1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/write.c 4 * 5 * Write file data over NFS. 6 * 7 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 8 */ 9 10 #include <linux/types.h> 11 #include <linux/slab.h> 12 #include <linux/mm.h> 13 #include <linux/pagemap.h> 14 #include <linux/file.h> 15 #include <linux/writeback.h> 16 #include <linux/swap.h> 17 #include <linux/migrate.h> 18 19 #include <linux/sunrpc/clnt.h> 20 #include <linux/nfs_fs.h> 21 #include <linux/nfs_mount.h> 22 #include <linux/nfs_page.h> 23 #include <linux/backing-dev.h> 24 #include <linux/export.h> 25 #include <linux/freezer.h> 26 #include <linux/wait.h> 27 #include <linux/iversion.h> 28 29 #include <linux/uaccess.h> 30 #include <linux/sched/mm.h> 31 32 #include "delegation.h" 33 #include "internal.h" 34 #include "iostat.h" 35 #include "nfs4_fs.h" 36 #include "fscache.h" 37 #include "pnfs.h" 38 39 #include "nfstrace.h" 40 41 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 42 43 #define MIN_POOL_WRITE (32) 44 #define MIN_POOL_COMMIT (4) 45 46 struct nfs_io_completion { 47 void (*complete)(void *data); 48 void *data; 49 struct kref refcount; 50 }; 51 52 /* 53 * Local function declarations 54 */ 55 static void nfs_redirty_request(struct nfs_page *req); 56 static const struct rpc_call_ops nfs_commit_ops; 57 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops; 58 static const struct nfs_commit_completion_ops nfs_commit_completion_ops; 59 static const struct nfs_rw_ops nfs_rw_write_ops; 60 static void nfs_clear_request_commit(struct nfs_page *req); 61 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 62 struct inode *inode); 63 static struct nfs_page * 64 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi, 65 struct page *page); 66 67 static struct kmem_cache *nfs_wdata_cachep; 68 static mempool_t *nfs_wdata_mempool; 69 static struct kmem_cache *nfs_cdata_cachep; 70 static mempool_t *nfs_commit_mempool; 71 72 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail) 73 { 74 struct nfs_commit_data *p; 75 76 if (never_fail) 77 p = mempool_alloc(nfs_commit_mempool, GFP_NOIO); 78 else { 79 /* It is OK to do some reclaim, not no safe to wait 80 * for anything to be returned to the pool. 81 * mempool_alloc() cannot handle that particular combination, 82 * so we need two separate attempts. 83 */ 84 p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT); 85 if (!p) 86 p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO | 87 __GFP_NOWARN | __GFP_NORETRY); 88 if (!p) 89 return NULL; 90 } 91 92 memset(p, 0, sizeof(*p)); 93 INIT_LIST_HEAD(&p->pages); 94 return p; 95 } 96 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc); 97 98 void nfs_commit_free(struct nfs_commit_data *p) 99 { 100 mempool_free(p, nfs_commit_mempool); 101 } 102 EXPORT_SYMBOL_GPL(nfs_commit_free); 103 104 static struct nfs_pgio_header *nfs_writehdr_alloc(void) 105 { 106 struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_KERNEL); 107 108 memset(p, 0, sizeof(*p)); 109 p->rw_mode = FMODE_WRITE; 110 return p; 111 } 112 113 static void nfs_writehdr_free(struct nfs_pgio_header *hdr) 114 { 115 mempool_free(hdr, nfs_wdata_mempool); 116 } 117 118 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags) 119 { 120 return kmalloc(sizeof(struct nfs_io_completion), gfp_flags); 121 } 122 123 static void nfs_io_completion_init(struct nfs_io_completion *ioc, 124 void (*complete)(void *), void *data) 125 { 126 ioc->complete = complete; 127 ioc->data = data; 128 kref_init(&ioc->refcount); 129 } 130 131 static void nfs_io_completion_release(struct kref *kref) 132 { 133 struct nfs_io_completion *ioc = container_of(kref, 134 struct nfs_io_completion, refcount); 135 ioc->complete(ioc->data); 136 kfree(ioc); 137 } 138 139 static void nfs_io_completion_get(struct nfs_io_completion *ioc) 140 { 141 if (ioc != NULL) 142 kref_get(&ioc->refcount); 143 } 144 145 static void nfs_io_completion_put(struct nfs_io_completion *ioc) 146 { 147 if (ioc != NULL) 148 kref_put(&ioc->refcount, nfs_io_completion_release); 149 } 150 151 static struct nfs_page * 152 nfs_page_private_request(struct page *page) 153 { 154 if (!PagePrivate(page)) 155 return NULL; 156 return (struct nfs_page *)page_private(page); 157 } 158 159 /* 160 * nfs_page_find_head_request_locked - find head request associated with @page 161 * 162 * must be called while holding the inode lock. 163 * 164 * returns matching head request with reference held, or NULL if not found. 165 */ 166 static struct nfs_page * 167 nfs_page_find_private_request(struct page *page) 168 { 169 struct address_space *mapping = page_file_mapping(page); 170 struct nfs_page *req; 171 172 if (!PagePrivate(page)) 173 return NULL; 174 spin_lock(&mapping->private_lock); 175 req = nfs_page_private_request(page); 176 if (req) { 177 WARN_ON_ONCE(req->wb_head != req); 178 kref_get(&req->wb_kref); 179 } 180 spin_unlock(&mapping->private_lock); 181 return req; 182 } 183 184 static struct nfs_page * 185 nfs_page_find_swap_request(struct page *page) 186 { 187 struct inode *inode = page_file_mapping(page)->host; 188 struct nfs_inode *nfsi = NFS_I(inode); 189 struct nfs_page *req = NULL; 190 if (!PageSwapCache(page)) 191 return NULL; 192 mutex_lock(&nfsi->commit_mutex); 193 if (PageSwapCache(page)) { 194 req = nfs_page_search_commits_for_head_request_locked(nfsi, 195 page); 196 if (req) { 197 WARN_ON_ONCE(req->wb_head != req); 198 kref_get(&req->wb_kref); 199 } 200 } 201 mutex_unlock(&nfsi->commit_mutex); 202 return req; 203 } 204 205 /* 206 * nfs_page_find_head_request - find head request associated with @page 207 * 208 * returns matching head request with reference held, or NULL if not found. 209 */ 210 static struct nfs_page *nfs_page_find_head_request(struct page *page) 211 { 212 struct nfs_page *req; 213 214 req = nfs_page_find_private_request(page); 215 if (!req) 216 req = nfs_page_find_swap_request(page); 217 return req; 218 } 219 220 /* Adjust the file length if we're writing beyond the end */ 221 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 222 { 223 struct inode *inode = page_file_mapping(page)->host; 224 loff_t end, i_size; 225 pgoff_t end_index; 226 227 spin_lock(&inode->i_lock); 228 i_size = i_size_read(inode); 229 end_index = (i_size - 1) >> PAGE_SHIFT; 230 if (i_size > 0 && page_index(page) < end_index) 231 goto out; 232 end = page_file_offset(page) + ((loff_t)offset+count); 233 if (i_size >= end) 234 goto out; 235 i_size_write(inode, end); 236 NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE; 237 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 238 out: 239 spin_unlock(&inode->i_lock); 240 } 241 242 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 243 static void nfs_set_pageerror(struct address_space *mapping) 244 { 245 nfs_zap_mapping(mapping->host, mapping); 246 } 247 248 static void nfs_mapping_set_error(struct page *page, int error) 249 { 250 SetPageError(page); 251 mapping_set_error(page_file_mapping(page), error); 252 } 253 254 /* 255 * nfs_page_group_search_locked 256 * @head - head request of page group 257 * @page_offset - offset into page 258 * 259 * Search page group with head @head to find a request that contains the 260 * page offset @page_offset. 261 * 262 * Returns a pointer to the first matching nfs request, or NULL if no 263 * match is found. 