1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 #include <linux/export.h> 24 #include <linux/freezer.h> 25 #include <linux/wait.h> 26 #include <linux/iversion.h> 27 28 #include <linux/uaccess.h> 29 #include <linux/sched/mm.h> 30 31 #include "delegation.h" 32 #include "internal.h" 33 #include "iostat.h" 34 #include "nfs4_fs.h" 35 #include "fscache.h" 36 #include "pnfs.h" 37 38 #include "nfstrace.h" 39 40 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 41 42 #define MIN_POOL_WRITE (32) 43 #define MIN_POOL_COMMIT (4) 44 45 struct nfs_io_completion { 46 void (*complete)(void *data); 47 void *data; 48 struct kref refcount; 49 }; 50 51 /* 52 * Local function declarations 53 */ 54 static void nfs_redirty_request(struct nfs_page *req); 55 static const struct rpc_call_ops nfs_commit_ops; 56 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops; 57 static const struct nfs_commit_completion_ops nfs_commit_completion_ops; 58 static const struct nfs_rw_ops nfs_rw_write_ops; 59 static void nfs_clear_request_commit(struct nfs_page *req); 60 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 61 struct inode *inode); 62 static struct nfs_page * 63 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi, 64 struct page *page); 65 66 static struct kmem_cache *nfs_wdata_cachep; 67 static mempool_t *nfs_wdata_mempool; 68 static struct kmem_cache *nfs_cdata_cachep; 69 static mempool_t *nfs_commit_mempool; 70 71 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail) 72 { 73 struct nfs_commit_data *p; 74 75 if (never_fail) 76 p = mempool_alloc(nfs_commit_mempool, GFP_NOIO); 77 else { 78 /* It is OK to do some reclaim, not no safe to wait 79 * for anything to be returned to the pool. 80 * mempool_alloc() cannot handle that particular combination, 81 * so we need two separate attempts. 82 */ 83 p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT); 84 if (!p) 85 p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO | 86 __GFP_NOWARN | __GFP_NORETRY); 87 if (!p) 88 return NULL; 89 } 90 91 memset(p, 0, sizeof(*p)); 92 INIT_LIST_HEAD(&p->pages); 93 return p; 94 } 95 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc); 96 97 void nfs_commit_free(struct nfs_commit_data *p) 98 { 99 mempool_free(p, nfs_commit_mempool); 100 } 101 EXPORT_SYMBOL_GPL(nfs_commit_free); 102 103 static struct nfs_pgio_header *nfs_writehdr_alloc(void) 104 { 105 struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO); 106 107 memset(p, 0, sizeof(*p)); 108 p->rw_mode = FMODE_WRITE; 109 return p; 110 } 111 112 static void nfs_writehdr_free(struct nfs_pgio_header *hdr) 113 { 114 mempool_free(hdr, nfs_wdata_mempool); 115 } 116 117 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags) 118 { 119 return kmalloc(sizeof(struct nfs_io_completion), gfp_flags); 120 } 121 122 static void nfs_io_completion_init(struct nfs_io_completion *ioc, 123 void (*complete)(void *), void *data) 124 { 125 ioc->complete = complete; 126 ioc->data = data; 127 kref_init(&ioc->refcount); 128 } 129 130 static void nfs_io_completion_release(struct kref *kref) 131 { 132 struct nfs_io_completion *ioc = container_of(kref, 133 struct nfs_io_completion, refcount); 134 ioc->complete(ioc->data); 135 kfree(ioc); 136 } 137 138 static void nfs_io_completion_get(struct nfs_io_completion *ioc) 139 { 140 if (ioc != NULL) 141 kref_get(&ioc->refcount); 142 } 143 144 static void nfs_io_completion_put(struct nfs_io_completion *ioc) 145 { 146 if (ioc != NULL) 147 kref_put(&ioc->refcount, nfs_io_completion_release); 148 } 149 150 static struct nfs_page * 151 nfs_page_private_request(struct page *page) 152 { 153 if (!PagePrivate(page)) 154 return NULL; 155 return (struct nfs_page *)page_private(page); 156 } 157 158 /* 159 * nfs_page_find_head_request_locked - find head request associated with @page 160 * 161 * must be called while holding the inode lock. 162 * 163 * returns matching head request with reference held, or NULL if not found. 164 */ 165 static struct nfs_page * 166 nfs_page_find_private_request(struct page *page) 167 { 168 struct address_space *mapping = page_file_mapping(page); 169 struct nfs_page *req; 170 171 if (!PagePrivate(page)) 172 return NULL; 173 spin_lock(&mapping->private_lock); 174 req = nfs_page_private_request(page); 175 if (req) { 176 WARN_ON_ONCE(req->wb_head != req); 177 kref_get(&req->wb_kref); 178 } 179 spin_unlock(&mapping->private_lock); 180 return req; 181 } 182 183 static struct nfs_page * 184 nfs_page_find_swap_request(struct page *page) 185 { 186 struct inode *inode = page_file_mapping(page)->host; 187 struct nfs_inode *nfsi = NFS_I(inode); 188 struct nfs_page *req = NULL; 189 if (!PageSwapCache(page)) 190 return NULL; 191 mutex_lock(&nfsi->commit_mutex); 192 if (PageSwapCache(page)) { 193 req = nfs_page_search_commits_for_head_request_locked(nfsi, 194 page); 195 if (req) { 196 WARN_ON_ONCE(req->wb_head != req); 197 kref_get(&req->wb_kref); 198 } 199 } 200 mutex_unlock(&nfsi->commit_mutex); 201 return req; 202 } 203 204 /* 205 * nfs_page_find_head_request - find head request associated with @page 206 * 207 * returns matching head request with reference held, or NULL if not found. 208 */ 209 static struct nfs_page *nfs_page_find_head_request(struct page *page) 210 { 211 struct nfs_page *req; 212 213 req = nfs_page_find_private_request(page); 214 if (!req) 215 req = nfs_page_find_swap_request(page); 216 return req; 217 } 218 219 /* Adjust the file length if we're writing beyond the end */ 220 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 221 { 222 struct inode *inode = page_file_mapping(page)->host; 223 loff_t end, i_size; 224 pgoff_t end_index; 225 226 spin_lock(&inode->i_lock); 227 i_size = i_size_read(inode); 228 end_index = (i_size - 1) >> PAGE_SHIFT; 229 if (i_size > 0 && page_index(page) < end_index) 230 goto out; 231 end = page_file_offset(page) + ((loff_t)offset+count); 232 if (i_size >= end) 233 goto out; 234 i_size_write(inode, end); 235 NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE; 236 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 237 out: 238 spin_unlock(&inode->i_lock); 239 } 240 241 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 242 static void nfs_set_pageerror(struct address_space *mapping) 243 { 244 nfs_zap_mapping(mapping->host, mapping); 245 } 246 247 static void nfs_mapping_set_error(struct page *page, int error) 248 { 249 SetPageError(page); 250 mapping_set_error(page_file_mapping(page), error); 251 } 252 253 /* 254 * nfs_page_group_search_locked 255 * @head - head request of page group 256 * @page_offset - offset into page 257 * 258 * Search page group with head @head to find a request that contains the 259 * page offset @page_offset. 260 * 261 * Returns a pointer to the first matching nfs request, or NULL if no 262 * match is found. 263 * 264 * Must be called with the page group lock held 265 */ 266 static struct nfs_page * 267 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset) 268 { 269 struct nfs_page *req; 270 271 req = head; 272 do { 273 if (page_offset >= req->wb_pgbase && 274 page_offset < (req->wb_pgbase + req->wb_bytes)) 275 return req; 276 277 req = req->wb_this_page; 278 } while (req != head); 279 280 return NULL; 281 } 282 283 /* 284 * nfs_page_group_covers_page 285 * @head - head request of page group 286 * 287 * Return true if the page group with head @head covers the whole page, 288 * returns false otherwise 289 */ 290 static bool nfs_page_group_covers_page(struct nfs_page *req) 291 { 292 struct nfs_page *tmp; 293 unsigned int pos = 0; 294 unsigned int len = nfs_page_length(req->wb_page); 295 296 nfs_page_group_lock(req); 297 298 for (;;) { 299 tmp = nfs_page_group_search_locked(req->wb_head, pos); 300 if (!tmp) 301 break; 302 pos = tmp->wb_pgbase + tmp->wb_bytes; 303 } 304 305 nfs_page_group_unlock(req); 306 return pos >= len; 307 } 308 309 /* We can set the PG_uptodate flag if we see that a write request 310 * covers the full page. 311 */ 312 static void nfs_mark_uptodate(struct nfs_page *req) 313 { 314 if (PageUptodate(req->wb_page)) 315 return; 316 