xref: /openbmc/linux/fs/nfs/write.c (revision 08ca8b21)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/write.c
4  *
5  * Write file data over NFS.
6  *
7  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
8  */
9 
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/pagemap.h>
14 #include <linux/file.h>
15 #include <linux/writeback.h>
16 #include <linux/swap.h>
17 #include <linux/migrate.h>
18 
19 #include <linux/sunrpc/clnt.h>
20 #include <linux/nfs_fs.h>
21 #include <linux/nfs_mount.h>
22 #include <linux/nfs_page.h>
23 #include <linux/backing-dev.h>
24 #include <linux/export.h>
25 #include <linux/freezer.h>
26 #include <linux/wait.h>
27 #include <linux/iversion.h>
28 
29 #include <linux/uaccess.h>
30 #include <linux/sched/mm.h>
31 
32 #include "delegation.h"
33 #include "internal.h"
34 #include "iostat.h"
35 #include "nfs4_fs.h"
36 #include "fscache.h"
37 #include "pnfs.h"
38 
39 #include "nfstrace.h"
40 
41 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
42 
43 #define MIN_POOL_WRITE		(32)
44 #define MIN_POOL_COMMIT		(4)
45 
46 struct nfs_io_completion {
47 	void (*complete)(void *data);
48 	void *data;
49 	struct kref refcount;
50 };
51 
52 /*
53  * Local function declarations
54  */
55 static void nfs_redirty_request(struct nfs_page *req);
56 static const struct rpc_call_ops nfs_commit_ops;
57 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
58 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
59 static const struct nfs_rw_ops nfs_rw_write_ops;
60 static void nfs_inode_remove_request(struct nfs_page *req);
61 static void nfs_clear_request_commit(struct nfs_page *req);
62 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
63 				      struct inode *inode);
64 static struct nfs_page *
65 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
66 						struct page *page);
67 
68 static struct kmem_cache *nfs_wdata_cachep;
69 static mempool_t *nfs_wdata_mempool;
70 static struct kmem_cache *nfs_cdata_cachep;
71 static mempool_t *nfs_commit_mempool;
72 
73 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
74 {
75 	struct nfs_commit_data *p;
76 
77 	if (never_fail)
78 		p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
79 	else {
80 		/* It is OK to do some reclaim, not no safe to wait
81 		 * for anything to be returned to the pool.
82 		 * mempool_alloc() cannot handle that particular combination,
83 		 * so we need two separate attempts.
84 		 */
85 		p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
86 		if (!p)
87 			p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
88 					     __GFP_NOWARN | __GFP_NORETRY);
89 		if (!p)
90 			return NULL;
91 	}
92 
93 	memset(p, 0, sizeof(*p));
94 	INIT_LIST_HEAD(&p->pages);
95 	return p;
96 }
97 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
98 
99 void nfs_commit_free(struct nfs_commit_data *p)
100 {
101 	mempool_free(p, nfs_commit_mempool);
102 }
103 EXPORT_SYMBOL_GPL(nfs_commit_free);
104 
105 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
106 {
107 	struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_KERNEL);
108 
109 	memset(p, 0, sizeof(*p));
110 	p->rw_mode = FMODE_WRITE;
111 	return p;
112 }
113 
114 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
115 {
116 	mempool_free(hdr, nfs_wdata_mempool);
117 }
118 
119 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
120 {
121 	return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
122 }
123 
124 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
125 		void (*complete)(void *), void *data)
126 {
127 	ioc->complete = complete;
128 	ioc->data = data;
129 	kref_init(&ioc->refcount);
130 }
131 
132 static void nfs_io_completion_release(struct kref *kref)
133 {
134 	struct nfs_io_completion *ioc = container_of(kref,
135 			struct nfs_io_completion, refcount);
136 	ioc->complete(ioc->data);
137 	kfree(ioc);
138 }
139 
140 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
141 {
142 	if (ioc != NULL)
143 		kref_get(&ioc->refcount);
144 }
145 
146 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
147 {
148 	if (ioc != NULL)
149 		kref_put(&ioc->refcount, nfs_io_completion_release);
150 }
151 
152 static struct nfs_page *
153 nfs_page_private_request(struct page *page)
154 {
155 	if (!PagePrivate(page))
156 		return NULL;
157 	return (struct nfs_page *)page_private(page);
158 }
159 
160 /*
161  * nfs_page_find_head_request_locked - find head request associated with @page
162  *
163  * must be called while holding the inode lock.
164  *
165  * returns matching head request with reference held, or NULL if not found.
166  */
167 static struct nfs_page *
168 nfs_page_find_private_request(struct page *page)
169 {
170 	struct address_space *mapping = page_file_mapping(page);
171 	struct nfs_page *req;
172 
173 	if (!PagePrivate(page))
174 		return NULL;
175 	spin_lock(&mapping->private_lock);
176 	req = nfs_page_private_request(page);
177 	if (req) {
178 		WARN_ON_ONCE(req->wb_head != req);
179 		kref_get(&req->wb_kref);
180 	}
181 	spin_unlock(&mapping->private_lock);
182 	return req;
183 }
184 
185 static struct nfs_page *
186 nfs_page_find_swap_request(struct page *page)
187 {
188 	struct inode *inode = page_file_mapping(page)->host;
189 	struct nfs_inode *nfsi = NFS_I(inode);
190 	struct nfs_page *req = NULL;
191 	if (!PageSwapCache(page))
192 		return NULL;
193 	mutex_lock(&nfsi->commit_mutex);
194 	if (PageSwapCache(page)) {
195 		req = nfs_page_search_commits_for_head_request_locked(nfsi,
196 			page);
197 		if (req) {
198 			WARN_ON_ONCE(req->wb_head != req);
199 			kref_get(&req->wb_kref);
200 		}
201 	}
202 	mutex_unlock(&nfsi->commit_mutex);
203 	return req;
204 }
205 
206 /*
207  * nfs_page_find_head_request - find head request associated with @page
208  *
209  * returns matching head request with reference held, or NULL if not found.
210  */
211 static struct nfs_page *nfs_page_find_head_request(struct page *page)
212 {
213 	struct nfs_page *req;
214 
215 	req = nfs_page_find_private_request(page);
216 	if (!req)
217 		req = nfs_page_find_swap_request(page);
218 	return req;
219 }
220 
221 /* Adjust the file length if we're writing beyond the end */
222 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
223 {
224 	struct inode *inode = page_file_mapping(page)->host;
225 	loff_t end, i_size;
226 	pgoff_t end_index;
227 
228 	spin_lock(&inode->i_lock);
229 	i_size = i_size_read(inode);
230 	end_index = (i_size - 1) >> PAGE_SHIFT;
231 	if (i_size > 0 && page_index(page) < end_index)
232 		goto out;
233 	end = page_file_offset(page) + ((loff_t)offset+count);
234 	if (i_size >= end)
235 		goto out;
236 	i_size_write(inode, end);
237 	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE;
238 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
239 out:
240 	spin_unlock(&inode->i_lock);
241 }
242 
243 /* A writeback failed: mark the page as bad, and invalidate the page cache */
244 static void nfs_set_pageerror(struct address_space *mapping)
245 {
246 	struct inode *inode = mapping->host;
247 
248 	nfs_zap_mapping(mapping->host, mapping);
249 	/* Force file size revalidation */
250 	spin_lock(&inode->i_lock);
251 	NFS_I(inode)->cache_validity |= NFS_INO_REVAL_FORCED |
252 					NFS_INO_REVAL_PAGECACHE |
253 					NFS_INO_INVALID_SIZE;
254 	spin_unlock(&inode->i_lock);
255 }
256 
257 static void nfs_mapping_set_error(struct page *page, int error)
258 {
259 	struct address_space *mapping = page_file_mapping(page);
260 
261 	SetPageError(page);
262 	mapping_set_error(mapping, error);
263 	nfs_set_pageerror(mapping);
264 }
265 
266 /*
267  * nfs_page_group_search_locked
268  * @head - head request of page group
269  * @page_offset - offset into page
270  *
271  * Search page group with head @head to find a request that contains the
272  * page offset @page_offset.
273  *
274  * Returns a pointer to the first matching nfs request, or NULL if no
275  * match is found.
276  *
277  * Must be called with the page group lock held
278  */
279 static struct nfs_page *
280 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
281 {
282 	struct nfs_page *req;
283 
284 	req = head;
285 	do {
286 		if (page_offset >= req->wb_pgbase &&
287 		    page_offset < (req->wb_pgbase + req->wb_bytes))
288 			return req;
289 
290 		req = req->wb_this_page;
291 	} while (req != head);
292 
293 	return NULL;
294 }
295 
296 /*
297  * nfs_page_group_covers_page
298  * @head - head request of page group
299  *
300  * Return true if the page group with head @head covers the whole page,
301  * returns false otherwise
302  */
303 static bool nfs_page_group_covers_page(struct nfs_page *req)
304 {
305 	struct nfs_page *tmp;
306 	unsigned int pos = 0;
307 	unsigned int len = nfs_page_length(req->wb_page);
308 
309 	nfs_page_group_lock(req);
310 
311 	for (;;) {
312 		tmp = nfs_page_group_search_locked(req->wb_head, pos);
313 		if (!tmp)
314 			break;
315 		pos = tmp->wb_pgbase + tmp->wb_bytes;
316 	}
317 
318 	nfs_page_group_unlock(req);
319 	return pos >= len;
320 }
321 
322 /* We can set the PG_uptodate flag if we see that a write request
323  * covers the full page.
