xref: /openbmc/linux/fs/nfs/nfs4proc.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  fs/nfs/nfs4proc.c
3  *
4  *  Client-side procedure declarations for NFSv4.
5  *
6  *  Copyright (c) 2002 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Kendrick Smith <kmsmith@umich.edu>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "internal.h"
55 #include "iostat.h"
56 
57 #define NFSDBG_FACILITY		NFSDBG_PROC
58 
59 #define NFS4_POLL_RETRY_MIN	(HZ/10)
60 #define NFS4_POLL_RETRY_MAX	(15*HZ)
61 
62 struct nfs4_opendata;
63 static int _nfs4_proc_open(struct nfs4_opendata *data);
64 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
65 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp);
68 static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr);
69 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr);
70 
71 /* Prevent leaks of NFSv4 errors into userland */
72 int nfs4_map_errors(int err)
73 {
74 	if (err < -1000) {
75 		dprintk("%s could not handle NFSv4 error %d\n",
76 				__func__, -err);
77 		return -EIO;
78 	}
79 	return err;
80 }
81 
82 /*
83  * This is our standard bitmap for GETATTR requests.
84  */
85 const u32 nfs4_fattr_bitmap[2] = {
86 	FATTR4_WORD0_TYPE
87 	| FATTR4_WORD0_CHANGE
88 	| FATTR4_WORD0_SIZE
89 	| FATTR4_WORD0_FSID
90 	| FATTR4_WORD0_FILEID,
91 	FATTR4_WORD1_MODE
92 	| FATTR4_WORD1_NUMLINKS
93 	| FATTR4_WORD1_OWNER
94 	| FATTR4_WORD1_OWNER_GROUP
95 	| FATTR4_WORD1_RAWDEV
96 	| FATTR4_WORD1_SPACE_USED
97 	| FATTR4_WORD1_TIME_ACCESS
98 	| FATTR4_WORD1_TIME_METADATA
99 	| FATTR4_WORD1_TIME_MODIFY
100 };
101 
102 const u32 nfs4_statfs_bitmap[2] = {
103 	FATTR4_WORD0_FILES_AVAIL
104 	| FATTR4_WORD0_FILES_FREE
105 	| FATTR4_WORD0_FILES_TOTAL,
106 	FATTR4_WORD1_SPACE_AVAIL
107 	| FATTR4_WORD1_SPACE_FREE
108 	| FATTR4_WORD1_SPACE_TOTAL
109 };
110 
111 const u32 nfs4_pathconf_bitmap[2] = {
112 	FATTR4_WORD0_MAXLINK
113 	| FATTR4_WORD0_MAXNAME,
114 	0
115 };
116 
117 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
118 			| FATTR4_WORD0_MAXREAD
119 			| FATTR4_WORD0_MAXWRITE
120 			| FATTR4_WORD0_LEASE_TIME,
121 			0
122 };
123 
124 const u32 nfs4_fs_locations_bitmap[2] = {
125 	FATTR4_WORD0_TYPE
126 	| FATTR4_WORD0_CHANGE
127 	| FATTR4_WORD0_SIZE
128 	| FATTR4_WORD0_FSID
129 	| FATTR4_WORD0_FILEID
130 	| FATTR4_WORD0_FS_LOCATIONS,
131 	FATTR4_WORD1_MODE
132 	| FATTR4_WORD1_NUMLINKS
133 	| FATTR4_WORD1_OWNER
134 	| FATTR4_WORD1_OWNER_GROUP
135 	| FATTR4_WORD1_RAWDEV
136 	| FATTR4_WORD1_SPACE_USED
137 	| FATTR4_WORD1_TIME_ACCESS
138 	| FATTR4_WORD1_TIME_METADATA
139 	| FATTR4_WORD1_TIME_MODIFY
140 	| FATTR4_WORD1_MOUNTED_ON_FILEID
141 };
142 
143 static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
144 		struct nfs4_readdir_arg *readdir)
145 {
146 	__be32 *start, *p;
147 
148 	BUG_ON(readdir->count < 80);
149 	if (cookie > 2) {
150 		readdir->cookie = cookie;
151 		memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
152 		return;
153 	}
154 
155 	readdir->cookie = 0;
156 	memset(&readdir->verifier, 0, sizeof(readdir->verifier));
157 	if (cookie == 2)
158 		return;
159 
160 	/*
161 	 * NFSv4 servers do not return entries for '.' and '..'