if (!nfs_page_group_covers_page(req)) 317 return; 318 SetPageUptodate(req->wb_page); 319 } 320 321 static int wb_priority(struct writeback_control *wbc) 322 { 323 int ret = 0; 324 325 if (wbc->sync_mode == WB_SYNC_ALL) 326 ret = FLUSH_COND_STABLE; 327 return ret; 328 } 329 330 /* 331 * NFS congestion control 332 */ 333 334 int nfs_congestion_kb; 335 336 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 337 #define NFS_CONGESTION_OFF_THRESH \ 338 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 339 340 static void nfs_set_page_writeback(struct page *page) 341 { 342 struct inode *inode = page_file_mapping(page)->host; 343 struct nfs_server *nfss = NFS_SERVER(inode); 344 int ret = test_set_page_writeback(page); 345 346 WARN_ON_ONCE(ret != 0); 347 348 if (atomic_long_inc_return(&nfss->writeback) > 349 NFS_CONGESTION_ON_THRESH) 350 set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC); 351 } 352 353 static void nfs_end_page_writeback(struct nfs_page *req) 354 { 355 struct inode *inode = page_file_mapping(req->wb_page)->host; 356 struct nfs_server *nfss = NFS_SERVER(inode); 357 bool is_done; 358 359 is_done = nfs_page_group_sync_on_bit(req, PG_WB_END); 360 nfs_unlock_request(req); 361 if (!is_done) 362 return; 363 364 end_page_writeback(req->wb_page); 365 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 366 clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC); 367 } 368 369 /* 370 * nfs_unroll_locks_and_wait - unlock all newly locked reqs and wait on @req 371 * 372 * this is a helper function for nfs_lock_and_join_requests 373 * 374 * @inode - inode associated with request page group, must be holding inode lock 375 * @head - head request of page group, must be holding head lock 376 * @req - request that couldn't lock and needs to wait on the req bit lock 377 * 378 * NOTE: this must be called holding page_group bit lock 379 * which will be released before returning. 380 * 381 * returns 0 on success, < 0 on error. 382 */ 383 static void 384 nfs_unroll_locks(struct inode *inode, struct nfs_page *head, 385 struct nfs_page *req) 386 { 387 struct nfs_page *tmp; 388 389 /* relinquish all the locks successfully grabbed this run */ 390 for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) { 391 if (!kref_read(&tmp->wb_kref)) 392 continue; 393 nfs_unlock_and_release_request(tmp); 394 } 395 } 396 397 /* 398 * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests 399 * 400 * @destroy_list - request list (using wb_this_page) terminated by @old_head 401 * @old_head - the old head of the list 402 * 403 * All subrequests must be locked and removed from all lists, so at this point 404 * they are only "active" in this function, and possibly in nfs_wait_on_request 405 * with a reference held by some other context. 406 */ 407 static void 408 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list, 409 struct nfs_page *old_head, 410 struct inode *inode) 411 { 412 while (destroy_list) { 413 struct nfs_page *subreq = destroy_list; 414 415 destroy_list = (subreq->wb_this_page == old_head) ? 416 NULL : subreq->wb_this_page; 417 418 WARN_ON_ONCE(old_head != subreq->wb_head); 419 420 /* make sure old group is not used */ 421 subreq->wb_this_page = subreq; 422 423 clear_bit(PG_REMOVE, &subreq->wb_flags); 424 425 /* Note: races with nfs_page_group_destroy() */ 426 if (!kref_read(&subreq->wb_kref)) { 427 /* Check if we raced with nfs_page_group_destroy() */ 428 if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags)) 429 nfs_free_request(subreq); 430 continue; 431 } 432 433 subreq->wb_head = subreq; 434 435 if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) { 436 nfs_release_request(subreq); 437 atomic_long_dec(&NFS_I(inode)->nrequests); 438 } 439 440 /* subreq is now totally disconnected from page group or any 441 * write / commit lists. last chance to wake any waiters */ 442 nfs_unlock_and_release_request(subreq); 443 } 444 } 445 446 /* 447 * nfs_lock_and_join_requests - join all subreqs to the head req and return 448 * a locked reference, cancelling any pending 449 * operations for this page. 450 * 451 * @page - the page used to lookup the "page group" of nfs_page structures 452 * 453 * This function joins all sub requests to the head request by first 454 * locking all requests in the group, cancelling any pending operations 455 * and finally updating the head request to cover the whole range covered by 456 * the (former) group. All subrequests are removed from any write or commit 457 * lists, unlinked from the group and destroyed. 458 * 459 * Returns a locked, referenced pointer to the head request - which after 460 * this call is guaranteed to be the only request associated with the page. 461 * Returns NULL if no requests are found for @page, or a ERR_PTR if an 462 * error was encountered. 463 */ 464 static struct nfs_page * 465 nfs_lock_and_join_requests(struct page *page) 466 { 467 struct inode *inode = page_file_mapping(page)->host; 468 struct nfs_page *head, *subreq; 469 struct nfs_page *destroy_list = NULL; 470 unsigned int total_bytes; 471 int ret; 472 473 try_again: 474 /* 475 * A reference is taken only on the head request which acts as a 476 * reference to the whole page group - the group will not be destroyed 477 * until the head reference is released. 478 */ 479 head = nfs_page_find_head_request(page); 480 if (!head) 481 return NULL; 482 483 /* lock the page head first in order to avoid an ABBA inefficiency */ 484 if (!nfs_lock_request(head)) { 485 ret = nfs_wait_on_request(head); 486 nfs_release_request(head); 487 if (ret < 0) 488 return ERR_PTR(ret); 489 goto try_again; 490 } 491 492 /* Ensure that nobody removed the request before we locked it */ 493 if (head != nfs_page_private_request(page) && !PageSwapCache(page)) { 494 nfs_unlock_and_release_request(head); 495 goto try_again; 496 } 497 498 ret = nfs_page_group_lock(head); 499 if (ret < 0) 500 goto release_request; 501 502 /* lock each request in the page group */ 503 total_bytes = head->wb_bytes; 504 for (subreq = head->wb_this_page; subreq != head; 505 subreq = subreq->wb_this_page) { 506 507 if (!kref_get_unless_zero(&subreq->wb_kref)) { 508 if (subreq->wb_offset == head->wb_offset + total_bytes) 509 total_bytes += subreq->wb_bytes; 510 continue; 511 } 512 513 while (!nfs_lock_request(subreq)) { 514 /* 515 * Unlock page to allow nfs_page_group_sync_on_bit() 516 * to succeed 517 */ 518 nfs_page_group_unlock(head); 519 ret = nfs_wait_on_request(subreq); 520 if (!ret) 521 ret = nfs_page_group_lock(head); 522 if (ret < 0) { 523 nfs_unroll_locks(inode, head, subreq); 524 nfs_release_request(subreq); 525 goto release_request; 526 } 527 } 528 /* 529 * Subrequests are always contiguous, non overlapping 530 * and in order - but may be repeated (mirrored writes). 531 */ 532 if (subreq->wb_offset == (head->wb_offset + total_bytes)) { 533 /* keep track of how many bytes this group covers */ 534 total_bytes += subreq->wb_bytes; 535 } else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset || 536 ((subreq->wb_offset + subreq->wb_bytes) > 537 (head->wb_offset + total_bytes)))) { 538 nfs_page_group_unlock(head); 539 nfs_unroll_locks(inode, head, subreq); 540 nfs_unlock_and_release_request(subreq); 541 ret = -EIO; 542 goto release_request; 543 } 544 } 545 546 /* Now that all requests are locked, make sure they aren't on any list. 547 * Commit list removal accounting is done after locks are dropped */ 548 subreq = head; 549 do { 550 nfs_clear_request_commit(subreq); 551 subreq = subreq->wb_this_page; 552 } while (subreq != head); 553 554 /* unlink subrequests from head, destroy them later */ 555 if (head->wb_this_page != head) { 556 /* destroy list will be terminated by head */ 557 destroy_list = head->wb_this_page; 558 head->wb_this_page = head; 559 560 /* change head request to cover whole range that 561 * the former page group covered */ 562 head->wb_bytes = total_bytes; 563 } 564 565 /* Postpone destruction of this request */ 566 if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) { 567 set_bit(PG_INODE_REF, &head->wb_flags); 568 kref_get(&head->wb_kref); 569 atomic_long_inc(&NFS_I(inode)->nrequests); 570 } 571 572 nfs_page_group_unlock(head); 573 574 nfs_destroy_unlinked_subrequests(destroy_list, head, inode); 575 576 /* Did we lose a race with nfs_inode_remove_request()? */ 577 if (!