264 * 265 * Must be called with the page group lock held 266 */ 267 static struct nfs_page * 268 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset) 269 { 270 struct nfs_page *req; 271 272 req = head; 273 do { 274 if (page_offset >= req->wb_pgbase && 275 page_offset < (req->wb_pgbase + req->wb_bytes)) 276 return req; 277 278 req = req->wb_this_page; 279 } while (req != head); 280 281 return NULL; 282 } 283 284 /* 285 * nfs_page_group_covers_page 286 * @head - head request of page group 287 * 288 * Return true if the page group with head @head covers the whole page, 289 * returns false otherwise 290 */ 291 static bool nfs_page_group_covers_page(struct nfs_page *req) 292 { 293 struct nfs_page *tmp; 294 unsigned int pos = 0; 295 unsigned int len = nfs_page_length(req->wb_page); 296 297 nfs_page_group_lock(req); 298 299 for (;;) { 300 tmp = nfs_page_group_search_locked(req->wb_head, pos); 301 if (!tmp) 302 break; 303 pos = tmp->wb_pgbase + tmp->wb_bytes; 304 } 305 306 nfs_page_group_unlock(req); 307 return pos >= len; 308 } 309 310 /* We can set the PG_uptodate flag if we see that a write request 311 * covers the full page. 312 */ 313 static void nfs_mark_uptodate(struct nfs_page *req) 314 { 315 if (PageUptodate(req->wb_page)) 316 return; 317 if (!nfs_page_group_covers_page(req)) 318 return; 319 SetPageUptodate(req->wb_page); 320 } 321 322 static int wb_priority(struct writeback_control *wbc) 323 { 324 int ret = 0; 325 326 if (wbc->sync_mode == WB_SYNC_ALL) 327 ret = FLUSH_COND_STABLE; 328 return ret; 329 } 330 331 /* 332 * NFS congestion control 333 */ 334 335 int nfs_congestion_kb; 336 337 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 338 #define NFS_CONGESTION_OFF_THRESH \ 339 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 340 341 static void nfs_set_page_writeback(struct page *page) 342 { 343 struct inode *inode = page_file_mapping(page)->host; 344 struct nfs_server *nfss = NFS_SERVER(inode); 345 int ret = test_set_page_writeback(page); 346 347 WARN_ON_ONCE(ret != 0); 348 349 if (atomic_long_inc_return(&nfss->writeback) > 350 NFS_CONGESTION_ON_THRESH) 351 set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC); 352 } 353 354 static void nfs_end_page_writeback(struct nfs_page *req) 355 { 356 struct inode *inode = page_file_mapping(req->wb_page)->host; 357 struct nfs_server *nfss = NFS_SERVER(inode); 358 bool is_done; 359 360 is_done = nfs_page_group_sync_on_bit(req, PG_WB_END); 361 nfs_unlock_request(req); 362 if (!is_done) 363 return; 364 365 end_page_writeback(req->wb_page); 366 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 367 clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC); 368 } 369 370 /* 371 * nfs_unroll_locks_and_wait - unlock all newly locked reqs and wait on @req 372 * 373 * this is a helper function for nfs_lock_and_join_requests 374 * 375 * @inode - inode associated with request page group, must be holding inode lock 376 * @head - head request of page group, must be holding head lock 377 * @req - request that couldn't lock and needs to wait on the req bit lock 378 * 379 * NOTE: this must be called holding page_group bit lock 380 * which will be released before returning. 381 * 382 * returns 0 on success, < 0 on error. 383 */ 384 static void 385 nfs_unroll_locks(struct inode *inode, struct nfs_page *head, 386 struct nfs_page *req) 387 { 388 struct nfs_page *tmp; 389 390 /* relinquish all the locks successfully grabbed this run */ 391 for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) { 392 if (!kref_read(&tmp->wb_kref)) 393 continue; 394 nfs_unlock_and_release_request(tmp); 395 } 396 } 397 398 /* 399 * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests 400 * 401 * @destroy_list - request list (using wb_this_page) terminated by @old_head 402 * @old_head - the old head of the list 403 * 404 * All subrequests must be locked and removed from all lists, so at this point 405 * they are only "active" in this function, and possibly in nfs_wait_on_request 406 * with a reference held by some other context. 407 */ 408 static void 409 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list, 410 struct nfs_page *old_head, 411 struct inode *inode) 412 { 413 while (destroy_list) { 414 struct nfs_page *subreq = destroy_list; 415 416 destroy_list = (subreq->wb_this_page == old_head) ? 417 NULL : subreq->wb_this_page; 418 419 WARN_ON_ONCE(old_head != subreq->wb_head); 420 421 /* make sure old group is not used */ 422 subreq->wb_this_page = subreq; 423 424 clear_bit(PG_REMOVE, &subreq->wb_flags); 425 426 /* Note: races with nfs_page_group_destroy() */ 427 if (!kref_read(&subreq->wb_kref)) { 428 /* Check if we raced with nfs_page_group_destroy() */ 429 if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags)) 430 nfs_free_request(subreq); 431 continue; 432 } 433 434 subreq->wb_head = subreq; 435 436 if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) { 437 nfs_release_request(subreq); 438 atomic_long_dec(&NFS_I(inode)->nrequests); 439 } 440 441 /* subreq is now totally disconnected from page group or any 442 * write / commit lists. last chance to wake any waiters */ 443 nfs_unlock_and_release_request(subreq); 444 } 445 } 446 447 /* 448 * nfs_lock_and_join_requests - join all subreqs to the head req and return 449 * a locked reference, cancelling any pending 450 * operations for this page. 451 * 452 * @page - the page used to lookup the "page group" of nfs_page structures 453 * 454 * This function joins all sub requests to the head request by first 455 * locking all requests in the group, cancelling any pending operations 456 * and finally updating the head request to cover the whole range covered by 457 * the (former) group. All subrequests are removed from any write or commit 458 * lists, unlinked from the group and destroyed. 459 * 460 * Returns a locked, referenced pointer to the head request - which after 461 * this call is guaranteed to be the only request associated with the page. 462 * Returns NULL if no requests are found for @page, or a ERR_PTR if an 463 * error was encountered. 464 */ 465 static struct nfs_page * 466 nfs_lock_and_join_requests(struct page *page) 467 { 468 struct inode *inode = page_file_mapping(page)->host; 469 struct nfs_page *head, *subreq; 470 struct nfs_page *destroy_list = NULL; 471 unsigned int total_bytes; 472 int ret; 473 474 try_again: 475 /* 476 * A reference is taken only on the head request which acts as a 477 * reference to the whole page group - the group will not be destroyed 478 * until the head reference is released. 479 */ 480 head = nfs_page_find_head_request(page); 481 if (!head) 482 return NULL; 483 484 /* lock the page head first in order to avoid an ABBA inefficiency */ 485 if (!nfs_lock_request(head)) { 486 ret = nfs_wait_on_request(head); 487 nfs_release_request(head); 488 if (ret < 0) 489 return ERR_PTR(ret); 490 goto try_again; 491 } 492 493 /* Ensure that nobody removed the request before we locked it */ 494 if (head != nfs_page_private_request(page) && !PageSwapCache(page)) { 495 nfs_unlock_and_release_request(head); 496 goto try_again; 497 } 498 499 ret = nfs_page_group_lock(head); 500 if (ret < 0) 501 goto release_request; 502 503 /* lock each request in the page group */ 504 total_bytes = head->wb_bytes; 505 for (subreq = head->wb_this_page; subreq != head; 506 subreq = subreq->wb_this_page) { 507 508 if (!kref_get_unless_zero(&subreq->wb_kref)) { 509 if (subreq->wb_offset == head->wb_offset + total_bytes) 510 total_bytes += subreq->wb_bytes; 511 continue; 512 } 513 514 while (!nfs_lock_request(subreq)) { 515 /* 516 * Unlock page to allow nfs_page_group_sync_on_bit() 517 * to succeed 518 */ 519 nfs_page_group_unlock(head); 520 ret = nfs_wait_on_request(subreq); 521 if (!ret) 522 ret = nfs_page_group_lock(head); 523 if (ret < 0) { 524 nfs_unroll_locks(inode, head, subreq); 525 nfs_release_request(subreq); 526 goto release_request; 527 } 528 } 529 /* 530 * Subrequests are always contiguous, non overlapping 531 * and in order - but may be repeated (mirrored writes). 532 */ 533 if (subreq->wb_offset == (head->wb_offset + total_bytes)) { 534 /* keep track of how many bytes this group covers */ 535 total_bytes += subreq->wb_bytes; 536 } else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset || 537 ((subreq->wb_offset + subreq->wb_bytes) > 538 (head->wb_offset + total_bytes)))) { 539 nfs_page_group_unlock(head); 540 nfs_unroll_locks(inode, head, subreq); 541 nfs_unlock_and_release_request(subreq); 542 ret = -EIO; 543 goto release_request; 544 } 545 } 546 547 /* Now that all requests are locked, make sure they aren't on any list. 548 * Commit list removal accounting is done after locks are dropped */ 549 subreq = head; 550 do { 551 nfs_clear_request_commit(subreq); 552 subreq = subreq->wb_this_page; 553 } while (subreq != head); 554 555 /* unlink subrequests from head, destroy them later */ 556 if (head->wb_this_page != head) { 557 /* destroy list will be terminated by head */ 558 destroy_list = head->wb_this_page; 559 head->wb_this_page = head; 560 561 /* change head request to cover whole range that 562 * the former page group covered */ 563 head->wb_bytes = total_bytes; 564 } 565 566 /* Postpone destruction of this request */ 567 if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) { 568 set_bit(PG_INODE_REF, &head->wb_flags); 569 kref_get(&head->wb_kref); 570 atomic_long_inc(&NFS_I(inode)->nrequests); 571 } 572 573 nfs_page_group_unlock(head); 574 575 nfs_destroy_unlinked_subrequests(destroy_list, head, inode); 576 577 /* Did we lose a race with nfs_inode_remove_request()? */ 578 if (!