdr, -EIO, argp->offset);
1596 			task->tk_status = -EIO;
1597 			return;
1598 		}
1599 
1600 		/* For non rpc-based layout drivers, retry-through-MDS */
1601 		if (!task->tk_ops) {
1602 			hdr->pnfs_error = -EAGAIN;
1603 			return;
1604 		}
1605 
1606 		/* Was this an NFSv2 write or an NFSv3 stable write? */
1607 		if (resp->verf->committed != NFS_UNSTABLE) {
1608 			/* Resend from where the server left off */
1609 			hdr->mds_offset += resp->count;
1610 			argp->offset += resp->count;
1611 			argp->pgbase += resp->count;
1612 			argp->count -= resp->count;
1613 		} else {
1614 			/* Resend as a stable write in order to avoid
1615 			 * headaches in the case of a server crash.
1616 			 */
1617 			argp->stable = NFS_FILE_SYNC;
1618 		}
1619 		rpc_restart_call_prepare(task);
1620 	}
1621 }
1622 
1623 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1624 {
1625 	return wait_on_atomic_t(&cinfo->rpcs_out,
1626 			nfs_wait_atomic_killable, TASK_KILLABLE);
1627 }
1628 
1629 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1630 {
1631 	atomic_inc(&cinfo->rpcs_out);
1632 }
1633 
1634 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1635 {
1636 	if (atomic_dec_and_test(&cinfo->rpcs_out))
1637 		wake_up_atomic_t(&cinfo->rpcs_out);
1638 }
1639 
1640 void nfs_commitdata_release(struct nfs_commit_data *data)
1641 {
1642 	put_nfs_open_context(data->context);
1643 	nfs_commit_free(data);
1644 }
1645 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1646 
1647 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1648 			const struct nfs_rpc_ops *nfs_ops,
1649 			const struct rpc_call_ops *call_ops,
1650 			int how, int flags)
1651 {
1652 	struct rpc_task *task;
1653 	int priority = flush_task_priority(how);
1654 	struct rpc_message msg = {
1655 		.rpc_argp = &data->args,
1656 		.rpc_resp = &data->res,
1657 		.rpc_cred = data->cred,
1658 	};
1659 	struct rpc_task_setup task_setup_data = {
1660 		.task = &data->task,
1661 		.rpc_client = clnt,
1662 		.rpc_message = &msg,
1663 		.callback_ops = call_ops,
1664 		.callback_data = data,
1665 		.workqueue = nfsiod_workqueue,
1666 		.flags = RPC_TASK_ASYNC | flags,
1667 		.priority = priority,
1668 	};
1669 	/* Set up the initial task struct.  */
1670 	nfs_ops->commit_setup(data, &msg);
1671 	trace_nfs_initiate_commit(data);
1672 
1673 	dprintk("NFS: initiated commit call\n");
1674 
1675 	nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client,
1676 		NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg);
1677 
1678 	task = rpc_run_task(&task_setup_data);
1679 	if (IS_ERR(task))
1680 		return PTR_ERR(task);
1681 	if (how & FLUSH_SYNC)
1682 		rpc_wait_for_completion_task(task);
1683 	rpc_put_task(task);
1684 	return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1687 
1688 static loff_t nfs_get_lwb(struct list_head *head)
1689 {
1690 	loff_t lwb = 0;
1691 	struct nfs_page *req;
1692 
1693 	list_for_each_entry(req, head, wb_list)
1694 		if (lwb < (req_offset(req) + req->wb_bytes))
1695 			lwb = req_offset(req) + req->wb_bytes;
1696 
1697 	return lwb;
1698 }
1699 
1700 /*
1701  * Set up the argument/result storage required for the RPC call.