(PagePrivate(page) || PageSwapCache(page))) { 578 nfs_unlock_and_release_request(head); 579 return NULL; 580 } 581 582 /* still holds ref on head from nfs_page_find_head_request 583 * and still has lock on head from lock loop */ 584 return head; 585 586 release_request: 587 nfs_unlock_and_release_request(head); 588 return ERR_PTR(ret); 589 } 590 591 static void nfs_write_error(struct nfs_page *req, int error) 592 { 593 nfs_mapping_set_error(req->wb_page, error); 594 nfs_end_page_writeback(req); 595 nfs_release_request(req); 596 } 597 598 static bool 599 nfs_error_is_fatal_on_server(int err) 600 { 601 switch (err) { 602 case 0: 603 case -ERESTARTSYS: 604 case -EINTR: 605 return false; 606 } 607 return nfs_error_is_fatal(err); 608 } 609 610 /* 611 * Find an associated nfs write request, and prepare to flush it out 612 * May return an error if the user signalled nfs_wait_on_request(). 613 */ 614 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 615 struct page *page) 616 { 617 struct address_space *mapping; 618 struct nfs_page *req; 619 int ret = 0; 620 621 req = nfs_lock_and_join_requests(page); 622 if (!req) 623 goto out; 624 ret = PTR_ERR(req); 625 if (IS_ERR(req)) 626 goto out; 627 628 nfs_set_page_writeback(page); 629 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags)); 630 631 /* If there is a fatal error that covers this write, just exit */ 632 ret = 0; 633 mapping = page_file_mapping(page); 634 if (test_bit(AS_ENOSPC, &mapping->flags) || 635 test_bit(AS_EIO, &mapping->flags)) 636 goto out_launder; 637 638 if (!nfs_pageio_add_request(pgio, req)) { 639 ret = pgio->pg_error; 640 /* 641 * Remove the problematic req upon fatal errors on the server 642 */ 643 if (nfs_error_is_fatal(ret)) { 644 if (nfs_error_is_fatal_on_server(ret)) 645 goto out_launder; 646 } else 647 ret = -EAGAIN; 648 nfs_redirty_request(req); 649 } else 650 nfs_add_stats(page_file_mapping(page)->host, 651 NFSIOS_WRITEPAGES, 1); 652 out: 653 return ret; 654 out_launder: 655 nfs_write_error(req, ret); 656 return 0; 657 } 658 659 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, 660 struct nfs_pageio_descriptor *pgio) 661 { 662 int ret; 663 664 nfs_pageio_cond_complete(pgio, page_index(page)); 665 ret = nfs_page_async_flush(pgio, page); 666 if (ret == -EAGAIN) { 667 redirty_page_for_writepage(wbc, page); 668 ret = 0; 669 } 670 return ret; 671 } 672 673 /* 674 * Write an mmapped page to the server. 675 */ 676 static int nfs_writepage_locked(struct page *page, 677 struct writeback_control *wbc) 678 { 679 struct nfs_pageio_descriptor pgio; 680 struct inode *inode = page_file_mapping(page)->host; 681 int err; 682 683 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 684 nfs_pageio_init_write(&pgio, inode, 0, 685 false, &nfs_async_write_completion_ops); 686 err = nfs_do_writepage(page, wbc, &pgio); 687 nfs_pageio_complete(&pgio); 688 if (err < 0) 689 return err; 690 if (pgio.pg_error < 0) 691 return pgio.pg_error; 692 return 0; 693 } 694 695 int nfs_writepage(struct page *page, struct writeback_control *wbc) 696 { 697 int ret; 698 699 ret = nfs_writepage_locked(page, wbc); 700 unlock_page(page); 701 return ret; 702 } 703 704 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 705 { 706 int ret; 707 708 ret = nfs_do_writepage(page, wbc, data); 709 unlock_page(page); 710 return ret; 711 } 712 713 static void nfs_io_completion_commit(void *inode) 714 { 715 nfs_commit_inode(inode, 0); 716 } 717 718 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 719 { 720 struct inode *inode = mapping->host; 721 struct nfs_pageio_descriptor pgio; 722 struct nfs_io_completion *ioc; 723 unsigned int pflags = memalloc_nofs_save(); 724 int err; 725 726 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 727 728 ioc = nfs_io_completion_alloc(GFP_NOFS); 729 if (ioc) 730 nfs_io_completion_init(ioc, nfs_io_completion_commit, inode); 731 732 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false, 733 &nfs_async_write_completion_ops); 734 pgio.pg_io_completion = ioc; 735 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 736 nfs_pageio_complete(&pgio); 737 nfs_io_completion_put(ioc); 738 739 memalloc_nofs_restore(pflags); 740 741 if (err < 0) 742 goto out_err; 743 err = pgio.pg_error; 744 if (err < 0) 745 goto out_err; 746 return 0; 747 out_err: 748 return err; 749 } 750 751 /* 752 * Insert a write request into an inode 753 */ 754 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 755 { 756 struct address_space *mapping = page_file_mapping(req->wb_page); 757 struct nfs_inode *nfsi = NFS_I(inode); 758 759 WARN_ON_ONCE(req->wb_this_page != req); 760 761 /* Lock the request! */ 762 nfs_lock_request(req); 763 764 /* 765 * Swap-space should not get truncated. Hence no need to plug the race 766 * with invalidate/truncate. 767 */ 768 spin_lock(&mapping->private_lock); 769 if (!nfs_have_writebacks(inode) && 770 NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 771 inode_inc_iversion_raw(inode); 772 if (likely(!PageSwapCache(req->wb_page))) { 773 set_bit(PG_MAPPED, &req->wb_flags); 774 SetPagePrivate(req->wb_page); 775 set_page_private(req->wb_page, (unsigned long)req); 776 } 777 spin_unlock(&mapping->private_lock); 778 atomic_long_inc(&nfsi->nrequests); 779 /* this a head request for a page group - mark it as having an 780 * extra reference so sub groups can follow suit. 781 * This flag also informs pgio layer when to bump nrequests when 782 * adding subrequests. */ 783 WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags)); 784 kref_get(&req->wb_kref); 785 } 786 787 /* 788 * Remove a write request from an inode 789 */ 790 static void nfs_inode_remove_request(struct nfs_page *req) 791 { 792 struct address_space *mapping = page_file_mapping(req->wb_page); 793 struct inode *inode = mapping->host; 794 struct nfs_inode *nfsi = NFS_I(inode); 795 struct nfs_page *head; 796 797 atomic_long_dec(&nfsi->nrequests); 798 if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) { 799 head = req->wb_head; 800 801 spin_lock(&mapping->private_lock); 802 if (likely(head->wb_page && !PageSwapCache(head->wb_page))) { 803 set_page_private(head->wb_page, 0); 804 ClearPagePrivate(head->wb_page); 805 clear_bit(PG_MAPPED, &head->wb_flags); 806 } 807 spin_unlock(&mapping->private_lock); 808 } 809 810 if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) 811 nfs_release_request(req); 812 } 813 814 static void 815 nfs_mark_request_dirty(struct nfs_page *req) 816 { 817 if (req->wb_page) 818 __set_page_dirty_nobuffers(req->wb_page); 819 } 820 821 /* 822 * nfs_page_search_commits_for_head_request_locked 823 * 824 * Search through commit lists on @inode for the head request for @page. 825 * Must be called while holding the inode (which is cinfo) lock. 826 * 827 * Returns the head request if found, or NULL if not found. 828 */ 829 static struct nfs_page * 830 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi, 831 struct page *page) 832 { 833 struct nfs_page *freq, *t; 834 struct nfs_commit_info cinfo; 835 struct inode *inode = &nfsi->vfs_inode; 836 837 nfs_init_cinfo_from_inode(&cinfo, inode); 838 839 /* search through pnfs commit lists */ 840 freq = pnfs_search_commit_reqs(inode, &cinfo, page); 841 if (freq) 842 return freq->wb_head; 843 844 /* Linearly search the commit list for the correct request */ 845 list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) { 846 if (freq->wb_page == page) 847 return freq->wb_head; 848 } 849 850 return NULL; 851 } 852 853 /** 854 * nfs_request_add_commit_list_locked - add request to a commit list 855 * @req: pointer to a struct nfs_page 856 * @dst: commit list head 857 * @cinfo: holds list lock and accounting info 858 * 859 * This sets the PG_CLEAN bit, updates the cinfo count of 860 * number of outstanding requests requiring a commit as well as 861 * the MM page stats. 