(PagePrivate(page) || PageSwapCache(page))) { 579 nfs_unlock_and_release_request(head); 580 return NULL; 581 } 582 583 /* still holds ref on head from nfs_page_find_head_request 584 * and still has lock on head from lock loop */ 585 return head; 586 587 release_request: 588 nfs_unlock_and_release_request(head); 589 return ERR_PTR(ret); 590 } 591 592 static void nfs_write_error(struct nfs_page *req, int error) 593 { 594 nfs_mapping_set_error(req->wb_page, error); 595 nfs_end_page_writeback(req); 596 nfs_release_request(req); 597 } 598 599 static bool 600 nfs_error_is_fatal_on_server(int err) 601 { 602 switch (err) { 603 case 0: 604 case -ERESTARTSYS: 605 case -EINTR: 606 return false; 607 } 608 return nfs_error_is_fatal(err); 609 } 610 611 /* 612 * Find an associated nfs write request, and prepare to flush it out 613 * May return an error if the user signalled nfs_wait_on_request(). 614 */ 615 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 616 struct page *page) 617 { 618 struct address_space *mapping; 619 struct nfs_page *req; 620 int ret = 0; 621 622 req = nfs_lock_and_join_requests(page); 623 if (!req) 624 goto out; 625 ret = PTR_ERR(req); 626 if (IS_ERR(req)) 627 goto out; 628 629 nfs_set_page_writeback(page); 630 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags)); 631 632 /* If there is a fatal error that covers this write, just exit */ 633 ret = 0; 634 mapping = page_file_mapping(page); 635 if (test_bit(AS_ENOSPC, &mapping->flags) || 636 test_bit(AS_EIO, &mapping->flags)) 637 goto out_launder; 638 639 if (!nfs_pageio_add_request(pgio, req)) { 640 ret = pgio->pg_error; 641 /* 642 * Remove the problematic req upon fatal errors on the server 643 */ 644 if (nfs_error_is_fatal(ret)) { 645 if (nfs_error_is_fatal_on_server(ret)) 646 goto out_launder; 647 } else 648 ret = -EAGAIN; 649 nfs_redirty_request(req); 650 } else 651 nfs_add_stats(page_file_mapping(page)->host, 652 NFSIOS_WRITEPAGES, 1); 653 out: 654 return ret; 655 out_launder: 656 nfs_write_error(req, ret); 657 return 0; 658 } 659 660 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, 661 struct nfs_pageio_descriptor *pgio) 662 { 663 int ret; 664 665 nfs_pageio_cond_complete(pgio, page_index(page)); 666 ret = nfs_page_async_flush(pgio, page); 667 if (ret == -EAGAIN) { 668 redirty_page_for_writepage(wbc, page); 669 ret = 0; 670 } 671 return ret; 672 } 673 674 /* 675 * Write an mmapped page to the server. 676 */ 677 static int nfs_writepage_locked(struct page *page, 678 struct writeback_control *wbc) 679 { 680 struct nfs_pageio_descriptor pgio; 681 struct inode *inode = page_file_mapping(page)->host; 682 int err; 683 684 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 685 nfs_pageio_init_write(&pgio, inode, 0, 686 false, &nfs_async_write_completion_ops); 687 err = nfs_do_writepage(page, wbc, &pgio); 688 nfs_pageio_complete(&pgio); 689 if (err < 0) 690 return err; 691 if (pgio.pg_error < 0) 692 return pgio.pg_error; 693 return 0; 694 } 695 696 int nfs_writepage(struct page *page, struct writeback_control *wbc) 697 { 698 int ret; 699 700 ret = nfs_writepage_locked(page, wbc); 701 unlock_page(page); 702 return ret; 703 } 704 705 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 706 { 707 int ret; 708 709 ret = nfs_do_writepage(page, wbc, data); 710 unlock_page(page); 711 return ret; 712 } 713 714 static void nfs_io_completion_commit(void *inode) 715 { 716 nfs_commit_inode(inode, 0); 717 } 718 719 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 720 { 721 struct inode *inode = mapping->host; 722 struct nfs_pageio_descriptor pgio; 723 struct nfs_io_completion *ioc; 724 int err; 725 726 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 727 728 ioc = nfs_io_completion_alloc(GFP_KERNEL); 729 if (ioc) 730 nfs_io_completion_init(ioc, nfs_io_completion_commit, inode); 731 732 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false, 733 &nfs_async_write_completion_ops); 734 pgio.pg_io_completion = ioc; 735 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 736 nfs_pageio_complete(&pgio); 737 nfs_io_completion_put(ioc); 738 739 if (err < 0) 740 goto out_err; 741 err = pgio.pg_error; 742 if (err < 0) 743 goto out_err; 744 return 0; 745 out_err: 746 return err; 747 } 748 749 /* 750 * Insert a write request into an inode 751 */ 752 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 753 { 754 struct address_space *mapping = page_file_mapping(req->wb_page); 755 struct nfs_inode *nfsi = NFS_I(inode); 756 757 WARN_ON_ONCE(req->wb_this_page != req); 758 759 /* Lock the request! */ 760 nfs_lock_request(req); 761 762 /* 763 * Swap-space should not get truncated. Hence no need to plug the race 764 * with invalidate/truncate. 765 */ 766 spin_lock(&mapping->private_lock); 767 if (!nfs_have_writebacks(inode) && 768 NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 769 inode_inc_iversion_raw(inode); 770 if (likely(!PageSwapCache(req->wb_page))) { 771 set_bit(PG_MAPPED, &req->wb_flags); 772 SetPagePrivate(req->wb_page); 773 set_page_private(req->wb_page, (unsigned long)req); 774 } 775 spin_unlock(&mapping->private_lock); 776 atomic_long_inc(&nfsi->nrequests); 777 /* this a head request for a page group - mark it as having an 778 * extra reference so sub groups can follow suit. 779 * This flag also informs pgio layer when to bump nrequests when 780 * adding subrequests. */ 781 WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags)); 782 kref_get(&req->wb_kref); 783 } 784 785 /* 786 * Remove a write request from an inode 787 */ 788 static void nfs_inode_remove_request(struct nfs_page *req) 789 { 790 struct address_space *mapping = page_file_mapping(req->wb_page); 791 struct inode *inode = mapping->host; 792 struct nfs_inode *nfsi = NFS_I(inode); 793 struct nfs_page *head; 794 795 atomic_long_dec(&nfsi->nrequests); 796 if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) { 797 head = req->wb_head; 798 799 spin_lock(&mapping->private_lock); 800 if (likely(head->wb_page && !PageSwapCache(head->wb_page))) { 801 set_page_private(head->wb_page, 0); 802 ClearPagePrivate(head->wb_page); 803 clear_bit(PG_MAPPED, &head->wb_flags); 804 } 805 spin_unlock(&mapping->private_lock); 806 } 807 808 if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) 809 nfs_release_request(req); 810 } 811 812 static void 813 nfs_mark_request_dirty(struct nfs_page *req) 814 { 815 if (req->wb_page) 816 __set_page_dirty_nobuffers(req->wb_page); 817 } 818 819 /* 820 * nfs_page_search_commits_for_head_request_locked 821 * 822 * Search through commit lists on @inode for the head request for @page. 823 * Must be called while holding the inode (which is cinfo) lock. 824 * 825 * Returns the head request if found, or NULL if not found. 826 */ 827 static struct nfs_page * 828 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi, 829 struct page *page) 830 { 831 struct nfs_page *freq, *t; 832 struct nfs_commit_info cinfo; 833 struct inode *inode = &nfsi->vfs_inode; 834 835 nfs_init_cinfo_from_inode(&cinfo, inode); 836 837 /* search through pnfs commit lists */ 838 freq = pnfs_search_commit_reqs(inode, &cinfo, page); 839 if (freq) 840 return freq->wb_head; 841 842 /* Linearly search the commit list for the correct request */ 843 list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) { 844 if (freq->wb_page == page) 845 return freq->wb_head; 846 } 847 848 return NULL; 849 } 850 851 /** 852 * nfs_request_add_commit_list_locked - add request to a commit list 853 * @req: pointer to a struct nfs_page 854 * @dst: commit list head 855 * @cinfo: holds list lock and accounting info 856 * 857 * This sets the PG_CLEAN bit, updates the cinfo count of 858 * number of outstanding requests requiring a commit as well as 859 * the MM page stats. 