xref: /openbmc/linux/fs/nfs/nfs4proc.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  *  fs/nfs/nfs4proc.c
3  *
4  *  Client-side procedure declarations for NFSv4.
5  *
6  *  Copyright (c) 2002 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Kendrick Smith <kmsmith@umich.edu>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "internal.h"
55 #include "iostat.h"
56 
57 #define NFSDBG_FACILITY		NFSDBG_PROC
58 
59 #define NFS4_POLL_RETRY_MIN	(HZ/10)
60 #define NFS4_POLL_RETRY_MAX	(15*HZ)
61 
62 struct nfs4_opendata;
63 static int _nfs4_proc_open(struct nfs4_opendata *data);
64 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
65 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp);
68 static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr);
69 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr);
70 
71 /* Prevent leaks of NFSv4 errors into userland */
72 int nfs4_map_errors(int err)
73 {
74 	if (err < -1000) {
75 		dprintk("%s could not handle NFSv4 error %d\n",
76 				__func__, -err);
77 		return -EIO;
78 	}
79 	return err;
80 }
81 
82 /*
83  * This is our standard bitmap for GETATTR requests.
84  */
85 const u32 nfs4_fattr_bitmap[2] = {
86 	FATTR4_WORD0_TYPE
87 	| FATTR4_WORD0_CHANGE
88 	| FATTR4_WORD0_SIZE
89 	| FATTR4_WORD0_FSID
90 	| FATTR4_WORD0_FILEID,
91 	FATTR4_WORD1_MODE
92 	| FATTR4_WORD1_NUMLINKS
93 	| FATTR4_WORD1_OWNER
94 	| FATTR4_WORD1_OWNER_GROUP
95 	| FATTR4_WORD1_RAWDEV
96 	| FATTR4_WORD1_SPACE_USED
97 	| FATTR4_WORD1_TIME_ACCESS
98 	| FATTR4_WORD1_TIME_METADATA
99 	| FATTR4_WORD1_TIME_MODIFY
100 };
101 
102 const u32 nfs4_statfs_bitmap[2] = {
103 	FATTR4_WORD0_FILES_AVAIL
104 	| FATTR4_WORD0_FILES_FREE
105 	| FATTR4_WORD0_FILES_TOTAL,
106 	FATTR4_WORD1_SPACE_AVAIL
107 	| FATTR4_WORD1_SPACE_FREE
108 	| FATTR4_WORD1_SPACE_TOTAL
109 };
110 
111 const u32 nfs4_pathconf_bitmap[2] = {
112 	FATTR4_WORD0_MAXLINK
113 	| FATTR4_WORD0_MAXNAME,
114 	0
115 };
116 
117 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
118 			| FATTR4_WORD0_MAXREAD
119 			| FATTR4_WORD0_MAXWRITE
120 			| FATTR4_WORD0_LEASE_TIME,
121 			0
122 };
123 
124 const u32 nfs4_fs_locations_bitmap[2] = {
125 	FATTR4_WORD0_TYPE
126 	| FATTR4_WORD0_CHANGE
127 	| FATTR4_WORD0_SIZE
128 	| FATTR4_WORD0_FSID
129 	| FATTR4_WORD0_FILEID
130 	| FATTR4_WORD0_FS_LOCATIONS,
131 	FATTR4_WORD1_MODE
132 	| FATTR4_WORD1_NUMLINKS
133 	| FATTR4_WORD1_OWNER
134 	| FATTR4_WORD1_OWNER_GROUP
135 	| FATTR4_WORD1_RAWDEV
136 	| FATTR4_WORD1_SPACE_USED
137 	| FATTR4_WORD1_TIME_ACCESS
138 	| FATTR4_WORD1_TIME_METADATA
139 	| FATTR4_WORD1_TIME_MODIFY
140 	| FATTR4_WORD1_MOUNTED_ON_FILEID
141 };
142 
143 static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
144 		struct nfs4_readdir_arg *readdir)
145 {
146 	__be32 *start, *p;
147 
148 	BUG_ON(readdir->count < 80);
149 	if (cookie > 2) {
150 		readdir->cookie = cookie;
151 		memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
152 		return;
153 	}
154 
155 	readdir->cookie = 0;
156 	memset(&readdir->verifier, 0, sizeof(readdir->verifier));
157 	if (cookie == 2)
158 		return;
159 
160 	/*
161 	 * NFSv4 servers do not return entries for '.' and '..'
162 	 * Therefore, we fake these entries here.  We let '.'
163 	 * have cookie 0 and '..' have cookie 1.  Note that
164 	 * when talking to the server, we always send cookie 0
165 	 * instead of 1 or 2.
166 	 */
167 	start = p = kmap_atomic(*readdir->pages, KM_USER0);
168 
169 	if (cookie == 0) {
170 		*p++ = xdr_one;                                  /* next */
171 		*p++ = xdr_zero;                   /* cookie, first word */
172 		*p++ = xdr_one;                   /* cookie, second word */
173 		*p++ = xdr_one;                             /* entry len */
174 		memcpy(p, ".\0\0\0", 4);                        /* entry */
175 		p++;
176 		*p++ = xdr_one;                         /* bitmap length */
177 		*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
178 		*p++ = htonl(8);              /* attribute buffer length */
179 		p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_inode));
180 	}
181 
182 	*p++ = xdr_one;                                  /* next */
183 	*p++ = xdr_zero;                   /* cookie, first word */
184 	*p++ = xdr_two;                   /* cookie, second word */
185 	*p++ = xdr_two;                             /* entry len */
186 	memcpy(p, "..\0\0", 4);                         /* entry */
187 	p++;
188 	*p++ = xdr_one;                         /* bitmap length */
189 	*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
190 	*p++ = htonl(8);              /* attribute buffer length */
191 	p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_parent->d_inode));
192 
193 	readdir->pgbase = (char *)p - (char *)start;
194 	readdir->count -= readdir->pgbase;
195 	kunmap_atomic(start, KM_USER0);
196 }
197 
198 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
199 {
200 	struct nfs_client *clp = server->nfs_client;
201 	spin_lock(&clp->cl_lock);
202 	if (time_before(clp->cl_last_renewal,timestamp))
203 		clp->cl_last_renewal = timestamp;
204 	spin_unlock(&clp->cl_lock);
205 }
206 
207 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
208 {
209 	struct nfs_inode *nfsi = NFS_I(dir);
210 
211 	spin_lock(&dir->i_lock);
212 	nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
213 	if (!cinfo->atomic || cinfo->before != nfsi->change_attr)
214 		nfs_force_lookup_revalidate(dir);
215 	nfsi->change_attr = cinfo->after;
216 	spin_unlock(&dir->i_lock);
217 }
218 
219 struct nfs4_opendata {
220 	struct kref kref;
221 	struct nfs_openargs o_arg;
222 	struct nfs_openres o_res;
223 	struct nfs_open_confirmargs c_arg;
224 	struct nfs_open_confirmres c_res;
225 	struct nfs_fattr f_attr;
226 	struct nfs_fattr dir_attr;
227 	struct path path;
228 	struct dentry *dir;
229 	struct nfs4_state_owner *owner;
230 	struct nfs4_state *state;
231 	struct iattr attrs;
232 	unsigned long timestamp;
233 	unsigned int rpc_done : 1;
234 	int rpc_status;
235 	int cancelled;
236 };
237 
238 
239 static void nfs4_init_opendata_res(struct nfs4_opendata *p)
240 {
241 	p->o_res.f_attr = &p->f_attr;
242 	p->o_res.dir_attr = &p->dir_attr;
243 	p->o_res.seqid = p->o_arg.seqid;
244 	p->c_res.seqid = p->c_arg.seqid;
245 	p->o_res.server = p->o_arg.server;
246 	nfs_fattr_init(&p->f_attr);
247 	nfs_fattr_init(&p->dir_attr);
248 }
249 
250 static struct nfs4_opendata *nfs4_opendata_alloc(struct path *path,
251 		struct nfs4_state_owner *sp, int flags,
252 		const struct iattr *attrs)
253 {
254 	struct dentry *parent = dget_parent(path->dentry);
255 	struct inode *dir = parent->d_inode;
256 	struct nfs_server *server = NFS_SERVER(dir);
257 	struct nfs4_opendata *p;
258 
259 	p = kzalloc(sizeof(*p), GFP_KERNEL);
260 	if (p == NULL)
261 		goto err;
262 	p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
263 	if (p->o_arg.seqid == NULL)
264 		goto err_free;
265 	p->path.mnt = mntget(path->mnt);
266 	p->path.dentry = dget(path->dentry);
267 	p->dir = parent;
268 	p->owner = sp;
269 	atomic_inc(&sp->so_count);
270 	p->o_arg.fh = NFS_FH(dir);
271 	p->o_arg.open_flags = flags,
272 	p->o_arg.clientid = server->nfs_client->cl_clientid;
273 	p->o_arg.id = sp->so_owner_id.id;
274 	p->o_arg.name = &p->path.dentry->d_name;
275 	p->o_arg.server = server;
276 	p->o_arg.bitmask = server->attr_bitmask;
277 	p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
278 	if (flags & O_EXCL) {
279 		u32 *s = (u32 *) p->o_arg.u.verifier.data;
280 		s[0] = jiffies;
281 		s[1] = current->pid;
282 	} else if (flags & O_CREAT) {
283 		p->o_arg.u.attrs = &p->attrs;
284 		memcpy(&p->attrs, attrs, sizeof(p->attrs));
285 	}
286 	p->c_arg.fh = &p->o_res.fh;
287 	p->c_arg.stateid = &p->o_res.stateid;
288 	p->c_arg.seqid = p->o_arg.seqid;
289 	nfs4_init_opendata_res(p);
290 	kref_init(&p->kref);
291 	return p;
292 err_free:
293 	kfree(p);
294 err:
295 	dput(parent);
296 	return NULL;
297 }
298 
299 static void nfs4_opendata_free(struct kref *kref)
300 {
301 	struct nfs4_opendata *p = container_of(kref,
302 			struct nfs4_opendata, kref);
303 
304 	nfs_free_seqid(p->o_arg.seqid);
305 	if (p->state != NULL)
306 		nfs4_put_open_state(p->state);
307 	nfs4_put_state_owner(p->owner);
308 	dput(p->dir);
309 	path_put(&p->path);
310 	kfree(p);
311 }
312 
313 static void nfs4_opendata_put(struct nfs4_opendata *p)
314 {
315 	if (p != NULL)
316 		kref_put(&p->kref, nfs4_opendata_free);
317 }
318 
319 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
320 {
321 	int ret;
322 
323 	ret = rpc_wait_for_completion_task(task);
324 	return ret;
325 }
326 
327 static int can_open_cached(struct nfs4_state *state, int mode)
328 {
329 	int ret = 0;
330 	switch (mode & (FMODE_READ|FMODE_WRITE|O_EXCL)) {
331 		case FMODE_READ:
332 			ret |= test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0;
333 			break;
334 		case FMODE_WRITE:
335 			ret |= test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0;
336 			break;
337 		case FMODE_READ|FMODE_WRITE:
338 			ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0;
339 	}
340 	return ret;
341 }
342 
343 static int can_open_delegated(struct nfs_delegation *delegation, mode_t open_flags)
344 {
345 	if ((delegation->type & open_flags) != open_flags)
346 		return 0;
347 	if (delegation->flags & NFS_DELEGATION_NEED_RECLAIM)
348 		return 0;
349 	return 1;
350 }
351 
352 static void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
353 {
354 	switch (open_flags) {
355 		case FMODE_WRITE:
356 			state->n_wronly++;
357 			break;
358 		case FMODE_READ:
359 			state->n_rdonly++;
360 			break;
361 		case FMODE_READ|FMODE_WRITE:
362 			state->n_rdwr++;
363 	}
364 	nfs4_state_set_mode_locked(state, state->state | open_flags);
365 }
366 
367 static void nfs_set_open_stateid_locked(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
368 {
369 	if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
370 		memcpy(state->stateid.data, stateid->data, sizeof(state->stateid.data));
371 	memcpy(state->open_stateid.data, stateid->data, sizeof(state->open_stateid.data));
372 	switch (open_flags) {
373 		case FMODE_READ:
374 			set_bit(NFS_O_RDONLY_STATE, &state->flags);
375 			break;
376 		case FMODE_WRITE:
377 			set_bit(NFS_O_WRONLY_STATE, &state->flags);
378 			break;
379 		case FMODE_READ|FMODE_WRITE:
380 			set_bit(NFS_O_RDWR_STATE, &state->flags);
381 	}
382 }
383 
384 static void nfs_set_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
385 {
386 	write_seqlock(&state->seqlock);
387 	nfs_set_open_stateid_locked(state, stateid, open_flags);
388 	write_sequnlock(&state->seqlock);
389 }
390 
391 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, nfs4_stateid *deleg_stateid, int open_flags)
392 {
393 	open_flags &= (FMODE_READ|FMODE_WRITE);
394 	/*
395 	 * Protect the call to nfs4_state_set_mode_locked and
396 	 * serialise the stateid update
397 	 */
398 	write_seqlock(&state->seqlock);
399 	if (deleg_stateid != NULL) {
400 		memcpy(state->stateid.data, deleg_stateid->data, sizeof(state->stateid.data));
401 		set_bit(NFS_DELEGATED_STATE, &state->flags);
402 	}
403 	if (open_stateid != NULL)
404 		nfs_set_open_stateid_locked(state, open_stateid, open_flags);
405 	write_sequnlock(&state->seqlock);
406 	spin_lock(&state->owner->so_lock);
407 	update_open_stateflags(state, open_flags);
408 	spin_unlock(&state->owner->so_lock);
409 }
410 
411 static void nfs4_return_incompatible_delegation(struct inode *inode, mode_t open_flags)
412 {
413 	struct nfs_delegation *delegation;
414 
415 	rcu_read_lock();
416 	delegation = rcu_dereference(NFS_I(inode)->delegation);
417 	if (delegation == NULL || (delegation->type & open_flags) == open_flags) {
418 		rcu_read_unlock();
419 		return;
420 	}
421 	rcu_read_unlock();
422 	nfs_inode_return_delegation(inode);
423 }
424 
425 static struct nfs4_state *nfs4_try_open_cached(struct nfs4_opendata *opendata)
426 {
427 	struct nfs4_state *state = opendata->state;
428 	struct nfs_inode *nfsi = NFS_I(state->inode);
429 	struct nfs_delegation *delegation;
430 	int open_mode = opendata->o_arg.open_flags & (FMODE_READ|FMODE_WRITE|O_EXCL);
431 	nfs4_stateid stateid;
432 	int ret = -EAGAIN;
433 
434 	rcu_read_lock();
435 	delegation = rcu_dereference(nfsi->delegation);
436 	for (;;) {
437 		if (can_open_cached(state, open_mode)) {
438 			spin_lock(&state->owner->so_lock);
439 			if (can_open_cached(state, open_mode)) {
440 				update_open_stateflags(state, open_mode);
441 				spin_unlock(&state->owner->so_lock);
442 				rcu_read_unlock();
443 				goto out_return_state;
444 			}
445 			spin_unlock(&state->owner->so_lock);
446 		}
447 		if (delegation == NULL)
448 			break;
449 		if (!can_open_delegated(delegation, open_mode))
450 			break;
451 		/* Save the delegation */
452 		memcpy(stateid.data, delegation->stateid.data, sizeof(stateid.data));
453 		rcu_read_unlock();
454 		ret = nfs_may_open(state->inode, state->owner->so_cred, open_mode);
455 		if (ret != 0)
456 			goto out;
457 		ret = -EAGAIN;
458 		rcu_read_lock();
459 		delegation = rcu_dereference(nfsi->delegation);
460 		/* If no delegation, try a cached open */
461 		if (delegation == NULL)
462 			continue;
463 		/* Is the delegation still valid? */
464 		if (memcmp(stateid.data, delegation->stateid.data, sizeof(stateid.data)) != 0)
465 			continue;
466 		rcu_read_unlock();
467 		update_open_stateid(state, NULL, &stateid, open_mode);
468 		goto out_return_state;
469 	}
470 	rcu_read_unlock();
471 out:
472 	return ERR_PTR(ret);
473 out_return_state:
474 	atomic_inc(&state->count);
475 	return state;
476 }
477 
478 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
479 {
480 	struct inode *inode;
481 	struct nfs4_state *state = NULL;
482 	struct nfs_delegation *delegation;
483 	nfs4_stateid *deleg_stateid = NULL;
484 	int ret;
485 
486 	if (!data->rpc_done) {
487 		state = nfs4_try_open_cached(data);
488 		goto out;
489 	}
490 
491 	ret = -EAGAIN;
492 	if (!(data->f_attr.valid & NFS_ATTR_FATTR))
493 		goto err;
494 	inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
495 	ret = PTR_ERR(inode);
496 	if (IS_ERR(inode))
497 		goto err;
498 	ret = -ENOMEM;
499 	state = nfs4_get_open_state(inode, data->owner);
500 	if (state == NULL)
501 		goto err_put_inode;
502 	if (data->o_res.delegation_type != 0) {
503 		int delegation_flags = 0;
504 
505 		rcu_read_lock();