862 * 863 * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the 864 * nfs_page lock. 865 */ 866 void 867 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst, 868 struct nfs_commit_info *cinfo) 869 { 870 set_bit(PG_CLEAN, &req->wb_flags); 871 nfs_list_add_request(req, dst); 872 atomic_long_inc(&cinfo->mds->ncommit); 873 } 874 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked); 875 876 /** 877 * nfs_request_add_commit_list - add request to a commit list 878 * @req: pointer to a struct nfs_page 879 * @cinfo: holds list lock and accounting info 880 * 881 * This sets the PG_CLEAN bit, updates the cinfo count of 882 * number of outstanding requests requiring a commit as well as 883 * the MM page stats. 884 * 885 * The caller must _not_ hold the cinfo->lock, but must be 886 * holding the nfs_page lock. 887 */ 888 void 889 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo) 890 { 891 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 892 nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo); 893 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 894 if (req->wb_page) 895 nfs_mark_page_unstable(req->wb_page, cinfo); 896 } 897 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list); 898 899 /** 900 * nfs_request_remove_commit_list - Remove request from a commit list 901 * @req: pointer to a nfs_page 902 * @cinfo: holds list lock and accounting info 903 * 904 * This clears the PG_CLEAN bit, and updates the cinfo's count of 905 * number of outstanding requests requiring a commit 906 * It does not update the MM page stats. 907 * 908 * The caller _must_ hold the cinfo->lock and the nfs_page lock. 909 */ 910 void 911 nfs_request_remove_commit_list(struct nfs_page *req, 912 struct nfs_commit_info *cinfo) 913 { 914 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) 915 return; 916 nfs_list_remove_request(req); 917 atomic_long_dec(&cinfo->mds->ncommit); 918 } 919 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list); 920 921 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 922 struct inode *inode) 923 { 924 cinfo->inode = inode; 925 cinfo->mds = &NFS_I(inode)->commit_info; 926 cinfo->ds = pnfs_get_ds_info(inode); 927 cinfo->dreq = NULL; 928 cinfo->completion_ops = &nfs_commit_completion_ops; 929 } 930 931 void nfs_init_cinfo(struct nfs_commit_info *cinfo, 932 struct inode *inode, 933 struct nfs_direct_req *dreq) 934 { 935 if (dreq) 936 nfs_init_cinfo_from_dreq(cinfo, dreq); 937 else 938 nfs_init_cinfo_from_inode(cinfo, inode); 939 } 940 EXPORT_SYMBOL_GPL(nfs_init_cinfo); 941 942 /* 943 * Add a request to the inode's commit list. 944 */ 945 void 946 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, 947 struct nfs_commit_info *cinfo, u32 ds_commit_idx) 948 { 949 if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx)) 950 return; 951 nfs_request_add_commit_list(req, cinfo); 952 } 953 954 static void 955 nfs_clear_page_commit(struct page *page) 956 { 957 dec_node_page_state(page, NR_UNSTABLE_NFS); 958 dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb, 959 WB_RECLAIMABLE); 960 } 961 962 /* Called holding the request lock on @req */ 963 static void 964 nfs_clear_request_commit(struct nfs_page *req) 965 { 966 if (test_bit(PG_CLEAN, &req->wb_flags)) { 967 struct nfs_open_context *ctx = nfs_req_openctx(req); 968 struct inode *inode = d_inode(ctx->dentry); 969 struct nfs_commit_info cinfo; 970 971 nfs_init_cinfo_from_inode(&cinfo, inode); 972 mutex_lock(&NFS_I(inode)->commit_mutex); 973 if (!pnfs_clear_request_commit(req, &cinfo)) { 974 nfs_request_remove_commit_list(req, &cinfo); 975 } 976 mutex_unlock(&NFS_I(inode)->commit_mutex); 977 nfs_clear_page_commit(req->wb_page); 978 } 979 } 980 981 int nfs_write_need_commit(struct nfs_pgio_header *hdr) 982 { 983 if (hdr->verf.committed == NFS_DATA_SYNC) 984 return hdr->lseg == NULL; 985 return hdr->verf.committed != NFS_FILE_SYNC; 986 } 987 988 static void nfs_async_write_init(struct nfs_pgio_header *hdr) 989 { 990 nfs_io_completion_get(hdr->io_completion); 991 } 992 993 static void nfs_write_completion(struct nfs_pgio_header *hdr) 994 { 995 struct nfs_commit_info cinfo; 996 unsigned long bytes = 0; 997 998 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 999 goto out; 1000 nfs_init_cinfo_from_inode(&cinfo, hdr->inode); 1001 while (!list_empty(&hdr->pages)) { 1002 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 1003 1004 bytes += req->wb_bytes; 1005 nfs_list_remove_request(req); 1006 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && 1007 (hdr->good_bytes < bytes)) { 1008 nfs_set_pageerror(page_file_mapping(req->wb_page)); 1009 nfs_mapping_set_error(req->wb_page, hdr->error); 1010 goto remove_req; 1011 } 1012 if (nfs_write_need_commit(hdr)) { 1013 /* Reset wb_nio, since the write was successful. */ 1014 req->wb_nio = 0; 1015 memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf)); 1016 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 1017 hdr->pgio_mirror_idx); 1018 goto next; 1019 } 1020 remove_req: 1021 nfs_inode_remove_request(req); 1022 next: 1023 nfs_end_page_writeback(req); 1024 nfs_release_request(req); 1025 } 1026 out: 1027 nfs_io_completion_put(hdr->io_completion); 1028 hdr->release(hdr); 1029 } 1030 1031 unsigned long 1032 nfs_reqs_to_commit(struct nfs_commit_info *cinfo) 1033 { 1034 return atomic_long_read(&cinfo->mds->ncommit); 1035 } 1036 1037 /* NFS_I(cinfo->inode)->commit_mutex held by caller */ 1038 int 1039 nfs_scan_commit_list(struct list_head *src, struct list_head *dst, 1040 struct nfs_commit_info *cinfo, int max) 1041 { 1042 struct nfs_page *req, *tmp; 1043 int ret = 0; 1044 1045 restart: 1046 list_for_each_entry_safe(req, tmp, src, wb_list) { 1047 kref_get(&req->wb_kref); 1048 if (!nfs_lock_request(req)) { 1049 int status; 1050 1051 /* Prevent deadlock with nfs_lock_and_join_requests */ 1052 if (!list_empty(dst)) { 1053 nfs_release_request(req); 1054 continue; 1055 } 1056 /* Ensure we make progress to prevent livelock */ 1057 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 1058 status = nfs_wait_on_request(req); 1059 nfs_release_request(req); 1060 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 1061 if (status < 0) 1062 break; 1063 goto restart; 1064 } 1065 nfs_request_remove_commit_list(req, cinfo); 1066 clear_bit(PG_COMMIT_TO_DS, &req->wb_flags); 1067 nfs_list_add_request(req, dst); 1068 ret++; 1069 if ((ret == max) && !cinfo->dreq) 1070 break; 1071 cond_resched(); 1072 } 1073 return ret; 1074 } 1075 EXPORT_SYMBOL_GPL(nfs_scan_commit_list); 1076 1077 /* 1078 * nfs_scan_commit - Scan an inode for commit requests 1079 * @inode: NFS inode to scan 1080 * @dst: mds destination list 1081 * @cinfo: mds and ds lists of reqs ready to commit 1082 * 1083 * Moves requests from the inode's 'commit' request list. 1084 * The requests are *not* checked to ensure that they form a contiguous set. 1085 */ 1086 int 1087 nfs_scan_commit(struct inode *inode, struct list_head *dst, 1088 struct nfs_commit_info *cinfo) 1089 { 1090 int ret = 0; 1091 1092 if (!atomic_long_read(&cinfo->mds->ncommit)) 1093 return 0; 1094 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 1095 if (atomic_long_read(&cinfo->mds->ncommit) > 0) { 1096 const int max = INT_MAX; 1097 1098 ret = nfs_scan_commit_list(&cinfo->mds->list, dst, 1099 cinfo, max); 1100 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret); 1101 } 1102 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 1103 return ret; 1104 } 1105 1106 /* 1107 * Search for an existing write request, and attempt to update 1108 * it to reflect a new dirty region on a given page. 1109 * 1110 * If the attempt fails, then the existing request is flushed out 1111 * to disk. 1112 */ 1113 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 1114 struct page *page, 1115 unsigned int offset, 1116 unsigned int bytes) 1117 { 1118 struct nfs_page *req; 1119 unsigned int rqend; 1120 unsigned int end; 1121 int error; 1122 1123 end = offset + bytes; 1124 1125 req = nfs_lock_and_join_requests(page); 1126 if (IS_ERR_OR_NULL(req)) 1127 return req; 1128 1129 rqend = req->wb_offset + req->wb_bytes; 1130 /* 1131 * Tell the caller to flush out the request if 1132 * the offsets are non-contiguous. 