324  */
325 static void nfs_mark_uptodate(struct nfs_page *req)
326 {
327 	if (PageUptodate(req->wb_page))
328 		return;
329 	if (!nfs_page_group_covers_page(req))
330 		return;
331 	SetPageUptodate(req->wb_page);
332 }
333 
334 static int wb_priority(struct writeback_control *wbc)
335 {
336 	int ret = 0;
337 
338 	if (wbc->sync_mode == WB_SYNC_ALL)
339 		ret = FLUSH_COND_STABLE;
340 	return ret;
341 }
342 
343 /*
344  * NFS congestion control
345  */
346 
347 int nfs_congestion_kb;
348 
349 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
350 #define NFS_CONGESTION_OFF_THRESH	\
351 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
352 
353 static void nfs_set_page_writeback(struct page *page)
354 {
355 	struct inode *inode = page_file_mapping(page)->host;
356 	struct nfs_server *nfss = NFS_SERVER(inode);
357 	int ret = test_set_page_writeback(page);
358 
359 	WARN_ON_ONCE(ret != 0);
360 
361 	if (atomic_long_inc_return(&nfss->writeback) >
362 			NFS_CONGESTION_ON_THRESH)
363 		set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
364 }
365 
366 static void nfs_end_page_writeback(struct nfs_page *req)
367 {
368 	struct inode *inode = page_file_mapping(req->wb_page)->host;
369 	struct nfs_server *nfss = NFS_SERVER(inode);
370 	bool is_done;
371 
372 	is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
373 	nfs_unlock_request(req);
374 	if (!is_done)
375 		return;
376 
377 	end_page_writeback(req->wb_page);
378 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
379 		clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
380 }
381 
382 /*
383  * nfs_unroll_locks_and_wait -  unlock all newly locked reqs and wait on @req
384  *
385  * this is a helper function for nfs_lock_and_join_requests
386  *
387  * @inode - inode associated with request page group, must be holding inode lock
388  * @head  - head request of page group, must be holding head lock
389  * @req   - request that couldn't lock and needs to wait on the req bit lock
390  *
391  * NOTE: this must be called holding page_group bit lock
392  *       which will be released before returning.
393  *
394  * returns 0 on success, < 0 on error.
395  */
396 static void
397 nfs_unroll_locks(struct inode *inode, struct nfs_page *head,
398 			  struct nfs_page *req)
399 {
400 	struct nfs_page *tmp;
401 
402 	/* relinquish all the locks successfully grabbed this run */
403 	for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) {
404 		if (!kref_read(&tmp->wb_kref))
405 			continue;
406 		nfs_unlock_and_release_request(tmp);
407 	}
408 }
409 
410 /*
411  * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
412  *
413  * @destroy_list - request list (using wb_this_page) terminated by @old_head
414  * @old_head - the old head of the list
415  *
416  * All subrequests must be locked and removed from all lists, so at this point
417  * they are only "active" in this function, and possibly in nfs_wait_on_request
418  * with a reference held by some other context.
419  */
420 static void
421 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
422 				 struct nfs_page *old_head,
423 				 struct inode *inode)
424 {
425 	while (destroy_list) {
426 		struct nfs_page *subreq = destroy_list;
427 
428 		destroy_list = (subreq->wb_this_page == old_head) ?
429 				   NULL : subreq->wb_this_page;
430 
431 		/* Note: lock subreq in order to change subreq->wb_head */
432 		nfs_page_set_headlock(subreq);
433 		WARN_ON_ONCE(old_head != subreq->wb_head);
434 
435 		/* make sure old group is not used */
436 		subreq->wb_this_page = subreq;
437 		subreq->wb_head = subreq;
438 
439 		clear_bit(PG_REMOVE, &subreq->wb_flags);
440 
441 		/* Note: races with nfs_page_group_destroy() */
442 		if (!kref_read(&subreq->wb_kref)) {
443 			/* Check if we raced with nfs_page_group_destroy() */
444 			if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags)) {
445 				nfs_page_clear_headlock(subreq);
446 				nfs_free_request(subreq);
447 			} else
448 				nfs_page_clear_headlock(subreq);
449 			continue;
450 		}
451 		nfs_page_clear_headlock(subreq);
452 
453 		nfs_release_request(old_head);
454 
455 		if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
456 			nfs_release_request(subreq);
457 			atomic_long_dec(&NFS_I(inode)->nrequests);
458 		}
459 
460 		/* subreq is now totally disconnected from page group or any
461 		 * write / commit lists. last chance to wake any waiters */
462 		nfs_unlock_and_release_request(subreq);
463 	}
464 }
465 
466 /*
467  * nfs_lock_and_join_requests - join all subreqs to the head req and return
468  *                              a locked reference, cancelling any pending
469  *                              operations for this page.
470  *
471  * @page - the page used to lookup the "page group" of nfs_page structures
472  *
473  * This function joins all sub requests to the head request by first
474  * locking all requests in the group, cancelling any pending operations
475  * and finally updating the head request to cover the whole range covered by
476  * the (former) group.  All subrequests are removed from any write or commit
477  * lists, unlinked from the group and destroyed.
478  *
479  * Returns a locked, referenced pointer to the head request - which after
480  * this call is guaranteed to be the only request associated with the page.
481  * Returns NULL if no requests are found for @page, or a ERR_PTR if an
482  * error was encountered.
483  */
484 static struct nfs_page *
485 nfs_lock_and_join_requests(struct page *page)
486 {
487 	struct inode *inode = page_file_mapping(page)->host;
488 	struct nfs_page *head, *subreq;
489 	struct nfs_page *destroy_list = NULL;
490 	unsigned int total_bytes;
491 	int ret;
492 
493 try_again:
494 	/*
495 	 * A reference is taken only on the head request which acts as a
496 	 * reference to the whole page group - the group will not be destroyed
497 	 * until the head reference is released.
498 	 */
499 	head = nfs_page_find_head_request(page);
500 	if (!head)
501 		return NULL;
502 
503 	/* lock the page head first in order to avoid an ABBA inefficiency */
504 	if (!nfs_lock_request(head)) {
505 		ret = nfs_wait_on_request(head);
506 		nfs_release_request(head);
507 		if (ret < 0)
508 			return ERR_PTR(ret);
509 		goto try_again;
510 	}
511 
512 	/* Ensure that nobody removed the request before we locked it */
513 	if (head != nfs_page_private_request(page) && !PageSwapCache(page)) {
514 		nfs_unlock_and_release_request(head);
515 		goto try_again;
516 	}
517 
518 	ret = nfs_page_group_lock(head);
519 	if (ret < 0)
520 		goto release_request;
521 
522 	/* lock each request in the page group */
523 	total_bytes = head->wb_bytes;
524 	for (subreq = head->wb_this_page; subreq != head;
525 			subreq = subreq->wb_this_page) {
526 
527 		if (!kref_get_unless_zero(&subreq->wb_kref)) {
528 			if (subreq->wb_offset == head->wb_offset + total_bytes)
529 				total_bytes += subreq->wb_bytes;
530 			continue;
531 		}
532 
533 		while (!nfs_lock_request(subreq)) {
534 			/*
535 			 * Unlock page to allow nfs_page_group_sync_on_bit()
536 			 * to succeed
537 			 */
538 			nfs_page_group_unlock(head);
539 			ret = nfs_wait_on_request(subreq);
540 			if (!ret)
541 				ret = nfs_page_group_lock(head);
542 			if (ret < 0) {
543 				nfs_unroll_locks(inode, head, subreq);
544 				nfs_release_request(subreq);
545 				goto release_request;
546 			}
547 		}
548 		/*
549 		 * Subrequests are always contiguous, non overlapping
550 		 * and in order - but may be repeated (mirrored writes).
551 		 */
552 		if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
553 			/* keep track of how many bytes this group covers */
554 			total_bytes += subreq->wb_bytes;
555 		} else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
556 			    ((subreq->wb_offset + subreq->wb_bytes) >
557 			     (head->wb_offset + total_bytes)))) {
558 			nfs_page_group_unlock(head);
559 			nfs_unroll_locks(inode, head, subreq);
560 			nfs_unlock_and_release_request(subreq);
561 			ret = -EIO;
562 			goto release_request;
563 		}
564 	}
565 
566 	/* Now that all requests are locked, make sure they aren't on any list.