506 		delegation = rcu_dereference(NFS_I(inode)->delegation);
507 		if (delegation)
508 			delegation_flags = delegation->flags;
509 		rcu_read_unlock();
510 		if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
511 			nfs_inode_set_delegation(state->inode,
512 					data->owner->so_cred,
513 					&data->o_res);
514 		else
515 			nfs_inode_reclaim_delegation(state->inode,
516 					data->owner->so_cred,
517 					&data->o_res);
518 	}
519 	rcu_read_lock();
520 	delegation = rcu_dereference(NFS_I(inode)->delegation);
521 	if (delegation != NULL)
522 		deleg_stateid = &delegation->stateid;
523 	update_open_stateid(state, &data->o_res.stateid, deleg_stateid, data->o_arg.open_flags);
524 	rcu_read_unlock();
525 	iput(inode);
526 out:
527 	return state;
528 err_put_inode:
529 	iput(inode);
530 err:
531 	return ERR_PTR(ret);
532 }
533 
534 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
535 {
536 	struct nfs_inode *nfsi = NFS_I(state->inode);
537 	struct nfs_open_context *ctx;
538 
539 	spin_lock(&state->inode->i_lock);
540 	list_for_each_entry(ctx, &nfsi->open_files, list) {
541 		if (ctx->state != state)
542 			continue;
543 		get_nfs_open_context(ctx);
544 		spin_unlock(&state->inode->i_lock);
545 		return ctx;
546 	}
547 	spin_unlock(&state->inode->i_lock);
548 	return ERR_PTR(-ENOENT);
549 }
550 
551 static struct nfs4_opendata *nfs4_open_recoverdata_alloc(struct nfs_open_context *ctx, struct nfs4_state *state)
552 {
553 	struct nfs4_opendata *opendata;
554 
555 	opendata = nfs4_opendata_alloc(&ctx->path, state->owner, 0, NULL);
556 	if (opendata == NULL)
557 		return ERR_PTR(-ENOMEM);
558 	opendata->state = state;
559 	atomic_inc(&state->count);
560 	return opendata;
561 }
562 
563 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, struct nfs4_state **res)
564 {
565 	struct nfs4_state *newstate;
566 	int ret;
567 
568 	opendata->o_arg.open_flags = openflags;
569 	memset(&opendata->o_res, 0, sizeof(opendata->o_res));
570 	memset(&opendata->c_res, 0, sizeof(opendata->c_res));
571 	nfs4_init_opendata_res(opendata);
572 	ret = _nfs4_proc_open(opendata);
573 	if (ret != 0)
574 		return ret;
575 	newstate = nfs4_opendata_to_nfs4_state(opendata);
576 	if (IS_ERR(newstate))
577 		return PTR_ERR(newstate);
578 	nfs4_close_state(&opendata->path, newstate, openflags);
579 	*res = newstate;
580 	return 0;
581 }
582 
583 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
584 {
585 	struct nfs4_state *newstate;
586 	int ret;
587 
588 	/* memory barrier prior to reading state->n_* */
589 	clear_bit(NFS_DELEGATED_STATE, &state->flags);
590 	smp_rmb();
591 	if (state->n_rdwr != 0) {
592 		ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &newstate);
593 		if (ret != 0)
594 			return ret;
595 		if (newstate != state)
596 			return -ESTALE;
597 	}
598 	if (state->n_wronly != 0) {
599 		ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &newstate);
600 		if (ret != 0)
601 			return ret;
602 		if (newstate != state)
603 			return -ESTALE;
604 	}
605 	if (state->n_rdonly != 0) {
606 		ret = nfs4_open_recover_helper(opendata, FMODE_READ, &newstate);
607 		if (ret != 0)
608 			return ret;
609 		if (newstate != state)
610 			return -ESTALE;
611 	}
612 	/*
613 	 * We may have performed cached opens for all three recoveries.
614 	 * Check if we need to update the current stateid.
615 	 */
616 	if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0 &&
617 	    memcmp(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data)) != 0) {
618 		write_seqlock(&state->seqlock);
619 		if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
620 			memcpy(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data));
621 		write_sequnlock(&state->seqlock);
622 	}
623 	return 0;
624 }
625 
626 /*
627  * OPEN_RECLAIM:
628  * 	reclaim state on the server after a reboot.
629  */
630 static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
631 {
632 	struct nfs_delegation *delegation;
633 	struct nfs4_opendata *opendata;
634 	int delegation_type = 0;
635 	int status;
636 
637 	opendata = nfs4_open_recoverdata_alloc(ctx, state);
638 	if (IS_ERR(opendata))
639 		return PTR_ERR(opendata);
640 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
641 	opendata->o_arg.fh = NFS_FH(state->inode);
642 	rcu_read_lock();
643 	delegation = rcu_dereference(NFS_I(state->inode)->delegation);
644 	if (delegation != NULL && (delegation->flags & NFS_DELEGATION_NEED_RECLAIM) != 0)
645 		delegation_type = delegation->type;
646 	rcu_read_unlock();
647 	opendata->o_arg.u.delegation_type = delegation_type;
648 	status = nfs4_open_recover(opendata, state);
649 	nfs4_opendata_put(opendata);
650 	return status;
651 }
652 
653 static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
654 {
655 	struct nfs_server *server = NFS_SERVER(state->inode);
656 	struct nfs4_exception exception = { };
657 	int err;
658 	do {
659 		err = _nfs4_do_open_reclaim(ctx, state);
660 		if (err != -NFS4ERR_DELAY)
661 			break;
662 		nfs4_handle_exception(server, err, &exception);
663 	} while (exception.retry);
664 	return err;
665 }
666 
667 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
668 {
669 	struct nfs_open_context *ctx;
670 	int ret;
671 
672 	ctx = nfs4_state_find_open_context(state);
673 	if (IS_ERR(ctx))
674 		return PTR_ERR(ctx);
675 	ret = nfs4_do_open_reclaim(ctx, state);
676 	put_nfs_open_context(ctx);
677 	return ret;
678 }
679 
680 static int _nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid)
681 {
682 	struct nfs4_opendata *opendata;
683 	int ret;
684 
685 	opendata = nfs4_open_recoverdata_alloc(ctx, state);
686 	if (IS_ERR(opendata))
687 		return PTR_ERR(opendata);
688 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
689 	memcpy(opendata->o_arg.u.delegation.data, stateid->data,
690 			sizeof(opendata->o_arg.u.delegation.data));
691 	ret = nfs4_open_recover(opendata, state);
692 	nfs4_opendata_put(opendata);
693 	return ret;
694 }
695 
696 int nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid)
697 {
698 	struct nfs4_exception exception = { };
699 	struct nfs_server *server = NFS_SERVER(state->inode);
700 	int err;
701 	do {
702 		err = _nfs4_open_delegation_recall(ctx, state, stateid);
703 		switch (err) {
704 			case 0:
705 				return err;
706 			case -NFS4ERR_STALE_CLIENTID:
707 			case -NFS4ERR_STALE_STATEID:
708 			case -NFS4ERR_EXPIRED:
709 				/* Don't recall a delegation if it was lost */
710 				nfs4_schedule_state_recovery(server->nfs_client);
711 				return err;
712 		}
713 		err = nfs4_handle_exception(server, err, &exception);
714 	} while (exception.retry);
715 	return err;
716 }
717 
718 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
719 {
720 	struct nfs4_opendata *data = calldata;
721 
722 	data->rpc_status = task->tk_status;
723 	if (RPC_ASSASSINATED(task))
724 		return;
725 	if (data->rpc_status == 0) {
726 		memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
727 				sizeof(data->o_res.stateid.data));
728 		nfs_confirm_seqid(&data->owner->so_seqid, 0);
729 		renew_lease(data->o_res.server, data->timestamp);
730 		data->rpc_done = 1;
731 	}
732 }
733 
734 static void nfs4_open_confirm_release(void *calldata)
735 {
736 	struct nfs4_opendata *data = calldata;
737 	struct nfs4_state *state = NULL;
738 
739 	/* If this request hasn't been cancelled, do nothing */
740 	if (data->cancelled == 0)
741 		goto out_free;
742 	/* In case of error, no cleanup! */
743 	if (!data->rpc_done)
744 		goto out_free;
745 	state = nfs4_opendata_to_nfs4_state(data);
746 	if (!IS_ERR(state))
747 		nfs4_close_state(&data->path, state, data->o_arg.open_flags);
748 out_free:
749 	nfs4_opendata_put(data);
750 }
751 
752 static const struct rpc_call_ops nfs4_open_confirm_ops = {
753 	.rpc_call_done = nfs4_open_confirm_done,
754 	.rpc_release = nfs4_open_confirm_release,
755 };
756 
757 /*
758  * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
759  */
760 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
761 {
762 	struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
763 	struct rpc_task *task;
764 	struct  rpc_message msg = {
765 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
766 		.rpc_argp = &data->c_arg,
767 		.rpc_resp = &data->c_res,
768 		.rpc_cred = data->owner->so_cred,
769 	};
770 	struct rpc_task_setup task_setup_data = {
771 		.rpc_client = server->client,
772 		.rpc_message = &msg,
773 		.callback_ops = &nfs4_open_confirm_ops,
774 		.callback_data = data,
775 		.workqueue = nfsiod_workqueue,
776 		.flags = RPC_TASK_ASYNC,
777 	};
778 	int status;
779 
780 	kref_get(&data->kref);
781 	data->rpc_done = 0;
782 	data->rpc_status = 0;
783 	data->timestamp = jiffies;
784 	task = rpc_run_task(&task_setup_data);
785 	if (IS_ERR(task))
786 		return PTR_ERR(task);
787 	status = nfs4_wait_for_completion_rpc_task(task);
788 	if (status != 0) {
789 		data->cancelled = 1;
790 		smp_wmb();
791 	} else
792 		status = data->rpc_status;
793 	rpc_put_task(task);
794 	return status;
795 }
796 
797 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
798 {
799 	struct nfs4_opendata *data = calldata;
800 	struct nfs4_state_owner *sp = data->owner;
801 
802 	if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
803 		return;
804 	/*
805 	 * Check if we still need to send an OPEN call, or if we can use
806 	 * a delegation instead.
807 	 */
808 	if (data->state != NULL) {
809 		struct nfs_delegation *delegation;
810 
811 		if (can_open_cached(data->state, data->o_arg.open_flags & (FMODE_READ|FMODE_WRITE|O_EXCL)))
812 			goto out_no_action;
813 		rcu_read_lock();
814 		delegation = rcu_dereference(NFS_I(data->state->inode)->delegation);
815 		if (delegation != NULL &&
816 		   (delegation->flags & NFS_DELEGATION_NEED_RECLAIM) == 0) {
817 			rcu_read_unlock();
818 			goto out_no_action;
819 		}
820 		rcu_read_unlock();
821 	}
822 	/* Update sequence id. */
823 	data->o_arg.id = sp->so_owner_id.id;
824 	data->o_arg.clientid = sp->so_client->cl_clientid;
825 	if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS) {
826 		task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
827 		nfs_copy_fh(&data->o_res.fh, data->o_arg.fh);
828 	}
829 	data->timestamp = jiffies;
830 	rpc_call_start(task);
831 	return;
832 out_no_action:
833 	task->tk_action = NULL;
834 
835 }
836 
837 static void nfs4_open_done(struct rpc_task *task, void *calldata)
838 {
839 	struct nfs4_opendata *data = calldata;
840 
841 	data->rpc_status = task->tk_status;
842 	if (RPC_ASSASSINATED(task))
843 		return;
844 	if (task->tk_status == 0) {
845 		switch (data->o_res.f_attr->mode & S_IFMT) {
846 			case S_IFREG:
847 				break;
848 			case S_IFLNK:
849 				data->rpc_status = -ELOOP;
850 				break;
851 			case S_IFDIR:
852 				data->rpc_status = -EISDIR;
853 				break;
854 			default:
855 				data->rpc_status = -ENOTDIR;
856 		}
857 		renew_lease(data->o_res.server, data->timestamp);
858 		if (!(data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM))
859 			nfs_confirm_seqid(&data->owner->so_seqid, 0);
860 	}
861 	data->rpc_done = 1;
862 }
863 
864 static void nfs4_open_release(void *calldata)
865 {
866 	struct nfs4_opendata *data = calldata;
867 	struct nfs4_state *state = NULL;
868 
869 	/* If this request hasn't been cancelled, do nothing */
870 	if (data->cancelled == 0)
871 		goto out_free;
872 	/* In case of error, no cleanup! */
873 	if (data->rpc_status != 0 || !data->rpc_done)
874 		goto out_free;
875 	/* In case we need an open_confirm, no cleanup! */
876 	if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
877 		goto out_free;
878 	state = nfs4_opendata_to_nfs4_state(data);
879 	if (!IS_ERR(state))
880 		nfs4_close_state(&data->path, state, data->o_arg.open_flags);
881 out_free:
882 	nfs4_opendata_put(data);
883 }
884 
885 static const struct rpc_call_ops nfs4_open_ops = {
886 	.rpc_call_prepare = nfs4_open_prepare,
887 	.rpc_call_done = nfs4_open_done,
888 	.rpc_release = nfs4_open_release,
889 };
890 
891 /*
892  * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
893  */
894 static int _nfs4_proc_open(struct nfs4_opendata *data)
895 {
896 	struct inode *dir = data->dir->d_inode;
897 	struct nfs_server *server = NFS_SERVER(dir);
898 	struct nfs_openargs *o_arg = &data->o_arg;
899 	struct nfs_openres *o_res = &data->o_res;
900 	struct rpc_task *task;
901 	struct rpc_message msg = {
902 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
903 		.rpc_argp = o_arg,
904 		.rpc_resp = o_res,
905 		.rpc_cred = data->owner->so_cred,
906 	};
907 	struct rpc_task_setup task_setup_data = {
908 		.rpc_client = server->client,
909 		.rpc_message = &msg,
910 		.callback_ops = &nfs4_open_ops,
911 		.callback_data = data,
912 		.workqueue = nfsiod_workqueue,
913 		.flags = RPC_TASK_ASYNC,
914 	};
915 	int status;
916 
917 	kref_get(&data->kref);
918 	data->rpc_done = 0;
919 	data->rpc_status = 0;
920 	data->cancelled = 0;
921 	task = rpc_run_task(&task_setup_data);
922 	if (IS_ERR(task))
923 		return PTR_ERR(task);
924 	status = nfs4_wait_for_completion_rpc_task(task);
925 	if (status != 0) {
926 		data->cancelled = 1;
927 		smp_wmb();
928 	} else
929 		status = data->rpc_status;
930 	rpc_put_task(task);
931 	if (status != 0 || !data->rpc_done)
932 		return status;
933 
934 	if (o_res->fh.size == 0)
935 		_nfs4_proc_lookup(dir, o_arg->name, &o_res->fh, o_res->f_attr);
936 
937 	if (o_arg->open_flags & O_CREAT) {
938 		update_changeattr(dir, &o_res->cinfo);
939 		nfs_post_op_update_inode(dir, o_res->dir_attr);
940 	} else
941 		nfs_refresh_inode(dir, o_res->dir_attr);
942 	if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
943 		status = _nfs4_proc_open_confirm(data);
944 		if (status != 0)
945 			return status;
946 	}
947 	if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
948 		_nfs4_proc_getattr(server, &o_res->fh, o_res->f_attr);
949 	return 0;
950 }
951 
952 static int nfs4_recover_expired_lease(struct nfs_server *server)
953 {
954 	struct nfs_client *clp = server->nfs_client;
955 	int ret;
956 
957 	for (;;) {
958 		ret = nfs4_wait_clnt_recover(server->client, clp);
959 		if (ret != 0)
960 			return ret;
961 		if (!test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
962 			break;
963 		nfs4_schedule_state_recovery(clp);
964 	}
965 	return 0;
966 }
967 
968 /*
969  * OPEN_EXPIRED:
970  * 	reclaim state on the server after a network partition.