1133 * Note: nfs_flush_incompatible() will already 1134 * have flushed out requests having wrong owners. 1135 */ 1136 if (offset > rqend || end < req->wb_offset) 1137 goto out_flushme; 1138 1139 /* Okay, the request matches. Update the region */ 1140 if (offset < req->wb_offset) { 1141 req->wb_offset = offset; 1142 req->wb_pgbase = offset; 1143 } 1144 if (end > rqend) 1145 req->wb_bytes = end - req->wb_offset; 1146 else 1147 req->wb_bytes = rqend - req->wb_offset; 1148 req->wb_nio = 0; 1149 return req; 1150 out_flushme: 1151 /* 1152 * Note: we mark the request dirty here because 1153 * nfs_lock_and_join_requests() cannot preserve 1154 * commit flags, so we have to replay the write. 1155 */ 1156 nfs_mark_request_dirty(req); 1157 nfs_unlock_and_release_request(req); 1158 error = nfs_wb_page(inode, page); 1159 return (error < 0) ? ERR_PTR(error) : NULL; 1160 } 1161 1162 /* 1163 * Try to update an existing write request, or create one if there is none. 1164 * 1165 * Note: Should always be called with the Page Lock held to prevent races 1166 * if we have to add a new request. Also assumes that the caller has 1167 * already called nfs_flush_incompatible() if necessary. 1168 */ 1169 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 1170 struct page *page, unsigned int offset, unsigned int bytes) 1171 { 1172 struct inode *inode = page_file_mapping(page)->host; 1173 struct nfs_page *req; 1174 1175 req = nfs_try_to_update_request(inode, page, offset, bytes); 1176 if (req != NULL) 1177 goto out; 1178 req = nfs_create_request(ctx, page, offset, bytes); 1179 if (IS_ERR(req)) 1180 goto out; 1181 nfs_inode_add_request(inode, req); 1182 out: 1183 return req; 1184 } 1185 1186 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 1187 unsigned int offset, unsigned int count) 1188 { 1189 struct nfs_page *req; 1190 1191 req = nfs_setup_write_request(ctx, page, offset, count); 1192 if (IS_ERR(req)) 1193 return PTR_ERR(req); 1194 /* Update file length */ 1195 nfs_grow_file(page, offset, count); 1196 nfs_mark_uptodate(req); 1197 nfs_mark_request_dirty(req); 1198 nfs_unlock_and_release_request(req); 1199 return 0; 1200 } 1201 1202 int nfs_flush_incompatible(struct file *file, struct page *page) 1203 { 1204 struct nfs_open_context *ctx = nfs_file_open_context(file); 1205 struct nfs_lock_context *l_ctx; 1206 struct file_lock_context *flctx = file_inode(file)->i_flctx; 1207 struct nfs_page *req; 1208 int do_flush, status; 1209 /* 1210 * Look for a request corresponding to this page. If there 1211 * is one, and it belongs to another file, we flush it out 1212 * before we try to copy anything into the page. Do this 1213 * due to the lack of an ACCESS-type call in NFSv2. 1214 * Also do the same if we find a request from an existing 1215 * dropped page. 1216 */ 1217 do { 1218 req = nfs_page_find_head_request(page); 1219 if (req == NULL) 1220 return 0; 1221 l_ctx = req->wb_lock_context; 1222 do_flush = req->wb_page != page || 1223 !nfs_match_open_context(nfs_req_openctx(req), ctx); 1224 if (l_ctx && flctx && 1225 !(list_empty_careful(&flctx->flc_posix) && 1226 list_empty_careful(&flctx->flc_flock))) { 1227 do_flush |= l_ctx->lockowner != current->files; 1228 } 1229 nfs_release_request(req); 1230 if (!do_flush) 1231 return 0; 1232 status = nfs_wb_page(page_file_mapping(page)->host, page); 1233 } while (status == 0); 1234 return status; 1235 } 1236 1237 /* 1238 * Avoid buffered writes when a open context credential's key would 1239 * expire soon. 1240 * 1241 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL. 1242 * 1243 * Return 0 and set a credential flag which triggers the inode to flush 1244 * and performs NFS_FILE_SYNC writes if the key will expired within 1245 * RPC_KEY_EXPIRE_TIMEO. 1246 */ 1247 int 1248 nfs_key_timeout_notify(struct file *filp, struct inode *inode) 1249 { 1250 struct nfs_open_context *ctx = nfs_file_open_context(filp); 1251 1252 if (nfs_ctx_key_to_expire(ctx, inode) && 1253 !ctx->ll_cred) 1254 /* Already expired! */ 1255 return -EACCES; 1256 return 0; 1257 } 1258 1259 /* 1260 * Test if the open context credential key is marked to expire soon. 1261 */ 1262 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode) 1263 { 1264 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth; 1265 struct rpc_cred *cred = ctx->ll_cred; 1266 struct auth_cred acred = { 1267 .cred = ctx->cred, 1268 }; 1269 1270 if (cred && !cred->cr_ops->crmatch(&acred, cred, 0)) { 1271 put_rpccred(cred); 1272 ctx->ll_cred = NULL; 1273 cred = NULL; 1274 } 1275 if (!cred) 1276 cred = auth->au_ops->lookup_cred(auth, &acred, 0); 1277 if (!cred || IS_ERR(cred)) 1278 return true; 1279 ctx->ll_cred = cred; 1280 return !!(cred->cr_ops->crkey_timeout && 1281 cred->cr_ops->crkey_timeout(cred)); 1282 } 1283 1284 /* 1285 * If the page cache is marked as unsafe or invalid, then we can't rely on 1286 * the PageUptodate() flag. In this case, we will need to turn off 1287 * write optimisations that depend on the page contents being correct. 1288 */ 1289 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode) 1290 { 1291 struct nfs_inode *nfsi = NFS_I(inode); 1292 1293 if (nfs_have_delegated_attributes(inode)) 1294 goto out; 1295 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 1296 return false; 1297 smp_rmb(); 1298 if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags)) 1299 return false; 1300 out: 1301 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 1302 return false; 1303 return PageUptodate(page) != 0; 1304 } 1305 1306 static bool 1307 is_whole_file_wrlock(struct file_lock *fl) 1308 { 1309 return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX && 1310 fl->fl_type == F_WRLCK; 1311 } 1312 1313 /* If we know the page is up to date, and we're not using byte range locks (or 1314 * if we have the whole file locked for writing), it may be more efficient to 1315 * extend the write to cover the entire page in order to avoid fragmentation 1316 * inefficiencies. 1317 * 1318 * If the file is opened for synchronous writes then we can just skip the rest 1319 * of the checks. 1320 */ 1321 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode) 1322 { 1323 int ret; 1324 struct file_lock_context *flctx = inode->i_flctx; 1325 struct file_lock *fl; 1326 1327 if (file->f_flags & O_DSYNC) 1328 return 0; 1329 if (!nfs_write_pageuptodate(page, inode)) 1330 return 0; 1331 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 1332 return 1; 1333 if (!flctx || (list_empty_careful(&flctx->flc_flock) && 1334 list_empty_careful(&flctx->flc_posix))) 1335 return 1; 1336 1337 /* Check to see if there are whole file write locks */ 1338 ret = 0; 1339 spin_lock(&flctx->flc_lock); 1340 if (!list_empty(&flctx->flc_posix)) { 1341 fl = list_first_entry(&flctx->flc_posix, struct file_lock, 1342 fl_list); 1343 if (is_whole_file_wrlock(fl)) 1344 ret = 1; 1345 } else if (!list_empty(&flctx->flc_flock)) { 1346 fl = list_first_entry(&flctx->flc_flock, struct file_lock, 1347 fl_list); 1348 if (fl->fl_type == F_WRLCK) 1349 ret = 1; 1350 } 1351 spin_unlock(&flctx->flc_lock); 1352 return ret; 1353 } 1354 1355 /* 1356 * Update and possibly write a cached page of an NFS file. 1357 * 1358 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 1359 * things with a page scheduled for an RPC call (e.g. invalidate it). 