162 	 * Therefore, we fake these entries here.  We let '.'
163 	 * have cookie 0 and '..' have cookie 1.  Note that
164 	 * when talking to the server, we always send cookie 0
165 	 * instead of 1 or 2.
166 	 */
167 	start = p = kmap_atomic(*readdir->pages, KM_USER0);
168 
169 	if (cookie == 0) {
170 		*p++ = xdr_one;                                  /* next */
171 		*p++ = xdr_zero;                   /* cookie, first word */
172 		*p++ = xdr_one;                   /* cookie, second word */
173 		*p++ = xdr_one;                             /* entry len */
174 		memcpy(p, ".\0\0\0", 4);                        /* entry */
175 		p++;
176 		*p++ = xdr_one;                         /* bitmap length */
177 		*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
178 		*p++ = htonl(8);              /* attribute buffer length */
179 		p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_inode));
180 	}
181 
182 	*p++ = xdr_one;                                  /* next */
183 	*p++ = xdr_zero;                   /* cookie, first word */
184 	*p++ = xdr_two;                   /* cookie, second word */
185 	*p++ = xdr_two;                             /* entry len */
186 	memcpy(p, "..\0\0", 4);                         /* entry */
187 	p++;
188 	*p++ = xdr_one;                         /* bitmap length */
189 	*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
190 	*p++ = htonl(8);              /* attribute buffer length */
191 	p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_parent->d_inode));
192 
193 	readdir->pgbase = (char *)p - (char *)start;
194 	readdir->count -= readdir->pgbase;
195 	kunmap_atomic(start, KM_USER0);
196 }
197 
198 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
199 {
200 	struct nfs_client *clp = server->nfs_client;
201 	spin_lock(&clp->cl_lock);
202 	if (time_before(clp->cl_last_renewal,timestamp))
203 		clp->cl_last_renewal = timestamp;
204 	spin_unlock(&clp->cl_lock);
205 }
206 
207 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
208 {
209 	struct nfs_inode *nfsi = NFS_I(dir);
210 
211 	spin_lock(&dir->i_lock);
212 	nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
213 	if (!cinfo->atomic || cinfo->before != nfsi->change_attr)
214 		nfs_force_lookup_revalidate(dir);
215 	nfsi->change_attr = cinfo->after;
216 	spin_unlock(&dir->i_lock);
217 }
218 
219 struct nfs4_opendata {
220 	struct kref kref;
221 	struct nfs_openargs o_arg;
222 	struct nfs_openres o_res;
223 	struct nfs_open_confirmargs c_arg;
224 	struct nfs_open_confirmres c_res;
225 	struct nfs_fattr f_attr;
226 	struct nfs_fattr dir_attr;
227 	struct path path;
228 	struct dentry *dir;
229 	struct nfs4_state_owner *owner;
230 	struct nfs4_state *state;
231 	struct iattr attrs;
232 	unsigned long timestamp;
233 	unsigned int rpc_done : 1;
234 	int rpc_status;
235 	int cancelled;
236 };
237 
238 
239 static void nfs4_init_opendata_res(struct nfs4_opendata *p)
240 {
241 	p->o_res.f_attr = &p->f_attr;
242 	p->o_res.dir_attr = &p->dir_attr;
243 	p->o_res.seqid = p->o_arg.seqid;
244 	p->c_res.seqid = p->c_arg.seqid;
245 	p->o_res.server = p->o_arg.server;
246 	nfs_fattr_init(&p->f_attr);
247 	nfs_fattr_init(&p->dir_attr);
248 }
249 
250 static struct nfs4_opendata *nfs4_opendata_alloc(struct path *path,
251 		struct nfs4_state_owner *sp, int flags,
252 		const struct iattr *attrs)
253 {
254 	struct dentry *parent = dget_parent(path->dentry);
255 	struct inode *dir = parent->d_inode;
256 	struct nfs_server *server = NFS_SERVER(dir);
257 	struct nfs4_opendata *p;
258 
259 	p = kzalloc(sizeof(*p), GFP_KERNEL);
260 	if (p == NULL)
261 		goto err;