971  * 	Assumes caller holds the appropriate lock
972  */
973 static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
974 {
975 	struct nfs4_opendata *opendata;
976 	int ret;
977 
978 	opendata = nfs4_open_recoverdata_alloc(ctx, state);
979 	if (IS_ERR(opendata))
980 		return PTR_ERR(opendata);
981 	ret = nfs4_open_recover(opendata, state);
982 	if (ret == -ESTALE)
983 		d_drop(ctx->path.dentry);
984 	nfs4_opendata_put(opendata);
985 	return ret;
986 }
987 
988 static inline int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
989 {
990 	struct nfs_server *server = NFS_SERVER(state->inode);
991 	struct nfs4_exception exception = { };
992 	int err;
993 
994 	do {
995 		err = _nfs4_open_expired(ctx, state);
996 		if (err == -NFS4ERR_DELAY)
997 			nfs4_handle_exception(server, err, &exception);
998 	} while (exception.retry);
999 	return err;
1000 }
1001 
1002 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
1003 {
1004 	struct nfs_open_context *ctx;
1005 	int ret;
1006 
1007 	ctx = nfs4_state_find_open_context(state);
1008 	if (IS_ERR(ctx))
1009 		return PTR_ERR(ctx);
1010 	ret = nfs4_do_open_expired(ctx, state);
1011 	put_nfs_open_context(ctx);
1012 	return ret;
1013 }
1014 
1015 /*
1016  * on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-*
1017  * fields corresponding to attributes that were used to store the verifier.
1018  * Make sure we clobber those fields in the later setattr call
1019  */
1020 static inline void nfs4_exclusive_attrset(struct nfs4_opendata *opendata, struct iattr *sattr)
1021 {
1022 	if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_ACCESS) &&
1023 	    !(sattr->ia_valid & ATTR_ATIME_SET))
1024 		sattr->ia_valid |= ATTR_ATIME;
1025 
1026 	if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_MODIFY) &&
1027 	    !(sattr->ia_valid & ATTR_MTIME_SET))
1028 		sattr->ia_valid |= ATTR_MTIME;
1029 }
1030 
1031 /*
1032  * Returns a referenced nfs4_state
1033  */
1034 static int _nfs4_do_open(struct inode *dir, struct path *path, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
1035 {
1036 	struct nfs4_state_owner  *sp;
1037 	struct nfs4_state     *state = NULL;
1038 	struct nfs_server       *server = NFS_SERVER(dir);
1039 	struct nfs_client *clp = server->nfs_client;
1040 	struct nfs4_opendata *opendata;
1041 	int status;
1042 
1043 	/* Protect against reboot recovery conflicts */
1044 	status = -ENOMEM;
1045 	if (!(sp = nfs4_get_state_owner(server, cred))) {
1046 		dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
1047 		goto out_err;
1048 	}
1049 	status = nfs4_recover_expired_lease(server);
1050 	if (status != 0)
1051 		goto err_put_state_owner;
1052 	if (path->dentry->d_inode != NULL)
1053 		nfs4_return_incompatible_delegation(path->dentry->d_inode, flags & (FMODE_READ|FMODE_WRITE));
1054 	down_read(&clp->cl_sem);
1055 	status = -ENOMEM;
1056 	opendata = nfs4_opendata_alloc(path, sp, flags, sattr);
1057 	if (opendata == NULL)
1058 		goto err_release_rwsem;
1059 
1060 	if (path->dentry->d_inode != NULL)
1061 		opendata->state = nfs4_get_open_state(path->dentry->d_inode, sp);
1062 
1063 	status = _nfs4_proc_open(opendata);
1064 	if (status != 0)
1065 		goto err_opendata_put;
1066 
1067 	if (opendata->o_arg.open_flags & O_EXCL)
1068 		nfs4_exclusive_attrset(opendata, sattr);
1069 
1070 	state = nfs4_opendata_to_nfs4_state(opendata);
1071 	status = PTR_ERR(state);
1072 	if (IS_ERR(state))
1073 		goto err_opendata_put;
1074 	nfs4_opendata_put(opendata);
1075 	nfs4_put_state_owner(sp);
1076 	up_read(&clp->cl_sem);
1077 	*res = state;
1078 	return 0;
1079 err_opendata_put:
1080 	nfs4_opendata_put(opendata);
1081 err_release_rwsem:
1082 	up_read(&clp->cl_sem);
1083 err_put_state_owner:
1084 	nfs4_put_state_owner(sp);
1085 out_err:
1086 	*res = NULL;
1087 	return status;
1088 }
1089 
1090 
1091 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct path *path, int flags, struct iattr *sattr, struct rpc_cred *cred)
1092 {
1093 	struct nfs4_exception exception = { };
1094 	struct nfs4_state *res;
1095 	int status;
1096 
1097 	do {
1098 		status = _nfs4_do_open(dir, path, flags, sattr, cred, &res);
1099 		if (status == 0)
1100 			break;
1101 		/* NOTE: BAD_SEQID means the server and client disagree about the
1102 		 * book-keeping w.r.t. state-changing operations
1103 		 * (OPEN/CLOSE/LOCK/LOCKU...)
1104 		 * It is actually a sign of a bug on the client or on the server.
1105 		 *
1106 		 * If we receive a BAD_SEQID error in the particular case of
1107 		 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1108 		 * have unhashed the old state_owner for us, and that we can
1109 		 * therefore safely retry using a new one. We should still warn
1110 		 * the user though...
1111 		 */
1112 		if (status == -NFS4ERR_BAD_SEQID) {
1113 			printk(KERN_WARNING "NFS: v4 server %s "
1114 					" returned a bad sequence-id error!\n",
1115 					NFS_SERVER(dir)->nfs_client->cl_hostname);
1116 			exception.retry = 1;
1117 			continue;
1118 		}
1119 		/*
1120 		 * BAD_STATEID on OPEN means that the server cancelled our
1121 		 * state before it received the OPEN_CONFIRM.
1122 		 * Recover by retrying the request as per the discussion
1123 		 * on Page 181 of RFC3530.
1124 		 */
1125 		if (status == -NFS4ERR_BAD_STATEID) {
1126 			exception.retry = 1;
1127 			continue;
1128 		}
1129 		if (status == -EAGAIN) {
1130 			/* We must have found a delegation */
1131 			exception.retry = 1;
1132 			continue;
1133 		}
1134 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1135 					status, &exception));
1136 	} while (exception.retry);
1137 	return res;
1138 }
1139 
1140 static int _nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred,
1141 			    struct nfs_fattr *fattr, struct iattr *sattr,
1142 			    struct nfs4_state *state)
1143 {
1144 	struct nfs_server *server = NFS_SERVER(inode);
1145         struct nfs_setattrargs  arg = {
1146                 .fh             = NFS_FH(inode),
1147                 .iap            = sattr,
1148 		.server		= server,
1149 		.bitmask = server->attr_bitmask,
1150         };
1151         struct nfs_setattrres  res = {
1152 		.fattr		= fattr,
1153 		.server		= server,
1154         };
1155         struct rpc_message msg = {
1156 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1157 		.rpc_argp	= &arg,
1158 		.rpc_resp	= &res,
1159 		.rpc_cred	= cred,
1160         };
1161 	unsigned long timestamp = jiffies;
1162 	int status;
1163 
1164 	nfs_fattr_init(fattr);
1165 
1166 	if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1167 		/* Use that stateid */
1168 	} else if (state != NULL) {
1169 		nfs4_copy_stateid(&arg.stateid, state, current->files);
1170 	} else
1171 		memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1172 
1173 	status = rpc_call_sync(server->client, &msg, 0);
1174 	if (status == 0 && state != NULL)
1175 		renew_lease(server, timestamp);
1176 	return status;
1177 }
1178 
1179 static int nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred,
1180 			   struct nfs_fattr *fattr, struct iattr *sattr,
1181 			   struct nfs4_state *state)
1182 {
1183 	struct nfs_server *server = NFS_SERVER(inode);
1184 	struct nfs4_exception exception = { };
1185 	int err;
1186 	do {
1187 		err = nfs4_handle_exception(server,
1188 				_nfs4_do_setattr(inode, cred, fattr, sattr, state),
1189 				&exception);
1190 	} while (exception.retry);
1191 	return err;
1192 }
1193 
1194 struct nfs4_closedata {
1195 	struct path path;
1196 	struct inode *inode;
1197 	struct nfs4_state *state;
1198 	struct nfs_closeargs arg;
1199 	struct nfs_closeres res;
1200 	struct nfs_fattr fattr;
1201 	unsigned long timestamp;
1202 };
1203 
1204 static void nfs4_free_closedata(void *data)
1205 {
1206 	struct nfs4_closedata *calldata = data;
1207 	struct nfs4_state_owner *sp = calldata->state->owner;
1208 
1209 	nfs4_put_open_state(calldata->state);
1210 	nfs_free_seqid(calldata->arg.seqid);
1211 	nfs4_put_state_owner(sp);
1212 	path_put(&calldata->path);
1213 	kfree(calldata);
1214 }
1215 
1216 static void nfs4_close_done(struct rpc_task *task, void *data)
1217 {
1218 	struct nfs4_closedata *calldata = data;
1219 	struct nfs4_state *state = calldata->state;
1220 	struct nfs_server *server = NFS_SERVER(calldata->inode);
1221 
1222 	if (RPC_ASSASSINATED(task))
1223 		return;
1224         /* hmm. we are done with the inode, and in the process of freeing
1225 	 * the state_owner. we keep this around to process errors
1226 	 */
1227 	switch (task->tk_status) {
1228 		case 0:
1229 			nfs_set_open_stateid(state, &calldata->res.stateid, 0);
1230 			renew_lease(server, calldata->timestamp);
1231 			break;
1232 		case -NFS4ERR_STALE_STATEID:
1233 		case -NFS4ERR_EXPIRED:
1234 			break;
1235 		default:
1236 			if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1237 				rpc_restart_call(task);
1238 				return;
1239 			}
1240 	}
1241 	nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1242 }
1243 
1244 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1245 {
1246 	struct nfs4_closedata *calldata = data;
1247 	struct nfs4_state *state = calldata->state;
1248 	int clear_rd, clear_wr, clear_rdwr;
1249 
1250 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1251 		return;
1252 
1253 	clear_rd = clear_wr = clear_rdwr = 0;
1254 	spin_lock(&state->owner->so_lock);
1255 	/* Calculate the change in open mode */
1256 	if (state->n_rdwr == 0) {
1257 		if (state->n_rdonly == 0) {
1258 			clear_rd |= test_and_clear_bit(NFS_O_RDONLY_STATE, &state->flags);
1259 			clear_rdwr |= test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags);
1260 		}
1261 		if (state->n_wronly == 0) {
1262 			clear_wr |= test_and_clear_bit(NFS_O_WRONLY_STATE, &state->flags);
1263 			clear_rdwr |= test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags);
1264 		}
1265 	}
1266 	spin_unlock(&state->owner->so_lock);
1267 	if (!clear_rd && !clear_wr && !clear_rdwr) {
1268 		/* Note: exit _without_ calling nfs4_close_done */
1269 		task->tk_action = NULL;
1270 		return;
1271 	}
1272 	nfs_fattr_init(calldata->res.fattr);
1273 	if (test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0) {
1274 		task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1275 		calldata->arg.open_flags = FMODE_READ;
1276 	} else if (test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0) {
1277 		task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1278 		calldata->arg.open_flags = FMODE_WRITE;
1279 	}
1280 	calldata->timestamp = jiffies;
1281 	rpc_call_start(task);
1282 }
1283 
1284 static const struct rpc_call_ops nfs4_close_ops = {
1285 	.rpc_call_prepare = nfs4_close_prepare,
1286 	.rpc_call_done = nfs4_close_done,
1287 	.rpc_release = nfs4_free_closedata,
1288 };
1289 
1290 /*
1291  * It is possible for data to be read/written from a mem-mapped file
1292  * after the sys_close call (which hits the vfs layer as a flush).
1293  * This means that we can't safely call nfsv4 close on a file until
1294  * the inode is cleared. This in turn means that we are not good
1295  * NFSv4 citizens - we do not indicate to the server to update the file's
1296  * share state even when we are done with one of the three share
1297  * stateid's in the inode.
1298  *
1299  * NOTE: Caller must be holding the sp->so_owner semaphore!