1702  */
1703 void nfs_init_commit(struct nfs_commit_data *data,
1704 		     struct list_head *head,
1705 		     struct pnfs_layout_segment *lseg,
1706 		     struct nfs_commit_info *cinfo)
1707 {
1708 	struct nfs_page *first = nfs_list_entry(head->next);
1709 	struct inode *inode = d_inode(first->wb_context->dentry);
1710 
1711 	/* Set up the RPC argument and reply structs
1712 	 * NB: take care not to mess about with data->commit et al. */
1713 
1714 	list_splice_init(head, &data->pages);
1715 
1716 	data->inode	  = inode;
1717 	data->cred	  = first->wb_context->cred;
1718 	data->lseg	  = lseg; /* reference transferred */
1719 	/* only set lwb for pnfs commit */
1720 	if (lseg)
1721 		data->lwb = nfs_get_lwb(&data->pages);
1722 	data->mds_ops     = &nfs_commit_ops;
1723 	data->completion_ops = cinfo->completion_ops;
1724 	data->dreq	  = cinfo->dreq;
1725 
1726 	data->args.fh     = NFS_FH(data->inode);
1727 	/* Note: we always request a commit of the entire inode */
1728 	data->args.offset = 0;
1729 	data->args.count  = 0;
1730 	data->context     = get_nfs_open_context(first->wb_context);
1731 	data->res.fattr   = &data->fattr;
1732 	data->res.verf    = &data->verf;
1733 	nfs_fattr_init(&data->fattr);
1734 }
1735 EXPORT_SYMBOL_GPL(nfs_init_commit);
1736 
1737 void nfs_retry_commit(struct list_head *page_list,
1738 		      struct pnfs_layout_segment *lseg,
1739 		      struct nfs_commit_info *cinfo,
1740 		      u32 ds_commit_idx)
1741 {
1742 	struct nfs_page *req;
1743 
1744 	while (!list_empty(page_list)) {
1745 		req = nfs_list_entry(page_list->next);
1746 		nfs_list_remove_request(req);
1747 		nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1748 		if (!cinfo->dreq)
1749 			nfs_clear_page_commit(req->wb_page);
1750 		nfs_unlock_and_release_request(req);
1751 	}
1752 }
1753 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1754 
1755 static void
1756 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1757 		struct nfs_page *req)
1758 {
1759 	__set_page_dirty_nobuffers(req->wb_page);
1760 }
1761 
1762 /*
1763  * Commit dirty pages
1764  */
1765 static int
1766 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1767 		struct nfs_commit_info *cinfo)
1768 {
1769 	struct nfs_commit_data	*data;
1770 
1771 	/* another commit raced with us */
1772 	if (list_empty(head))
1773 		return 0;
1774 
1775 	data = nfs_commitdata_alloc(true);
1776 
1777 	/* Set up the argument struct */
1778 	nfs_init_commit(data, head, NULL, cinfo);
1779 	atomic_inc(&cinfo->mds->rpcs_out);
1780 	return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1781 				   data->mds_ops, how, 0);
1782 }
1783 
1784 /*
1785  * COMMIT call returned
1786  */
1787 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1788 {
1789 	struct nfs_commit_data	*data = calldata;
1790 
1791         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1792                                 task->tk_pid, task->tk_status);
1793 
1794 	/* Call the NFS version-specific code */
1795 	NFS_PROTO(data->inode)->commit_done(task, data);
1796 	trace_nfs_commit_done(data);
1797 }
1798 
1799 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1800 {
1801 	struct nfs_page	*req;
1802 	int status = data->task.tk_status;
1803 	struct nfs_commit_info cinfo;
1804 	struct nfs_server *nfss;
1805 
1806 	while (!list_empty(&data->pages)) {
1807 		req = nfs_list_entry(data->pages.next);
1808 		nfs_list_remove_request(req);
1809 		if (req->wb_page)
1810 			nfs_clear_page_commit(req->wb_page);
1811 
1812 		dprintk("NFS:       commit (%s/%llu %d@%lld)",
1813 			req->wb_context->dentry->d_sb->s_id,
1814 			(unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