262 	p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
263 	if (p->o_arg.seqid == NULL)
264 		goto err_free;
265 	p->path.mnt = mntget(path->mnt);
266 	p->path.dentry = dget(path->dentry);
267 	p->dir = parent;
268 	p->owner = sp;
269 	atomic_inc(&sp->so_count);
270 	p->o_arg.fh = NFS_FH(dir);
271 	p->o_arg.open_flags = flags,
272 	p->o_arg.clientid = server->nfs_client->cl_clientid;
273 	p->o_arg.id = sp->so_owner_id.id;
274 	p->o_arg.name = &p->path.dentry->d_name;
275 	p->o_arg.server = server;
276 	p->o_arg.bitmask = server->attr_bitmask;
277 	p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
278 	if (flags & O_EXCL) {
279 		u32 *s = (u32 *) p->o_arg.u.verifier.data;
280 		s[0] = jiffies;
281 		s[1] = current->pid;
282 	} else if (flags & O_CREAT) {
283 		p->o_arg.u.attrs = &p->attrs;
284 		memcpy(&p->attrs, attrs, sizeof(p->attrs));
285 	}
286 	p->c_arg.fh = &p->o_res.fh;
287 	p->c_arg.stateid = &p->o_res.stateid;
288 	p->c_arg.seqid = p->o_arg.seqid;
289 	nfs4_init_opendata_res(p);
290 	kref_init(&p->kref);
291 	return p;
292 err_free:
293 	kfree(p);
294 err:
295 	dput(parent);
296 	return NULL;
297 }
298 
299 static void nfs4_opendata_free(struct kref *kref)
300 {
301 	struct nfs4_opendata *p = container_of(kref,
302 			struct nfs4_opendata, kref);
303 
304 	nfs_free_seqid(p->o_arg.seqid);
305 	if (p->state != NULL)
306 		nfs4_put_open_state(p->state);
307 	nfs4_put_state_owner(p->owner);
308 	dput(p->dir);
309 	path_put(&p->path);
310 	kfree(p);
311 }
312 
313 static void nfs4_opendata_put(struct nfs4_opendata *p)
314 {
315 	if (p != NULL)
316 		kref_put(&p->kref, nfs4_opendata_free);
317 }
318 
319 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
320 {
321 	int ret;
322 
323 	ret = rpc_wait_for_completion_task(task);
324 	return ret;
325 }
326 
327 static int can_open_cached(struct nfs4_state *state, int mode)
328 {
329 	int ret = 0;
330 	switch (mode & (FMODE_READ|FMODE_WRITE|O_EXCL)) {
331 		case FMODE_READ:
332 			ret |= test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0;
333 			break;
334 		case FMODE_WRITE:
335 			ret |= test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0;
336 			break;
337 		case FMODE_READ|FMODE_WRITE:
338 			ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0;
339 	}
340 	return ret;
341 }
342 
343 static int can_open_delegated(struct nfs_delegation *delegation, mode_t open_flags)
344 {
345 	if ((delegation->type & open_flags) != open_flags)
346 		return 0;
347 	if (delegation->flags & NFS_DELEGATION_NEED_RECLAIM)
348 		return 0;
349 	return 1;
350 }
351 
352 static void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
353 {
354 	switch (open_flags) {
355 		case FMODE_WRITE:
356 			state->n_wronly++;
357 			break;
358 		case FMODE_READ:
359 			state->n_rdonly++;
360 			break;
361 		case FMODE_READ|FMODE_WRITE:
362 			state->n_rdwr++;
363 	}
364 	nfs4_state_set_mode_locked(state, state->state | open_flags);
365 }
366 
367 static void nfs_set_open_stateid_locked(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
368 {
369 	if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
370 		memcpy(state->stateid.data, stateid->data, sizeof(state->stateid.data));
371 	memcpy(state->open_stateid.data, stateid->data, sizeof(state->open_stateid.data));
372 	switch (open_flags) {
373 		case FMODE_READ:
374 			set_bit(NFS_O_RDONLY_STATE, &state->flags);
375 			break;
376 		case FMODE_WRITE:
377 			set_bit(NFS_O_WRONLY_STATE, &state->flags);
378 			break;
379 		case FMODE_READ|FMODE_WRITE:
380 			set_bit(NFS_O_RDWR_STATE, &state->flags);
381 	}
382 }
383 
384 static void nfs_set_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