1300  */
1301 int nfs4_do_close(struct path *path, struct nfs4_state *state, int wait)
1302 {
1303 	struct nfs_server *server = NFS_SERVER(state->inode);
1304 	struct nfs4_closedata *calldata;
1305 	struct nfs4_state_owner *sp = state->owner;
1306 	struct rpc_task *task;
1307 	struct rpc_message msg = {
1308 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1309 		.rpc_cred = state->owner->so_cred,
1310 	};
1311 	struct rpc_task_setup task_setup_data = {
1312 		.rpc_client = server->client,
1313 		.rpc_message = &msg,
1314 		.callback_ops = &nfs4_close_ops,
1315 		.workqueue = nfsiod_workqueue,
1316 		.flags = RPC_TASK_ASYNC,
1317 	};
1318 	int status = -ENOMEM;
1319 
1320 	calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1321 	if (calldata == NULL)
1322 		goto out;
1323 	calldata->inode = state->inode;
1324 	calldata->state = state;
1325 	calldata->arg.fh = NFS_FH(state->inode);
1326 	calldata->arg.stateid = &state->open_stateid;
1327 	/* Serialization for the sequence id */
1328 	calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1329 	if (calldata->arg.seqid == NULL)
1330 		goto out_free_calldata;
1331 	calldata->arg.bitmask = server->attr_bitmask;
1332 	calldata->res.fattr = &calldata->fattr;
1333 	calldata->res.seqid = calldata->arg.seqid;
1334 	calldata->res.server = server;
1335 	calldata->path.mnt = mntget(path->mnt);
1336 	calldata->path.dentry = dget(path->dentry);
1337 
1338 	msg.rpc_argp = &calldata->arg,
1339 	msg.rpc_resp = &calldata->res,
1340 	task_setup_data.callback_data = calldata;
1341 	task = rpc_run_task(&task_setup_data);
1342 	if (IS_ERR(task))
1343 		return PTR_ERR(task);
1344 	status = 0;
1345 	if (wait)
1346 		status = rpc_wait_for_completion_task(task);
1347 	rpc_put_task(task);
1348 	return status;
1349 out_free_calldata:
1350 	kfree(calldata);
1351 out:
1352 	nfs4_put_open_state(state);
1353 	nfs4_put_state_owner(sp);
1354 	return status;
1355 }
1356 
1357 static int nfs4_intent_set_file(struct nameidata *nd, struct path *path, struct nfs4_state *state)
1358 {
1359 	struct file *filp;
1360 	int ret;
1361 
1362 	/* If the open_intent is for execute, we have an extra check to make */
1363 	if (nd->intent.open.flags & FMODE_EXEC) {
1364 		ret = nfs_may_open(state->inode,
1365 				state->owner->so_cred,
1366 				nd->intent.open.flags);
1367 		if (ret < 0)
1368 			goto out_close;
1369 	}
1370 	filp = lookup_instantiate_filp(nd, path->dentry, NULL);
1371 	if (!IS_ERR(filp)) {
1372 		struct nfs_open_context *ctx;
1373 		ctx = nfs_file_open_context(filp);
1374 		ctx->state = state;
1375 		return 0;
1376 	}
1377 	ret = PTR_ERR(filp);
1378 out_close:
1379 	nfs4_close_sync(path, state, nd->intent.open.flags);
1380 	return ret;
1381 }
1382 
1383 struct dentry *
1384 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1385 {
1386 	struct path path = {
1387 		.mnt = nd->path.mnt,
1388 		.dentry = dentry,
1389 	};
1390 	struct dentry *parent;
1391 	struct iattr attr;
1392 	struct rpc_cred *cred;
1393 	struct nfs4_state *state;
1394 	struct dentry *res;
1395 
1396 	if (nd->flags & LOOKUP_CREATE) {
1397 		attr.ia_mode = nd->intent.open.create_mode;
1398 		attr.ia_valid = ATTR_MODE;
1399 		if (!IS_POSIXACL(dir))
1400 			attr.ia_mode &= ~current->fs->umask;
1401 	} else {
1402 		attr.ia_valid = 0;
1403 		BUG_ON(nd->intent.open.flags & O_CREAT);
1404 	}
1405 
1406 	cred = rpc_lookup_cred();
1407 	if (IS_ERR(cred))
1408 		return (struct dentry *)cred;
1409 	parent = dentry->d_parent;
1410 	/* Protect against concurrent sillydeletes */
1411 	nfs_block_sillyrename(parent);
1412 	state = nfs4_do_open(dir, &path, nd->intent.open.flags, &attr, cred);
1413 	put_rpccred(cred);
1414 	if (IS_ERR(state)) {
1415 		if (PTR_ERR(state) == -ENOENT) {
1416 			d_add(dentry, NULL);
1417 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1418 		}
1419 		nfs_unblock_sillyrename(parent);
1420 		return (struct dentry *)state;
1421 	}
1422 	res = d_add_unique(dentry, igrab(state->inode));
1423 	if (res != NULL)
1424 		path.dentry = res;
1425 	nfs_set_verifier(path.dentry, nfs_save_change_attribute(dir));
1426 	nfs_unblock_sillyrename(parent);
1427 	nfs4_intent_set_file(nd, &path, state);
1428 	return res;
1429 }
1430 
1431 int
1432 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1433 {
1434 	struct path path = {
1435 		.mnt = nd->path.mnt,
1436 		.dentry = dentry,
1437 	};
1438 	struct rpc_cred *cred;
1439 	struct nfs4_state *state;
1440 
1441 	cred = rpc_lookup_cred();
1442 	if (IS_ERR(cred))
1443 		return PTR_ERR(cred);
1444 	state = nfs4_do_open(dir, &path, openflags, NULL, cred);
1445 	put_rpccred(cred);
1446 	if (IS_ERR(state)) {
1447 		switch (PTR_ERR(state)) {
1448 			case -EPERM:
1449 			case -EACCES:
1450 			case -EDQUOT:
1451 			case -ENOSPC:
1452 			case -EROFS:
1453 				lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1454 				return 1;
1455 			default:
1456 				goto out_drop;
1457 		}
1458 	}
1459 	if (state->inode == dentry->d_inode) {
1460 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1461 		nfs4_intent_set_file(nd, &path, state);
1462 		return 1;
1463 	}
1464 	nfs4_close_sync(&path, state, openflags);
1465 out_drop:
1466 	d_drop(dentry);
1467 	return 0;
1468 }
1469 
1470 
1471 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1472 {
1473 	struct nfs4_server_caps_res res = {};
1474 	struct rpc_message msg = {
1475 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1476 		.rpc_argp = fhandle,
1477 		.rpc_resp = &res,
1478 	};
1479 	int status;
1480 
1481 	status = rpc_call_sync(server->client, &msg, 0);
1482 	if (status == 0) {
1483 		memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1484 		if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1485 			server->caps |= NFS_CAP_ACLS;
1486 		if (res.has_links != 0)
1487 			server->caps |= NFS_CAP_HARDLINKS;
1488 		if (res.has_symlinks != 0)
1489 			server->caps |= NFS_CAP_SYMLINKS;
1490 		server->acl_bitmask = res.acl_bitmask;
1491 	}
1492 	return status;
1493 }
1494 
1495 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1496 {
1497 	struct nfs4_exception exception = { };
1498 	int err;
1499 	do {
1500 		err = nfs4_handle_exception(server,
1501 				_nfs4_server_capabilities(server, fhandle),
1502 				&exception);
1503 	} while (exception.retry);
1504 	return err;
1505 }
1506 
1507 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1508 		struct nfs_fsinfo *info)
1509 {
1510 	struct nfs4_lookup_root_arg args = {
1511 		.bitmask = nfs4_fattr_bitmap,
1512 	};
1513 	struct nfs4_lookup_res res = {
1514 		.server = server,
1515 		.fattr = info->fattr,
1516 		.fh = fhandle,
1517 	};
1518 	struct rpc_message msg = {
1519 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1520 		.rpc_argp = &args,
1521 		.rpc_resp = &res,
1522 	};
1523 	nfs_fattr_init(info->fattr);
1524 	return rpc_call_sync(server->client, &msg, 0);
1525 }
1526 
1527 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1528 		struct nfs_fsinfo *info)
1529 {
1530 	struct nfs4_exception exception = { };
1531 	int err;
1532 	do {
1533 		err = nfs4_handle_exception(server,
1534 				_nfs4_lookup_root(server, fhandle, info),
1535 				&exception);
1536 	} while (exception.retry);
1537 	return err;
1538 }
1539 
1540 /*
1541  * get the file handle for the "/" directory on the server
1542  */
1543 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1544 			      struct nfs_fsinfo *info)
1545 {
1546 	int status;
1547 
1548 	status = nfs4_lookup_root(server, fhandle, info);
1549 	if (status == 0)
1550 		status = nfs4_server_capabilities(server, fhandle);
1551 	if (status == 0)
1552 		status = nfs4_do_fsinfo(server, fhandle, info);
1553 	return nfs4_map_errors(status);
1554 }
1555 
1556 /*
1557  * Get locations and (maybe) other attributes of a referral.
1558  * Note that we'll actually follow the referral later when
1559  * we detect fsid mismatch in inode revalidation
1560  */
1561 static int nfs4_get_referral(struct inode *dir, const struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
1562 {
1563 	int status = -ENOMEM;
1564 	struct page *page = NULL;
1565 	struct nfs4_fs_locations *locations = NULL;
1566 
1567 	page = alloc_page(GFP_KERNEL);
1568 	if (page == NULL)
1569 		goto out;
1570 	locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
1571 	if (locations == NULL)
1572 		goto out;
1573 
1574 	status = nfs4_proc_fs_locations(dir, name, locations, page);
1575 	if (status != 0)
1576 		goto out;
1577 	/* Make sure server returned a different fsid for the referral */
1578 	if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
1579 		dprintk("%s: server did not return a different fsid for a referral at %s\n", __func__, name->name);
1580 		status = -EIO;
1581 		goto out;
1582 	}
1583 
1584 	memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
1585 	fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
1586 	if (!fattr->mode)
1587 		fattr->mode = S_IFDIR;
1588 	memset(fhandle, 0, sizeof(struct nfs_fh));
1589 out:
1590 	if (page)
1591 		__free_page(page);
1592 	if (locations)
1593 		kfree(locations);
1594 	return status;
1595 }
1596 
1597 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1598 {
1599 	struct nfs4_getattr_arg args = {
1600 		.fh = fhandle,
1601 		.bitmask = server->attr_bitmask,
1602 	};
1603 	struct nfs4_getattr_res res = {
1604 		.fattr = fattr,
1605 		.server = server,
1606 	};
1607 	struct rpc_message msg = {
1608 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1609 		.rpc_argp = &args,
1610 		.rpc_resp = &res,
1611 	};
1612 
1613 	nfs_fattr_init(fattr);
1614 	return rpc_call_sync(server->client, &msg, 0);
1615 }
1616 
1617 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1618 {
1619 	struct nfs4_exception exception = { };
1620 	int err;
1621 	do {
1622 		err = nfs4_handle_exception(server,
1623 				_nfs4_proc_getattr(server, fhandle, fattr),
1624 				&exception);
1625 	} while (exception.retry);
1626 	return err;
1627 }
1628 
1629 /*
1630  * The file is not closed if it is opened due to the a request to change
1631  * the size of the file. The open call will not be needed once the
1632  * VFS layer lookup-intents are implemented.
1633  *
1634  * Close is called when the inode is destroyed.
1635  * If we haven't opened the file for O_WRONLY, we
1636  * need to in the size_change case to obtain a stateid.
1637  *
1638  * Got race?
1639  * Because OPEN is always done by name in nfsv4, it is
1640  * possible that we opened a different file by the same
1641  * name.  We can recognize this race condition, but we
1642  * can't do anything about it besides returning an error.
1643  *
1644  * This will be fixed with VFS changes (lookup-intent).
1645  */
1646 static int
1647 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1648 		  struct iattr *sattr)
1649 {
1650 	struct inode *inode = dentry->d_inode;
1651 	struct rpc_cred *cred = NULL;
1652 	struct nfs4_state *state = NULL;
1653 	int status;
1654 
1655 	nfs_fattr_init(fattr);
1656 
1657 	/* Search for an existing open(O_WRITE) file */
1658 	if (sattr->ia_valid & ATTR_FILE) {
1659 		struct nfs_open_context *ctx;
1660 
1661 		ctx = nfs_file_open_context(sattr->ia_file);
1662 		cred = ctx->cred;
1663 		state = ctx->state;
1664 	}
1665 
1666 	status = nfs4_do_setattr(inode, cred, fattr, sattr, state);
1667 	if (status == 0)
1668 		nfs_setattr_update_inode(inode, sattr);
1669 	return status;
1670 }
1671 
1672 static int _nfs4_proc_lookupfh(struct nfs_server *server, const struct nfs_fh *dirfh,
1673 		const struct qstr *name, struct nfs_fh *fhandle,
1674 		struct nfs_fattr *fattr)
1675 {
1676 	int		       status;
1677 	struct nfs4_lookup_arg args = {
1678 		.bitmask = server->attr_bitmask,
1679 		.dir_fh = dirfh,
1680 		.name = name,
1681 	};
1682 	struct nfs4_lookup_res res = {
1683 		.server = server,
1684 		.fattr = fattr,
1685 		.fh = fhandle,
1686 	};
1687 	struct rpc_message msg = {
1688 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1689 		.rpc_argp = &args,
1690 		.rpc_resp = &res,
1691 	};
1692 
1693 	nfs_fattr_init(fattr);
1694 
1695 	dprintk("NFS call  lookupfh %s\n", name->name);
1696 	status = rpc_call_sync(server->client, &msg, 0);
1697 	dprintk("NFS reply lookupfh: %d\n", status);
1698 	return status;
1699 }
1700 
1701 static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1702 			      struct qstr *name, struct nfs_fh *fhandle,
1703 			      struct nfs_fattr *fattr)
1704 {
1705 	struct nfs4_exception exception = { };
1706 	int err;
1707 	do {
1708 		err = _nfs4_proc_lookupfh(server, dirfh, name, fhandle, fattr);
1709 		/* FIXME: !!!! */
1710 		if (err == -NFS4ERR_MOVED) {
1711 			err = -EREMOTE;
1712 			break;
1713 		}
1714 		err = nfs4_handle_exception(server, err, &exception);
1715 	} while (exception.retry);
1716 	return err;
1717 }
1718 
1719 static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name,
1720 		struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1721 {
1722 	int status;
1723 
1724 	dprintk("NFS call  lookup %s\n", name->name);
1725 	status = _nfs4_proc_lookupfh(NFS_SERVER(dir), NFS_FH(dir), name, fhandle, fattr);
1726 	if (status == -NFS4ERR_MOVED)
1727 		status = nfs4_get_referral(dir, name, fattr, fhandle);
1728 	dprintk("NFS reply lookup: %d\n", status);
1729 	return status;
1730 }
1731 
1732 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1733 {
1734 	struct nfs4_exception exception = { };
1735 	int err;
1736 	do {
1737 		err = nfs4_handle_exception(NFS_SERVER(dir),
1738 				_nfs4_proc_lookup(dir, name, fhandle, fattr),
1739 				&exception);
1740 	} while (exception.retry);
1741 	return err;
1742 }
1743 
1744 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1745 {
1746 	struct nfs_server *server = NFS_SERVER(inode);
1747 	struct nfs_fattr fattr;
1748 	struct nfs4_accessargs args = {
1749 		.fh = NFS_FH(inode),
1750 		.bitmask = server->attr_bitmask,
1751 	};
1752 	struct nfs4_accessres res = {
1753 		.server = server,
1754 		.fattr = &fattr,
1755 	};
1756 	struct rpc_message msg = {
1757 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1758 		.rpc_argp = &args,
1759 		.rpc_resp = &res,
1760 		.rpc_cred = entry->cred,
1761 	};
1762 	int mode = entry->mask;
1763 	int status;
1764 
1765 	/*
1766 	 * Determine which access bits we want to ask for...
1767 	 */
1768 	if (mode & MAY_READ)
1769 		args.access |= NFS4_ACCESS_READ;
1770 	if (S_ISDIR(inode->i_mode)) {
1771 		if (mode & MAY_WRITE)
1772 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1773 		if (mode & MAY_EXEC)
1774 			args.access |= NFS4_ACCESS_LOOKUP;
1775 	} else {
1776 		if (mode & MAY_WRITE)
1777 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1778 		if (mode & MAY_EXEC)
1779 			args.access |= NFS4_ACCESS_EXECUTE;
1780 	}
1781 	nfs_fattr_init(&fattr);
1782 	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1783 	if (!status) {
1784 		entry->mask = 0;
1785 		if (res.access & NFS4_ACCESS_READ)
1786 			entry->mask |= MAY_READ;
1787 		if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1788 			entry->mask |= MAY_WRITE;
1789 		if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1790 			entry->mask |= MAY_EXEC;
1791 		nfs_refresh_inode(inode, &fattr);
1792 	}
1793 	return status;
1794 }
1795 
1796 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1797 {
1798 	struct nfs4_exception exception = { };
1799 	int err;
1800 	do {
1801 		err = nfs4_handle_exception(NFS_SERVER(inode),
1802 				_nfs4_proc_access(inode, entry),
1803 				&exception);
1804 	} while (exception.retry);
1805 	return err;
1806 }
1807 
1808 /*
1809  * TODO: For the time being, we don't try to get any attributes
1810  * along with any of the zero-copy operations READ, READDIR,
1811  * READLINK, WRITE.
1812  *
1813  * In the case of the first three, we want to put the GETATTR
1814  * after the read-type operation -- this is because it is hard
1815  * to predict the length of a GETATTR response in v4, and thus
1816  * align the READ data correctly.  This means that the GETATTR
1817  * may end up partially falling into the page cache, and we should
1818  * shift it into the 'tail' of the xdr_buf before processing.
1819  * To do this efficiently, we need to know the total length
1820  * of data received, which doesn't seem to be available outside
1821  * of the RPC layer.
1822  *
1823  * In the case of WRITE, we also want to put the GETATTR after
1824  * the operation -- in this case because we want to make sure
1825  * we get the post-operation mtime and size.  This means that
1826  * we can't use xdr_encode_pages() as written: we need a variant
1827  * of it which would leave room in the 'tail' iovec.
1828  *
1829  * Both of these changes to the XDR layer would in fact be quite
1830  * minor, but I decided to leave them for a subsequent patch.