1815 			req->wb_bytes,
1816 			(long long)req_offset(req));
1817 		if (status < 0) {
1818 			nfs_context_set_write_error(req->wb_context, status);
1819 			if (req->wb_page)
1820 				nfs_inode_remove_request(req);
1821 			dprintk_cont(", error = %d\n", status);
1822 			goto next;
1823 		}
1824 
1825 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1826 		 * returned by the server against all stored verfs. */
1827 		if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) {
1828 			/* We have a match */
1829 			if (req->wb_page)
1830 				nfs_inode_remove_request(req);
1831 			dprintk_cont(" OK\n");
1832 			goto next;
1833 		}
1834 		/* We have a mismatch. Write the page again */
1835 		dprintk_cont(" mismatch\n");
1836 		nfs_mark_request_dirty(req);
1837 		set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1838 	next:
1839 		nfs_unlock_and_release_request(req);
1840 	}
1841 	nfss = NFS_SERVER(data->inode);
1842 	if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1843 		clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1844 
1845 	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1846 	nfs_commit_end(cinfo.mds);
1847 }
1848 
1849 static void nfs_commit_release(void *calldata)
1850 {
1851 	struct nfs_commit_data *data = calldata;
1852 
1853 	data->completion_ops->completion(data);
1854 	nfs_commitdata_release(calldata);
1855 }
1856 
1857 static const struct rpc_call_ops nfs_commit_ops = {
1858 	.rpc_call_prepare = nfs_commit_prepare,
1859 	.rpc_call_done = nfs_commit_done,
1860 	.rpc_release = nfs_commit_release,
1861 };
1862 
1863 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1864 	.completion = nfs_commit_release_pages,
1865 	.resched_write = nfs_commit_resched_write,
1866 };
1867 
1868 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1869 			    int how, struct nfs_commit_info *cinfo)
1870 {
1871 	int status;
1872 
1873 	status = pnfs_commit_list(inode, head, how, cinfo);
1874 	if (status == PNFS_NOT_ATTEMPTED)
1875 		status = nfs_commit_list(inode, head, how, cinfo);
1876 	return status;
1877 }
1878 
1879 int nfs_commit_inode(struct inode *inode, int how)
1880 {
1881 	LIST_HEAD(head);
1882 	struct nfs_commit_info cinfo;
1883 	int may_wait = how & FLUSH_SYNC;
1884 	int error = 0;
1885 	int res;
1886 
1887 	nfs_init_cinfo_from_inode(&cinfo, inode);
1888 	nfs_commit_begin(cinfo.mds);
1889 	res = nfs_scan_commit(inode, &head, &cinfo);
1890 	if (res)
1891 		error = nfs_generic_commit_list(inode, &head, how, &cinfo);
1892 	nfs_commit_end(cinfo.mds);
1893 	if (res == 0)
1894 		return res;
1895 	if (error < 0)
1896 		goto out_error;
1897 	if (!may_wait)
1898 		goto out_mark_dirty;
1899 	error = wait_on_commit(cinfo.mds);
1900 	if (error < 0)
1901 		return error;
1902 	return res;
1903 out_error:
1904 	res = error;
1905 	/* Note: If we exit without ensuring that the commit is complete,
1906 	 * we must mark the inode as dirty. Otherwise, future calls to
1907 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1908 	 * that the data is on the disk.
1909 	 */
1910 out_mark_dirty:
1911 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1912 	return res;
1913 }
1914 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1915 
1916 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1917 {
1918 	struct nfs_inode *nfsi = NFS_I(inode);
1919 	int flags = FLUSH_SYNC;
1920 	int ret = 0;
1921 
1922 	/* no commits means nothing needs to be done */
1923 	if (!atomic_long_read(&nfsi->commit_info.ncommit))
1924 		return ret;
1925 
1926 	if (wbc->sync_mode == WB_SYNC_NONE) {
1927 		/* Don't commit yet if this is a non-blocking flush and there
1928 		 * are a lot of outstanding writes for this mapping.