860 * 861 * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the 862 * nfs_page lock. 863 */ 864 void 865 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst, 866 struct nfs_commit_info *cinfo) 867 { 868 set_bit(PG_CLEAN, &req->wb_flags); 869 nfs_list_add_request(req, dst); 870 atomic_long_inc(&cinfo->mds->ncommit); 871 } 872 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked); 873 874 /** 875 * nfs_request_add_commit_list - add request to a commit list 876 * @req: pointer to a struct nfs_page 877 * @cinfo: holds list lock and accounting info 878 * 879 * This sets the PG_CLEAN bit, updates the cinfo count of 880 * number of outstanding requests requiring a commit as well as 881 * the MM page stats. 882 * 883 * The caller must _not_ hold the cinfo->lock, but must be 884 * holding the nfs_page lock. 885 */ 886 void 887 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo) 888 { 889 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 890 nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo); 891 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 892 if (req->wb_page) 893 nfs_mark_page_unstable(req->wb_page, cinfo); 894 } 895 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list); 896 897 /** 898 * nfs_request_remove_commit_list - Remove request from a commit list 899 * @req: pointer to a nfs_page 900 * @cinfo: holds list lock and accounting info 901 * 902 * This clears the PG_CLEAN bit, and updates the cinfo's count of 903 * number of outstanding requests requiring a commit 904 * It does not update the MM page stats. 905 * 906 * The caller _must_ hold the cinfo->lock and the nfs_page lock. 907 */ 908 void 909 nfs_request_remove_commit_list(struct nfs_page *req, 910 struct nfs_commit_info *cinfo) 911 { 912 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) 913 return; 914 nfs_list_remove_request(req); 915 atomic_long_dec(&cinfo->mds->ncommit); 916 } 917 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list); 918 919 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 920 struct inode *inode) 921 { 922 cinfo->inode = inode; 923 cinfo->mds = &NFS_I(inode)->commit_info; 924 cinfo->ds = pnfs_get_ds_info(inode); 925 cinfo->dreq = NULL; 926 cinfo->completion_ops = &nfs_commit_completion_ops; 927 } 928 929 void nfs_init_cinfo(struct nfs_commit_info *cinfo, 930 struct inode *inode, 931 struct nfs_direct_req *dreq) 932 { 933 if (dreq) 934 nfs_init_cinfo_from_dreq(cinfo, dreq); 935 else 936 nfs_init_cinfo_from_inode(cinfo, inode); 937 } 938 EXPORT_SYMBOL_GPL(nfs_init_cinfo); 939 940 /* 941 * Add a request to the inode's commit list. 942 */ 943 void 944 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, 945 struct nfs_commit_info *cinfo, u32 ds_commit_idx) 946 { 947 if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx)) 948 return; 949 nfs_request_add_commit_list(req, cinfo); 950 } 951 952 static void 953 nfs_clear_page_commit(struct page *page) 954 { 955 dec_node_page_state(page, NR_UNSTABLE_NFS); 956 dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb, 957 WB_RECLAIMABLE); 958 } 959 960 /* Called holding the request lock on @req */ 961 static void 962 nfs_clear_request_commit(struct nfs_page *req) 963 { 964 if (test_bit(PG_CLEAN, &req->wb_flags)) { 965 struct nfs_open_context *ctx = nfs_req_openctx(req); 966 struct inode *inode = d_inode(ctx->dentry); 967 struct nfs_commit_info cinfo; 968 969 nfs_init_cinfo_from_inode(&cinfo, inode); 970 mutex_lock(&NFS_I(inode)->commit_mutex); 971 if (!pnfs_clear_request_commit(req, &cinfo)) { 972 nfs_request_remove_commit_list(req, &cinfo); 973 } 974 mutex_unlock(&NFS_I(inode)->commit_mutex); 975 nfs_clear_page_commit(req->wb_page); 976 } 977 } 978 979 int nfs_write_need_commit(struct nfs_pgio_header *hdr) 980 { 981 if (hdr->verf.committed == NFS_DATA_SYNC) 982 return hdr->lseg == NULL; 983 return hdr->verf.committed != NFS_FILE_SYNC; 984 } 985 986 static void nfs_async_write_init(struct nfs_pgio_header *hdr) 987 { 988 nfs_io_completion_get(hdr->io_completion); 989 } 990 991 static void nfs_write_completion(struct nfs_pgio_header *hdr) 992 { 993 struct nfs_commit_info cinfo; 994 unsigned long bytes = 0; 995 996 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 997 goto out; 998 nfs_init_cinfo_from_inode(&cinfo, hdr->inode); 999 while (!list_empty(&hdr->pages)) { 1000 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 1001 1002 bytes += req->wb_bytes; 1003 nfs_list_remove_request(req); 1004 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && 1005 (hdr->good_bytes < bytes)) { 1006 nfs_set_pageerror(page_file_mapping(req->wb_page)); 1007 nfs_mapping_set_error(req->wb_page, hdr->error); 1008 goto remove_req; 1009 } 1010 if (nfs_write_need_commit(hdr)) { 1011 /* Reset wb_nio, since the write was successful. */ 1012 req->wb_nio = 0; 1013 memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf)); 1014 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 1015 hdr->pgio_mirror_idx); 1016 goto next; 1017 } 1018 remove_req: 1019 nfs_inode_remove_request(req); 1020 next: 1021 nfs_end_page_writeback(req); 1022 nfs_release_request(req); 1023 } 1024 out: 1025 nfs_io_completion_put(hdr->io_completion); 1026 hdr->release(hdr); 1027 } 1028 1029 unsigned long 1030 nfs_reqs_to_commit(struct nfs_commit_info *cinfo) 1031 { 1032 return atomic_long_read(&cinfo->mds->ncommit); 1033 } 1034 1035 /* NFS_I(cinfo->inode)->commit_mutex held by caller */ 1036 int 1037 nfs_scan_commit_list(struct list_head *src, struct list_head *dst, 1038 struct nfs_commit_info *cinfo, int max) 1039 { 1040 struct nfs_page *req, *tmp; 1041 int ret = 0; 1042 1043 restart: 1044 list_for_each_entry_safe(req, tmp, src, wb_list) { 1045 kref_get(&req->wb_kref); 1046 if (!nfs_lock_request(req)) { 1047 int status; 1048 1049 /* Prevent deadlock with nfs_lock_and_join_requests */ 1050 if (!list_empty(dst)) { 1051 nfs_release_request(req); 1052 continue; 1053 } 1054 /* Ensure we make progress to prevent livelock */ 1055 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 1056 status = nfs_wait_on_request(req); 1057 nfs_release_request(req); 1058 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 1059 if (status < 0) 1060 break; 1061 goto restart; 1062 } 1063 nfs_request_remove_commit_list(req, cinfo); 1064 clear_bit(PG_COMMIT_TO_DS, &req->wb_flags); 1065 nfs_list_add_request(req, dst); 1066 ret++; 1067 if ((ret == max) && !cinfo->dreq) 1068 break; 1069 cond_resched(); 1070 } 1071 return ret; 1072 } 1073 EXPORT_SYMBOL_GPL(nfs_scan_commit_list); 1074 1075 /* 1076 * nfs_scan_commit - Scan an inode for commit requests 1077 * @inode: NFS inode to scan 1078 * @dst: mds destination list 1079 * @cinfo: mds and ds lists of reqs ready to commit 1080 * 1081 * Moves requests from the inode's 'commit' request list. 1082 * The requests are *not* checked to ensure that they form a contiguous set. 1083 */ 1084 int 1085 nfs_scan_commit(struct inode *inode, struct list_head *dst, 1086 struct nfs_commit_info *cinfo) 1087 { 1088 int ret = 0; 1089 1090 if (!atomic_long_read(&cinfo->mds->ncommit)) 1091 return 0; 1092 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 1093 if (atomic_long_read(&cinfo->mds->ncommit) > 0) { 1094 const int max = INT_MAX; 1095 1096 ret = nfs_scan_commit_list(&cinfo->mds->list, dst, 1097 cinfo, max); 1098 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret); 1099 } 1100 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 1101 return ret; 1102 } 1103 1104 /* 1105 * Search for an existing write request, and attempt to update 1106 * it to reflect a new dirty region on a given page. 1107 * 1108 * If the attempt fails, then the existing request is flushed out 1109 * to disk. 1110 */ 1111 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 1112 struct page *page, 1113 unsigned int offset, 1114 unsigned int bytes) 1115 { 1116 struct nfs_page *req; 1117 unsigned int rqend; 1118 unsigned int end; 1119 int error; 1120 1121 end = offset + bytes; 1122 1123 req = nfs_lock_and_join_requests(page); 1124 if (IS_ERR_OR_NULL(req)) 1125 return req; 1126 1127 rqend = req->wb_offset + req->wb_bytes; 1128 /* 1129 * Tell the caller to flush out the request if 1130 * the offsets are non-contiguous. 