1831  */
1832 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1833 		unsigned int pgbase, unsigned int pglen)
1834 {
1835 	struct nfs4_readlink args = {
1836 		.fh       = NFS_FH(inode),
1837 		.pgbase	  = pgbase,
1838 		.pglen    = pglen,
1839 		.pages    = &page,
1840 	};
1841 	struct rpc_message msg = {
1842 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1843 		.rpc_argp = &args,
1844 		.rpc_resp = NULL,
1845 	};
1846 
1847 	return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1848 }
1849 
1850 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1851 		unsigned int pgbase, unsigned int pglen)
1852 {
1853 	struct nfs4_exception exception = { };
1854 	int err;
1855 	do {
1856 		err = nfs4_handle_exception(NFS_SERVER(inode),
1857 				_nfs4_proc_readlink(inode, page, pgbase, pglen),
1858 				&exception);
1859 	} while (exception.retry);
1860 	return err;
1861 }
1862 
1863 /*
1864  * Got race?
1865  * We will need to arrange for the VFS layer to provide an atomic open.
1866  * Until then, this create/open method is prone to inefficiency and race
1867  * conditions due to the lookup, create, and open VFS calls from sys_open()
1868  * placed on the wire.
1869  *
1870  * Given the above sorry state of affairs, I'm simply sending an OPEN.
1871  * The file will be opened again in the subsequent VFS open call
1872  * (nfs4_proc_file_open).
1873  *
1874  * The open for read will just hang around to be used by any process that
1875  * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1876  */
1877 
1878 static int
1879 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1880                  int flags, struct nameidata *nd)
1881 {
1882 	struct path path = {
1883 		.mnt = nd->path.mnt,
1884 		.dentry = dentry,
1885 	};
1886 	struct nfs4_state *state;
1887 	struct rpc_cred *cred;
1888 	int status = 0;
1889 
1890 	cred = rpc_lookup_cred();
1891 	if (IS_ERR(cred)) {
1892 		status = PTR_ERR(cred);
1893 		goto out;
1894 	}
1895 	state = nfs4_do_open(dir, &path, flags, sattr, cred);
1896 	d_drop(dentry);
1897 	if (IS_ERR(state)) {
1898 		status = PTR_ERR(state);
1899 		goto out_putcred;
1900 	}
1901 	d_add(dentry, igrab(state->inode));
1902 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1903 	if (flags & O_EXCL) {
1904 		struct nfs_fattr fattr;
1905 		status = nfs4_do_setattr(state->inode, cred, &fattr, sattr, state);
1906 		if (status == 0)
1907 			nfs_setattr_update_inode(state->inode, sattr);
1908 		nfs_post_op_update_inode(state->inode, &fattr);
1909 	}
1910 	if (status == 0 && (nd->flags & LOOKUP_OPEN) != 0)
1911 		status = nfs4_intent_set_file(nd, &path, state);
1912 	else
1913 		nfs4_close_sync(&path, state, flags);
1914 out_putcred:
1915 	put_rpccred(cred);
1916 out:
1917 	return status;
1918 }
1919 
1920 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1921 {
1922 	struct nfs_server *server = NFS_SERVER(dir);
1923 	struct nfs_removeargs args = {
1924 		.fh = NFS_FH(dir),
1925 		.name.len = name->len,
1926 		.name.name = name->name,
1927 		.bitmask = server->attr_bitmask,
1928 	};
1929 	struct nfs_removeres res = {
1930 		.server = server,
1931 	};
1932 	struct rpc_message msg = {
1933 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1934 		.rpc_argp = &args,
1935 		.rpc_resp = &res,
1936 	};
1937 	int			status;
1938 
1939 	nfs_fattr_init(&res.dir_attr);
1940 	status = rpc_call_sync(server->client, &msg, 0);
1941 	if (status == 0) {
1942 		update_changeattr(dir, &res.cinfo);
1943 		nfs_post_op_update_inode(dir, &res.dir_attr);
1944 	}
1945 	return status;
1946 }
1947 
1948 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1949 {
1950 	struct nfs4_exception exception = { };
1951 	int err;
1952 	do {
1953 		err = nfs4_handle_exception(NFS_SERVER(dir),
1954 				_nfs4_proc_remove(dir, name),
1955 				&exception);
1956 	} while (exception.retry);
1957 	return err;
1958 }
1959 
1960 static void nfs4_proc_unlink_setup(struct rpc_message *msg, struct inode *dir)
1961 {
1962 	struct nfs_server *server = NFS_SERVER(dir);
1963 	struct nfs_removeargs *args = msg->rpc_argp;
1964 	struct nfs_removeres *res = msg->rpc_resp;
1965 
1966 	args->bitmask = server->attr_bitmask;
1967 	res->server = server;
1968 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1969 }
1970 
1971 static int nfs4_proc_unlink_done(struct rpc_task *task, struct inode *dir)
1972 {
1973 	struct nfs_removeres *res = task->tk_msg.rpc_resp;
1974 
1975 	if (nfs4_async_handle_error(task, res->server) == -EAGAIN)
1976 		return 0;
1977 	update_changeattr(dir, &res->cinfo);
1978 	nfs_post_op_update_inode(dir, &res->dir_attr);
1979 	return 1;
1980 }
1981 
1982 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1983 		struct inode *new_dir, struct qstr *new_name)
1984 {
1985 	struct nfs_server *server = NFS_SERVER(old_dir);
1986 	struct nfs4_rename_arg arg = {
1987 		.old_dir = NFS_FH(old_dir),
1988 		.new_dir = NFS_FH(new_dir),
1989 		.old_name = old_name,
1990 		.new_name = new_name,
1991 		.bitmask = server->attr_bitmask,
1992 	};
1993 	struct nfs_fattr old_fattr, new_fattr;
1994 	struct nfs4_rename_res res = {
1995 		.server = server,
1996 		.old_fattr = &old_fattr,
1997 		.new_fattr = &new_fattr,
1998 	};
1999 	struct rpc_message msg = {
2000 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
2001 		.rpc_argp = &arg,
2002 		.rpc_resp = &res,
2003 	};
2004 	int			status;
2005 
2006 	nfs_fattr_init(res.old_fattr);
2007 	nfs_fattr_init(res.new_fattr);
2008 	status = rpc_call_sync(server->client, &msg, 0);
2009 
2010 	if (!status) {
2011 		update_changeattr(old_dir, &res.old_cinfo);
2012 		nfs_post_op_update_inode(old_dir, res.old_fattr);
2013 		update_changeattr(new_dir, &res.new_cinfo);
2014 		nfs_post_op_update_inode(new_dir, res.new_fattr);
2015 	}
2016 	return status;
2017 }
2018 
2019 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
2020 		struct inode *new_dir, struct qstr *new_name)
2021 {
2022 	struct nfs4_exception exception = { };
2023 	int err;
2024 	do {
2025 		err = nfs4_handle_exception(NFS_SERVER(old_dir),
2026 				_nfs4_proc_rename(old_dir, old_name,
2027 					new_dir, new_name),
2028 				&exception);
2029 	} while (exception.retry);
2030 	return err;
2031 }
2032 
2033 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2034 {
2035 	struct nfs_server *server = NFS_SERVER(inode);
2036 	struct nfs4_link_arg arg = {
2037 		.fh     = NFS_FH(inode),
2038 		.dir_fh = NFS_FH(dir),
2039 		.name   = name,
2040 		.bitmask = server->attr_bitmask,
2041 	};
2042 	struct nfs_fattr fattr, dir_attr;
2043 	struct nfs4_link_res res = {
2044 		.server = server,
2045 		.fattr = &fattr,
2046 		.dir_attr = &dir_attr,
2047 	};
2048 	struct rpc_message msg = {
2049 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
2050 		.rpc_argp = &arg,
2051 		.rpc_resp = &res,
2052 	};
2053 	int			status;
2054 
2055 	nfs_fattr_init(res.fattr);
2056 	nfs_fattr_init(res.dir_attr);
2057 	status = rpc_call_sync(server->client, &msg, 0);
2058 	if (!status) {
2059 		update_changeattr(dir, &res.cinfo);
2060 		nfs_post_op_update_inode(dir, res.dir_attr);
2061 		nfs_post_op_update_inode(inode, res.fattr);
2062 	}
2063 
2064 	return status;
2065 }
2066 
2067 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2068 {
2069 	struct nfs4_exception exception = { };
2070 	int err;
2071 	do {
2072 		err = nfs4_handle_exception(NFS_SERVER(inode),
2073 				_nfs4_proc_link(inode, dir, name),
2074 				&exception);
2075 	} while (exception.retry);
2076 	return err;
2077 }
2078 
2079 struct nfs4_createdata {
2080 	struct rpc_message msg;
2081 	struct nfs4_create_arg arg;
2082 	struct nfs4_create_res res;
2083 	struct nfs_fh fh;
2084 	struct nfs_fattr fattr;
2085 	struct nfs_fattr dir_fattr;
2086 };
2087 
2088 static struct nfs4_createdata *nfs4_alloc_createdata(struct inode *dir,
2089 		struct qstr *name, struct iattr *sattr, u32 ftype)
2090 {
2091 	struct nfs4_createdata *data;
2092 
2093 	data = kzalloc(sizeof(*data), GFP_KERNEL);
2094 	if (data != NULL) {
2095 		struct nfs_server *server = NFS_SERVER(dir);
2096 
2097 		data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE];
2098 		data->msg.rpc_argp = &data->arg;
2099 		data->msg.rpc_resp = &data->res;
2100 		data->arg.dir_fh = NFS_FH(dir);
2101 		data->arg.server = server;
2102 		data->arg.name = name;
2103 		data->arg.attrs = sattr;
2104 		data->arg.ftype = ftype;
2105 		data->arg.bitmask = server->attr_bitmask;
2106 		data->res.server = server;
2107 		data->res.fh = &data->fh;
2108 		data->res.fattr = &data->fattr;
2109 		data->res.dir_fattr = &data->dir_fattr;
2110 		nfs_fattr_init(data->res.fattr);
2111 		nfs_fattr_init(data->res.dir_fattr);
2112 	}
2113 	return data;
2114 }
2115 
2116 static int nfs4_do_create(struct inode *dir, struct dentry *dentry, struct nfs4_createdata *data)
2117 {
2118 	int status = rpc_call_sync(NFS_CLIENT(dir), &data->msg, 0);
2119 	if (status == 0) {
2120 		update_changeattr(dir, &data->res.dir_cinfo);
2121 		nfs_post_op_update_inode(dir, data->res.dir_fattr);
2122 		status = nfs_instantiate(dentry, data->res.fh, data->res.fattr);
2123 	}
2124 	return status;
2125 }
2126 
2127 static void nfs4_free_createdata(struct nfs4_createdata *data)
2128 {
2129 	kfree(data);
2130 }
2131 
2132 static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2133 		struct page *page, unsigned int len, struct iattr *sattr)
2134 {
2135 	struct nfs4_createdata *data;
2136 	int status = -ENAMETOOLONG;
2137 
2138 	if (len > NFS4_MAXPATHLEN)
2139 		goto out;
2140 
2141 	status = -ENOMEM;
2142 	data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4LNK);
2143 	if (data == NULL)
2144 		goto out;
2145 
2146 	data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK];
2147 	data->arg.u.symlink.pages = &page;
2148 	data->arg.u.symlink.len = len;
2149 
2150 	status = nfs4_do_create(dir, dentry, data);
2151 
2152 	nfs4_free_createdata(data);
2153 out:
2154 	return status;
2155 }
2156 
2157 static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2158 		struct page *page, unsigned int len, struct iattr *sattr)
2159 {
2160 	struct nfs4_exception exception = { };
2161 	int err;
2162 	do {
2163 		err = nfs4_handle_exception(NFS_SERVER(dir),
2164 				_nfs4_proc_symlink(dir, dentry, page,
2165 							len, sattr),
2166 				&exception);
2167 	} while (exception.retry);
2168 	return err;
2169 }
2170 
2171 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2172 		struct iattr *sattr)
2173 {
2174 	struct nfs4_createdata *data;
2175 	int status = -ENOMEM;
2176 
2177 	data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4DIR);
2178 	if (data == NULL)
2179 		goto out;
2180 
2181 	status = nfs4_do_create(dir, dentry, data);
2182 
2183 	nfs4_free_createdata(data);
2184 out:
2185 	return status;
2186 }
2187 
2188 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2189 		struct iattr *sattr)
2190 {
2191 	struct nfs4_exception exception = { };
2192 	int err;
2193 	do {
2194 		err = nfs4_handle_exception(NFS_SERVER(dir),
2195 				_nfs4_proc_mkdir(dir, dentry, sattr),
2196 				&exception);
2197 	} while (exception.retry);
2198 	return err;
2199 }
2200 
2201 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2202                   u64 cookie, struct page *page, unsigned int count, int plus)
2203 {
2204 	struct inode		*dir = dentry->d_inode;
2205 	struct nfs4_readdir_arg args = {
2206 		.fh = NFS_FH(dir),
2207 		.pages = &page,
2208 		.pgbase = 0,
2209 		.count = count,
2210 		.bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2211 	};
2212 	struct nfs4_readdir_res res;
2213 	struct rpc_message msg = {
2214 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2215 		.rpc_argp = &args,
2216 		.rpc_resp = &res,
2217 		.rpc_cred = cred,
2218 	};
2219 	int			status;
2220 
2221 	dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __func__,
2222 			dentry->d_parent->d_name.name,
2223 			dentry->d_name.name,
2224 			(unsigned long long)cookie);
2225 	nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2226 	res.pgbase = args.pgbase;
2227 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2228 	if (status == 0)
2229 		memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2230 
2231 	nfs_invalidate_atime(dir);
2232 
2233 	dprintk("%s: returns %d\n", __func__, status);
2234 	return status;
2235 }
2236 
2237 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2238                   u64 cookie, struct page *page, unsigned int count, int plus)
2239 {
2240 	struct nfs4_exception exception = { };
2241 	int err;
2242 	do {
2243 		err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2244 				_nfs4_proc_readdir(dentry, cred, cookie,
2245 					page, count, plus),
2246 				&exception);
2247 	} while (exception.retry);
2248 	return err;
2249 }
2250 
2251 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2252 		struct iattr *sattr, dev_t rdev)
2253 {
2254 	struct nfs4_createdata *data;
2255 	int mode = sattr->ia_mode;
2256 	int status = -ENOMEM;
2257 
2258 	BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2259 	BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2260 
2261 	data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4SOCK);
2262 	if (data == NULL)
2263 		goto out;
2264 
2265 	if (S_ISFIFO(mode))
2266 		data->arg.ftype = NF4FIFO;
2267 	else if (S_ISBLK(mode)) {
2268 		data->arg.ftype = NF4BLK;
2269 		data->arg.u.device.specdata1 = MAJOR(rdev);
2270 		data->arg.u.device.specdata2 = MINOR(rdev);
2271 	}
2272 	else if (S_ISCHR(mode)) {
2273 		data->arg.ftype = NF4CHR;
2274 		data->arg.u.device.specdata1 = MAJOR(rdev);
2275 		data->arg.u.device.specdata2 = MINOR(rdev);
2276 	}
2277 
2278 	status = nfs4_do_create(dir, dentry, data);
2279 
2280 	nfs4_free_createdata(data);
2281 out:
2282 	return status;
2283 }
2284 
2285 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2286 		struct iattr *sattr, dev_t rdev)
2287 {
2288 	struct nfs4_exception exception = { };
2289 	int err;
2290 	do {
2291 		err = nfs4_handle_exception(NFS_SERVER(dir),
2292 				_nfs4_proc_mknod(dir, dentry, sattr, rdev),
2293 				&exception);
2294 	} while (exception.retry);
2295 	return err;
2296 }
2297 
2298 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2299 		 struct nfs_fsstat *fsstat)
2300 {
2301 	struct nfs4_statfs_arg args = {
2302 		.fh = fhandle,
2303 		.bitmask = server->attr_bitmask,
2304 	};
2305 	struct rpc_message msg = {
2306 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2307 		.rpc_argp = &args,
2308 		.rpc_resp = fsstat,
2309 	};
2310 
2311 	nfs_fattr_init(fsstat->fattr);
2312 	return rpc_call_sync(server->client, &msg, 0);
2313 }
2314 
2315 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2316 {
2317 	struct nfs4_exception exception = { };
2318 	int err;
2319 	do {
2320 		err = nfs4_handle_exception(server,
2321 				_nfs4_proc_statfs(server, fhandle, fsstat),
2322 				&exception);
2323 	} while (exception.retry);
2324 	return err;
2325 }
2326 
2327 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2328 		struct nfs_fsinfo *fsinfo)
2329 {
2330 	struct nfs4_fsinfo_arg args = {
2331 		.fh = fhandle,
2332 		.bitmask = server->attr_bitmask,
2333 	};
2334 	struct rpc_message msg = {
2335 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2336 		.rpc_argp = &args,
2337 		.rpc_resp = fsinfo,
2338 	};
2339 
2340 	return rpc_call_sync(server->client, &msg, 0);
2341 }
2342 
2343 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2344 {
2345 	struct nfs4_exception exception = { };
2346 	int err;
2347 
2348 	do {
2349 		err = nfs4_handle_exception(server,
2350 				_nfs4_do_fsinfo(server, fhandle, fsinfo),
2351 				&exception);
2352 	} while (exception.retry);
2353 	return err;
2354 }
2355 
2356 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2357 {
2358 	nfs_fattr_init(fsinfo->fattr);
2359 	return nfs4_do_fsinfo(server, fhandle, fsinfo);
2360 }
2361 
2362 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2363 		struct nfs_pathconf *pathconf)
2364 {
2365 	struct nfs4_pathconf_arg args = {
2366 		.fh = fhandle,
2367 		.bitmask = server->attr_bitmask,
2368 	};
2369 	struct rpc_message msg = {
2370 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2371 		.rpc_argp = &args,
2372 		.rpc_resp = pathconf,
2373 	};
2374 
2375 	/* None of the pathconf attributes are mandatory to implement */
2376 	if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2377 		memset(pathconf, 0, sizeof(*pathconf));
2378 		return 0;
2379 	}
2380 
2381 	nfs_fattr_init(pathconf->fattr);
2382 	return rpc_call_sync(server->client, &msg, 0);
2383 }
2384 
2385 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2386 		struct nfs_pathconf *pathconf)
2387 {
2388 	struct nfs4_exception exception = { };
2389 	int err;
2390 
2391 	do {
2392 		err = nfs4_handle_exception(server,
2393 				_nfs4_proc_pathconf(server, fhandle, pathconf),
2394 				&exception);
2395 	} while (exception.retry);
2396 	return err;
2397 }
2398 
2399 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2400 {
2401 	struct nfs_server *server = NFS_SERVER(data->inode);
2402 
2403 	if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2404 		rpc_restart_call(task);
2405 		return -EAGAIN;
2406 	}
2407 
2408 	nfs_invalidate_atime(data->inode);
2409 	if (task->tk_status > 0)
2410 		renew_lease(server, data->timestamp);
2411 	return 0;
2412 }
2413 
2414 static void nfs4_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg)
2415 {
2416 	data->timestamp   = jiffies;
2417 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ];
2418 }
2419 
2420 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2421 {
2422 	struct inode *inode = data->inode;
2423 
2424 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2425 		rpc_restart_call(task);
2426 		return -EAGAIN;
2427 	}
2428 	if (task->tk_status >= 0) {
2429 		renew_lease(NFS_SERVER(inode), data->timestamp);
2430 		nfs_post_op_update_inode_force_wcc(inode, data->res.fattr);
2431 	}
2432 	return 0;
2433 }
2434 
2435 static void nfs4_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg)
2436 {
2437 	struct nfs_server *server = NFS_SERVER(data->inode);
2438 
2439 	data->args.bitmask = server->attr_bitmask;
2440 	data->res.server = server;
2441 	data->timestamp   = jiffies;
2442 
2443 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE];
2444 }
2445 
2446 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2447 {
2448 	struct inode *inode = data->inode;
2449 
2450 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2451 		rpc_restart_call(task);
2452 		return -EAGAIN;
2453 	}
2454 	nfs_refresh_inode(inode, data->res.fattr);
2455 	return 0;
2456 }
2457 
2458 static void nfs4_proc_commit_setup(struct nfs_write_data *data, struct rpc_message *msg)
2459 {
2460 	struct nfs_server *server = NFS_SERVER(data->inode);
2461 
2462 	data->args.bitmask = server->attr_bitmask;
2463 	data->res.server = server;
2464 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT];
2465 }
2466 
2467 /*
2468  * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2469  * standalone procedure for queueing an asynchronous RENEW.