1929 		 */
1930 		if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1931 			goto out_mark_dirty;
1932 
1933 		/* don't wait for the COMMIT response */
1934 		flags = 0;
1935 	}
1936 
1937 	ret = nfs_commit_inode(inode, flags);
1938 	if (ret >= 0) {
1939 		if (wbc->sync_mode == WB_SYNC_NONE) {
1940 			if (ret < wbc->nr_to_write)
1941 				wbc->nr_to_write -= ret;
1942 			else
1943 				wbc->nr_to_write = 0;
1944 		}
1945 		return 0;
1946 	}
1947 out_mark_dirty:
1948 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1949 	return ret;
1950 }
1951 EXPORT_SYMBOL_GPL(nfs_write_inode);
1952 
1953 /*
1954  * Wrapper for filemap_write_and_wait_range()
1955  *
1956  * Needed for pNFS in order to ensure data becomes visible to the
1957  * client.
1958  */
1959 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
1960 		loff_t lstart, loff_t lend)
1961 {
1962 	int ret;
1963 
1964 	ret = filemap_write_and_wait_range(mapping, lstart, lend);
1965 	if (ret == 0)
1966 		ret = pnfs_sync_inode(mapping->host, true);
1967 	return ret;
1968 }
1969 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
1970 
1971 /*
1972  * flush the inode to disk.
1973  */
1974 int nfs_wb_all(struct inode *inode)
1975 {
1976 	int ret;
1977 
1978 	trace_nfs_writeback_inode_enter(inode);
1979 
1980 	ret = filemap_write_and_wait(inode->i_mapping);
1981 	if (ret)
1982 		goto out;
1983 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
1984 	if (ret < 0)
1985 		goto out;
1986 	pnfs_sync_inode(inode, true);
1987 	ret = 0;
1988 
1989 out:
1990 	trace_nfs_writeback_inode_exit(inode, ret);
1991 	return ret;
1992 }
1993 EXPORT_SYMBOL_GPL(nfs_wb_all);
1994 
1995 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1996 {
1997 	struct nfs_page *req;
1998 	int ret = 0;
1999 
2000 	wait_on_page_writeback(page);
2001 
2002 	/* blocking call to cancel all requests and join to a single (head)
2003 	 * request */
2004 	req = nfs_lock_and_join_requests(page);
2005 
2006 	if (IS_ERR(req)) {
2007 		ret = PTR_ERR(req);
2008 	} else if (req) {
2009 		/* all requests from this page have been cancelled by
2010 		 * nfs_lock_and_join_requests, so just remove the head
2011 		 * request from the inode / page_private pointer and
2012 		 * release it */
2013 		nfs_inode_remove_request(req);
2014 		nfs_unlock_and_release_request(req);
2015 	}
2016 
2017 	return ret;
2018 }
2019 
2020 /*
2021  * Write back all requests on one page - we do this before reading it.
2022  */
2023 int nfs_wb_page(struct inode *inode, struct page *page)
2024 {
2025 	loff_t range_start = page_file_offset(page);
2026 	loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2027 	struct writeback_control wbc = {
2028 		.sync_mode = WB_SYNC_ALL,
2029 		.nr_to_write = 0,
2030 		.range_start = range_start,
2031 		.range_end = range_end,
2032 	};
2033 	int ret;
2034 
2035 	trace_nfs_writeback_page_enter(inode);
2036 
2037 	for (;;) {
2038 		wait_on_page_writeback(page);
2039 		if (clear_page_dirty_for_io(page)) {
2040 			ret = nfs_writepage_locked(page, &wbc);
2041 			if (ret < 0)
2042 				goto out_error;
2043 			continue;
2044 		}
2045 		ret = 0;
2046 		if (!PagePrivate(page))
2047 			break;
2048 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
2049 		if (ret < 0)
2050 			goto out_error;
2051 	}
2052 out_error:
2053 	trace_nfs_writeback_page_exit(inode, ret);
2054 	return ret;
2055 }
2056 
2057 #ifdef CONFIG_MIGRATION
2058 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2059 		struct page *page, enum migrate_mode mode)
2060 {
2061 	/*
2062 	 * If PagePrivate is set, then the page is currently associated with
2063 	 * an in-progress read or write request. Don't try to migrate it.