1131 * Note: nfs_flush_incompatible() will already 1132 * have flushed out requests having wrong owners. 1133 */ 1134 if (offset > rqend || end < req->wb_offset) 1135 goto out_flushme; 1136 1137 /* Okay, the request matches. Update the region */ 1138 if (offset < req->wb_offset) { 1139 req->wb_offset = offset; 1140 req->wb_pgbase = offset; 1141 } 1142 if (end > rqend) 1143 req->wb_bytes = end - req->wb_offset; 1144 else 1145 req->wb_bytes = rqend - req->wb_offset; 1146 req->wb_nio = 0; 1147 return req; 1148 out_flushme: 1149 /* 1150 * Note: we mark the request dirty here because 1151 * nfs_lock_and_join_requests() cannot preserve 1152 * commit flags, so we have to replay the write. 1153 */ 1154 nfs_mark_request_dirty(req); 1155 nfs_unlock_and_release_request(req); 1156 error = nfs_wb_page(inode, page); 1157 return (error < 0) ? ERR_PTR(error) : NULL; 1158 } 1159 1160 /* 1161 * Try to update an existing write request, or create one if there is none. 1162 * 1163 * Note: Should always be called with the Page Lock held to prevent races 1164 * if we have to add a new request. Also assumes that the caller has 1165 * already called nfs_flush_incompatible() if necessary. 1166 */ 1167 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 1168 struct page *page, unsigned int offset, unsigned int bytes) 1169 { 1170 struct inode *inode = page_file_mapping(page)->host; 1171 struct nfs_page *req; 1172 1173 req = nfs_try_to_update_request(inode, page, offset, bytes); 1174 if (req != NULL) 1175 goto out; 1176 req = nfs_create_request(ctx, page, offset, bytes); 1177 if (IS_ERR(req)) 1178 goto out; 1179 nfs_inode_add_request(inode, req); 1180 out: 1181 return req; 1182 } 1183 1184 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 1185 unsigned int offset, unsigned int count) 1186 { 1187 struct nfs_page *req; 1188 1189 req = nfs_setup_write_request(ctx, page, offset, count); 1190 if (IS_ERR(req)) 1191 return PTR_ERR(req); 1192 /* Update file length */ 1193 nfs_grow_file(page, offset, count); 1194 nfs_mark_uptodate(req); 1195 nfs_mark_request_dirty(req); 1196 nfs_unlock_and_release_request(req); 1197 return 0; 1198 } 1199 1200 int nfs_flush_incompatible(struct file *file, struct page *page) 1201 { 1202 struct nfs_open_context *ctx = nfs_file_open_context(file); 1203 struct nfs_lock_context *l_ctx; 1204 struct file_lock_context *flctx = file_inode(file)->i_flctx; 1205 struct nfs_page *req; 1206 int do_flush, status; 1207 /* 1208 * Look for a request corresponding to this page. If there 1209 * is one, and it belongs to another file, we flush it out 1210 * before we try to copy anything into the page. Do this 1211 * due to the lack of an ACCESS-type call in NFSv2. 1212 * Also do the same if we find a request from an existing 1213 * dropped page. 1214 */ 1215 do { 1216 req = nfs_page_find_head_request(page); 1217 if (req == NULL) 1218 return 0; 1219 l_ctx = req->wb_lock_context; 1220 do_flush = req->wb_page != page || 1221 !nfs_match_open_context(nfs_req_openctx(req), ctx); 1222 if (l_ctx && flctx && 1223 !(list_empty_careful(&flctx->flc_posix) && 1224 list_empty_careful(&flctx->flc_flock))) { 1225 do_flush |= l_ctx->lockowner != current->files; 1226 } 1227 nfs_release_request(req); 1228 if (!do_flush) 1229 return 0; 1230 status = nfs_wb_page(page_file_mapping(page)->host, page); 1231 } while (status == 0); 1232 return status; 1233 } 1234 1235 /* 1236 * Avoid buffered writes when a open context credential's key would 1237 * expire soon. 1238 * 1239 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL. 1240 * 1241 * Return 0 and set a credential flag which triggers the inode to flush 1242 * and performs NFS_FILE_SYNC writes if the key will expired within 1243 * RPC_KEY_EXPIRE_TIMEO. 1244 */ 1245 int 1246 nfs_key_timeout_notify(struct file *filp, struct inode *inode) 1247 { 1248 struct nfs_open_context *ctx = nfs_file_open_context(filp); 1249 1250 if (nfs_ctx_key_to_expire(ctx, inode) && 1251 !ctx->ll_cred) 1252 /* Already expired! */ 1253 return -EACCES; 1254 return 0; 1255 } 1256 1257 /* 1258 * Test if the open context credential key is marked to expire soon. 1259 */ 1260 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode) 1261 { 1262 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth; 1263 struct rpc_cred *cred = ctx->ll_cred; 1264 struct auth_cred acred = { 1265 .cred = ctx->cred, 1266 }; 1267 1268 if (cred && !cred->cr_ops->crmatch(&acred, cred, 0)) { 1269 put_rpccred(cred); 1270 ctx->ll_cred = NULL; 1271 cred = NULL; 1272 } 1273 if (!cred) 1274 cred = auth->au_ops->lookup_cred(auth, &acred, 0); 1275 if (!cred || IS_ERR(cred)) 1276 return true; 1277 ctx->ll_cred = cred; 1278 return !!(cred->cr_ops->crkey_timeout && 1279 cred->cr_ops->crkey_timeout(cred)); 1280 } 1281 1282 /* 1283 * If the page cache is marked as unsafe or invalid, then we can't rely on 1284 * the PageUptodate() flag. In this case, we will need to turn off 1285 * write optimisations that depend on the page contents being correct. 1286 */ 1287 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode) 1288 { 1289 struct nfs_inode *nfsi = NFS_I(inode); 1290 1291 if (nfs_have_delegated_attributes(inode)) 1292 goto out; 1293 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 1294 return false; 1295 smp_rmb(); 1296 if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags)) 1297 return false; 1298 out: 1299 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 1300 return false; 1301 return PageUptodate(page) != 0; 1302 } 1303 1304 static bool 1305 is_whole_file_wrlock(struct file_lock *fl) 1306 { 1307 return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX && 1308 fl->fl_type == F_WRLCK; 1309 } 1310 1311 /* If we know the page is up to date, and we're not using byte range locks (or 1312 * if we have the whole file locked for writing), it may be more efficient to 1313 * extend the write to cover the entire page in order to avoid fragmentation 1314 * inefficiencies. 1315 * 1316 * If the file is opened for synchronous writes then we can just skip the rest 1317 * of the checks. 1318 */ 1319 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode) 1320 { 1321 int ret; 1322 struct file_lock_context *flctx = inode->i_flctx; 1323 struct file_lock *fl; 1324 1325 if (file->f_flags & O_DSYNC) 1326 return 0; 1327 if (!nfs_write_pageuptodate(page, inode)) 1328 return 0; 1329 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 1330 return 1; 1331 if (!flctx || (list_empty_careful(&flctx->flc_flock) && 1332 list_empty_careful(&flctx->flc_posix))) 1333 return 1; 1334 1335 /* Check to see if there are whole file write locks */ 1336 ret = 0; 1337 spin_lock(&flctx->flc_lock); 1338 if (!list_empty(&flctx->flc_posix)) { 1339 fl = list_first_entry(&flctx->flc_posix, struct file_lock, 1340 fl_list); 1341 if (is_whole_file_wrlock(fl)) 1342 ret = 1; 1343 } else if (!list_empty(&flctx->flc_flock)) { 1344 fl = list_first_entry(&flctx->flc_flock, struct file_lock, 1345 fl_list); 1346 if (fl->fl_type == F_WRLCK) 1347 ret = 1; 1348 } 1349 spin_unlock(&flctx->flc_lock); 1350 return ret; 1351 } 1352 1353 /* 1354 * Update and possibly write a cached page of an NFS file. 1355 * 1356 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 1357 * things with a page scheduled for an RPC call (e.g. invalidate it). 