2470  */
2471 static void nfs4_renew_done(struct rpc_task *task, void *data)
2472 {
2473 	struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp;
2474 	unsigned long timestamp = (unsigned long)data;
2475 
2476 	if (task->tk_status < 0) {
2477 		switch (task->tk_status) {
2478 			case -NFS4ERR_STALE_CLIENTID:
2479 			case -NFS4ERR_EXPIRED:
2480 			case -NFS4ERR_CB_PATH_DOWN:
2481 				nfs4_schedule_state_recovery(clp);
2482 		}
2483 		return;
2484 	}
2485 	spin_lock(&clp->cl_lock);
2486 	if (time_before(clp->cl_last_renewal,timestamp))
2487 		clp->cl_last_renewal = timestamp;
2488 	spin_unlock(&clp->cl_lock);
2489 }
2490 
2491 static const struct rpc_call_ops nfs4_renew_ops = {
2492 	.rpc_call_done = nfs4_renew_done,
2493 };
2494 
2495 int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
2496 {
2497 	struct rpc_message msg = {
2498 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2499 		.rpc_argp	= clp,
2500 		.rpc_cred	= cred,
2501 	};
2502 
2503 	return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2504 			&nfs4_renew_ops, (void *)jiffies);
2505 }
2506 
2507 int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
2508 {
2509 	struct rpc_message msg = {
2510 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2511 		.rpc_argp	= clp,
2512 		.rpc_cred	= cred,
2513 	};
2514 	unsigned long now = jiffies;
2515 	int status;
2516 
2517 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2518 	if (status < 0)
2519 		return status;
2520 	spin_lock(&clp->cl_lock);
2521 	if (time_before(clp->cl_last_renewal,now))
2522 		clp->cl_last_renewal = now;
2523 	spin_unlock(&clp->cl_lock);
2524 	return 0;
2525 }
2526 
2527 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2528 {
2529 	return (server->caps & NFS_CAP_ACLS)
2530 		&& (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2531 		&& (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2532 }
2533 
2534 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2535  * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2536  * the stack.
2537  */
2538 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2539 
2540 static void buf_to_pages(const void *buf, size_t buflen,
2541 		struct page **pages, unsigned int *pgbase)
2542 {
2543 	const void *p = buf;
2544 
2545 	*pgbase = offset_in_page(buf);
2546 	p -= *pgbase;
2547 	while (p < buf + buflen) {
2548 		*(pages++) = virt_to_page(p);
2549 		p += PAGE_CACHE_SIZE;
2550 	}
2551 }
2552 
2553 struct nfs4_cached_acl {
2554 	int cached;
2555 	size_t len;
2556 	char data[0];
2557 };
2558 
2559 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2560 {
2561 	struct nfs_inode *nfsi = NFS_I(inode);
2562 
2563 	spin_lock(&inode->i_lock);
2564 	kfree(nfsi->nfs4_acl);
2565 	nfsi->nfs4_acl = acl;
2566 	spin_unlock(&inode->i_lock);
2567 }
2568 
2569 static void nfs4_zap_acl_attr(struct inode *inode)
2570 {
2571 	nfs4_set_cached_acl(inode, NULL);
2572 }
2573 
2574 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2575 {
2576 	struct nfs_inode *nfsi = NFS_I(inode);
2577 	struct nfs4_cached_acl *acl;
2578 	int ret = -ENOENT;
2579 
2580 	spin_lock(&inode->i_lock);
2581 	acl = nfsi->nfs4_acl;
2582 	if (acl == NULL)
2583 		goto out;
2584 	if (buf == NULL) /* user is just asking for length */
2585 		goto out_len;
2586 	if (acl->cached == 0)
2587 		goto out;
2588 	ret = -ERANGE; /* see getxattr(2) man page */
2589 	if (acl->len > buflen)
2590 		goto out;
2591 	memcpy(buf, acl->data, acl->len);
2592 out_len:
2593 	ret = acl->len;
2594 out:
2595 	spin_unlock(&inode->i_lock);
2596 	return ret;
2597 }
2598 
2599 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2600 {
2601 	struct nfs4_cached_acl *acl;
2602 
2603 	if (buf && acl_len <= PAGE_SIZE) {
2604 		acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2605 		if (acl == NULL)
2606 			goto out;
2607 		acl->cached = 1;
2608 		memcpy(acl->data, buf, acl_len);
2609 	} else {
2610 		acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2611 		if (acl == NULL)
2612 			goto out;
2613 		acl->cached = 0;
2614 	}
2615 	acl->len = acl_len;
2616 out:
2617 	nfs4_set_cached_acl(inode, acl);
2618 }
2619 
2620 static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2621 {
2622 	struct page *pages[NFS4ACL_MAXPAGES];
2623 	struct nfs_getaclargs args = {
2624 		.fh = NFS_FH(inode),
2625 		.acl_pages = pages,
2626 		.acl_len = buflen,
2627 	};
2628 	size_t resp_len = buflen;
2629 	void *resp_buf;
2630 	struct rpc_message msg = {
2631 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2632 		.rpc_argp = &args,
2633 		.rpc_resp = &resp_len,
2634 	};
2635 	struct page *localpage = NULL;
2636 	int ret;
2637 
2638 	if (buflen < PAGE_SIZE) {
2639 		/* As long as we're doing a round trip to the server anyway,
2640 		 * let's be prepared for a page of acl data. */
2641 		localpage = alloc_page(GFP_KERNEL);
2642 		resp_buf = page_address(localpage);
2643 		if (localpage == NULL)
2644 			return -ENOMEM;
2645 		args.acl_pages[0] = localpage;
2646 		args.acl_pgbase = 0;
2647 		resp_len = args.acl_len = PAGE_SIZE;
2648 	} else {
2649 		resp_buf = buf;
2650 		buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2651 	}
2652 	ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2653 	if (ret)
2654 		goto out_free;
2655 	if (resp_len > args.acl_len)
2656 		nfs4_write_cached_acl(inode, NULL, resp_len);
2657 	else
2658 		nfs4_write_cached_acl(inode, resp_buf, resp_len);
2659 	if (buf) {
2660 		ret = -ERANGE;
2661 		if (resp_len > buflen)
2662 			goto out_free;
2663 		if (localpage)
2664 			memcpy(buf, resp_buf, resp_len);
2665 	}
2666 	ret = resp_len;
2667 out_free:
2668 	if (localpage)
2669 		__free_page(localpage);
2670 	return ret;
2671 }
2672 
2673 static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2674 {
2675 	struct nfs4_exception exception = { };
2676 	ssize_t ret;
2677 	do {
2678 		ret = __nfs4_get_acl_uncached(inode, buf, buflen);
2679 		if (ret >= 0)
2680 			break;
2681 		ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
2682 	} while (exception.retry);
2683 	return ret;
2684 }
2685 
2686 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2687 {
2688 	struct nfs_server *server = NFS_SERVER(inode);
2689 	int ret;
2690 
2691 	if (!nfs4_server_supports_acls(server))
2692 		return -EOPNOTSUPP;
2693 	ret = nfs_revalidate_inode(server, inode);
2694 	if (ret < 0)
2695 		return ret;
2696 	if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_ACL)
2697 		nfs_zap_acl_cache(inode);
2698 	ret = nfs4_read_cached_acl(inode, buf, buflen);
2699 	if (ret != -ENOENT)
2700 		return ret;
2701 	return nfs4_get_acl_uncached(inode, buf, buflen);
2702 }
2703 
2704 static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2705 {
2706 	struct nfs_server *server = NFS_SERVER(inode);
2707 	struct page *pages[NFS4ACL_MAXPAGES];
2708 	struct nfs_setaclargs arg = {
2709 		.fh		= NFS_FH(inode),
2710 		.acl_pages	= pages,
2711 		.acl_len	= buflen,
2712 	};
2713 	struct rpc_message msg = {
2714 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2715 		.rpc_argp	= &arg,
2716 		.rpc_resp	= NULL,
2717 	};
2718 	int ret;
2719 
2720 	if (!nfs4_server_supports_acls(server))
2721 		return -EOPNOTSUPP;
2722 	nfs_inode_return_delegation(inode);
2723 	buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2724 	ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2725 	nfs_access_zap_cache(inode);
2726 	nfs_zap_acl_cache(inode);
2727 	return ret;
2728 }
2729 
2730 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2731 {
2732 	struct nfs4_exception exception = { };
2733 	int err;
2734 	do {
2735 		err = nfs4_handle_exception(NFS_SERVER(inode),
2736 				__nfs4_proc_set_acl(inode, buf, buflen),
2737 				&exception);
2738 	} while (exception.retry);
2739 	return err;
2740 }
2741 
2742 static int
2743 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2744 {
2745 	struct nfs_client *clp = server->nfs_client;
2746 
2747 	if (!clp || task->tk_status >= 0)
2748 		return 0;
2749 	switch(task->tk_status) {
2750 		case -NFS4ERR_STALE_CLIENTID:
2751 		case -NFS4ERR_STALE_STATEID:
2752 		case -NFS4ERR_EXPIRED:
2753 			rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL);
2754 			nfs4_schedule_state_recovery(clp);
2755 			if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2756 				rpc_wake_up_queued_task(&clp->cl_rpcwaitq, task);
2757 			task->tk_status = 0;
2758 			return -EAGAIN;
2759 		case -NFS4ERR_DELAY:
2760 			nfs_inc_server_stats(server, NFSIOS_DELAY);
2761 		case -NFS4ERR_GRACE:
2762 			rpc_delay(task, NFS4_POLL_RETRY_MAX);
2763 			task->tk_status = 0;
2764 			return -EAGAIN;
2765 		case -NFS4ERR_OLD_STATEID:
2766 			task->tk_status = 0;
2767 			return -EAGAIN;
2768 	}
2769 	task->tk_status = nfs4_map_errors(task->tk_status);
2770 	return 0;
2771 }
2772 
2773 static int nfs4_wait_bit_killable(void *word)
2774 {
2775 	if (fatal_signal_pending(current))
2776 		return -ERESTARTSYS;
2777 	schedule();
2778 	return 0;
2779 }
2780 
2781 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp)
2782 {
2783 	int res;
2784 
2785 	might_sleep();
2786 
2787 	rwsem_acquire(&clp->cl_sem.dep_map, 0, 0, _RET_IP_);
2788 
2789 	res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2790 			nfs4_wait_bit_killable, TASK_KILLABLE);
2791 
2792 	rwsem_release(&clp->cl_sem.dep_map, 1, _RET_IP_);
2793 	return res;
2794 }
2795 
2796 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2797 {
2798 	int res = 0;
2799 
2800 	might_sleep();
2801 
2802 	if (*timeout <= 0)
2803 		*timeout = NFS4_POLL_RETRY_MIN;
2804 	if (*timeout > NFS4_POLL_RETRY_MAX)
2805 		*timeout = NFS4_POLL_RETRY_MAX;
2806 	schedule_timeout_killable(*timeout);
2807 	if (fatal_signal_pending(current))
2808 		res = -ERESTARTSYS;
2809 	*timeout <<= 1;
2810 	return res;
2811 }
2812 
2813 /* This is the error handling routine for processes that are allowed
2814  * to sleep.