385 {
386 	write_seqlock(&state->seqlock);
387 	nfs_set_open_stateid_locked(state, stateid, open_flags);
388 	write_sequnlock(&state->seqlock);
389 }
390 
391 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, nfs4_stateid *deleg_stateid, int open_flags)
392 {
393 	open_flags &= (FMODE_READ|FMODE_WRITE);
394 	/*
395 	 * Protect the call to nfs4_state_set_mode_locked and
396 	 * serialise the stateid update
397 	 */
398 	write_seqlock(&state->seqlock);
399 	if (deleg_stateid != NULL) {
400 		memcpy(state->stateid.data, deleg_stateid->data, sizeof(state->stateid.data));
401 		set_bit(NFS_DELEGATED_STATE, &state->flags);
402 	}
403 	if (open_stateid != NULL)
404 		nfs_set_open_stateid_locked(state, open_stateid, open_flags);
405 	write_sequnlock(&state->seqlock);
406 	spin_lock(&state->owner->so_lock);
407 	update_open_stateflags(state, open_flags);
408 	spin_unlock(&state->owner->so_lock);
409 }
410 
411 static void nfs4_return_incompatible_delegation(struct inode *inode, mode_t open_flags)
412 {
413 	struct nfs_delegation *delegation;
414 
415 	rcu_read_lock();
416 	delegation = rcu_dereference(NFS_I(inode)->delegation);
417 	if (delegation == NULL || (delegation->type & open_flags) == open_flags) {
418 		rcu_read_unlock();
419 		return;
420 	}
421 	rcu_read_unlock();
422 	nfs_inode_return_delegation(inode);
423 }
424 
425 static struct nfs4_state *nfs4_try_open_cached(struct nfs4_opendata *opendata)
426 {
427 	struct nfs4_state *state = opendata->state;
428 	struct nfs_inode *nfsi = NFS_I(state->inode);
429 	struct nfs_delegation *delegation;
430 	int open_mode = opendata->o_arg.open_flags & (FMODE_READ|FMODE_WRITE|O_EXCL);
431 	nfs4_stateid stateid;
432 	int ret = -EAGAIN;
433 
434 	rcu_read_lock();
435 	delegation = rcu_dereference(nfsi->delegation);
436 	for (;;) {
437 		if (can_open_cached(state, open_mode)) {
438 			spin_lock(&state->owner->so_lock);
439 			if (can_open_cached(state, open_mode)) {
440 				update_open_stateflags(state, open_mode);
441 				spin_unlock(&state->owner->so_lock);
442 				rcu_read_unlock();
443 				goto out_return_state;
444 			}
445 			spin_unlock(&state->owner->so_lock);
446 		}
447 		if (delegation == NULL)
448 			break;
449 		if (!can_open_delegated(delegation, open_mode))
450 			break;
451 		/* Save the delegation */
452 		memcpy(stateid.data, delegation->stateid.data, sizeof(stateid.data));
453 		rcu_read_unlock();
454 		ret = nfs_may_open(state->inode, state->owner->so_cred, open_mode);
455 		if (ret != 0)
456 			goto out;
457 		ret = -EAGAIN;
458 		rcu_read_lock();
459 		delegation = rcu_dereference(nfsi->delegation);
460 		/* If no delegation, try a cached open */
461 		if (delegation == NULL)
462 			continue;
463 		/* Is the delegation still valid? */
464 		if (memcmp(stateid.data, delegation->stateid.data, sizeof(stateid.data)) != 0)
465 			continue;
466 		rcu_read_unlock();
467 		update_open_stateid(state, NULL, &stateid, open_mode);
468 		goto out_return_state;
469 	}
470 	rcu_read_unlock();
471 out:
472 	return ERR_PTR(ret);
473 out_return_state:
474 	atomic_inc(&state->count);
475 	return state;
476 }
477 
478 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
479 {
480 	struct inode *inode;
481 	struct nfs4_state *state = NULL;
482 	struct nfs_delegation *delegation;
483 	nfs4_stateid *deleg_stateid = NULL;
484 	int ret;
485 
486 	if (!data->rpc_done) {
487 		state = nfs4_try_open_cached(data);
488 		goto out;
489 	}
490 
491 	ret = -EAGAIN;
492 	if (!(data->f_attr.valid & NFS_ATTR_FATTR))
493 		goto err;
494 	inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