567 	 * Commit list removal accounting is done after locks are dropped */
568 	subreq = head;
569 	do {
570 		nfs_clear_request_commit(subreq);
571 		subreq = subreq->wb_this_page;
572 	} while (subreq != head);
573 
574 	/* unlink subrequests from head, destroy them later */
575 	if (head->wb_this_page != head) {
576 		/* destroy list will be terminated by head */
577 		destroy_list = head->wb_this_page;
578 		head->wb_this_page = head;
579 
580 		/* change head request to cover whole range that
581 		 * the former page group covered */
582 		head->wb_bytes = total_bytes;
583 	}
584 
585 	/* Postpone destruction of this request */
586 	if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) {
587 		set_bit(PG_INODE_REF, &head->wb_flags);
588 		kref_get(&head->wb_kref);
589 		atomic_long_inc(&NFS_I(inode)->nrequests);
590 	}
591 
592 	nfs_page_group_unlock(head);
593 
594 	nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
595 
596 	/* Did we lose a race with nfs_inode_remove_request()? */
597 	if (!(PagePrivate(page) || PageSwapCache(page))) {
598 		nfs_unlock_and_release_request(head);
599 		return NULL;
600 	}
601 
602 	/* still holds ref on head from nfs_page_find_head_request
603 	 * and still has lock on head from lock loop */
604 	return head;
605 
606 release_request:
607 	nfs_unlock_and_release_request(head);
608 	return ERR_PTR(ret);
609 }
610 
611 static void nfs_write_error(struct nfs_page *req, int error)
612 {
613 	trace_nfs_write_error(req, error);
614 	nfs_mapping_set_error(req->wb_page, error);
615 	nfs_inode_remove_request(req);
616 	nfs_end_page_writeback(req);
617 	nfs_release_request(req);
618 }
619 
620 /*
621  * Find an associated nfs write request, and prepare to flush it out
622  * May return an error if the user signalled nfs_wait_on_request().
623  */
624 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
625 				struct page *page)
626 {
627 	struct nfs_page *req;
628 	int ret = 0;
629 
630 	req = nfs_lock_and_join_requests(page);
631 	if (!req)
632 		goto out;
633 	ret = PTR_ERR(req);
634 	if (IS_ERR(req))
635 		goto out;
636 
637 	nfs_set_page_writeback(page);
638 	WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
639 
640 	/* If there is a fatal error that covers this write, just exit */
641 	ret = pgio->pg_error;
642 	if (nfs_error_is_fatal_on_server(ret))
643 		goto out_launder;
644 
645 	ret = 0;
646 	if (!nfs_pageio_add_request(pgio, req)) {
647 		ret = pgio->pg_error;
648 		/*
649 		 * Remove the problematic req upon fatal errors on the server
650 		 */
651 		if (nfs_error_is_fatal(ret)) {
652 			if (nfs_error_is_fatal_on_server(ret))
653 				goto out_launder;
654 		} else
655 			ret = -EAGAIN;
656 		nfs_redirty_request(req);
657 		pgio->pg_error = 0;
658 	} else
659 		nfs_add_stats(page_file_mapping(page)->host,
660 				NFSIOS_WRITEPAGES, 1);
661 out:
662 	return ret;
663 out_launder:
664 	nfs_write_error(req, ret);
665 	return 0;
666 }
667 
668 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
669 			    struct nfs_pageio_descriptor *pgio)
670 {
671 	int ret;
672 
673 	nfs_pageio_cond_complete(pgio, page_index(page));
674 	ret = nfs_page_async_flush(pgio, page);
675 	if (ret == -EAGAIN) {
676 		redirty_page_for_writepage(wbc, page);
677 		ret = AOP_WRITEPAGE_ACTIVATE;
678 	}
679 	return ret;
680 }
681 
682 /*
683  * Write an mmapped page to the server.
684  */
685 static int nfs_writepage_locked(struct page *page,
686 				struct writeback_control *wbc)
687 {
688 	struct nfs_pageio_descriptor pgio;
689 	struct inode *inode = page_file_mapping(page)->host;
690 	int err;
691 
692 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
693 	nfs_pageio_init_write(&pgio, inode, 0,
694 				false, &nfs_async_write_completion_ops);
695 	err = nfs_do_writepage(page, wbc, &pgio);
696 	pgio.pg_error = 0;
697 	nfs_pageio_complete(&pgio);
698 	if (err < 0)
699 		return err;
700 	if (nfs_error_is_fatal(pgio.pg_error))
701 		return pgio.pg_error;
702 	return 0;
703 }
704 
705 int nfs_writepage(struct page *page, struct writeback_control *wbc)
706 {
707 	int ret;
708 
709 	ret = nfs_writepage_locked(page, wbc);
710 	if (ret != AOP_WRITEPAGE_ACTIVATE)
711 		unlock_page(page);
712 	return ret;
713 }
714 
715 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
716 {
717 	int ret;
718 
719 	ret = nfs_do_writepage(page, wbc, data);
720 	if (ret != AOP_WRITEPAGE_ACTIVATE)
721 		unlock_page(page);
722 	return ret;
723 }
724 
725 static void nfs_io_completion_commit(void *inode)
726 {
727 	nfs_commit_inode(inode, 0);
728 }
729 
730 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
731 {
732 	struct inode *inode = mapping->host;
733 	struct nfs_pageio_descriptor pgio;
734 	struct nfs_io_completion *ioc;
735 	int err;
736 
737 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
738 
739 	ioc = nfs_io_completion_alloc(GFP_KERNEL);
740 	if (ioc)
741 		nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
742 
743 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
744 				&nfs_async_write_completion_ops);
745 	pgio.pg_io_completion = ioc;
746 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
747 	pgio.pg_error = 0;
748 	nfs_pageio_complete(&pgio);
749 	nfs_io_completion_put(ioc);
750 
751 	if (err < 0)
752 		goto out_err;
753 	err = pgio.pg_error;
754 	if (nfs_error_is_fatal(err))
755 		goto out_err;
756 	return 0;
757 out_err:
758 	return err;
759 }
760 
761 /*
762  * Insert a write request into an inode
763  */
764 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
765 {
766 	struct address_space *mapping = page_file_mapping(req->wb_page);
767 	struct nfs_inode *nfsi = NFS_I(inode);
768 
769 	WARN_ON_ONCE(req->wb_this_page != req);
770 
771 	/* Lock the request! */
772 	nfs_lock_request(req);
773 
774 	/*
775 	 * Swap-space should not get truncated. Hence no need to plug the race
776 	 * with invalidate/truncate.
777 	 */
778 	spin_lock(&mapping->private_lock);
779 	if (!nfs_have_writebacks(inode) &&
780 	    NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
781 		inode_inc_iversion_raw(inode);
782 	if (likely(!PageSwapCache(req->wb_page))) {
783 		set_bit(PG_MAPPED, &req->wb_flags);
784 		SetPagePrivate(req->wb_page);
785 		set_page_private(req->wb_page, (unsigned long)req);
786 	}
787 	spin_unlock(&mapping->private_lock);
788 	atomic_long_inc(&nfsi->nrequests);
789 	/* this a head request for a page group - mark it as having an
790 	 * extra reference so sub groups can follow suit.
791 	 * This flag also informs pgio layer when to bump nrequests when
792 	 * adding subrequests. */
793 	WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
794 	kref_get(&req->wb_kref);
795 }
796 
797 /*
798  * Remove a write request from an inode
799  */
800 static void nfs_inode_remove_request(struct nfs_page *req)
801 {
802 	struct address_space *mapping = page_file_mapping(req->wb_page);
803 	struct inode *inode = mapping->host;
804 	struct nfs_inode *nfsi = NFS_I(inode);
805 	struct nfs_page *head;
806 
807 	if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
808 		head = req->wb_head;
809 
810 		spin_lock(&mapping->private_lock);
811 		if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
812 			set_page_private(head->wb_page, 0);
813 			ClearPagePrivate(head->wb_page);
814 			clear_bit(PG_MAPPED, &head->wb_flags);
815 		}
816 		spin_unlock(&mapping->private_lock);
817 	}
818 
819 	if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) {
820 		nfs_release_request(req);
821 		atomic_long_dec(&nfsi->nrequests);
822 	}
823 }
824 
825 static void
826 nfs_mark_request_dirty(struct nfs_page *req)
827 {
828 	if (req->wb_page)
829 		__set_page_dirty_nobuffers(req->wb_page);
830 }
831 
832 /*
833  * nfs_page_search_commits_for_head_request_locked
834  *
835  * Search through commit lists on @inode for the head request for @page.
836  * Must be called while holding the inode (which is cinfo) lock.
837  *
838  * Returns the head request if found, or NULL if not found.
839  */
840 static struct nfs_page *
841 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
842 						struct page *page)
843 {
844 	struct nfs_page *freq, *t;
845 	struct nfs_commit_info cinfo;
846 	struct inode *inode = &nfsi->vfs_inode;
847 
848 	nfs_init_cinfo_from_inode(&cinfo, inode);
849 
850 	/* search through pnfs commit lists */
851 	freq = pnfs_search_commit_reqs(inode, &cinfo, page);
852 	if (freq)
853 		return freq->wb_head;
854 
855 	/* Linearly search the commit list for the correct request */
856 	list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
857 		if (freq->wb_page == page)
858 			return freq->wb_head;
859 	}
860 
861 	return NULL;
862 }
863 
864 /**
865  * nfs_request_add_commit_list_locked - add request to a commit list
866  * @req: pointer to a struct nfs_page
867  * @dst: commit list head
868  * @cinfo: holds list lock and accounting info
869  *
870  * This sets the PG_CLEAN bit, updates the cinfo count of
871  * number of outstanding requests requiring a commit as well as
872  * the MM page stats.