2815  */
2816 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2817 {
2818 	struct nfs_client *clp = server->nfs_client;
2819 	int ret = errorcode;
2820 
2821 	exception->retry = 0;
2822 	switch(errorcode) {
2823 		case 0:
2824 			return 0;
2825 		case -NFS4ERR_STALE_CLIENTID:
2826 		case -NFS4ERR_STALE_STATEID:
2827 		case -NFS4ERR_EXPIRED:
2828 			nfs4_schedule_state_recovery(clp);
2829 			ret = nfs4_wait_clnt_recover(server->client, clp);
2830 			if (ret == 0)
2831 				exception->retry = 1;
2832 			break;
2833 		case -NFS4ERR_FILE_OPEN:
2834 		case -NFS4ERR_GRACE:
2835 		case -NFS4ERR_DELAY:
2836 			ret = nfs4_delay(server->client, &exception->timeout);
2837 			if (ret != 0)
2838 				break;
2839 		case -NFS4ERR_OLD_STATEID:
2840 			exception->retry = 1;
2841 	}
2842 	/* We failed to handle the error */
2843 	return nfs4_map_errors(ret);
2844 }
2845 
2846 int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2847 {
2848 	nfs4_verifier sc_verifier;
2849 	struct nfs4_setclientid setclientid = {
2850 		.sc_verifier = &sc_verifier,
2851 		.sc_prog = program,
2852 	};
2853 	struct rpc_message msg = {
2854 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2855 		.rpc_argp = &setclientid,
2856 		.rpc_resp = clp,
2857 		.rpc_cred = cred,
2858 	};
2859 	__be32 *p;
2860 	int loop = 0;
2861 	int status;
2862 
2863 	p = (__be32*)sc_verifier.data;
2864 	*p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2865 	*p = htonl((u32)clp->cl_boot_time.tv_nsec);
2866 
2867 	for(;;) {
2868 		setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2869 				sizeof(setclientid.sc_name), "%s/%s %s %s %u",
2870 				clp->cl_ipaddr,
2871 				rpc_peeraddr2str(clp->cl_rpcclient,
2872 							RPC_DISPLAY_ADDR),
2873 				rpc_peeraddr2str(clp->cl_rpcclient,
2874 							RPC_DISPLAY_PROTO),
2875 				clp->cl_rpcclient->cl_auth->au_ops->au_name,
2876 				clp->cl_id_uniquifier);
2877 		setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2878 				sizeof(setclientid.sc_netid),
2879 				rpc_peeraddr2str(clp->cl_rpcclient,
2880 							RPC_DISPLAY_NETID));
2881 		setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2882 				sizeof(setclientid.sc_uaddr), "%s.%u.%u",
2883 				clp->cl_ipaddr, port >> 8, port & 255);
2884 
2885 		status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2886 		if (status != -NFS4ERR_CLID_INUSE)
2887 			break;
2888 		if (signalled())
2889 			break;
2890 		if (loop++ & 1)
2891 			ssleep(clp->cl_lease_time + 1);
2892 		else
2893 			if (++clp->cl_id_uniquifier == 0)
2894 				break;
2895 	}
2896 	return status;
2897 }
2898 
2899 static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2900 {
2901 	struct nfs_fsinfo fsinfo;
2902 	struct rpc_message msg = {
2903 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2904 		.rpc_argp = clp,
2905 		.rpc_resp = &fsinfo,
2906 		.rpc_cred = cred,
2907 	};
2908 	unsigned long now;
2909 	int status;
2910 
2911 	now = jiffies;
2912 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2913 	if (status == 0) {
2914 		spin_lock(&clp->cl_lock);
2915 		clp->cl_lease_time = fsinfo.lease_time * HZ;
2916 		clp->cl_last_renewal = now;
2917 		clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2918 		spin_unlock(&clp->cl_lock);
2919 	}
2920 	return status;
2921 }
2922 
2923 int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2924 {
2925 	long timeout = 0;
2926 	int err;
2927 	do {
2928 		err = _nfs4_proc_setclientid_confirm(clp, cred);
2929 		switch (err) {
2930 			case 0:
2931 				return err;
2932 			case -NFS4ERR_RESOURCE:
2933 				/* The IBM lawyers misread another document! */
2934 			case -NFS4ERR_DELAY:
2935 				err = nfs4_delay(clp->cl_rpcclient, &timeout);
2936 		}
2937 	} while (err == 0);
2938 	return err;
2939 }
2940 
2941 struct nfs4_delegreturndata {
2942 	struct nfs4_delegreturnargs args;
2943 	struct nfs4_delegreturnres res;
2944 	struct nfs_fh fh;
2945 	nfs4_stateid stateid;
2946 	unsigned long timestamp;
2947 	struct nfs_fattr fattr;
2948 	int rpc_status;
2949 };
2950 
2951 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
2952 {
2953 	struct nfs4_delegreturndata *data = calldata;
2954 	data->rpc_status = task->tk_status;
2955 	if (data->rpc_status == 0)
2956 		renew_lease(data->res.server, data->timestamp);
2957 }
2958 
2959 static void nfs4_delegreturn_release(void *calldata)
2960 {
2961 	kfree(calldata);
2962 }
2963 
2964 static const struct rpc_call_ops nfs4_delegreturn_ops = {
2965 	.rpc_call_done = nfs4_delegreturn_done,
2966 	.rpc_release = nfs4_delegreturn_release,
2967 };
2968 
2969 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync)
2970 {
2971 	struct nfs4_delegreturndata *data;
2972 	struct nfs_server *server = NFS_SERVER(inode);
2973 	struct rpc_task *task;
2974 	struct rpc_message msg = {
2975 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2976 		.rpc_cred = cred,
2977 	};
2978 	struct rpc_task_setup task_setup_data = {
2979 		.rpc_client = server->client,
2980 		.rpc_message = &msg,
2981 		.callback_ops = &nfs4_delegreturn_ops,
2982 		.flags = RPC_TASK_ASYNC,
2983 	};
2984 	int status = 0;
2985 
2986 	data = kmalloc(sizeof(*data), GFP_KERNEL);
2987 	if (data == NULL)
2988 		return -ENOMEM;
2989 	data->args.fhandle = &data->fh;
2990 	data->args.stateid = &data->stateid;
2991 	data->args.bitmask = server->attr_bitmask;
2992 	nfs_copy_fh(&data->fh, NFS_FH(inode));
2993 	memcpy(&data->stateid, stateid, sizeof(data->stateid));
2994 	data->res.fattr = &data->fattr;
2995 	data->res.server = server;
2996 	nfs_fattr_init(data->res.fattr);
2997 	data->timestamp = jiffies;
2998 	data->rpc_status = 0;
2999 
3000 	task_setup_data.callback_data = data;
3001 	msg.rpc_argp = &data->args,
3002 	msg.rpc_resp = &data->res,
3003 	task = rpc_run_task(&task_setup_data);
3004 	if (IS_ERR(task))
3005 		return PTR_ERR(task);
3006 	if (!issync)
3007 		goto out;
3008 	status = nfs4_wait_for_completion_rpc_task(task);
3009 	if (status != 0)
3010 		goto out;
3011 	status = data->rpc_status;
3012 	if (status != 0)
3013 		goto out;
3014 	nfs_refresh_inode(inode, &data->fattr);
3015 out:
3016 	rpc_put_task(task);
3017 	return status;
3018 }
3019 
3020 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync)
3021 {
3022 	struct nfs_server *server = NFS_SERVER(inode);
3023 	struct nfs4_exception exception = { };
3024 	int err;
3025 	do {
3026 		err = _nfs4_proc_delegreturn(inode, cred, stateid, issync);
3027 		switch (err) {
3028 			case -NFS4ERR_STALE_STATEID:
3029 			case -NFS4ERR_EXPIRED:
3030 			case 0:
3031 				return 0;
3032 		}
3033 		err = nfs4_handle_exception(server, err, &exception);
3034 	} while (exception.retry);
3035 	return err;
3036 }
3037 
3038 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3039 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3040 
3041 /*
3042  * sleep, with exponential backoff, and retry the LOCK operation.
3043  */
3044 static unsigned long
3045 nfs4_set_lock_task_retry(unsigned long timeout)
3046 {
3047 	schedule_timeout_killable(timeout);
3048 	timeout <<= 1;
3049 	if (timeout > NFS4_LOCK_MAXTIMEOUT)
3050 		return NFS4_LOCK_MAXTIMEOUT;
3051 	return timeout;
3052 }
3053 
3054 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3055 {
3056 	struct inode *inode = state->inode;
3057 	struct nfs_server *server = NFS_SERVER(inode);
3058 	struct nfs_client *clp = server->nfs_client;
3059 	struct nfs_lockt_args arg = {
3060 		.fh = NFS_FH(inode),
3061 		.fl = request,
3062 	};
3063 	struct nfs_lockt_res res = {
3064 		.denied = request,
3065 	};
3066 	struct rpc_message msg = {
3067 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3068 		.rpc_argp       = &arg,
3069 		.rpc_resp       = &res,
3070 		.rpc_cred	= state->owner->so_cred,
3071 	};
3072 	struct nfs4_lock_state *lsp;
3073 	int status;
3074 
3075 	down_read(&clp->cl_sem);
3076 	arg.lock_owner.clientid = clp->cl_clientid;
3077 	status = nfs4_set_lock_state(state, request);
3078 	if (status != 0)
3079 		goto out;
3080 	lsp = request->fl_u.nfs4_fl.owner;
3081 	arg.lock_owner.id = lsp->ls_id.id;
3082 	status = rpc_call_sync(server->client, &msg, 0);
3083 	switch (status) {
3084 		case 0:
3085 			request->fl_type = F_UNLCK;
3086 			break;
3087 		case -NFS4ERR_DENIED:
3088 			status = 0;
3089 	}
3090 	request->fl_ops->fl_release_private(request);
3091 out:
3092 	up_read(&clp->cl_sem);
3093 	return status;
3094 }
3095 
3096 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3097 {
3098 	struct nfs4_exception exception = { };
3099 	int err;
3100 
3101 	do {
3102 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3103 				_nfs4_proc_getlk(state, cmd, request),
3104 				&exception);
3105 	} while (exception.retry);
3106 	return err;
3107 }
3108 
3109 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3110 {
3111 	int res = 0;
3112 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3113 		case FL_POSIX:
3114 			res = posix_lock_file_wait(file, fl);
3115 			break;
3116 		case FL_FLOCK:
3117 			res = flock_lock_file_wait(file, fl);
3118 			break;
3119 		default:
3120 			BUG();
3121 	}
3122 	return res;
3123 }
3124 
3125 struct nfs4_unlockdata {
3126 	struct nfs_locku_args arg;
3127 	struct nfs_locku_res res;
3128 	struct nfs4_lock_state *lsp;
3129 	struct nfs_open_context *ctx;
3130 	struct file_lock fl;
3131 	const struct nfs_server *server;
3132 	unsigned long timestamp;
3133 };
3134 
3135 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3136 		struct nfs_open_context *ctx,
3137 		struct nfs4_lock_state *lsp,
3138 		struct nfs_seqid *seqid)
3139 {
3140 	struct nfs4_unlockdata *p;
3141 	struct inode *inode = lsp->ls_state->inode;
3142 
3143 	p = kmalloc(sizeof(*p), GFP_KERNEL);
3144 	if (p == NULL)
3145 		return NULL;
3146 	p->arg.fh = NFS_FH(inode);
3147 	p->arg.fl = &p->fl;
3148 	p->arg.seqid = seqid;
3149 	p->res.seqid = seqid;
3150 	p->arg.stateid = &lsp->ls_stateid;
3151 	p->lsp = lsp;
3152 	atomic_inc(&lsp->ls_count);
3153 	/* Ensure we don't close file until we're done freeing locks! */
3154 	p->ctx = get_nfs_open_context(ctx);
3155 	memcpy(&p->fl, fl, sizeof(p->fl));
3156 	p->server = NFS_SERVER(inode);
3157 	return p;
3158 }
3159 
3160 static void nfs4_locku_release_calldata(void *data)
3161 {
3162 	struct nfs4_unlockdata *calldata = data;
3163 	nfs_free_seqid(calldata->arg.seqid);
3164 	nfs4_put_lock_state(calldata->lsp);
3165 	put_nfs_open_context(calldata->ctx);
3166 	kfree(calldata);
3167 }
3168 
3169 static void nfs4_locku_done(struct rpc_task *task, void *data)
3170 {
3171 	struct nfs4_unlockdata *calldata = data;
3172 
3173 	if (RPC_ASSASSINATED(task))
3174 		return;
3175 	switch (task->tk_status) {
3176 		case 0:
3177 			memcpy(calldata->lsp->ls_stateid.data,
3178 					calldata->res.stateid.data,
3179 					sizeof(calldata->lsp->ls_stateid.data));
3180 			renew_lease(calldata->server, calldata->timestamp);
3181 			break;
3182 		case -NFS4ERR_STALE_STATEID:
3183 		case -NFS4ERR_EXPIRED:
3184 			break;
3185 		default:
3186 			if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN)
3187 				rpc_restart_call(task);
3188 	}
3189 }
3190 
3191 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3192 {
3193 	struct nfs4_unlockdata *calldata = data;
3194 
3195 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3196 		return;
3197 	if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3198 		/* Note: exit _without_ running nfs4_locku_done */
3199 		task->tk_action = NULL;
3200 		return;
3201 	}
3202 	calldata->timestamp = jiffies;
3203 	rpc_call_start(task);
3204 }
3205 
3206 static const struct rpc_call_ops nfs4_locku_ops = {
3207 	.rpc_call_prepare = nfs4_locku_prepare,
3208 	.rpc_call_done = nfs4_locku_done,
3209 	.rpc_release = nfs4_locku_release_calldata,
3210 };
3211 
3212 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3213 		struct nfs_open_context *ctx,
3214 		struct nfs4_lock_state *lsp,
3215 		struct nfs_seqid *seqid)
3216 {
3217 	struct nfs4_unlockdata *data;
3218 	struct rpc_message msg = {
3219 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3220 		.rpc_cred = ctx->cred,
3221 	};
3222 	struct rpc_task_setup task_setup_data = {
3223 		.rpc_client = NFS_CLIENT(lsp->ls_state->inode),
3224 		.rpc_message = &msg,
3225 		.callback_ops = &nfs4_locku_ops,
3226 		.workqueue = nfsiod_workqueue,
3227 		.flags = RPC_TASK_ASYNC,
3228 	};
3229 
3230 	/* Ensure this is an unlock - when canceling a lock, the
3231 	 * canceled lock is passed in, and it won't be an unlock.