495 	ret = PTR_ERR(inode);
496 	if (IS_ERR(inode))
497 		goto err;
498 	ret = -ENOMEM;
499 	state = nfs4_get_open_state(inode, data->owner);
500 	if (state == NULL)
501 		goto err_put_inode;
502 	if (data->o_res.delegation_type != 0) {
503 		int delegation_flags = 0;
504 
505 		rcu_read_lock();
506 		delegation = rcu_dereference(NFS_I(inode)->delegation);
507 		if (delegation)
508 			delegation_flags = delegation->flags;
509 		rcu_read_unlock();
510 		if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
511 			nfs_inode_set_delegation(state->inode,
512 					data->owner->so_cred,
513 					&data->o_res);
514 		else
515 			nfs_inode_reclaim_delegation(state->inode,
516 					data->owner->so_cred,
517 					&data->o_res);
518 	}
519 	rcu_read_lock();
520 	delegation = rcu_dereference(NFS_I(inode)->delegation);
521 	if (delegation != NULL)
522 		deleg_stateid = &delegation->stateid;
523 	update_open_stateid(state, &data->o_res.stateid, deleg_stateid, data->o_arg.open_flags);
524 	rcu_read_unlock();
525 	iput(inode);
526 out:
527 	return state;
528 err_put_inode:
529 	iput(inode);
530 err:
531 	return ERR_PTR(ret);
532 }
533 
534 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
535 {
536 	struct nfs_inode *nfsi = NFS_I(state->inode);
537 	struct nfs_open_context *ctx;
538 
539 	spin_lock(&state->inode->i_lock);
540 	list_for_each_entry(ctx, &nfsi->open_files, list) {
541 		if (ctx->state != state)
542 			continue;
543 		get_nfs_open_context(ctx);
544 		spin_unlock(&state->inode->i_lock);
545 		return ctx;
546 	}
547 	spin_unlock(&state->inode->i_lock);
548 	return ERR_PTR(-ENOENT);
549 }
550 
551 static struct nfs4_opendata *nfs4_open_recoverdata_alloc(struct nfs_open_context *ctx, struct nfs4_state *state)
552 {
553 	struct nfs4_opendata *opendata;
554 
555 	opendata = nfs4_opendata_alloc(&ctx->path, state->owner, 0, NULL);
556 	if (opendata == NULL)
557 		return ERR_PTR(-ENOMEM);
558 	opendata->state = state;
559 	atomic_inc(&state->count);
560 	return opendata;
561 }
562 
563 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, struct nfs4_state **res)
564 {
565 	struct nfs4_state *newstate;
566 	int ret;
567 
568 	opendata->o_arg.open_flags = openflags;
569 	memset(&opendata->o_res, 0, sizeof(opendata->o_res));
570 	memset(&opendata->c_res, 0, sizeof(opendata->c_res));
571 	nfs4_init_opendata_res(opendata);
572 	ret = _nfs4_proc_open(opendata);
573 	if (ret != 0)
574 		return ret;
575 	newstate = nfs4_opendata_to_nfs4_state(opendata);
576 	if (IS_ERR(newstate))
577 		return PTR_ERR(newstate);
578 	nfs4_close_state(&opendata->path, newstate, openflags);
579 	*res = newstate;
580 	return 0;
581 }
582 
583 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
584 {
585 	struct nfs4_state *newstate;
586 	int ret;
587 
588 	/* memory barrier prior to reading state->n_* */
589 	clear_bit(NFS_DELEGATED_STATE, &state->flags);
590 	smp_rmb();
591 	if (state->n_rdwr != 0) {
592 		ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &newstate);
593 		if (ret != 0)
594 			return ret;
595 		if (newstate != state)
596 			return -ESTALE;
597 	}
598 	if (state->n_wronly != 0) {
599 		ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &newstate);
600 		if (ret != 0)
601 			return ret;
602 		if (newstate != state)
603 			return -ESTALE;
604 	}
605 	if (state->n_rdonly != 0) {
606 		ret = nfs4_open_recover_helper(opendata, FMODE_READ, &newstate);
607 		if (ret != 0)
608 			return ret;
609 		if (newstate != state)
610 			return -ESTALE;
611 	}
612 	/*
613 	 * We may have performed cached opens for all three recoveries.
614 	 * Check if we need to update the current stateid.