873  *
874  * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
875  * nfs_page lock.
876  */
877 void
878 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
879 			    struct nfs_commit_info *cinfo)
880 {
881 	set_bit(PG_CLEAN, &req->wb_flags);
882 	nfs_list_add_request(req, dst);
883 	atomic_long_inc(&cinfo->mds->ncommit);
884 }
885 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
886 
887 /**
888  * nfs_request_add_commit_list - add request to a commit list
889  * @req: pointer to a struct nfs_page
890  * @cinfo: holds list lock and accounting info
891  *
892  * This sets the PG_CLEAN bit, updates the cinfo count of
893  * number of outstanding requests requiring a commit as well as
894  * the MM page stats.
895  *
896  * The caller must _not_ hold the cinfo->lock, but must be
897  * holding the nfs_page lock.
898  */
899 void
900 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
901 {
902 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
903 	nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
904 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
905 	if (req->wb_page)
906 		nfs_mark_page_unstable(req->wb_page, cinfo);
907 }
908 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
909 
910 /**
911  * nfs_request_remove_commit_list - Remove request from a commit list
912  * @req: pointer to a nfs_page
913  * @cinfo: holds list lock and accounting info
914  *
915  * This clears the PG_CLEAN bit, and updates the cinfo's count of
916  * number of outstanding requests requiring a commit
917  * It does not update the MM page stats.
918  *
919  * The caller _must_ hold the cinfo->lock and the nfs_page lock.
920  */
921 void
922 nfs_request_remove_commit_list(struct nfs_page *req,
923 			       struct nfs_commit_info *cinfo)
924 {
925 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
926 		return;
927 	nfs_list_remove_request(req);
928 	atomic_long_dec(&cinfo->mds->ncommit);
929 }
930 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
931 
932 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
933 				      struct inode *inode)
934 {
935 	cinfo->inode = inode;
936 	cinfo->mds = &NFS_I(inode)->commit_info;
937 	cinfo->ds = pnfs_get_ds_info(inode);
938 	cinfo->dreq = NULL;
939 	cinfo->completion_ops = &nfs_commit_completion_ops;
940 }
941 
942 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
943 		    struct inode *inode,
944 		    struct nfs_direct_req *dreq)
945 {
946 	if (dreq)
947 		nfs_init_cinfo_from_dreq(cinfo, dreq);
948 	else
949 		nfs_init_cinfo_from_inode(cinfo, inode);
950 }
951 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
952 
953 /*
954  * Add a request to the inode's commit list.
955  */
956 void
957 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
958 			struct nfs_commit_info *cinfo, u32 ds_commit_idx)
959 {
960 	if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
961 		return;
962 	nfs_request_add_commit_list(req, cinfo);
963 }
964 
965 static void
966 nfs_clear_page_commit(struct page *page)
967 {
968 	dec_node_page_state(page, NR_UNSTABLE_NFS);
969 	dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
970 		    WB_RECLAIMABLE);
971 }
972 
973 /* Called holding the request lock on @req */
974 static void
975 nfs_clear_request_commit(struct nfs_page *req)
976 {
977 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
978 		struct nfs_open_context *ctx = nfs_req_openctx(req);
979 		struct inode *inode = d_inode(ctx->dentry);
980 		struct nfs_commit_info cinfo;
981 
982 		nfs_init_cinfo_from_inode(&cinfo, inode);
983 		mutex_lock(&NFS_I(inode)->commit_mutex);
984 		if (!pnfs_clear_request_commit(req, &cinfo)) {
985 			nfs_request_remove_commit_list(req, &cinfo);
986 		}
987 		mutex_unlock(&NFS_I(inode)->commit_mutex);
988 		nfs_clear_page_commit(req->wb_page);
989 	}
990 }
991 
992 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
993 {
994 	if (hdr->verf.committed == NFS_DATA_SYNC)
995 		return hdr->lseg == NULL;
996 	return hdr->verf.committed != NFS_FILE_SYNC;
997 }
998 
999 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
1000 {
1001 	nfs_io_completion_get(hdr->io_completion);
1002 }
1003 
1004 static void nfs_write_completion(struct nfs_pgio_header *hdr)
1005 {
1006 	struct nfs_commit_info cinfo;
1007 	unsigned long bytes = 0;
1008 
1009 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
1010 		goto out;
1011 	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
1012 	while (!list_empty(&hdr->pages)) {
1013 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
1014 
1015 		bytes += req->wb_bytes;
1016 		nfs_list_remove_request(req);
1017 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
1018 		    (hdr->good_bytes < bytes)) {
1019 			trace_nfs_comp_error(req, hdr->error);
1020 			nfs_mapping_set_error(req->wb_page, hdr->error);
1021 			goto remove_req;
1022 		}
1023 		if (nfs_write_need_commit(hdr)) {
1024 			/* Reset wb_nio, since the write was successful. */
1025 			req->wb_nio = 0;
1026 			memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1027 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1028 				hdr->pgio_mirror_idx);
1029 			goto next;
1030 		}
1031 remove_req:
1032 		nfs_inode_remove_request(req);
1033 next:
1034 		nfs_end_page_writeback(req);
1035 		nfs_release_request(req);
1036 	}
1037 out:
1038 	nfs_io_completion_put(hdr->io_completion);
1039 	hdr->release(hdr);
1040 }
1041 
1042 unsigned long
1043 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1044 {
1045 	return atomic_long_read(&cinfo->mds->ncommit);
1046 }
1047 
1048 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1049 int
1050 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1051 		     struct nfs_commit_info *cinfo, int max)
1052 {
1053 	struct nfs_page *req, *tmp;
1054 	int ret = 0;
1055 
1056 restart:
1057 	list_for_each_entry_safe(req, tmp, src, wb_list) {
1058 		kref_get(&req->wb_kref);
1059 		if (!nfs_lock_request(req)) {
1060 			int status;
1061 
1062 			/* Prevent deadlock with nfs_lock_and_join_requests */
1063 			if (!list_empty(dst)) {
1064 				nfs_release_request(req);
1065 				continue;
1066 			}
1067 			/* Ensure we make progress to prevent livelock */
1068 			mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1069 			status = nfs_wait_on_request(req);
1070 			nfs_release_request(req);
1071 			mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1072 			if (status < 0)
1073 				break;
1074 			goto restart;
1075 		}
1076 		nfs_request_remove_commit_list(req, cinfo);
1077 		clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1078 		nfs_list_add_request(req, dst);
1079 		ret++;
1080 		if ((ret == max) && !cinfo->dreq)
1081 			break;
1082 		cond_resched();
1083 	}
1084 	return ret;
1085 }
1086 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1087 
1088 /*
1089  * nfs_scan_commit - Scan an inode for commit requests
1090  * @inode: NFS inode to scan
1091  * @dst: mds destination list
1092  * @cinfo: mds and ds lists of reqs ready to commit
1093  *
1094  * Moves requests from the inode's 'commit' request list.
1095  * The requests are *not* checked to ensure that they form a contiguous set.
1096  */
1097 int
1098 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1099 		struct nfs_commit_info *cinfo)
1100 {
1101 	int ret = 0;
1102 
1103 	if (!atomic_long_read(&cinfo->mds->ncommit))
1104 		return 0;
1105 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1106 	if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1107 		const int max = INT_MAX;
1108 
1109 		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1110 					   cinfo, max);
1111 		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1112 	}
1113 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1114 	return ret;
1115 }
1116 
1117 /*
1118  * Search for an existing write request, and attempt to update
1119  * it to reflect a new dirty region on a given page.
1120  *
1121  * If the attempt fails, then the existing request is flushed out
1122  * to disk.
1123  */
1124 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1125 		struct page *page,
1126 		unsigned int offset,
1127 		unsigned int bytes)
1128 {
1129 	struct nfs_page *req;
1130 	unsigned int rqend;
1131 	unsigned int end;
1132 	int error;
1133 
1134 	end = offset + bytes;
1135 
1136 	req = nfs_lock_and_join_requests(page);
1137 	if (IS_ERR_OR_NULL(req))
1138 		return req;
1139 
1140 	rqend = req->wb_offset + req->wb_bytes;
1141 	/*
1142 	 * Tell the caller to flush out the request if
1143 	 * the offsets are non-contiguous.
1144 	 * Note: nfs_flush_incompatible() will already
1145 	 * have flushed out requests having wrong owners.
1146 	 */
1147 	if (offset > rqend || end < req->wb_offset)
1148 		goto out_flushme;
1149 
1150 	/* Okay, the request matches. Update the region */
1151 	if (offset < req->wb_offset) {
1152 		req->wb_offset = offset;
1153 		req->wb_pgbase = offset;
1154 	}
1155 	if (end > rqend)
1156 		req->wb_bytes = end - req->wb_offset;
1157 	else
1158 		req->wb_bytes = rqend - req->wb_offset;
1159 	req->wb_nio = 0;
1160 	return req;
1161 out_flushme:
1162 	/*
1163 	 * Note: we mark the request dirty here because
1164 	 * nfs_lock_and_join_requests() cannot preserve
1165 	 * commit flags, so we have to replay the write.