3232 	 */
3233 	fl->fl_type = F_UNLCK;
3234 
3235 	data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3236 	if (data == NULL) {
3237 		nfs_free_seqid(seqid);
3238 		return ERR_PTR(-ENOMEM);
3239 	}
3240 
3241 	msg.rpc_argp = &data->arg,
3242 	msg.rpc_resp = &data->res,
3243 	task_setup_data.callback_data = data;
3244 	return rpc_run_task(&task_setup_data);
3245 }
3246 
3247 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3248 {
3249 	struct nfs_seqid *seqid;
3250 	struct nfs4_lock_state *lsp;
3251 	struct rpc_task *task;
3252 	int status = 0;
3253 	unsigned char fl_flags = request->fl_flags;
3254 
3255 	status = nfs4_set_lock_state(state, request);
3256 	/* Unlock _before_ we do the RPC call */
3257 	request->fl_flags |= FL_EXISTS;
3258 	if (do_vfs_lock(request->fl_file, request) == -ENOENT)
3259 		goto out;
3260 	if (status != 0)
3261 		goto out;
3262 	/* Is this a delegated lock? */
3263 	if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3264 		goto out;
3265 	lsp = request->fl_u.nfs4_fl.owner;
3266 	seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3267 	status = -ENOMEM;
3268 	if (seqid == NULL)
3269 		goto out;
3270 	task = nfs4_do_unlck(request, nfs_file_open_context(request->fl_file), lsp, seqid);
3271 	status = PTR_ERR(task);
3272 	if (IS_ERR(task))
3273 		goto out;
3274 	status = nfs4_wait_for_completion_rpc_task(task);
3275 	rpc_put_task(task);
3276 out:
3277 	request->fl_flags = fl_flags;
3278 	return status;
3279 }
3280 
3281 struct nfs4_lockdata {
3282 	struct nfs_lock_args arg;
3283 	struct nfs_lock_res res;
3284 	struct nfs4_lock_state *lsp;
3285 	struct nfs_open_context *ctx;
3286 	struct file_lock fl;
3287 	unsigned long timestamp;
3288 	int rpc_status;
3289 	int cancelled;
3290 };
3291 
3292 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3293 		struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3294 {
3295 	struct nfs4_lockdata *p;
3296 	struct inode *inode = lsp->ls_state->inode;
3297 	struct nfs_server *server = NFS_SERVER(inode);
3298 
3299 	p = kzalloc(sizeof(*p), GFP_KERNEL);
3300 	if (p == NULL)
3301 		return NULL;
3302 
3303 	p->arg.fh = NFS_FH(inode);
3304 	p->arg.fl = &p->fl;
3305 	p->arg.open_seqid = nfs_alloc_seqid(&lsp->ls_state->owner->so_seqid);
3306 	if (p->arg.open_seqid == NULL)
3307 		goto out_free;
3308 	p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3309 	if (p->arg.lock_seqid == NULL)
3310 		goto out_free_seqid;
3311 	p->arg.lock_stateid = &lsp->ls_stateid;
3312 	p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
3313 	p->arg.lock_owner.id = lsp->ls_id.id;
3314 	p->res.lock_seqid = p->arg.lock_seqid;
3315 	p->lsp = lsp;
3316 	atomic_inc(&lsp->ls_count);
3317 	p->ctx = get_nfs_open_context(ctx);
3318 	memcpy(&p->fl, fl, sizeof(p->fl));
3319 	return p;
3320 out_free_seqid:
3321 	nfs_free_seqid(p->arg.open_seqid);
3322 out_free:
3323 	kfree(p);
3324 	return NULL;
3325 }
3326 
3327 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3328 {
3329 	struct nfs4_lockdata *data = calldata;
3330 	struct nfs4_state *state = data->lsp->ls_state;
3331 
3332 	dprintk("%s: begin!\n", __func__);
3333 	if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3334 		return;
3335 	/* Do we need to do an open_to_lock_owner? */
3336 	if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3337 		if (nfs_wait_on_sequence(data->arg.open_seqid, task) != 0)
3338 			return;
3339 		data->arg.open_stateid = &state->stateid;
3340 		data->arg.new_lock_owner = 1;
3341 		data->res.open_seqid = data->arg.open_seqid;
3342 	} else
3343 		data->arg.new_lock_owner = 0;
3344 	data->timestamp = jiffies;
3345 	rpc_call_start(task);
3346 	dprintk("%s: done!, ret = %d\n", __func__, data->rpc_status);
3347 }
3348 
3349 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3350 {
3351 	struct nfs4_lockdata *data = calldata;
3352 
3353 	dprintk("%s: begin!\n", __func__);
3354 
3355 	data->rpc_status = task->tk_status;
3356 	if (RPC_ASSASSINATED(task))
3357 		goto out;
3358 	if (data->arg.new_lock_owner != 0) {
3359 		if (data->rpc_status == 0)
3360 			nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3361 		else
3362 			goto out;
3363 	}
3364 	if (data->rpc_status == 0) {
3365 		memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3366 					sizeof(data->lsp->ls_stateid.data));
3367 		data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3368 		renew_lease(NFS_SERVER(data->ctx->path.dentry->d_inode), data->timestamp);
3369 	}
3370 out:
3371 	dprintk("%s: done, ret = %d!\n", __func__, data->rpc_status);
3372 }
3373 
3374 static void nfs4_lock_release(void *calldata)
3375 {
3376 	struct nfs4_lockdata *data = calldata;
3377 
3378 	dprintk("%s: begin!\n", __func__);
3379 	nfs_free_seqid(data->arg.open_seqid);
3380 	if (data->cancelled != 0) {
3381 		struct rpc_task *task;
3382 		task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3383 				data->arg.lock_seqid);
3384 		if (!IS_ERR(task))
3385 			rpc_put_task(task);
3386 		dprintk("%s: cancelling lock!\n", __func__);
3387 	} else
3388 		nfs_free_seqid(data->arg.lock_seqid);
3389 	nfs4_put_lock_state(data->lsp);
3390 	put_nfs_open_context(data->ctx);
3391 	kfree(data);
3392 	dprintk("%s: done!\n", __func__);
3393 }
3394 
3395 static const struct rpc_call_ops nfs4_lock_ops = {
3396 	.rpc_call_prepare = nfs4_lock_prepare,
3397 	.rpc_call_done = nfs4_lock_done,
3398 	.rpc_release = nfs4_lock_release,
3399 };
3400 
3401 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3402 {
3403 	struct nfs4_lockdata *data;
3404 	struct rpc_task *task;
3405 	struct rpc_message msg = {
3406 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3407 		.rpc_cred = state->owner->so_cred,
3408 	};
3409 	struct rpc_task_setup task_setup_data = {
3410 		.rpc_client = NFS_CLIENT(state->inode),
3411 		.rpc_message = &msg,
3412 		.callback_ops = &nfs4_lock_ops,
3413 		.workqueue = nfsiod_workqueue,
3414 		.flags = RPC_TASK_ASYNC,
3415 	};
3416 	int ret;
3417 
3418 	dprintk("%s: begin!\n", __func__);
3419 	data = nfs4_alloc_lockdata(fl, nfs_file_open_context(fl->fl_file),
3420 			fl->fl_u.nfs4_fl.owner);
3421 	if (data == NULL)
3422 		return -ENOMEM;
3423 	if (IS_SETLKW(cmd))
3424 		data->arg.block = 1;
3425 	if (reclaim != 0)
3426 		data->arg.reclaim = 1;
3427 	msg.rpc_argp = &data->arg,
3428 	msg.rpc_resp = &data->res,
3429 	task_setup_data.callback_data = data;
3430 	task = rpc_run_task(&task_setup_data);
3431 	if (IS_ERR(task))
3432 		return PTR_ERR(task);
3433 	ret = nfs4_wait_for_completion_rpc_task(task);
3434 	if (ret == 0) {
3435 		ret = data->rpc_status;
3436 		if (ret == -NFS4ERR_DENIED)
3437 			ret = -EAGAIN;
3438 	} else
3439 		data->cancelled = 1;
3440 	rpc_put_task(task);
3441 	dprintk("%s: done, ret = %d!\n", __func__, ret);
3442 	return ret;
3443 }
3444 
3445 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3446 {
3447 	struct nfs_server *server = NFS_SERVER(state->inode);
3448 	struct nfs4_exception exception = { };
3449 	int err;
3450 
3451 	do {
3452 		/* Cache the lock if possible... */
3453 		if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3454 			return 0;
3455 		err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3456 		if (err != -NFS4ERR_DELAY)
3457 			break;
3458 		nfs4_handle_exception(server, err, &exception);
3459 	} while (exception.retry);
3460 	return err;
3461 }
3462 
3463 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3464 {
3465 	struct nfs_server *server = NFS_SERVER(state->inode);
3466 	struct nfs4_exception exception = { };
3467 	int err;
3468 
3469 	err = nfs4_set_lock_state(state, request);
3470 	if (err != 0)
3471 		return err;
3472 	do {
3473 		if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3474 			return 0;
3475 		err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3476 		if (err != -NFS4ERR_DELAY)
3477 			break;
3478 		nfs4_handle_exception(server, err, &exception);
3479 	} while (exception.retry);
3480 	return err;
3481 }
3482 
3483 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3484 {
3485 	struct nfs_client *clp = state->owner->so_client;
3486 	unsigned char fl_flags = request->fl_flags;
3487 	int status;
3488 
3489 	/* Is this a delegated open? */
3490 	status = nfs4_set_lock_state(state, request);
3491 	if (status != 0)
3492 		goto out;
3493 	request->fl_flags |= FL_ACCESS;
3494 	status = do_vfs_lock(request->fl_file, request);
3495 	if (status < 0)
3496 		goto out;
3497 	down_read(&clp->cl_sem);
3498 	if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3499 		struct nfs_inode *nfsi = NFS_I(state->inode);
3500 		/* Yes: cache locks! */
3501 		down_read(&nfsi->rwsem);
3502 		/* ...but avoid races with delegation recall... */
3503 		if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3504 			request->fl_flags = fl_flags & ~FL_SLEEP;
3505 			status = do_vfs_lock(request->fl_file, request);
3506 			up_read(&nfsi->rwsem);
3507 			goto out_unlock;
3508 		}
3509 		up_read(&nfsi->rwsem);
3510 	}
3511 	status = _nfs4_do_setlk(state, cmd, request, 0);
3512 	if (status != 0)
3513 		goto out_unlock;
3514 	/* Note: we always want to sleep here! */
3515 	request->fl_flags = fl_flags | FL_SLEEP;
3516 	if (do_vfs_lock(request->fl_file, request) < 0)
3517 		printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __func__);
3518 out_unlock:
3519 	up_read(&clp->cl_sem);
3520 out:
3521 	request->fl_flags = fl_flags;
3522 	return status;
3523 }
3524 
3525 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3526 {
3527 	struct nfs4_exception exception = { };
3528 	int err;
3529 
3530 	do {
3531 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3532 				_nfs4_proc_setlk(state, cmd, request),
3533 				&exception);
3534 	} while (exception.retry);
3535 	return err;
3536 }
3537 
3538 static int
3539 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3540 {
3541 	struct nfs_open_context *ctx;
3542 	struct nfs4_state *state;
3543 	unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3544 	int status;
3545 
3546 	/* verify open state */
3547 	ctx = nfs_file_open_context(filp);
3548 	state = ctx->state;
3549 
3550 	if (request->fl_start < 0 || request->fl_end < 0)
3551 		return -EINVAL;
3552 
3553 	if (IS_GETLK(cmd))
3554 		return nfs4_proc_getlk(state, F_GETLK, request);
3555 
3556 	if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3557 		return -EINVAL;
3558 
3559 	if (request->fl_type == F_UNLCK)
3560 		return nfs4_proc_unlck(state, cmd, request);
3561 
3562 	do {
3563 		status = nfs4_proc_setlk(state, cmd, request);
3564 		if ((status != -EAGAIN) || IS_SETLK(cmd))
3565 			break;
3566 		timeout = nfs4_set_lock_task_retry(timeout);
3567 		status = -ERESTARTSYS;
3568 		if (signalled())
3569 			break;
3570 	} while(status < 0);
3571 	return status;
3572 }
3573 
3574 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3575 {
3576 	struct nfs_server *server = NFS_SERVER(state->inode);
3577 	struct nfs4_exception exception = { };
3578 	int err;
3579 
3580 	err = nfs4_set_lock_state(state, fl);
3581 	if (err != 0)
3582 		goto out;
3583 	do {
3584 		err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3585 		if (err != -NFS4ERR_DELAY)
3586 			break;
3587 		err = nfs4_handle_exception(server, err, &exception);
3588 	} while (exception.retry);
3589 out:
3590 	return err;
3591 }
3592 
3593 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3594 
3595 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3596 		size_t buflen, int flags)
3597 {
3598 	struct inode *inode = dentry->d_inode;
3599 
3600 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3601 		return -EOPNOTSUPP;
3602 
3603 	return nfs4_proc_set_acl(inode, buf, buflen);
3604 }
3605 
3606 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3607  * and that's what we'll do for e.g. user attributes that haven't been set.
3608  * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3609  * attributes in kernel-managed attribute namespaces. */
3610 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3611 		size_t buflen)
3612 {
3613 	struct inode *inode = dentry->d_inode;
3614 
3615 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3616 		return -EOPNOTSUPP;
3617 
3618 	return nfs4_proc_get_acl(inode, buf, buflen);
3619 }
3620 
3621 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3622 {
3623 	size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3624 
3625 	if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3626 		return 0;
3627 	if (buf && buflen < len)
3628 		return -ERANGE;
3629 	if (buf)
3630 		memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3631 	return len;
3632 }
3633 
3634 int nfs4_proc_fs_locations(struct inode *dir, const struct qstr *name,
3635 		struct nfs4_fs_locations *fs_locations, struct page *page)
3636 {
3637 	struct nfs_server *server = NFS_SERVER(dir);
3638 	u32 bitmask[2] = {
3639 		[0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
3640 		[1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
3641 	};
3642 	struct nfs4_fs_locations_arg args = {
3643 		.dir_fh = NFS_FH(dir),
3644 		.name = name,
3645 		.page = page,
3646 		.bitmask = bitmask,
3647 	};
3648 	struct rpc_message msg = {
3649 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3650 		.rpc_argp = &args,
3651 		.rpc_resp = fs_locations,
3652 	};
3653 	int status;
3654 
3655 	dprintk("%s: start\n", __func__);
3656 	nfs_fattr_init(&fs_locations->fattr);
3657 	fs_locations->server = server;
3658 	fs_locations->nlocations = 0;
3659 	status = rpc_call_sync(server->client, &msg, 0);
3660 	dprintk("%s: returned status = %d\n", __func__, status);
3661 	return status;
3662 }
3663 
3664 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3665 	.recover_open	= nfs4_open_reclaim,
3666 	.recover_lock	= nfs4_lock_reclaim,
3667 };
3668 
3669 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3670 	.recover_open	= nfs4_open_expired,
3671 	.recover_lock	= nfs4_lock_expired,
3672 };
3673 
3674 static const struct inode_operations nfs4_file_inode_operations = {
3675 	.permission	= nfs_permission,
3676 	.getattr	= nfs_getattr,
3677 	.setattr	= nfs_setattr,
3678 	.getxattr	= nfs4_getxattr,
3679 	.setxattr	= nfs4_setxattr,
3680 	.listxattr	= nfs4_listxattr,
3681 };
3682 
3683 const struct nfs_rpc_ops nfs_v4_clientops = {
3684 	.version	= 4,			/* protocol version */
3685 	.dentry_ops	= &nfs4_dentry_operations,
3686 	.dir_inode_ops	= &nfs4_dir_inode_operations,
3687 	.file_inode_ops	= &nfs4_file_inode_operations,
3688 	.getroot	= nfs4_proc_get_root,
3689 	.getattr	= nfs4_proc_getattr,
3690 	.setattr	= nfs4_proc_setattr,
3691 	.lookupfh	= nfs4_proc_lookupfh,
3692 	.lookup		= nfs4_proc_lookup,
3693 	.access		= nfs4_proc_access,
3694 	.readlink	= nfs4_proc_readlink,
3695 	.create		= nfs4_proc_create,
3696 	.remove		= nfs4_proc_remove,
3697 	.unlink_setup	= nfs4_proc_unlink_setup,
3698 	.unlink_done	= nfs4_proc_unlink_done,
3699 	.rename		= nfs4_proc_rename,
3700 	.link		= nfs4_proc_link,
3701 	.symlink	= nfs4_proc_symlink,
3702 	.mkdir		= nfs4_proc_mkdir,
3703 	.rmdir		= nfs4_proc_remove,
3704 	.readdir	= nfs4_proc_readdir,
3705 	.mknod		= nfs4_proc_mknod,
3706 	.statfs		= nfs4_proc_statfs,
3707 	.fsinfo		= nfs4_proc_fsinfo,
3708 	.pathconf	= nfs4_proc_pathconf,
3709 	.set_capabilities = nfs4_server_capabilities,
3710 	.decode_dirent	= nfs4_decode_dirent,
3711 	.read_setup	= nfs4_proc_read_setup,
3712 	.read_done	= nfs4_read_done,
3713 	.write_setup	= nfs4_proc_write_setup,
3714 	.write_done	= nfs4_write_done,
3715 	.commit_setup	= nfs4_proc_commit_setup,
3716 	.commit_done	= nfs4_commit_done,
3717 	.lock		= nfs4_proc_lock,
3718 	.clear_acl_cache = nfs4_zap_acl_attr,
3719 };
3720 
3721 /*
3722  * Local variables:
3723  *  c-basic-offset: 8
3724  * End:
3725  */
3726