615 	 */
616 	if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0 &&
617 	    memcmp(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data)) != 0) {
618 		write_seqlock(&state->seqlock);
619 		if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
620 			memcpy(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data));
621 		write_sequnlock(&state->seqlock);
622 	}
623 	return 0;
624 }
625 
626 /*
627  * OPEN_RECLAIM:
628  * 	reclaim state on the server after a reboot.
629  */
630 static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
631 {
632 	struct nfs_delegation *delegation;
633 	struct nfs4_opendata *opendata;
634 	int delegation_type = 0;
635 	int status;
636 
637 	opendata = nfs4_open_recoverdata_alloc(ctx, state);
638 	if (IS_ERR(opendata))
639 		return PTR_ERR(opendata);
640 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
641 	opendata->o_arg.fh = NFS_FH(state->inode);
642 	rcu_read_lock();
643 	delegation = rcu_dereference(NFS_I(state->inode)->delegation);
644 	if (delegation != NULL && (delegation->flags & NFS_DELEGATION_NEED_RECLAIM) != 0)
645 		delegation_type = delegation->type;
646 	rcu_read_unlock();
647 	opendata->o_arg.u.delegation_type = delegation_type;
648 	status = nfs4_open_recover(opendata, state);
649 	nfs4_opendata_put(opendata);
650 	return status;
651 }
652 
653 static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
654 {
655 	struct nfs_server *server = NFS_SERVER(state->inode);
656 	struct nfs4_exception exception = { };
657 	int err;
658 	do {
659 		err = _nfs4_do_open_reclaim(ctx, state);
660 		if (err != -NFS4ERR_DELAY)
661 			break;
662 		nfs4_handle_exception(server, err, &exception);
663 	} while (exception.retry);
664 	return err;
665 }
666 
667 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
668 {
669 	struct nfs_open_context *ctx;
670 	int ret;
671 
672 	ctx = nfs4_state_find_open_context(state);
673 	if (IS_ERR(ctx))
674 		return PTR_ERR(ctx);
675 	ret = nfs4_do_open_reclaim(ctx, state);
676 	put_nfs_open_context(ctx);
677 	return ret;
678 }
679 
680 static int _nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid)
681 {
682 	struct nfs4_opendata *opendata;
683 	int ret;
684 
685 	opendata = nfs4_open_recoverdata_alloc(ctx, state);
686 	if (IS_ERR(opendata))
687 		return PTR_ERR(opendata);
688 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
689 	memcpy(opendata->o_arg.u.delegation.data, stateid->data,
690 			sizeof(opendata->o_arg.u.delegation.data));
691 	ret = nfs4_open_recover(opendata, state);
692 	nfs4_opendata_put(opendata);
693 	return ret;
694 }
695 
696 int nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid)
697 {
698 	struct nfs4_exception exception = { };
699 	struct nfs_server *server = NFS_SERVER(state->inode);
700 	int err;
701 	do {
702 		err = _nfs4_open_delegation_recall(ctx, state, stateid);
703 		switch (err) {
704 			case 0:
705 				return err;
706 			case -NFS4ERR_STALE_CLIENTID:
707 			case -NFS4ERR_STALE_STATEID:
708 			case -NFS4ERR_EXPIRED:
709 				/* Don't recall a delegation if it was lost */
710 				nfs4_schedule_state_recovery(server->nfs_client);
711 				return err;
712 		}
713 		err = nfs4_handle_exception(server, err, &exception);
714 	} while (exception.retry);
715 	return err;
716 }
717 
718 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
719 {
720 	struct nfs4_opendata *data = calldata;
721 
722 	data->rpc_status = task->tk_status;
723 	if (RPC_ASSASSINATED(task))
724 		return;
725 	if (data->rpc_status == 0) {
726 		memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
727 				sizeof(data->o_res.stateid.data));
728 		nfs_confirm_seqid(&data->owner->so_seqid, 0);
729 		renew_lease(data->o_res.server, data->timestamp);
730 		data->rpc_done = 1;
731 	}
732 }
733 
734 static void nfs4_open_confirm_release(void *calldata)