1360 */ 1361 int nfs_updatepage(struct file *file, struct page *page, 1362 unsigned int offset, unsigned int count) 1363 { 1364 struct nfs_open_context *ctx = nfs_file_open_context(file); 1365 struct address_space *mapping = page_file_mapping(page); 1366 struct inode *inode = mapping->host; 1367 int status = 0; 1368 1369 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 1370 1371 dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n", 1372 file, count, (long long)(page_file_offset(page) + offset)); 1373 1374 if (!count) 1375 goto out; 1376 1377 if (nfs_can_extend_write(file, page, inode)) { 1378 count = max(count + offset, nfs_page_length(page)); 1379 offset = 0; 1380 } 1381 1382 status = nfs_writepage_setup(ctx, page, offset, count); 1383 if (status < 0) 1384 nfs_set_pageerror(mapping); 1385 else 1386 __set_page_dirty_nobuffers(page); 1387 out: 1388 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 1389 status, (long long)i_size_read(inode)); 1390 return status; 1391 } 1392 1393 static int flush_task_priority(int how) 1394 { 1395 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 1396 case FLUSH_HIGHPRI: 1397 return RPC_PRIORITY_HIGH; 1398 case FLUSH_LOWPRI: 1399 return RPC_PRIORITY_LOW; 1400 } 1401 return RPC_PRIORITY_NORMAL; 1402 } 1403 1404 static void nfs_initiate_write(struct nfs_pgio_header *hdr, 1405 struct rpc_message *msg, 1406 const struct nfs_rpc_ops *rpc_ops, 1407 struct rpc_task_setup *task_setup_data, int how) 1408 { 1409 int priority = flush_task_priority(how); 1410 1411 task_setup_data->priority = priority; 1412 rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client); 1413 trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes, 1414 hdr->args.stable); 1415 } 1416 1417 /* If a nfs_flush_* function fails, it should remove reqs from @head and 1418 * call this on each, which will prepare them to be retried on next 1419 * writeback using standard nfs. 1420 */ 1421 static void nfs_redirty_request(struct nfs_page *req) 1422 { 1423 /* Bump the transmission count */ 1424 req->wb_nio++; 1425 nfs_mark_request_dirty(req); 1426 set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags); 1427 nfs_end_page_writeback(req); 1428 nfs_release_request(req); 1429 } 1430 1431 static void nfs_async_write_error(struct list_head *head, int error) 1432 { 1433 struct nfs_page *req; 1434 1435 while (!list_empty(head)) { 1436 req = nfs_list_entry(head->next); 1437 nfs_list_remove_request(req); 1438 if (nfs_error_is_fatal(error)) 1439 nfs_write_error(req, error); 1440 else 1441 nfs_redirty_request(req); 1442 } 1443 } 1444 1445 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr) 1446 { 1447 nfs_async_write_error(&hdr->pages, 0); 1448 filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset, 1449 hdr->args.offset + hdr->args.count - 1); 1450 } 1451 1452 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = { 1453 .init_hdr = nfs_async_write_init, 1454 .error_cleanup = nfs_async_write_error, 1455 .completion = nfs_write_completion, 1456 .reschedule_io = nfs_async_write_reschedule_io, 1457 }; 1458 1459 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 1460 struct inode *inode, int ioflags, bool force_mds, 1461 const struct nfs_pgio_completion_ops *compl_ops) 1462 { 1463 struct nfs_server *server = NFS_SERVER(inode); 1464 const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops; 1465 1466 #ifdef CONFIG_NFS_V4_1 1467 if (server->pnfs_curr_ld && !force_mds) 1468 pg_ops = server->pnfs_curr_ld->pg_write_ops; 1469 #endif 1470 nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops, 1471 server->wsize, ioflags); 1472 } 1473 EXPORT_SYMBOL_GPL(nfs_pageio_init_write); 1474 1475 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio) 1476 { 1477 struct nfs_pgio_mirror *mirror; 1478 1479 if (pgio->pg_ops && pgio->pg_ops->pg_cleanup) 1480 pgio->pg_ops->pg_cleanup(pgio); 1481 1482 pgio->pg_ops = &nfs_pgio_rw_ops; 1483 1484 nfs_pageio_stop_mirroring(pgio); 1485 1486 mirror = &pgio->pg_mirrors[0]; 1487 mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize; 1488 } 1489 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds); 1490 1491 1492 void nfs_commit_prepare(struct rpc_task *task, void *calldata) 1493 { 1494 struct nfs_commit_data *data = calldata; 1495 1496 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data); 1497 } 1498 1499 /* 1500 * Special version of should_remove_suid() that ignores capabilities. 1501 */ 1502 static int nfs_should_remove_suid(const struct inode *inode) 1503 { 1504 umode_t mode = inode->i_mode; 1505 int kill = 0; 1506 1507 /* suid always must be killed */ 1508 if (unlikely(mode & S_ISUID)) 1509 kill = ATTR_KILL_SUID; 1510 1511 /* 1512 * sgid without any exec bits is just a mandatory locking mark; leave 1513 * it alone. If some exec bits are set, it's a real sgid; kill it. 1514 */ 1515 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1516 kill |= ATTR_KILL_SGID; 1517 1518 if (unlikely(kill && S_ISREG(mode))) 1519 return kill; 1520 1521 return 0; 1522 } 1523 1524 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr, 1525 struct nfs_fattr *fattr) 1526 { 1527 struct nfs_pgio_args *argp = &hdr->args; 1528 struct nfs_pgio_res *resp = &hdr->res; 1529 u64 size = argp->offset + resp->count; 1530 1531 if (!(fattr->valid & NFS_ATTR_FATTR_SIZE)) 1532 fattr->size = size; 1533 if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) { 1534 fattr->valid &= ~NFS_ATTR_FATTR_SIZE; 1535 return; 1536 } 1537 if (size != fattr->size) 1538 return; 1539 /* Set attribute barrier */ 1540 nfs_fattr_set_barrier(fattr); 1541 /* ...and update size */ 1542 fattr->valid |= NFS_ATTR_FATTR_SIZE; 1543 } 1544 1545 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr) 1546 { 1547 struct nfs_fattr *fattr = &hdr->fattr; 1548 struct inode *inode = hdr->inode; 1549 1550 spin_lock(&inode->i_lock); 1551 nfs_writeback_check_extend(hdr, fattr); 1552 nfs_post_op_update_inode_force_wcc_locked(inode, fattr); 1553 spin_unlock(&inode->i_lock); 1554 } 1555 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode); 1556 1557 /* 1558 * This function is called when the WRITE call is complete. 1559 */ 1560 static int nfs_writeback_done(struct rpc_task *task, 1561 struct nfs_pgio_header *hdr, 1562 struct inode *inode) 1563 { 1564 int status; 1565 1566 /* 1567 * ->write_done will attempt to use post-op attributes to detect 1568 * conflicting writes by other clients. A strict interpretation 1569 * of close-to-open would allow us to continue caching even if 1570 * another writer had changed the file, but some applications 1571 * depend on tighter cache coherency when writing. 1572 */ 1573 status = NFS_PROTO(inode)->write_done(task, hdr); 1574 if (status != 0) 1575 return status; 1576 1577 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count); 1578 trace_nfs_writeback_done(inode, task->tk_status, 1579 hdr->args.offset, hdr->res.verf); 1580 1581 if (hdr->res.verf->committed < hdr->args.stable && 1582 task->tk_status >= 0) { 1583 /* We tried a write call, but the server did not 1584 * commit data to stable storage even though we 1585 * requested it. 1586 * Note: There is a known bug in Tru64 < 5.0 in which 1587 * the server reports NFS_DATA_SYNC, but performs 1588 * NFS_FILE_SYNC. We therefore implement this checking 1589 * as a dprintk() in order to avoid filling syslog. 1590 */ 1591 static unsigned long complain; 1592 1593 /* Note this will print the MDS for a DS write */ 1594 if (time_before(complain, jiffies)) { 1595 dprintk("NFS: faulty NFS server %s:" 1596 " (committed = %d) != (stable = %d)\n", 1597 NFS_SERVER(inode)->nfs_client->cl_hostname, 1598 hdr->res.verf->committed, hdr->args.stable); 1599 complain = jiffies + 300 * HZ; 1600 } 1601 } 1602 1603 /* Deal with the suid/sgid bit corner case */ 1604 if (nfs_should_remove_suid(inode)) { 1605 spin_lock(&inode->i_lock); 1606 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_OTHER; 1607 spin_unlock(&inode->i_lock); 1608 } 1609 return 0; 1610 } 1611 1612 /* 1613 * This function is called when the WRITE call is complete. 1614 */ 1615 static void nfs_writeback_result(struct rpc_task *task, 1616 struct nfs_pgio_header *hdr) 1617 { 1618 struct nfs_pgio_args *argp = &hdr->args; 1619 struct nfs_pgio_res *resp = &hdr->res; 1620 1621 if (resp->count < argp->count) { 1622 static unsigned long complain; 1623 1624 /* This a short write! */ 1625 nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE); 1626 1627 /* Has the server at least made some progress? */ 1628 if (resp->count == 0) { 1629 if (time_before(complain, jiffies)) { 1630 printk(KERN_WARNING 1631 "NFS: Server wrote zero bytes, expected %u.