1358 */ 1359 int nfs_updatepage(struct file *file, struct page *page, 1360 unsigned int offset, unsigned int count) 1361 { 1362 struct nfs_open_context *ctx = nfs_file_open_context(file); 1363 struct address_space *mapping = page_file_mapping(page); 1364 struct inode *inode = mapping->host; 1365 int status = 0; 1366 1367 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 1368 1369 dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n", 1370 file, count, (long long)(page_file_offset(page) + offset)); 1371 1372 if (!count) 1373 goto out; 1374 1375 if (nfs_can_extend_write(file, page, inode)) { 1376 count = max(count + offset, nfs_page_length(page)); 1377 offset = 0; 1378 } 1379 1380 status = nfs_writepage_setup(ctx, page, offset, count); 1381 if (status < 0) 1382 nfs_set_pageerror(mapping); 1383 else 1384 __set_page_dirty_nobuffers(page); 1385 out: 1386 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 1387 status, (long long)i_size_read(inode)); 1388 return status; 1389 } 1390 1391 static int flush_task_priority(int how) 1392 { 1393 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 1394 case FLUSH_HIGHPRI: 1395 return RPC_PRIORITY_HIGH; 1396 case FLUSH_LOWPRI: 1397 return RPC_PRIORITY_LOW; 1398 } 1399 return RPC_PRIORITY_NORMAL; 1400 } 1401 1402 static void nfs_initiate_write(struct nfs_pgio_header *hdr, 1403 struct rpc_message *msg, 1404 const struct nfs_rpc_ops *rpc_ops, 1405 struct rpc_task_setup *task_setup_data, int how) 1406 { 1407 int priority = flush_task_priority(how); 1408 1409 task_setup_data->priority = priority; 1410 rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client); 1411 trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes, 1412 hdr->args.stable); 1413 } 1414 1415 /* If a nfs_flush_* function fails, it should remove reqs from @head and 1416 * call this on each, which will prepare them to be retried on next 1417 * writeback using standard nfs. 1418 */ 1419 static void nfs_redirty_request(struct nfs_page *req) 1420 { 1421 /* Bump the transmission count */ 1422 req->wb_nio++; 1423 nfs_mark_request_dirty(req); 1424 set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags); 1425 nfs_end_page_writeback(req); 1426 nfs_release_request(req); 1427 } 1428 1429 static void nfs_async_write_error(struct list_head *head, int error) 1430 { 1431 struct nfs_page *req; 1432 1433 while (!list_empty(head)) { 1434 req = nfs_list_entry(head->next); 1435 nfs_list_remove_request(req); 1436 if (nfs_error_is_fatal(error)) 1437 nfs_write_error(req, error); 1438 else 1439 nfs_redirty_request(req); 1440 } 1441 } 1442 1443 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr) 1444 { 1445 nfs_async_write_error(&hdr->pages, 0); 1446 filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset, 1447 hdr->args.offset + hdr->args.count - 1); 1448 } 1449 1450 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = { 1451 .init_hdr = nfs_async_write_init, 1452 .error_cleanup = nfs_async_write_error, 1453 .completion = nfs_write_completion, 1454 .reschedule_io = nfs_async_write_reschedule_io, 1455 }; 1456 1457 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 1458 struct inode *inode, int ioflags, bool force_mds, 1459 const struct nfs_pgio_completion_ops *compl_ops) 1460 { 1461 struct nfs_server *server = NFS_SERVER(inode); 1462 const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops; 1463 1464 #ifdef CONFIG_NFS_V4_1 1465 if (server->pnfs_curr_ld && !force_mds) 1466 pg_ops = server->pnfs_curr_ld->pg_write_ops; 1467 #endif 1468 nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops, 1469 server->wsize, ioflags); 1470 } 1471 EXPORT_SYMBOL_GPL(nfs_pageio_init_write); 1472 1473 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio) 1474 { 1475 struct nfs_pgio_mirror *mirror; 1476 1477 if (pgio->pg_ops && pgio->pg_ops->pg_cleanup) 1478 pgio->pg_ops->pg_cleanup(pgio); 1479 1480 pgio->pg_ops = &nfs_pgio_rw_ops; 1481 1482 nfs_pageio_stop_mirroring(pgio); 1483 1484 mirror = &pgio->pg_mirrors[0]; 1485 mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize; 1486 } 1487 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds); 1488 1489 1490 void nfs_commit_prepare(struct rpc_task *task, void *calldata) 1491 { 1492 struct nfs_commit_data *data = calldata; 1493 1494 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data); 1495 } 1496 1497 /* 1498 * Special version of should_remove_suid() that ignores capabilities. 1499 */ 1500 static int nfs_should_remove_suid(const struct inode *inode) 1501 { 1502 umode_t mode = inode->i_mode; 1503 int kill = 0; 1504 1505 /* suid always must be killed */ 1506 if (unlikely(mode & S_ISUID)) 1507 kill = ATTR_KILL_SUID; 1508 1509 /* 1510 * sgid without any exec bits is just a mandatory locking mark; leave 1511 * it alone. If some exec bits are set, it's a real sgid; kill it. 1512 */ 1513 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1514 kill |= ATTR_KILL_SGID; 1515 1516 if (unlikely(kill && S_ISREG(mode))) 1517 return kill; 1518 1519 return 0; 1520 } 1521 1522 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr, 1523 struct nfs_fattr *fattr) 1524 { 1525 struct nfs_pgio_args *argp = &hdr->args; 1526 struct nfs_pgio_res *resp = &hdr->res; 1527 u64 size = argp->offset + resp->count; 1528 1529 if (!(fattr->valid & NFS_ATTR_FATTR_SIZE)) 1530 fattr->size = size; 1531 if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) { 1532 fattr->valid &= ~NFS_ATTR_FATTR_SIZE; 1533 return; 1534 } 1535 if (size != fattr->size) 1536 return; 1537 /* Set attribute barrier */ 1538 nfs_fattr_set_barrier(fattr); 1539 /* ...and update size */ 1540 fattr->valid |= NFS_ATTR_FATTR_SIZE; 1541 } 1542 1543 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr) 1544 { 1545 struct nfs_fattr *fattr = &hdr->fattr; 1546 struct inode *inode = hdr->inode; 1547 1548 spin_lock(&inode->i_lock); 1549 nfs_writeback_check_extend(hdr, fattr); 1550 nfs_post_op_update_inode_force_wcc_locked(inode, fattr); 1551 spin_unlock(&inode->i_lock); 1552 } 1553 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode); 1554 1555 /* 1556 * This function is called when the WRITE call is complete. 1557 */ 1558 static int nfs_writeback_done(struct rpc_task *task, 1559 struct nfs_pgio_header *hdr, 1560 struct inode *inode) 1561 { 1562 int status; 1563 1564 /* 1565 * ->write_done will attempt to use post-op attributes to detect 1566 * conflicting writes by other clients. A strict interpretation 1567 * of close-to-open would allow us to continue caching even if 1568 * another writer had changed the file, but some applications 1569 * depend on tighter cache coherency when writing. 1570 */ 1571 status = NFS_PROTO(inode)->write_done(task, hdr); 1572 if (status != 0) 1573 return status; 1574 1575 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count); 1576 trace_nfs_writeback_done(inode, task->tk_status, 1577 hdr->args.offset, hdr->res.verf); 1578 1579 if (hdr->res.verf->committed < hdr->args.stable && 1580 task->tk_status >= 0) { 1581 /* We tried a write call, but the server did not 1582 * commit data to stable storage even though we 1583 * requested it. 1584 * Note: There is a known bug in Tru64 < 5.0 in which 1585 * the server reports NFS_DATA_SYNC, but performs 1586 * NFS_FILE_SYNC. We therefore implement this checking 1587 * as a dprintk() in order to avoid filling syslog. 1588 */ 1589 static unsigned long complain; 1590 1591 /* Note this will print the MDS for a DS write */ 1592 if (time_before(complain, jiffies)) { 1593 dprintk("NFS: faulty NFS server %s:" 1594 " (committed = %d) != (stable = %d)\n", 1595 NFS_SERVER(inode)->nfs_client->cl_hostname, 1596 hdr->res.verf->committed, hdr->args.stable); 1597 complain = jiffies + 300 * HZ; 1598 } 1599 } 1600 1601 /* Deal with the suid/sgid bit corner case */ 1602 if (nfs_should_remove_suid(inode)) { 1603 spin_lock(&inode->i_lock); 1604 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_OTHER; 1605 spin_unlock(&inode->i_lock); 1606 } 1607 return 0; 1608 } 1609 1610 /* 1611 * This function is called when the WRITE call is complete. 1612 */ 1613 static void nfs_writeback_result(struct rpc_task *task, 1614 struct nfs_pgio_header *hdr) 1615 { 1616 struct nfs_pgio_args *argp = &hdr->args; 1617 struct nfs_pgio_res *resp = &hdr->res; 1618 1619 if (resp->count < argp->count) { 1620 static unsigned long complain; 1621 1622 /* This a short write! */ 1623 nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE); 1624 1625 /* Has the server at least made some progress? */ 1626 if (resp->count == 0) { 1627 if (time_before(complain, jiffies)) { 1628 printk(KERN_WARNING 1629 "NFS: Server wrote zero bytes, expected %u.