735 {
736 	struct nfs4_opendata *data = calldata;
737 	struct nfs4_state *state = NULL;
738 
739 	/* If this request hasn't been cancelled, do nothing */
740 	if (data->cancelled == 0)
741 		goto out_free;
742 	/* In case of error, no cleanup! */
743 	if (!data->rpc_done)
744 		goto out_free;
745 	state = nfs4_opendata_to_nfs4_state(data);
746 	if (!IS_ERR(state))
747 		nfs4_close_state(&data->path, state, data->o_arg.open_flags);
748 out_free:
749 	nfs4_opendata_put(data);
750 }
751 
752 static const struct rpc_call_ops nfs4_open_confirm_ops = {
753 	.rpc_call_done = nfs4_open_confirm_done,
754 	.rpc_release = nfs4_open_confirm_release,
755 };
756 
757 /*
758  * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
759  */
760 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
761 {
762 	struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
763 	struct rpc_task *task;
764 	struct  rpc_message msg = {
765 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
766 		.rpc_argp = &data->c_arg,
767 		.rpc_resp = &data->c_res,
768 		.rpc_cred = data->owner->so_cred,
769 	};
770 	struct rpc_task_setup task_setup_data = {
771 		.rpc_client = server->client,
772 		.rpc_message = &msg,
773 		.callback_ops = &nfs4_open_confirm_ops,
774 		.callback_data = data,
775 		.workqueue = nfsiod_workqueue,
776 		.flags = RPC_TASK_ASYNC,
777 	};
778 	int status;
779 
780 	kref_get(&data->kref);
781 	data->rpc_done = 0;
782 	data->rpc_status = 0;
783 	data->timestamp = jiffies;
784 	task = rpc_run_task(&task_setup_data);
785 	if (IS_ERR(task))
786 		return PTR_ERR(task);
787 	status = nfs4_wait_for_completion_rpc_task(task);
788 	if (status != 0) {
789 		data->cancelled = 1;
790 		smp_wmb();
791 	} else
792 		status = data->rpc_status;
793 	rpc_put_task(task);
794 	return status;
795 }
796 
797 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
798 {
799 	struct nfs4_opendata *data = calldata;
800 	struct nfs4_state_owner *sp = data->owner;
801 
802 	if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
803 		return;
804 	/*
805 	 * Check if we still need to send an OPEN call, or if we can use
806 	 * a delegation instead.
807 	 */
808 	if (data->state != NULL) {
809 		struct nfs_delegation *delegation;
810 
811 		if (can_open_cached(data->state, data->o_arg.open_flags & (FMODE_READ|FMODE_WRITE|O_EXCL)))
812 			goto out_no_action;
813 		rcu_read_lock();
814 		delegation = rcu_dereference(NFS_I(data->state->inode)->delegation);
815 		if (delegation != NULL &&
816 		   (delegation->flags & NFS_DELEGATION_NEED_RECLAIM) == 0) {
817 			rcu_read_unlock();
818 			goto out_no_action;
819 		}
820 		rcu_read_unlock();
821 	}
822 	/* Update sequence id. */
823 	data->o_arg.id = sp->so_owner_id.id;
824 	data->o_arg.clientid = sp->so_client->cl_clientid;
825 	if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS) {
826 		task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
827 		nfs_copy_fh(&data->o_res.fh, data->o_arg.fh);
828 	}
829 	data->timestamp = jiffies;
830 	rpc_call_start(task);
831 	return;
832 out_no_action:
833 	task->tk_action = NULL;
834 
835 }
836 
837 static void nfs4_open_done(struct rpc_task *task, void *calldata)
838 {
839 	struct nfs4_opendata *data = calldata;
840 
841 	data->rpc_status = task->tk_status;
842 	if (RPC_ASSASSINATED(task))
843 		return;
844 	if (task->tk_status == 0) {
845 		switch (data->o_res.f_attr->mode & S_IFMT) {
846 			case S_IFREG:
847 				break;
848 			case S_IFLNK:
849 				data->rpc_status = -ELOOP;
850 				break;
851 			case S_IFDIR:
852 				data->rpc_status = -EISDIR;
853 				break;
854 			default:
855 				data->rpc_status = -ENOTDIR;
856 		}
857 		renew_lease(data->o_res.server, data->timestamp);
858 		if (!(data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM))