\n", 1632 argp->count); 1633 complain = jiffies + 300 * HZ; 1634 } 1635 nfs_set_pgio_error(hdr, -EIO, argp->offset); 1636 task->tk_status = -EIO; 1637 return; 1638 } 1639 1640 /* For non rpc-based layout drivers, retry-through-MDS */ 1641 if (!task->tk_ops) { 1642 hdr->pnfs_error = -EAGAIN; 1643 return; 1644 } 1645 1646 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1647 if (resp->verf->committed != NFS_UNSTABLE) { 1648 /* Resend from where the server left off */ 1649 hdr->mds_offset += resp->count; 1650 argp->offset += resp->count; 1651 argp->pgbase += resp->count; 1652 argp->count -= resp->count; 1653 } else { 1654 /* Resend as a stable write in order to avoid 1655 * headaches in the case of a server crash. 1656 */ 1657 argp->stable = NFS_FILE_SYNC; 1658 } 1659 rpc_restart_call_prepare(task); 1660 } 1661 } 1662 1663 static int wait_on_commit(struct nfs_mds_commit_info *cinfo) 1664 { 1665 return wait_var_event_killable(&cinfo->rpcs_out, 1666 !atomic_read(&cinfo->rpcs_out)); 1667 } 1668 1669 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo) 1670 { 1671 atomic_inc(&cinfo->rpcs_out); 1672 } 1673 1674 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo) 1675 { 1676 if (atomic_dec_and_test(&cinfo->rpcs_out)) 1677 wake_up_var(&cinfo->rpcs_out); 1678 } 1679 1680 void nfs_commitdata_release(struct nfs_commit_data *data) 1681 { 1682 put_nfs_open_context(data->context); 1683 nfs_commit_free(data); 1684 } 1685 EXPORT_SYMBOL_GPL(nfs_commitdata_release); 1686 1687 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data, 1688 const struct nfs_rpc_ops *nfs_ops, 1689 const struct rpc_call_ops *call_ops, 1690 int how, int flags) 1691 { 1692 struct rpc_task *task; 1693 int priority = flush_task_priority(how); 1694 struct rpc_message msg = { 1695 .rpc_argp = &data->args, 1696 .rpc_resp = &data->res, 1697 .rpc_cred = data->cred, 1698 }; 1699 struct rpc_task_setup task_setup_data = { 1700 .task = &data->task, 1701 .rpc_client = clnt, 1702 .rpc_message = &msg, 1703 .callback_ops = call_ops, 1704 .callback_data = data, 1705 .workqueue = nfsiod_workqueue, 1706 .flags = RPC_TASK_ASYNC | flags, 1707 .priority = priority, 1708 }; 1709 /* Set up the initial task struct. */ 1710 nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client); 1711 trace_nfs_initiate_commit(data); 1712 1713 dprintk("NFS: initiated commit call\n"); 1714 1715 task = rpc_run_task(&task_setup_data); 1716 if (IS_ERR(task)) 1717 return PTR_ERR(task); 1718 if (how & FLUSH_SYNC) 1719 rpc_wait_for_completion_task(task); 1720 rpc_put_task(task); 1721 return 0; 1722 } 1723 EXPORT_SYMBOL_GPL(nfs_initiate_commit); 1724 1725 static loff_t nfs_get_lwb(struct list_head *head) 1726 { 1727 loff_t lwb = 0; 1728 struct nfs_page *req; 1729 1730 list_for_each_entry(req, head, wb_list) 1731 if (lwb < (req_offset(req) + req->wb_bytes)) 1732 lwb = req_offset(req) + req->wb_bytes; 1733 1734 return lwb; 1735 } 1736 1737 /* 1738 * Set up the argument/result storage required for the RPC call. 1739 */ 1740 void nfs_init_commit(struct nfs_commit_data *data, 1741 struct list_head *head, 1742 struct pnfs_layout_segment *lseg, 1743 struct nfs_commit_info *cinfo) 1744 { 1745 struct nfs_page *first = nfs_list_entry(head->next); 1746 struct nfs_open_context *ctx = nfs_req_openctx(first); 1747 struct inode *inode = d_inode(ctx->dentry); 1748 1749 /* Set up the RPC argument and reply structs 1750 * NB: take care not to mess about with data->commit et al. */ 1751 1752 list_splice_init(head, &data->pages); 1753 1754 data->inode = inode; 1755 data->cred = ctx->cred; 1756 data->lseg = lseg; /* reference transferred */ 1757 /* only set lwb for pnfs commit */ 1758 if (lseg) 1759 data->lwb = nfs_get_lwb(&data->pages); 1760 data->mds_ops = &nfs_commit_ops; 1761 data->completion_ops = cinfo->completion_ops; 1762 data->dreq = cinfo->dreq; 1763 1764 data->args.fh = NFS_FH(data->inode); 1765 /* Note: we always request a commit of the entire inode */ 1766 data->args.offset = 0; 1767 data->args.count = 0; 1768 data->context = get_nfs_open_context(ctx); 1769 data->res.fattr = &data->fattr; 1770 data->res.verf = &data->verf; 1771 nfs_fattr_init(&data->fattr); 1772 } 1773 EXPORT_SYMBOL_GPL(nfs_init_commit); 1774 1775 void nfs_retry_commit(struct list_head *page_list, 1776 struct pnfs_layout_segment *lseg, 1777 struct nfs_commit_info *cinfo, 1778 u32 ds_commit_idx) 1779 { 1780 struct nfs_page *req; 1781 1782 while (!list_empty(page_list)) { 1783 req = nfs_list_entry(page_list->next); 1784 nfs_list_remove_request(req); 1785 nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx); 1786 if (!cinfo->dreq) 1787 nfs_clear_page_commit(req->wb_page); 1788 nfs_unlock_and_release_request(req); 1789 } 1790 } 1791 EXPORT_SYMBOL_GPL(nfs_retry_commit); 1792 1793 static void 1794 nfs_commit_resched_write(struct nfs_commit_info *cinfo, 1795 struct nfs_page *req) 1796 { 1797 __set_page_dirty_nobuffers(req->wb_page); 1798 } 1799 1800 /* 1801 * Commit dirty pages 1802 */ 1803 static int 1804 nfs_commit_list(struct inode *inode, struct list_head *head, int how, 1805 struct nfs_commit_info *cinfo) 1806 { 1807 struct nfs_commit_data *data; 1808 1809 /* another commit raced with us */ 1810 if (list_empty(head)) 1811 return 0; 1812 1813 data = nfs_commitdata_alloc(true); 1814 1815 /* Set up the argument struct */ 1816 nfs_init_commit(data, head, NULL, cinfo); 1817 atomic_inc(&cinfo->mds->rpcs_out); 1818 return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode), 1819 data->mds_ops, how, 0); 1820 } 1821 1822 /* 1823 * COMMIT call returned 1824 */ 1825 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1826 { 1827 struct nfs_commit_data *data = calldata; 1828 1829 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1830 task->tk_pid, task->tk_status); 1831 1832 /* Call the NFS version-specific code */ 1833 NFS_PROTO(data->inode)->commit_done(task, data); 1834 trace_nfs_commit_done(data); 1835 } 1836 1837 static void nfs_commit_release_pages(struct nfs_commit_data *data) 1838 { 1839 struct nfs_page *req; 1840 int status = data->task.tk_status; 1841 struct nfs_commit_info cinfo; 1842 struct nfs_server *nfss; 1843 1844 while (!list_empty(&data->pages)) { 1845 req = nfs_list_entry(data->pages.next); 1846 nfs_list_remove_request(req); 1847 if (req->wb_page) 1848 nfs_clear_page_commit(req->wb_page); 1849 1850 dprintk("NFS: commit (%s/%llu %d@%lld)", 1851 nfs_req_openctx(req)->dentry->d_sb->s_id, 1852 (unsigned long long)NFS_FILEID(d_inode(nfs_req_openctx(req)->dentry)), 1853 req->wb_bytes, 1854 (long long)req_offset(req)); 1855 if (status < 0) { 1856 if (req->wb_page) { 1857 nfs_mapping_set_error(req->wb_page, status); 1858 nfs_inode_remove_request(req); 1859 } 1860 dprintk_cont(", error = %d\n", status); 1861 goto next; 1862 } 1863 1864 /* Okay, COMMIT succeeded, apparently. Check the verifier 1865 * returned by the server against all stored verfs. */ 1866 if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) { 1867 /* We have a match */ 1868 if (req->wb_page) 1869 nfs_inode_remove_request(req); 1870 dprintk_cont(" OK\n"); 1871 goto next; 1872 } 1873 /* We have a mismatch. Write the page again */ 1874 dprintk_cont(" mismatch\n"); 1875 nfs_mark_request_dirty(req); 1876 set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags); 1877 next: 1878 nfs_unlock_and_release_request(req); 1879 /* Latency breaker */ 1880 cond_resched(); 1881 } 1882 nfss = NFS_SERVER(data->inode); 1883 if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 1884 clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC); 1885 1886 nfs_init_cinfo(&cinfo, data->inode, data->dreq); 1887 nfs_commit_end(cinfo.mds); 1888 } 1889 1890 static void nfs_commit_release(void *calldata) 1891 { 1892 struct nfs_commit_data *data = calldata; 1893 1894 data->completion_ops->completion(data); 1895 nfs_commitdata_release(calldata); 1896 } 1897 1898 static const struct rpc_call_ops nfs_commit_ops = { 1899 .rpc_call_prepare = nfs_commit_prepare, 1900 .rpc_call_done = nfs_commit_done, 1901 .rpc_release = nfs_commit_release, 1902 }; 1903 1904 