1166 	 */
1167 	nfs_mark_request_dirty(req);
1168 	nfs_unlock_and_release_request(req);
1169 	error = nfs_wb_page(inode, page);
1170 	return (error < 0) ? ERR_PTR(error) : NULL;
1171 }
1172 
1173 /*
1174  * Try to update an existing write request, or create one if there is none.
1175  *
1176  * Note: Should always be called with the Page Lock held to prevent races
1177  * if we have to add a new request. Also assumes that the caller has
1178  * already called nfs_flush_incompatible() if necessary.
1179  */
1180 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1181 		struct page *page, unsigned int offset, unsigned int bytes)
1182 {
1183 	struct inode *inode = page_file_mapping(page)->host;
1184 	struct nfs_page	*req;
1185 
1186 	req = nfs_try_to_update_request(inode, page, offset, bytes);
1187 	if (req != NULL)
1188 		goto out;
1189 	req = nfs_create_request(ctx, page, offset, bytes);
1190 	if (IS_ERR(req))
1191 		goto out;
1192 	nfs_inode_add_request(inode, req);
1193 out:
1194 	return req;
1195 }
1196 
1197 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1198 		unsigned int offset, unsigned int count)
1199 {
1200 	struct nfs_page	*req;
1201 
1202 	req = nfs_setup_write_request(ctx, page, offset, count);
1203 	if (IS_ERR(req))
1204 		return PTR_ERR(req);
1205 	/* Update file length */
1206 	nfs_grow_file(page, offset, count);
1207 	nfs_mark_uptodate(req);
1208 	nfs_mark_request_dirty(req);
1209 	nfs_unlock_and_release_request(req);
1210 	return 0;
1211 }
1212 
1213 int nfs_flush_incompatible(struct file *file, struct page *page)
1214 {
1215 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1216 	struct nfs_lock_context *l_ctx;
1217 	struct file_lock_context *flctx = file_inode(file)->i_flctx;
1218 	struct nfs_page	*req;
1219 	int do_flush, status;
1220 	/*
1221 	 * Look for a request corresponding to this page. If there
1222 	 * is one, and it belongs to another file, we flush it out
1223 	 * before we try to copy anything into the page. Do this
1224 	 * due to the lack of an ACCESS-type call in NFSv2.
1225 	 * Also do the same if we find a request from an existing
1226 	 * dropped page.
1227 	 */
1228 	do {
1229 		req = nfs_page_find_head_request(page);
1230 		if (req == NULL)
1231 			return 0;
1232 		l_ctx = req->wb_lock_context;
1233 		do_flush = req->wb_page != page ||
1234 			!nfs_match_open_context(nfs_req_openctx(req), ctx);
1235 		if (l_ctx && flctx &&
1236 		    !(list_empty_careful(&flctx->flc_posix) &&
1237 		      list_empty_careful(&flctx->flc_flock))) {
1238 			do_flush |= l_ctx->lockowner != current->files;
1239 		}
1240 		nfs_release_request(req);
1241 		if (!do_flush)
1242 			return 0;
1243 		status = nfs_wb_page(page_file_mapping(page)->host, page);
1244 	} while (status == 0);
1245 	return status;
1246 }
1247 
1248 /*
1249  * Avoid buffered writes when a open context credential's key would
1250  * expire soon.
1251  *
1252  * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1253  *
1254  * Return 0 and set a credential flag which triggers the inode to flush
1255  * and performs  NFS_FILE_SYNC writes if the key will expired within
1256  * RPC_KEY_EXPIRE_TIMEO.
1257  */
1258 int
1259 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1260 {
1261 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
1262 
1263 	if (nfs_ctx_key_to_expire(ctx, inode) &&
1264 	    !ctx->ll_cred)
1265 		/* Already expired! */
1266 		return -EACCES;
1267 	return 0;
1268 }
1269 
1270 /*
1271  * Test if the open context credential key is marked to expire soon.
1272  */
1273 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1274 {
1275 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1276 	struct rpc_cred *cred = ctx->ll_cred;
1277 	struct auth_cred acred = {
1278 		.cred = ctx->cred,
1279 	};
1280 
1281 	if (cred && !cred->cr_ops->crmatch(&acred, cred, 0)) {
1282 		put_rpccred(cred);
1283 		ctx->ll_cred = NULL;
1284 		cred = NULL;
1285 	}
1286 	if (!cred)
1287 		cred = auth->au_ops->lookup_cred(auth, &acred, 0);
1288 	if (!cred || IS_ERR(cred))
1289 		return true;
1290 	ctx->ll_cred = cred;
1291 	return !!(cred->cr_ops->crkey_timeout &&
1292 		  cred->cr_ops->crkey_timeout(cred));
1293 }
1294 
1295 /*
1296  * If the page cache is marked as unsafe or invalid, then we can't rely on
1297  * the PageUptodate() flag. In this case, we will need to turn off
1298  * write optimisations that depend on the page contents being correct.
1299  */
1300 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1301 {
1302 	struct nfs_inode *nfsi = NFS_I(inode);
1303 
1304 	if (nfs_have_delegated_attributes(inode))
1305 		goto out;
1306 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1307 		return false;
1308 	smp_rmb();
1309 	if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1310 		return false;
1311 out:
1312 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1313 		return false;
1314 	return PageUptodate(page) != 0;
1315 }
1316 
1317 static bool
1318 is_whole_file_wrlock(struct file_lock *fl)
1319 {
1320 	return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1321 			fl->fl_type == F_WRLCK;
1322 }
1323 
1324 /* If we know the page is up to date, and we're not using byte range locks (or
1325  * if we have the whole file locked for writing), it may be more efficient to
1326  * extend the write to cover the entire page in order to avoid fragmentation
1327  * inefficiencies.
1328  *
1329  * If the file is opened for synchronous writes then we can just skip the rest
1330  * of the checks.
1331  */
1332 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1333 {
1334 	int ret;
1335 	struct file_lock_context *flctx = inode->i_flctx;
1336 	struct file_lock *fl;
1337 
1338 	if (file->f_flags & O_DSYNC)
1339 		return 0;
1340 	if (!nfs_write_pageuptodate(page, inode))
1341 		return 0;
1342 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1343 		return 1;
1344 	if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1345 		       list_empty_careful(&flctx->flc_posix)))
1346 		return 1;
1347 
1348 	/* Check to see if there are whole file write locks */
1349 	ret = 0;
1350 	spin_lock(&flctx->flc_lock);
1351 	if (!list_empty(&flctx->flc_posix)) {
1352 		fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1353 					fl_list);
1354 		if (is_whole_file_wrlock(fl))
1355 			ret = 1;
1356 	} else if (!list_empty(&flctx->flc_flock)) {
1357 		fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1358 					fl_list);
1359 		if (fl->fl_type == F_WRLCK)
1360 			ret = 1;
1361 	}
1362 	spin_unlock(&flctx->flc_lock);
1363 	return ret;
1364 }
1365 
1366 /*
1367  * Update and possibly write a cached page of an NFS file.
1368  *
1369  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1370  * things with a page scheduled for an RPC call (e.g. invalidate it).
1371  */
1372 int nfs_updatepage(struct file *file, struct page *page,
1373 		unsigned int offset, unsigned int count)
1374 {
1375 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1376 	struct address_space *mapping = page_file_mapping(page);
1377 	struct inode	*inode = mapping->host;
1378 	int		status = 0;
1379 
1380 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1381 
1382 	dprintk("NFS:       nfs_updatepage(%pD2 %d@%lld)\n",
1383 		file, count, (long long)(page_file_offset(page) + offset));
1384 
1385 	if (!count)
1386 		goto out;
1387 
1388 	if (nfs_can_extend_write(file, page, inode)) {
1389 		count = max(count + offset, nfs_page_length(page));
1390 		offset = 0;
1391 	}
1392 
1393 	status = nfs_writepage_setup(ctx, page, offset, count);
1394 	if (status < 0)
1395 		nfs_set_pageerror(mapping);
1396 	else
1397 		__set_page_dirty_nobuffers(page);
1398 out:
1399 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
1400 			status, (long long)i_size_read(inode));
1401 	return status;
1402 }
1403 
1404 static int flush_task_priority(int how)
1405 {
1406 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1407 		case FLUSH_HIGHPRI:
1408 			return RPC_PRIORITY_HIGH;
1409 		case FLUSH_LOWPRI:
1410 			return RPC_PRIORITY_LOW;
1411 	}
1412 	return RPC_PRIORITY_NORMAL;
1413 }
1414 
1415 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1416 			       struct rpc_message *msg,
1417 			       const struct nfs_rpc_ops *rpc_ops,
1418 			       struct rpc_task_setup *task_setup_data, int how)
1419 {
1420 	int priority = flush_task_priority(how);
1421 
1422 	task_setup_data->priority = priority;
1423 	rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client);
1424 	trace_nfs_initiate_write(hdr);
1425 }
1426 
1427 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1428  * call this on each, which will prepare them to be retried on next
1429  * writeback using standard nfs.