2064 	 *
2065 	 * FIXME: we could do this in principle, but we'll need a way to ensure
2066 	 *        that we can safely release the inode reference while holding
2067 	 *        the page lock.
2068 	 */
2069 	if (PagePrivate(page))
2070 		return -EBUSY;
2071 
2072 	if (!nfs_fscache_release_page(page, GFP_KERNEL))
2073 		return -EBUSY;
2074 
2075 	return migrate_page(mapping, newpage, page, mode);
2076 }
2077 #endif
2078 
2079 int __init nfs_init_writepagecache(void)
2080 {
2081 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2082 					     sizeof(struct nfs_pgio_header),
2083 					     0, SLAB_HWCACHE_ALIGN,
2084 					     NULL);
2085 	if (nfs_wdata_cachep == NULL)
2086 		return -ENOMEM;
2087 
2088 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2089 						     nfs_wdata_cachep);
2090 	if (nfs_wdata_mempool == NULL)
2091 		goto out_destroy_write_cache;
2092 
2093 	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2094 					     sizeof(struct nfs_commit_data),
2095 					     0, SLAB_HWCACHE_ALIGN,
2096 					     NULL);
2097 	if (nfs_cdata_cachep == NULL)
2098 		goto out_destroy_write_mempool;
2099 
2100 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2101 						      nfs_cdata_cachep);
2102 	if (nfs_commit_mempool == NULL)
2103 		goto out_destroy_commit_cache;
2104 
2105 	/*
2106 	 * NFS congestion size, scale with available memory.
2107 	 *
2108 	 *  64MB:    8192k
2109 	 * 128MB:   11585k
2110 	 * 256MB:   16384k
2111 	 * 512MB:   23170k
2112 	 *   1GB:   32768k
2113 	 *   2GB:   46340k
2114 	 *   4GB:   65536k
2115 	 *   8GB:   92681k
2116 	 *  16GB:  131072k
2117 	 *
2118 	 * This allows larger machines to have larger/more transfers.
2119 	 * Limit the default to 256M
2120 	 */
2121 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
2122 	if (nfs_congestion_kb > 256*1024)
2123 		nfs_congestion_kb = 256*1024;
2124 
2125 	return 0;
2126 
2127 out_destroy_commit_cache:
2128 	kmem_cache_destroy(nfs_cdata_cachep);
2129 out_destroy_write_mempool:
2130 	mempool_destroy(nfs_wdata_mempool);
2131 out_destroy_write_cache:
2132 	kmem_cache_destroy(nfs_wdata_cachep);
2133 	return -ENOMEM;
2134 }
2135 
2136 void nfs_destroy_writepagecache(void)
2137 {
2138 	mempool_destroy(nfs_commit_mempool);
2139 	kmem_cache_destroy(nfs_cdata_cachep);
2140 	mempool_destroy(nfs_wdata_mempool);
2141 	kmem_cache_destroy(nfs_wdata_cachep);
2142 }
2143 
2144 static const struct nfs_rw_ops nfs_rw_write_ops = {
2145 	.rw_alloc_header	= nfs_writehdr_alloc,
2146 	.rw_free_header		= nfs_writehdr_free,
2147 	.rw_done		= nfs_writeback_done,
2148 	.rw_result		= nfs_writeback_result,
2149 	.rw_initiate		= nfs_initiate_write,
2150 };
2151