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = { 1905 .completion = nfs_commit_release_pages, 1906 .resched_write = nfs_commit_resched_write, 1907 }; 1908 1909 int nfs_generic_commit_list(struct inode *inode, struct list_head *head, 1910 int how, struct nfs_commit_info *cinfo) 1911 { 1912 int status; 1913 1914 status = pnfs_commit_list(inode, head, how, cinfo); 1915 if (status == PNFS_NOT_ATTEMPTED) 1916 status = nfs_commit_list(inode, head, how, cinfo); 1917 return status; 1918 } 1919 1920 static int __nfs_commit_inode(struct inode *inode, int how, 1921 struct writeback_control *wbc) 1922 { 1923 LIST_HEAD(head); 1924 struct nfs_commit_info cinfo; 1925 int may_wait = how & FLUSH_SYNC; 1926 int ret, nscan; 1927 1928 nfs_init_cinfo_from_inode(&cinfo, inode); 1929 nfs_commit_begin(cinfo.mds); 1930 for (;;) { 1931 ret = nscan = nfs_scan_commit(inode, &head, &cinfo); 1932 if (ret <= 0) 1933 break; 1934 ret = nfs_generic_commit_list(inode, &head, how, &cinfo); 1935 if (ret < 0) 1936 break; 1937 ret = 0; 1938 if (wbc && wbc->sync_mode == WB_SYNC_NONE) { 1939 if (nscan < wbc->nr_to_write) 1940 wbc->nr_to_write -= nscan; 1941 else 1942 wbc->nr_to_write = 0; 1943 } 1944 if (nscan < INT_MAX) 1945 break; 1946 cond_resched(); 1947 } 1948 nfs_commit_end(cinfo.mds); 1949 if (ret || !may_wait) 1950 return ret; 1951 return wait_on_commit(cinfo.mds); 1952 } 1953 1954 int nfs_commit_inode(struct inode *inode, int how) 1955 { 1956 return __nfs_commit_inode(inode, how, NULL); 1957 } 1958 EXPORT_SYMBOL_GPL(nfs_commit_inode); 1959 1960 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1961 { 1962 struct nfs_inode *nfsi = NFS_I(inode); 1963 int flags = FLUSH_SYNC; 1964 int ret = 0; 1965 1966 if (wbc->sync_mode == WB_SYNC_NONE) { 1967 /* no commits means nothing needs to be done */ 1968 if (!atomic_long_read(&nfsi->commit_info.ncommit)) 1969 goto check_requests_outstanding; 1970 1971 /* Don't commit yet if this is a non-blocking flush and there 1972 * are a lot of outstanding writes for this mapping. 1973 */ 1974 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)) 1975 goto out_mark_dirty; 1976 1977 /* don't wait for the COMMIT response */ 1978 flags = 0; 1979 } 1980 1981 ret = __nfs_commit_inode(inode, flags, wbc); 1982 if (!ret) { 1983 if (flags & FLUSH_SYNC) 1984 return 0; 1985 } else if (atomic_long_read(&nfsi->commit_info.ncommit)) 1986 goto out_mark_dirty; 1987 1988 check_requests_outstanding: 1989 if (!atomic_read(&nfsi->commit_info.rpcs_out)) 1990 return ret; 1991 out_mark_dirty: 1992 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1993 return ret; 1994 } 1995 EXPORT_SYMBOL_GPL(nfs_write_inode); 1996 1997 /* 1998 * Wrapper for filemap_write_and_wait_range() 1999 * 2000 * Needed for pNFS in order to ensure data becomes visible to the 2001 * client. 2002 */ 2003 int nfs_filemap_write_and_wait_range(struct address_space *mapping, 2004 loff_t lstart, loff_t lend) 2005 { 2006 int ret; 2007 2008 ret = filemap_write_and_wait_range(mapping, lstart, lend); 2009 if (ret == 0) 2010 ret = pnfs_sync_inode(mapping->host, true); 2011 return ret; 2012 } 2013 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range); 2014 2015 /* 2016 * flush the inode to disk. 2017 */ 2018 int nfs_wb_all(struct inode *inode) 2019 { 2020 int ret; 2021 2022 trace_nfs_writeback_inode_enter(inode); 2023 2024 ret = filemap_write_and_wait(inode->i_mapping); 2025 if (ret) 2026 goto out; 2027 ret = nfs_commit_inode(inode, FLUSH_SYNC); 2028 if (ret < 0) 2029 goto out; 2030 pnfs_sync_inode(inode, true); 2031 ret = 0; 2032 2033 out: 2034 trace_nfs_writeback_inode_exit(inode, ret); 2035 return ret; 2036 } 2037 EXPORT_SYMBOL_GPL(nfs_wb_all); 2038 2039 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 2040 { 2041 struct nfs_page *req; 2042 int ret = 0; 2043 2044 wait_on_page_writeback(page); 2045 2046 /* blocking call to cancel all requests and join to a single (head) 2047 * request */ 2048 req = nfs_lock_and_join_requests(page); 2049 2050 if (IS_ERR(req)) { 2051 ret = PTR_ERR(req); 2052 } else if (req) { 2053 /* all requests from this page have been cancelled by 2054 * nfs_lock_and_join_requests, so just remove the head 2055 * request from the inode / page_private pointer and 2056 * release it */ 2057 nfs_inode_remove_request(req); 2058 nfs_unlock_and_release_request(req); 2059 } 2060 2061 return ret; 2062 } 2063 2064 /* 2065 * Write back all requests on one page - we do this before reading it. 2066 */ 2067 int nfs_wb_page(struct inode *inode, struct page *page) 2068 { 2069 loff_t range_start = page_file_offset(page); 2070 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1); 2071 struct writeback_control wbc = { 2072 .sync_mode = WB_SYNC_ALL, 2073 .nr_to_write = 0, 2074 .range_start = range_start, 2075 .range_end = range_end, 2076 }; 2077 int ret; 2078 2079 trace_nfs_writeback_page_enter(inode); 2080 2081 for (;;) { 2082 wait_on_page_writeback(page); 2083 if (clear_page_dirty_for_io(page)) { 2084 ret = nfs_writepage_locked(page, &wbc); 2085 if (ret < 0) 2086 goto out_error; 2087 continue; 2088 } 2089 ret = 0; 2090 if (!PagePrivate(page)) 2091 break; 2092 ret = nfs_commit_inode(inode, FLUSH_SYNC); 2093 if (ret < 0) 2094 goto out_error; 2095 } 2096 out_error: 2097 trace_nfs_writeback_page_exit(inode, ret); 2098 return ret; 2099 } 2100 2101 #ifdef CONFIG_MIGRATION 2102 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 2103 struct page *page, enum migrate_mode mode) 2104 { 2105 /* 2106 * If PagePrivate is set, then the page is currently associated with 2107 * an in-progress read or write request. Don't try to migrate it. 2108 * 2109 * FIXME: we could do this in principle, but we'll need a way to ensure 2110 * that we can safely release the inode reference while holding 2111 * the page lock. 2112 */ 2113 if (PagePrivate(page)) 2114 return -EBUSY; 2115 2116 if (!nfs_fscache_release_page(page, GFP_KERNEL)) 2117 return -EBUSY; 2118 2119 return migrate_page(mapping, newpage, page, mode); 2120 } 2121 #endif 2122 2123 int __init nfs_init_writepagecache(void) 2124 { 2125 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 2126 sizeof(struct nfs_pgio_header), 2127 0, SLAB_HWCACHE_ALIGN, 2128 NULL); 2129 if (nfs_wdata_cachep == NULL) 2130 return -ENOMEM; 2131 2132 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 2133 nfs_wdata_cachep); 2134 if (nfs_wdata_mempool == NULL) 2135 goto out_destroy_write_cache; 2136 2137 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data", 2138 sizeof(struct nfs_commit_data), 2139 0, SLAB_HWCACHE_ALIGN, 2140 NULL); 2141 if (nfs_cdata_cachep == NULL) 2142 goto out_destroy_write_mempool; 2143 2144 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 2145 nfs_cdata_cachep); 2146 if (nfs_commit_mempool == NULL) 2147 goto out_destroy_commit_cache; 2148 2149 /* 2150 * NFS congestion size, scale with available memory. 2151 * 2152 * 64MB: 8192k 2153 * 128MB: 11585k 2154 * 256MB: 16384k 2155 * 512MB: 23170k 2156 * 1GB: 32768k 2157 * 2GB: 46340k 2158 * 4GB: 65536k 2159 * 8GB: 92681k 2160 * 16GB: 131072k 2161 * 2162 * This allows larger machines to have larger/more transfers. 2163 * Limit the default to 256M 2164 */ 2165 nfs_congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10); 2166 if (nfs_congestion_kb > 256*1024) 2167 nfs_congestion_kb = 256*1024; 2168 2169 return 0; 2170 2171 out_destroy_commit_cache: 2172 kmem_cache_destroy(nfs_cdata_cachep); 2173 out_destroy_write_mempool: 2174 mempool_destroy(nfs_wdata_mempool); 2175 out_destroy_write_cache: 2176 kmem_cache_destroy(nfs_wdata_cachep); 2177 return -ENOMEM; 2178 } 2179 2180 void nfs_destroy_writepagecache(void) 2181 { 2182 mempool_destroy(nfs_commit_mempool); 2183 kmem_cache_destroy(nfs_cdata_cachep); 2184 mempool_destroy(nfs_wdata_mempool); 2185 kmem_cache_destroy(nfs_wdata_cachep); 2186 } 2187 2188 static const struct nfs_rw_ops nfs_rw_write_ops = { 2189 .rw_alloc_header = nfs_writehdr_alloc, 2190 .rw_free_header = nfs_writehdr_free, 2191 .rw_done = nfs_writeback_done, 2192 .rw_result = nfs_writeback_result, 2193 .rw_initiate = nfs_initiate_write, 2194 }; 2195