1430  */
1431 static void nfs_redirty_request(struct nfs_page *req)
1432 {
1433 	/* Bump the transmission count */
1434 	req->wb_nio++;
1435 	nfs_mark_request_dirty(req);
1436 	set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
1437 	nfs_end_page_writeback(req);
1438 	nfs_release_request(req);
1439 }
1440 
1441 static void nfs_async_write_error(struct list_head *head, int error)
1442 {
1443 	struct nfs_page	*req;
1444 
1445 	while (!list_empty(head)) {
1446 		req = nfs_list_entry(head->next);
1447 		nfs_list_remove_request(req);
1448 		if (nfs_error_is_fatal(error))
1449 			nfs_write_error(req, error);
1450 		else
1451 			nfs_redirty_request(req);
1452 	}
1453 }
1454 
1455 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1456 {
1457 	nfs_async_write_error(&hdr->pages, 0);
1458 	filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset,
1459 			hdr->args.offset + hdr->args.count - 1);
1460 }
1461 
1462 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1463 	.init_hdr = nfs_async_write_init,
1464 	.error_cleanup = nfs_async_write_error,
1465 	.completion = nfs_write_completion,
1466 	.reschedule_io = nfs_async_write_reschedule_io,
1467 };
1468 
1469 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1470 			       struct inode *inode, int ioflags, bool force_mds,
1471 			       const struct nfs_pgio_completion_ops *compl_ops)
1472 {
1473 	struct nfs_server *server = NFS_SERVER(inode);
1474 	const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1475 
1476 #ifdef CONFIG_NFS_V4_1
1477 	if (server->pnfs_curr_ld && !force_mds)
1478 		pg_ops = server->pnfs_curr_ld->pg_write_ops;
1479 #endif
1480 	nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1481 			server->wsize, ioflags);
1482 }
1483 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1484 
1485 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1486 {
1487 	struct nfs_pgio_mirror *mirror;
1488 
1489 	if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1490 		pgio->pg_ops->pg_cleanup(pgio);
1491 
1492 	pgio->pg_ops = &nfs_pgio_rw_ops;
1493 
1494 	nfs_pageio_stop_mirroring(pgio);
1495 
1496 	mirror = &pgio->pg_mirrors[0];
1497 	mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1498 }
1499 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1500 
1501 
1502 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1503 {
1504 	struct nfs_commit_data *data = calldata;
1505 
1506 	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1507 }
1508 
1509 /*
1510  * Special version of should_remove_suid() that ignores capabilities.
1511  */
1512 static int nfs_should_remove_suid(const struct inode *inode)
1513 {
1514 	umode_t mode = inode->i_mode;
1515 	int kill = 0;
1516 
1517 	/* suid always must be killed */
1518 	if (unlikely(mode & S_ISUID))
1519 		kill = ATTR_KILL_SUID;
1520 
1521 	/*
1522 	 * sgid without any exec bits is just a mandatory locking mark; leave
1523 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1524 	 */
1525 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1526 		kill |= ATTR_KILL_SGID;
1527 
1528 	if (unlikely(kill && S_ISREG(mode)))
1529 		return kill;
1530 
1531 	return 0;
1532 }
1533 
1534 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1535 		struct nfs_fattr *fattr)
1536 {
1537 	struct nfs_pgio_args *argp = &hdr->args;
1538 	struct nfs_pgio_res *resp = &hdr->res;
1539 	u64 size = argp->offset + resp->count;
1540 
1541 	if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1542 		fattr->size = size;
1543 	if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1544 		fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1545 		return;
1546 	}
1547 	if (size != fattr->size)
1548 		return;
1549 	/* Set attribute barrier */
1550 	nfs_fattr_set_barrier(fattr);
1551 	/* ...and update size */
1552 	fattr->valid |= NFS_ATTR_FATTR_SIZE;
1553 }
1554 
1555 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1556 {
1557 	struct nfs_fattr *fattr = &hdr->fattr;
1558 	struct inode *inode = hdr->inode;
1559 
1560 	spin_lock(&inode->i_lock);
1561 	nfs_writeback_check_extend(hdr, fattr);
1562 	nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1563 	spin_unlock(&inode->i_lock);
1564 }
1565 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1566 
1567 /*
1568  * This function is called when the WRITE call is complete.
1569  */
1570 static int nfs_writeback_done(struct rpc_task *task,
1571 			      struct nfs_pgio_header *hdr,
1572 			      struct inode *inode)
1573 {
1574 	int status;
1575 
1576 	/*
1577 	 * ->write_done will attempt to use post-op attributes to detect
1578 	 * conflicting writes by other clients.  A strict interpretation
1579 	 * of close-to-open would allow us to continue caching even if
1580 	 * another writer had changed the file, but some applications
1581 	 * depend on tighter cache coherency when writing.
1582 	 */
1583 	status = NFS_PROTO(inode)->write_done(task, hdr);
1584 	if (status != 0)
1585 		return status;
1586 
1587 	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1588 	trace_nfs_writeback_done(task, hdr);
1589 
1590 	if (hdr->res.verf->committed < hdr->args.stable &&
1591 	    task->tk_status >= 0) {
1592 		/* We tried a write call, but the server did not
1593 		 * commit data to stable storage even though we
1594 		 * requested it.
1595 		 * Note: There is a known bug in Tru64 < 5.0 in which
1596 		 *	 the server reports NFS_DATA_SYNC, but performs
1597 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1598 		 *	 as a dprintk() in order to avoid filling syslog.
1599 		 */
1600 		static unsigned long    complain;
1601 
1602 		/* Note this will print the MDS for a DS write */
1603 		if (time_before(complain, jiffies)) {
1604 			dprintk("NFS:       faulty NFS server %s:"
1605 				" (committed = %d) != (stable = %d)\n",
1606 				NFS_SERVER(inode)->nfs_client->cl_hostname,
1607 				hdr->res.verf->committed, hdr->args.stable);
1608 			complain = jiffies + 300 * HZ;
1609 		}
1610 	}
1611 
1612 	/* Deal with the suid/sgid bit corner case */
1613 	if (nfs_should_remove_suid(inode)) {
1614 		spin_lock(&inode->i_lock);
1615 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_OTHER;
1616 		spin_unlock(&inode->i_lock);
1617 	}
1618 	return 0;
1619 }
1620 
1621 /*
1622  * This function is called when the WRITE call is complete.
1623  */
1624 static void nfs_writeback_result(struct rpc_task *task,
1625 				 struct nfs_pgio_header *hdr)
1626 {
1627 	struct nfs_pgio_args	*argp = &hdr->args;
1628 	struct nfs_pgio_res	*resp = &hdr->res;
1629 
1630 	if (resp->count < argp->count) {
1631 		static unsigned long    complain;
1632 
1633 		/* This a short write! */
1634 		nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1635 
1636 		/* Has the server at least made some progress? */
1637 		if (resp->count == 0) {
1638 			if (time_before(complain, jiffies)) {
1639 				printk(KERN_WARNING
1640 				       "NFS: Server wrote zero bytes, expected %u.\n",
1641 				       argp->count);
1642 				complain = jiffies + 300 * HZ;
1643 			}
1644 			nfs_set_pgio_error(hdr, -EIO, argp->offset);
1645 			task->tk_status = -EIO;
1646 			return;
1647 		}
1648 
1649 		/* For non rpc-based layout drivers, retry-through-MDS */
1650 		if (!task->tk_ops) {
1651 			hdr->pnfs_error = -EAGAIN;
1652 			return;
1653 		}
1654 
1655 		/* Was this an NFSv2 write or an NFSv3 stable write? */
1656 		if (resp->verf->committed != NFS_UNSTABLE) {
1657 			/* Resend from where the server left off */
1658 			hdr->mds_offset += resp->count;
1659 			argp->offset += resp->count;
1660 			argp->pgbase += resp->count;
1661 			argp->count -= resp->count;
1662 		} else {
1663 			/* Resend as a stable write in order to avoid
1664 			 * headaches in the case of a server crash.