\n", 1630 argp->count); 1631 complain = jiffies + 300 * HZ; 1632 } 1633 nfs_set_pgio_error(hdr, -EIO, argp->offset); 1634 task->tk_status = -EIO; 1635 return; 1636 } 1637 1638 /* For non rpc-based layout drivers, retry-through-MDS */ 1639 if (!task->tk_ops) { 1640 hdr->pnfs_error = -EAGAIN; 1641 return; 1642 } 1643 1644 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1645 if (resp->verf->committed != NFS_UNSTABLE) { 1646 /* Resend from where the server left off */ 1647 hdr->mds_offset += resp->count; 1648 argp->offset += resp->count; 1649 argp->pgbase += resp->count; 1650 argp->count -= resp->count; 1651 } else { 1652 /* Resend as a stable write in order to avoid 1653 * headaches in the case of a server crash. 1654 */ 1655 argp->stable = NFS_FILE_SYNC; 1656 } 1657 rpc_restart_call_prepare(task); 1658 } 1659 } 1660 1661 static int wait_on_commit(struct nfs_mds_commit_info *cinfo) 1662 { 1663 return wait_var_event_killable(&cinfo->rpcs_out, 1664 !atomic_read(&cinfo->rpcs_out)); 1665 } 1666 1667 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo) 1668 { 1669 atomic_inc(&cinfo->rpcs_out); 1670 } 1671 1672 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo) 1673 { 1674 if (atomic_dec_and_test(&cinfo->rpcs_out)) 1675 wake_up_var(&cinfo->rpcs_out); 1676 } 1677 1678 void nfs_commitdata_release(struct nfs_commit_data *data) 1679 { 1680 put_nfs_open_context(data->context); 1681 nfs_commit_free(data); 1682 } 1683 EXPORT_SYMBOL_GPL(nfs_commitdata_release); 1684 1685 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data, 1686 const struct nfs_rpc_ops *nfs_ops, 1687 const struct rpc_call_ops *call_ops, 1688 int how, int flags) 1689 { 1690 struct rpc_task *task; 1691 int priority = flush_task_priority(how); 1692 struct rpc_message msg = { 1693 .rpc_argp = &data->args, 1694 .rpc_resp = &data->res, 1695 .rpc_cred = data->cred, 1696 }; 1697 struct rpc_task_setup task_setup_data = { 1698 .task = &data->task, 1699 .rpc_client = clnt, 1700 .rpc_message = &msg, 1701 .callback_ops = call_ops, 1702 .callback_data = data, 1703 .workqueue = nfsiod_workqueue, 1704 .flags = RPC_TASK_ASYNC | flags, 1705 .priority = priority, 1706 }; 1707 /* Set up the initial task struct. */ 1708 nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client); 1709 trace_nfs_initiate_commit(data); 1710 1711 dprintk("NFS: initiated commit call\n"); 1712 1713 task = rpc_run_task(&task_setup_data); 1714 if (IS_ERR(task)) 1715 return PTR_ERR(task); 1716 if (how & FLUSH_SYNC) 1717 rpc_wait_for_completion_task(task); 1718 rpc_put_task(task); 1719 return 0; 1720 } 1721 EXPORT_SYMBOL_GPL(nfs_initiate_commit); 1722 1723 static loff_t nfs_get_lwb(struct list_head *head) 1724 { 1725 loff_t lwb = 0; 1726 struct nfs_page *req; 1727 1728 list_for_each_entry(req, head, wb_list) 1729 if (lwb < (req_offset(req) + req->wb_bytes)) 1730 lwb = req_offset(req) + req->wb_bytes; 1731 1732 return lwb; 1733 } 1734 1735 /* 1736 * Set up the argument/result storage required for the RPC call. 1737 */ 1738 void nfs_init_commit(struct nfs_commit_data *data, 1739 struct list_head *head, 1740 struct pnfs_layout_segment *lseg, 1741 struct nfs_commit_info *cinfo) 1742 { 1743 struct nfs_page *first = nfs_list_entry(head->next); 1744 struct nfs_open_context *ctx = nfs_req_openctx(first); 1745 struct inode *inode = d_inode(ctx->dentry); 1746 1747 /* Set up the RPC argument and reply structs 1748 * NB: take care not to mess about with data->commit et al. */ 1749 1750 list_splice_init(head, &data->pages); 1751 1752 data->inode = inode; 1753 data->cred = ctx->cred; 1754 data->lseg = lseg; /* reference transferred */ 1755 /* only set lwb for pnfs commit */ 1756 if (lseg) 1757 data->lwb = nfs_get_lwb(&data->pages); 1758 data->mds_ops = &nfs_commit_ops; 1759 data->completion_ops = cinfo->completion_ops; 1760 data->dreq = cinfo->dreq; 1761 1762 data->args.fh = NFS_FH(data->inode); 1763 /* Note: we always request a commit of the entire inode */ 1764 data->args.offset = 0; 1765 data->args.count = 0; 1766 data->context = get_nfs_open_context(ctx); 1767 data->res.fattr = &data->fattr; 1768 data->res.verf = &data->verf; 1769 nfs_fattr_init(&data->fattr); 1770 } 1771 EXPORT_SYMBOL_GPL(nfs_init_commit); 1772 1773 void nfs_retry_commit(struct list_head *page_list, 1774 struct pnfs_layout_segment *lseg, 1775 struct nfs_commit_info *cinfo, 1776 u32 ds_commit_idx) 1777 { 1778 struct nfs_page *req; 1779 1780 while (!list_empty(page_list)) { 1781 req = nfs_list_entry(page_list->next); 1782 nfs_list_remove_request(req); 1783 nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx); 1784 if (!cinfo->dreq) 1785 nfs_clear_page_commit(req->wb_page); 1786 nfs_unlock_and_release_request(req); 1787 } 1788 } 1789 EXPORT_SYMBOL_GPL(nfs_retry_commit); 1790 1791 static void 1792 nfs_commit_resched_write(struct nfs_commit_info *cinfo, 1793 struct nfs_page *req) 1794 { 1795 __set_page_dirty_nobuffers(req->wb_page); 1796 } 1797 1798 /* 1799 * Commit dirty pages 1800 */ 1801 static int 1802 nfs_commit_list(struct inode *inode, struct list_head *head, int how, 1803 struct nfs_commit_info *cinfo) 1804 { 1805 struct nfs_commit_data *data; 1806 1807 /* another commit raced with us */ 1808 if (list_empty(head)) 1809 return 0; 1810 1811 data = nfs_commitdata_alloc(true); 1812 1813 /* Set up the argument struct */ 1814 nfs_init_commit(data, head, NULL, cinfo); 1815 atomic_inc(&cinfo->mds->rpcs_out); 1816 return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode), 1817 data->mds_ops, how, 0); 1818 } 1819 1820 /* 1821 * COMMIT call returned 1822 */ 1823 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1824 { 1825 struct nfs_commit_data *data = calldata; 1826 1827 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1828 task->tk_pid, task->tk_status); 1829 1830 /* Call the NFS version-specific code */ 1831 NFS_PROTO(data->inode)->commit_done(task, data); 1832 trace_nfs_commit_done(data); 1833 } 1834 1835 static void nfs_commit_release_pages(struct nfs_commit_data *data) 1836 { 1837 struct nfs_page *req; 1838 int status = data->task.tk_status; 1839 struct nfs_commit_info cinfo; 1840 struct nfs_server *nfss; 1841 1842 while (!list_empty(&data->pages)) { 1843 req = nfs_list_entry(data->pages.next); 1844 nfs_list_remove_request(req); 1845 if (req->wb_page) 1846 nfs_clear_page_commit(req->wb_page); 1847 1848 dprintk("NFS: commit (%s/%llu %d@%lld)", 1849 nfs_req_openctx(req)->dentry->d_sb->s_id, 1850 (unsigned long long)NFS_FILEID(d_inode(nfs_req_openctx(req)->dentry)), 1851 req->wb_bytes, 1852 (long long)req_offset(req)); 1853 if (status < 0) { 1854 if (req->wb_page) { 1855 nfs_mapping_set_error(req->wb_page, status); 1856 nfs_inode_remove_request(req); 1857 } 1858 dprintk_cont(", error = %d\n", status); 1859 goto next; 1860 } 1861 1862 /* Okay, COMMIT succeeded, apparently. Check the verifier 1863 * returned by the server against all stored verfs. */ 1864 if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) { 1865 /* We have a match */ 1866 if (req->wb_page) 1867 nfs_inode_remove_request(req); 1868 dprintk_cont(" OK\n"); 1869 goto next; 1870 } 1871 /* We have a mismatch. Write the page again */ 1872 dprintk_cont(" mismatch\n"); 1873 nfs_mark_request_dirty(req); 1874 set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags); 1875 next: 1876 nfs_unlock_and_release_request(req); 1877 /* Latency breaker */ 1878 cond_resched(); 1879 } 1880 nfss = NFS_SERVER(data->inode); 1881 if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 1882 clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC); 1883 1884 nfs_init_cinfo(&cinfo, data->inode, data->dreq); 1885 nfs_commit_end(cinfo.mds); 1886 } 1887 1888 static void nfs_commit_release(void *calldata) 1889 { 1890 struct nfs_commit_data *data = calldata; 1891 1892 data->completion_ops->completion(data); 1893 nfs_commitdata_release(calldata); 1894 } 1895 1896 static const struct rpc_call_ops nfs_commit_ops = { 1897 .rpc_call_prepare = nfs_commit_prepare, 1898 .rpc_call_done = nfs_commit_done, 1899 .rpc_release = nfs_commit_release, 1900 }; 1901 1902 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = { 1903 .completion = nfs_commit_release_pages, 1904 .resched_write = nfs_commit_resched_write, 1905 }; 1906 1907 int nfs_generic_commit_list(struct inode *inode, struct list_head *head, 1908 int how, struct nfs_commit_info *cinfo) 1909 { 1910 int status; 1911 1912 status = pnfs_commit_list(inode, head, how, cinfo); 1913 if (status == PNFS_NOT_ATTEMPTED) 1914 status = nfs_commit_list(inode, head, how, cinfo); 1915 return status; 1916 } 1917 1918 static int __nfs_commit_inode(struct inode *inode, int how, 1919 struct writeback_control *wbc) 1920 { 1921 LIST_HEAD(head); 1922 struct nfs_commit_info cinfo; 1923 int may_wait = how & FLUSH_SYNC; 1924 int ret, nscan; 1925 1926 nfs_init_cinfo_from_inode(&cinfo, inode); 1927 nfs_commit_begin(cinfo.mds); 1928 for (;;) { 1929 ret = nscan = nfs_scan_commit(inode, &head, &cinfo); 1930 if (ret <= 0) 1931 break; 1932 ret = nfs_generic_commit_list(inode, &head, how, &cinfo); 1933 if (ret < 0) 1934 break; 1935 ret = 0; 1936 if (wbc && wbc->sync_mode == WB_SYNC_NONE) { 1937 if (nscan < wbc->nr_to_write) 1938 wbc->nr_to_write -= nscan; 1939 else 1940 wbc->nr_to_write = 0; 1941 } 1942 if (nscan < INT_MAX) 1943 break; 1944 cond_resched(); 1945 } 1946 nfs_commit_end(cinfo.mds); 1947 if (ret || !may_wait) 1948 return ret; 1949 return wait_on_commit(cinfo.mds); 1950 } 1951 1952 int nfs_commit_inode(struct inode *inode, int how) 1953 { 1954 return __nfs_commit_inode(inode, how, NULL); 1955 } 1956 EXPORT_SYMBOL_GPL(nfs_commit_inode); 1957 1958 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1959 { 1960 struct nfs_inode *nfsi = NFS_I(inode); 1961 int flags = FLUSH_SYNC; 1962 int ret = 0; 1963 1964 if (wbc->sync_mode == WB_SYNC_NONE) { 1965 /* no commits means nothing needs to be done */ 1966 if (!atomic_long_read(&nfsi->commit_info.ncommit)) 1967 goto check_requests_outstanding; 1968 1969 /* Don't commit yet if this is a non-blocking flush and there 1970 * are a lot of outstanding writes for this mapping. 1971 */ 1972 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)) 1973 goto out_mark_dirty; 1974 1975 /* don't wait for the COMMIT response */ 1976 flags = 0; 1977 } 1978 1979 ret = __nfs_commit_inode(inode, flags, wbc); 1980 if (!ret) { 1981 if (flags & FLUSH_SYNC) 1982 return 0; 1983 } else if (atomic_long_read(&nfsi->commit_info.ncommit)) 1984 goto out_mark_dirty; 1985 1986 check_requests_outstanding: 1987 if (!atomic_read(&nfsi->commit_info.rpcs_out)) 1988 return ret; 1989 out_mark_dirty: 1990 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1991 return ret; 1992 } 1993 EXPORT_SYMBOL_GPL(nfs_write_inode); 1994 1995 /* 1996 * Wrapper for filemap_write_and_wait_range() 1997 * 1998 * Needed for pNFS in order to ensure data becomes visible to the 1999 * client. 2000 */ 2001 int nfs_filemap_write_and_wait_range(struct address_space *mapping, 2002 loff_t lstart, loff_t lend) 2003 { 2004 int ret; 2005 2006 ret = filemap_write_and_wait_range(mapping, lstart, lend); 2007 if (ret == 0) 2008 ret = pnfs_sync_inode(mapping->host, true); 2009 return ret; 2010 } 2011 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range); 2012 2013 /* 2014 * flush the inode to disk. 2015 */ 2016 int nfs_wb_all(struct inode *inode) 2017 { 2018 int ret; 2019 2020 trace_nfs_writeback_inode_enter(inode); 2021 2022 ret = filemap_write_and_wait(inode->i_mapping); 2023 if (ret) 2024 goto out; 2025 ret = nfs_commit_inode(inode, FLUSH_SYNC); 2026 if (ret < 0) 2027 goto out; 2028 pnfs_sync_inode(inode, true); 2029 ret = 0; 2030 2031 out: 2032 trace_nfs_writeback_inode_exit(inode, ret); 2033 return ret; 2034 } 2035 EXPORT_SYMBOL_GPL(nfs_wb_all); 2036 2037 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 2038 { 2039 struct nfs_page *req; 2040 int ret = 0; 2041 2042 wait_on_page_writeback(page); 2043 2044 /* blocking call to cancel all requests and join to a single (head) 2045 * request */ 2046 req = nfs_lock_and_join_requests(page); 2047 2048 if (IS_ERR(req)) { 2049 ret = PTR_ERR(req); 2050 } else if (req) { 2051 /* all requests from this page have been cancelled by 2052 * nfs_lock_and_join_requests, so just remove the head 2053 * request from the inode / page_private pointer and 2054 * release it */ 2055 nfs_inode_remove_request(req); 2056 nfs_unlock_and_release_request(req); 2057 } 2058 2059 return ret; 2060 } 2061 2062 /* 2063 * Write back all requests on one page - we do this before reading it. 2064 */ 2065 int nfs_wb_page(struct inode *inode, struct page *page) 2066 { 2067 loff_t range_start = page_file_offset(page); 2068 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1); 2069 struct writeback_control wbc = { 2070 .sync_mode = WB_SYNC_ALL, 2071 .nr_to_write = 0, 2072 .range_start = range_start, 2073 .range_end = range_end, 2074 }; 2075 int ret; 2076 2077 trace_nfs_writeback_page_enter(inode); 2078 2079 for (;;) { 2080 wait_on_page_writeback(page); 2081 if (clear_page_dirty_for_io(page)) { 2082 ret = nfs_writepage_locked(page, &wbc); 2083 if (ret < 0) 2084 goto out_error; 2085 continue; 2086 } 2087 ret = 0; 2088 if (!PagePrivate(page)) 2089 break; 2090 ret = nfs_commit_inode(inode, FLUSH_SYNC); 2091 if (ret < 0) 2092 goto out_error; 2093 } 2094 out_error: 2095 trace_nfs_writeback_page_exit(inode, ret); 2096 return ret; 2097 } 2098 2099 #ifdef CONFIG_MIGRATION 2100 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 2101 struct page *page, enum migrate_mode mode) 2102 { 2103 /* 2104 * If PagePrivate is set, then the page is currently associated with 2105 * an in-progress read or write request. Don't try to migrate it. 2106 * 2107 * FIXME: we could do this in principle, but we'll need a way to ensure 2108 * that we can safely release the inode reference while holding 2109 * the page lock. 2110 */ 2111 if (PagePrivate(page)) 2112 return -EBUSY; 2113 2114 if (!nfs_fscache_release_page(page, GFP_KERNEL)) 2115 return -EBUSY; 2116 2117 return migrate_page(mapping, newpage, page, mode); 2118 } 2119 #endif 2120 2121 int __init nfs_init_writepagecache(void) 2122 { 2123 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 2124 sizeof(struct nfs_pgio_header), 2125 0, SLAB_HWCACHE_ALIGN, 2126 NULL); 2127 if (nfs_wdata_cachep == NULL) 2128 return -ENOMEM; 2129 2130 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 2131 nfs_wdata_cachep); 2132 if (nfs_wdata_mempool == NULL) 2133 goto out_destroy_write_cache; 2134 2135 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data", 2136 sizeof(struct nfs_commit_data), 2137 0, SLAB_HWCACHE_ALIGN, 2138 NULL); 2139 if (nfs_cdata_cachep == NULL) 2140 goto out_destroy_write_mempool; 2141 2142 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 2143 nfs_cdata_cachep); 2144 if (nfs_commit_mempool == NULL) 2145 goto out_destroy_commit_cache; 2146 2147 /* 2148 * NFS congestion size, scale with available memory. 2149 * 2150 * 64MB: 8192k 2151 * 128MB: 11585k 2152 * 256MB: 16384k 2153 * 512MB: 23170k 2154 * 1GB: 32768k 2155 * 2GB: 46340k 2156 * 4GB: 65536k 2157 * 8GB: 92681k 2158 * 16GB: 131072k 2159 * 2160 * This allows larger machines to have larger/more transfers. 2161 * Limit the default to 256M 2162 */ 2163 nfs_congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10); 2164 if (nfs_congestion_kb > 256*1024) 2165 nfs_congestion_kb = 256*1024; 2166 2167 return 0; 2168 2169 out_destroy_commit_cache: 2170 kmem_cache_destroy(nfs_cdata_cachep); 2171 out_destroy_write_mempool: 2172 mempool_destroy(nfs_wdata_mempool); 2173 out_destroy_write_cache: 2174 kmem_cache_destroy(nfs_wdata_cachep); 2175 return -ENOMEM; 2176 } 2177 2178 void nfs_destroy_writepagecache(void) 2179 { 2180 mempool_destroy(nfs_commit_mempool); 2181 kmem_cache_destroy(nfs_cdata_cachep); 2182 mempool_destroy(nfs_wdata_mempool); 2183 kmem_cache_destroy(nfs_wdata_cachep); 2184 } 2185 2186 static const struct nfs_rw_ops nfs_rw_write_ops = { 2187 .rw_alloc_header = nfs_writehdr_alloc, 2188 .rw_free_header = nfs_writehdr_free, 2189 .rw_done = nfs_writeback_done, 2190 .rw_result = nfs_writeback_result, 2191 .rw_initiate = nfs_initiate_write, 2192 }; 2193