1665 			 */
1666 			argp->stable = NFS_FILE_SYNC;
1667 		}
1668 		resp->count = 0;
1669 		resp->verf->committed = 0;
1670 		rpc_restart_call_prepare(task);
1671 	}
1672 }
1673 
1674 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1675 {
1676 	return wait_var_event_killable(&cinfo->rpcs_out,
1677 				       !atomic_read(&cinfo->rpcs_out));
1678 }
1679 
1680 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1681 {
1682 	atomic_inc(&cinfo->rpcs_out);
1683 }
1684 
1685 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1686 {
1687 	if (atomic_dec_and_test(&cinfo->rpcs_out))
1688 		wake_up_var(&cinfo->rpcs_out);
1689 }
1690 
1691 void nfs_commitdata_release(struct nfs_commit_data *data)
1692 {
1693 	put_nfs_open_context(data->context);
1694 	nfs_commit_free(data);
1695 }
1696 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1697 
1698 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1699 			const struct nfs_rpc_ops *nfs_ops,
1700 			const struct rpc_call_ops *call_ops,
1701 			int how, int flags)
1702 {
1703 	struct rpc_task *task;
1704 	int priority = flush_task_priority(how);
1705 	struct rpc_message msg = {
1706 		.rpc_argp = &data->args,
1707 		.rpc_resp = &data->res,
1708 		.rpc_cred = data->cred,
1709 	};
1710 	struct rpc_task_setup task_setup_data = {
1711 		.task = &data->task,
1712 		.rpc_client = clnt,
1713 		.rpc_message = &msg,
1714 		.callback_ops = call_ops,
1715 		.callback_data = data,
1716 		.workqueue = nfsiod_workqueue,
1717 		.flags = RPC_TASK_ASYNC | RPC_TASK_CRED_NOREF | flags,
1718 		.priority = priority,
1719 	};
1720 	/* Set up the initial task struct.  */
1721 	nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client);
1722 	trace_nfs_initiate_commit(data);
1723 
1724 	dprintk("NFS: initiated commit call\n");
1725 
1726 	task = rpc_run_task(&task_setup_data);
1727 	if (IS_ERR(task))
1728 		return PTR_ERR(task);
1729 	if (how & FLUSH_SYNC)
1730 		rpc_wait_for_completion_task(task);
1731 	rpc_put_task(task);
1732 	return 0;
1733 }
1734 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1735 
1736 static loff_t nfs_get_lwb(struct list_head *head)
1737 {
1738 	loff_t lwb = 0;
1739 	struct nfs_page *req;
1740 
1741 	list_for_each_entry(req, head, wb_list)
1742 		if (lwb < (req_offset(req) + req->wb_bytes))
1743 			lwb = req_offset(req) + req->wb_bytes;
1744 
1745 	return lwb;
1746 }
1747 
1748 /*
1749  * Set up the argument/result storage required for the RPC call.
1750  */
1751 void nfs_init_commit(struct nfs_commit_data *data,
1752 		     struct list_head *head,
1753 		     struct pnfs_layout_segment *lseg,
1754 		     struct nfs_commit_info *cinfo)
1755 {
1756 	struct nfs_page *first;
1757 	struct nfs_open_context *ctx;
1758 	struct inode *inode;
1759 
1760 	/* Set up the RPC argument and reply structs
1761 	 * NB: take care not to mess about with data->commit et al. */
1762 
1763 	if (head)
1764 		list_splice_init(head, &data->pages);
1765 
1766 	first = nfs_list_entry(data->pages.next);
1767 	ctx = nfs_req_openctx(first);
1768 	inode = d_inode(ctx->dentry);
1769 
1770 	data->inode	  = inode;
1771 	data->cred	  = ctx->cred;
1772 	data->lseg	  = lseg; /* reference transferred */
1773 	/* only set lwb for pnfs commit */
1774 	if (lseg)
1775 		data->lwb = nfs_get_lwb(&data->pages);
1776 	data->mds_ops     = &nfs_commit_ops;
1777 	data->completion_ops = cinfo->completion_ops;
1778 	data->dreq	  = cinfo->dreq;
1779 
1780 	data->args.fh     = NFS_FH(data->inode);
1781 	/* Note: we always request a commit of the entire inode */
1782 	data->args.offset = 0;
1783 	data->args.count  = 0;
1784 	data->context     = get_nfs_open_context(ctx);
1785 	data->res.fattr   = &data->fattr;
1786 	data->res.verf    = &data->verf;
1787 	nfs_fattr_init(&data->fattr);
1788 }
1789 EXPORT_SYMBOL_GPL(nfs_init_commit);
1790 
1791 void nfs_retry_commit(struct list_head *page_list,
1792 		      struct pnfs_layout_segment *lseg,
1793 		      struct nfs_commit_info *cinfo,
1794 		      u32 ds_commit_idx)
1795 {
1796 	struct nfs_page *req;
1797 
1798 	while (!list_empty(page_list)) {
1799 		req = nfs_list_entry(page_list->next);
1800 		nfs_list_remove_request(req);
1801 		nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1802 		if (!cinfo->dreq)
1803 			nfs_clear_page_commit(req->wb_page);
1804 		nfs_unlock_and_release_request(req);
1805 	}
1806 }
1807 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1808 
1809 static void
1810 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1811 		struct nfs_page *req)
1812 {
1813 	__set_page_dirty_nobuffers(req->wb_page);
1814 }
1815 
1816 /*
1817  * Commit dirty pages
1818  */
1819 static int
1820 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1821 		struct nfs_commit_info *cinfo)
1822 {
1823 	struct nfs_commit_data	*data;
1824 
1825 	/* another commit raced with us */
1826 	if (list_empty(head))
1827 		return 0;
1828 
1829 	data = nfs_commitdata_alloc(true);
1830 
1831 	/* Set up the argument struct */
1832 	nfs_init_commit(data, head, NULL, cinfo);
1833 	atomic_inc(&cinfo->mds->rpcs_out);
1834 	return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1835 				   data->mds_ops, how, 0);
1836 }
1837 
1838 /*
1839  * COMMIT call returned
1840  */
1841 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1842 {
1843 	struct nfs_commit_data	*data = calldata;
1844 
1845         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1846                                 task->tk_pid, task->tk_status);
1847 
1848 	/* Call the NFS version-specific code */
1849 	NFS_PROTO(data->inode)->commit_done(task, data);
1850 	trace_nfs_commit_done(task, data);
1851 }
1852 
1853 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1854 {
1855 	const struct nfs_writeverf *verf = data->res.verf;
1856 	struct nfs_page	*req;
1857 	int status = data->task.tk_status;
1858 	struct nfs_commit_info cinfo;
1859 	struct nfs_server *nfss;
1860 
1861 	while (!list_empty(&data->pages)) {
1862 		req = nfs_list_entry(data->pages.next);
1863 		nfs_list_remove_request(req);
1864 		if (req->wb_page)
1865 			nfs_clear_page_commit(req->wb_page);
1866 
1867 		dprintk("NFS:       commit (%s/%llu %d@%lld)",
1868 			nfs_req_openctx(req)->dentry->d_sb->s_id,
1869 			(unsigned long long)NFS_FILEID(d_inode(nfs_req_openctx(req)->dentry)),
1870 			req->wb_bytes,
1871 			(long long)req_offset(req));
1872 		if (status < 0) {
1873 			if (req->wb_page) {
1874 				trace_nfs_commit_error(req, status);
1875 				nfs_mapping_set_error(req->wb_page, status);
1876 				nfs_inode_remove_request(req);
1877 			}
1878 			dprintk_cont(", error = %d\n", status);
1879 			goto next;
1880 		}
1881 
1882 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1883 		 * returned by the server against all stored verfs. */
1884 		if (nfs_write_match_verf(verf, req)) {
1885 			/* We have a match */
1886 			if (req->wb_page)
1887 				nfs_inode_remove_request(req);
1888 			dprintk_cont(" OK\n");
1889 			goto next;
1890 		}
1891 		/* We have a mismatch. Write the page again */
1892 		dprintk_cont(" mismatch\n");
1893 		nfs_mark_request_dirty(req);
1894 		set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
1895 	next:
1896 		nfs_unlock_and_release_request(req);
1897 		/* Latency breaker */
1898 		cond_resched();
1899 	}
1900 	nfss = NFS_SERVER(data->inode);
1901 	if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1902 		clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1903 
1904 	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1905 	nfs_commit_end(cinfo.mds);
1906 }
1907 
1908 static void nfs_commit_release(void *calldata)
1909 {
1910 	struct nfs_commit_data *data = calldata;
1911 
1912 	data->completion_ops->completion(data);
1913 	nfs_commitdata_release(calldata);
1914 }
1915 
1916 static const struct rpc_call_ops nfs_commit_ops = {
1917 	.rpc_call_prepare = nfs_commit_prepare,
1918 	.rpc_call_done = nfs_commit_done,
1919 	.rpc_release = nfs_commit_release,
1920 };
1921 
1922 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1923 	.completion = nfs_commit_release_pages,
1924 	.resched_write = nfs_commit_resched_write,
1925 };
1926 
1927 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1928 			    int how, struct nfs_commit_info *cinfo)
1929 {
1930 	int status;
1931 
1932 	status = pnfs_commit_list(inode, head, how, cinfo);
1933 	if (status == PNFS_NOT_ATTEMPTED)
1934 		status = nfs_commit_list(inode, head, how, cinfo);
1935 	return status;
1936 }
1937 
1938 static int __nfs_commit_inode(struct inode *inode, int how,
1939 		struct writeback_control *wbc)
1940 {
1941 	LIST_HEAD(head);
1942 	struct nfs_commit_info cinfo;
1943 	int may_wait = how & FLUSH_SYNC;
1944 	int ret, nscan;
1945 
1946 	nfs_init_cinfo_from_inode(&cinfo, inode);
1947 	nfs_commit_begin(cinfo.mds);
1948 	for (;;) {
1949 		ret = nscan = nfs_scan_commit(inode, &head, &cinfo);
1950 		if (ret <= 0)
1951 			break;
1952 		ret = nfs_generic_commit_list(inode, &head, how, &cinfo);
1953 		if (ret < 0)
1954 			break;
1955 		ret = 0;
1956 		if (wbc && wbc->sync_mode == WB_SYNC_NONE) {
1957 			if (nscan < wbc->nr_to_write)
1958 				wbc->nr_to_write -= nscan;
1959 			else
1960 				wbc->nr_to_write = 0;
1961 		}
1962 		if (nscan < INT_MAX)
1963 			break;
1964 		cond_resched();
1965 	}
1966 	nfs_commit_end(cinfo.mds);
1967 	if (ret || !may_wait)
1968 		return ret;
1969 	return wait_on_commit(cinfo.mds);
1970 }
1971 
1972 int nfs_commit_inode(struct inode *inode, int how)
1973 {
1974 	return __nfs_commit_inode(inode, how, NULL);
1975 }
1976 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1977 
1978 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1979 {
1980 	struct nfs_inode *nfsi = NFS_I(inode);
1981 	int flags = FLUSH_SYNC;
1982 	int ret = 0;
1983 
1984 	if (wbc->sync_mode == WB_SYNC_NONE) {
1985 		/* no commits means nothing needs to be done */
1986 		if (!atomic_long_read(&nfsi->commit_info.ncommit))
1987 			goto check_requests_outstanding;
1988 
1989 		/* Don't commit yet if this is a non-blocking flush and there
1990 		 * are a lot of outstanding writes for this mapping.
1991 		 */
1992 		if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1993 			goto out_mark_dirty;
1994 
1995 		/* don't wait for the COMMIT response */
1996 		flags = 0;
1997 	}
1998 
1999 	ret = __nfs_commit_inode(inode, flags, wbc);
2000 	if (!ret) {
2001 		if (flags & FLUSH_SYNC)
2002 			return 0;
2003 	} else if (atomic_long_read(&nfsi->commit_info.ncommit))
2004 		goto out_mark_dirty;
2005 
2006 check_requests_outstanding:
2007 	if (!atomic_read(&nfsi->commit_info.rpcs_out))
2008 		return ret;
2009 out_mark_dirty:
2010 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
2011 	return ret;
2012 }
2013 EXPORT_SYMBOL_GPL(nfs_write_inode);
2014 
2015 /*
2016  * Wrapper for filemap_write_and_wait_range()
2017  *
2018  * Needed for pNFS in order to ensure data becomes visible to the
2019  * client.
2020  */
2021 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
2022 		loff_t lstart, loff_t lend)
2023 {
2024 	int ret;
2025 
2026 	ret = filemap_write_and_wait_range(mapping, lstart, lend);
2027 	if (ret == 0)
2028 		ret = pnfs_sync_inode(mapping->host, true);
2029 	return ret;
2030 }
2031 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
2032 
2033 /*
2034  * flush the inode to disk.
2035  */
2036 int nfs_wb_all(struct inode *inode)
2037 {
2038 	int ret;
2039 
2040 	trace_nfs_writeback_inode_enter(inode);
2041 
2042 	ret = filemap_write_and_wait(inode->i_mapping);
2043 	if (ret)
2044 		goto out;
2045 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
2046 	if (ret < 0)
2047 		goto out;
2048 	pnfs_sync_inode(inode, true);
2049 	ret = 0;
2050 
2051 out:
2052 	trace_nfs_writeback_inode_exit(inode, ret);
2053 	return ret;
2054 }
2055 EXPORT_SYMBOL_GPL(nfs_wb_all);
2056 
2057 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
2058 {
2059 	struct nfs_page *req;
2060 	int ret = 0;
2061 
2062 	wait_on_page_writeback(page);
2063 
2064 	/* blocking call to cancel all requests and join to a single (head)
2065 	 * request */
2066 	req = nfs_lock_and_join_requests(page);
2067 
2068 	if (IS_ERR(req)) {
2069 		ret = PTR_ERR(req);
2070 	} else if (req) {
2071 		/* all requests from this page have been cancelled by
2072 		 * nfs_lock_and_join_requests, so just remove the head
2073 		 * request from the inode / page_private pointer and
2074 		 * release it */
2075 		nfs_inode_remove_request(req);
2076 		nfs_unlock_and_release_request(req);
2077 	}
2078 
2079 	return ret;
2080 }
2081 
2082 /*
2083  * Write back all requests on one page - we do this before reading it.
2084  */
2085 int nfs_wb_page(struct inode *inode, struct page *page)
2086 {
2087 	loff_t range_start = page_file_offset(page);
2088 	loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2089 	struct writeback_control wbc = {
2090 		.sync_mode = WB_SYNC_ALL,
2091 		.nr_to_write = 0,
2092 		.range_start = range_start,
2093 		.range_end = range_end,
2094 	};
2095 	int ret;
2096 
2097 	trace_nfs_writeback_page_enter(inode);
2098 
2099 	for (;;) {
2100 		wait_on_page_writeback(page);
2101 		if (clear_page_dirty_for_io(page)) {
2102 			ret = nfs_writepage_locked(page, &wbc);
2103 			if (ret < 0)
2104 				goto out_error;
2105 			continue;
2106 		}
2107 		ret = 0;
2108 		if (!PagePrivate(page))
2109 			break;
2110 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
2111 		if (ret < 0)
2112 			goto out_error;
2113 	}
2114 out_error:
2115 	trace_nfs_writeback_page_exit(inode, ret);
2116 	return ret;
2117 }
2118 
2119 #ifdef CONFIG_MIGRATION
2120 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2121 		struct page *page, enum migrate_mode mode)
2122 {
2123 	/*
2124 	 * If PagePrivate is set, then the page is currently associated with
2125 	 * an in-progress read or write request. Don't try to migrate it.
2126 	 *
2127 	 * FIXME: we could do this in principle, but we'll need a way to ensure
2128 	 *        that we can safely release the inode reference while holding
2129 	 *        the page lock.
2130 	 */
2131 	if (PagePrivate(page))
2132 		return -EBUSY;
2133 
2134 	if (!nfs_fscache_release_page(page, GFP_KERNEL))
2135 		return -EBUSY;
2136 
2137 	return migrate_page(mapping, newpage, page, mode);
2138 }
2139 #endif
2140 
2141 int __init nfs_init_writepagecache(void)
2142 {
2143 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2144 					     sizeof(struct nfs_pgio_header),
2145 					     0, SLAB_HWCACHE_ALIGN,
2146 					     NULL);
2147 	if (nfs_wdata_cachep == NULL)
2148 		return -ENOMEM;
2149 
2150 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2151 						     nfs_wdata_cachep);
2152 	if (nfs_wdata_mempool == NULL)
2153 		goto out_destroy_write_cache;
2154 
2155 	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2156 					     sizeof(struct nfs_commit_data),
2157 					     0, SLAB_HWCACHE_ALIGN,
2158 					     NULL);
2159 	if (nfs_cdata_cachep == NULL)
2160 		goto out_destroy_write_mempool;
2161 
2162 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2163 						      nfs_cdata_cachep);
2164 	if (nfs_commit_mempool == NULL)
2165 		goto out_destroy_commit_cache;
2166 
2167 	/*
2168 	 * NFS congestion size, scale with available memory.
2169 	 *
2170 	 *  64MB:    8192k
2171 	 * 128MB:   11585k
2172 	 * 256MB:   16384k
2173 	 * 512MB:   23170k
2174 	 *   1GB:   32768k
2175 	 *   2GB:   46340k
2176 	 *   4GB:   65536k
2177 	 *   8GB:   92681k
2178 	 *  16GB:  131072k
2179 	 *
2180 	 * This allows larger machines to have larger/more transfers.
2181 	 * Limit the default to 256M
2182 	 */
2183 	nfs_congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10);
2184 	if (nfs_congestion_kb > 256*1024)
2185 		nfs_congestion_kb = 256*1024;
2186 
2187 	return 0;
2188 
2189 out_destroy_commit_cache:
2190 	kmem_cache_destroy(nfs_cdata_cachep);
2191 out_destroy_write_mempool:
2192 	mempool_destroy(nfs_wdata_mempool);
2193 out_destroy_write_cache:
2194 	kmem_cache_destroy(nfs_wdata_cachep);
2195 	return -ENOMEM;
2196 }
2197 
2198 void nfs_destroy_writepagecache(void)
2199 {
2200 	mempool_destroy(nfs_commit_mempool);
2201 	kmem_cache_destroy(nfs_cdata_cachep);
2202 	mempool_destroy(nfs_wdata_mempool);
2203 	kmem_cache_destroy(nfs_wdata_cachep);
2204 }
2205 
2206 static const struct nfs_rw_ops nfs_rw_write_ops = {
2207 	.rw_alloc_header	= nfs_writehdr_alloc,
2208 	.rw_free_header		= nfs_writehdr_free,
2209 	.rw_done		= nfs_writeback_done,
2210 	.rw_result		= nfs_writeback_result,
2211 	.rw_initiate		= nfs_initiate_write,
2212 };
2213