859 			nfs_confirm_seqid(&data->owner->so_seqid, 0);
860 	}
861 	data->rpc_done = 1;
862 }
863 
864 static void nfs4_open_release(void *calldata)
865 {
866 	struct nfs4_opendata *data = calldata;
867 	struct nfs4_state *state = NULL;
868 
869 	/* If this request hasn't been cancelled, do nothing */
870 	if (data->cancelled == 0)
871 		goto out_free;
872 	/* In case of error, no cleanup! */
873 	if (data->rpc_status != 0 || !data->rpc_done)
874 		goto out_free;
875 	/* In case we need an open_confirm, no cleanup! */
876 	if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
877 		goto out_free;
878 	state = nfs4_opendata_to_nfs4_state(data);
879 	if (!IS_ERR(state))
880 		nfs4_close_state(&data->path, state, data->o_arg.open_flags);
881 out_free:
882 	nfs4_opendata_put(data);
883 }
884 
885 static const struct rpc_call_ops nfs4_open_ops = {
886 	.rpc_call_prepare = nfs4_open_prepare,
887 	.rpc_call_done = nfs4_open_done,
888 	.rpc_release = nfs4_open_release,
889 };
890 
891 /*
892  * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
893  */
894 static int _nfs4_proc_open(struct nfs4_opendata *data)
895 {
896 	struct inode *dir = data->dir->d_inode;
897 	struct nfs_server *server = NFS_SERVER(dir);
898 	struct nfs_openargs *o_arg = &data->o_arg;
899 	struct nfs_openres *o_res = &data->o_res;
900 	struct rpc_task *task;
901 	struct rpc_message msg = {
902 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
903 		.rpc_argp = o_arg,
904 		.rpc_resp = o_res,
905 		.rpc_cred = data->owner->so_cred,
906 	};
907 	struct rpc_task_setup task_setup_data = {
908 		.rpc_client = server->client,
909 		.rpc_message = &msg,
910 		.callback_ops = &nfs4_open_ops,
911 		.callback_data = data,
912 		.workqueue = nfsiod_workqueue,
913 		.flags = RPC_TASK_ASYNC,
914 	};
915 	int status;
916 
917 	kref_get(&data->kref);
918 	data->rpc_done = 0;
919 	data->rpc_status = 0;
920 	data->cancelled = 0;
921 	task = rpc_run_task(&task_setup_data);
922 	if (IS_ERR(task))
923 		return PTR_ERR(task);
924 	status = nfs4_wait_for_completion_rpc_task(task);
925 	if (status != 0) {
926 		data->cancelled = 1;
927 		smp_wmb();
928 	} else
929 		status = data->rpc_status;
930 	rpc_put_task(task);
931 	if (status != 0 || !data->rpc_done)
932 		return status;
933 
934 	if (o_res->fh.size == 0)
935 		_nfs4_proc_lookup(dir, o_arg->name, &o_res->fh, o_res->f_attr);
936 
937 	if (o_arg->open_flags & O_CREAT) {
938 		update_changeattr(dir, &o_res->cinfo);
939 		nfs_post_op_update_inode(dir, o_res->dir_attr);
940 	} else
941 		nfs_refresh_inode(dir, o_res->dir_attr);
942 	if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
943 		status = _nfs4_proc_open_confirm(data);
944 		if (status != 0)
945 			return status;
946 	}
947 	if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
948 		_nfs4_proc_getattr(server, &o_res->fh, o_res->f_attr);
949 	return 0;
950 }
951 
952 static int nfs4_recover_expired_lease(struct nfs_server *server)
953 {
954 	struct nfs_client *clp = server->nfs_client;
955 	int ret;
956 
957 	for (;;) {
958 		ret = nfs4_wait_clnt_recover(server->client, clp);
959 		if (ret != 0)
960 			return ret;
961 		if (!test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
962 			break;
963 		nfs4_schedule_state_recovery(clp);
964 	}
965 	return 0;
966 }
967 
968 /*
969  * OPEN_EXPIRED:
970  * 	reclaim state on the server after a network partition.
971  * 	Assumes caller holds the appropriate lock
972  */
973 static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
974 {
975 	struct nfs4_opendata *opendata;
976 	int ret;
977 
978 	opendata = nfs4_open_recoverdata_alloc(ctx, state);
979 	if (IS_ERR(opendata))
980 		return PTR_ERR(opendata);
981 	ret = nfs4_open_recover(opendata, state);
982 	if (ret == -ESTALE)
983 		d_drop(ctx->path.dentry);
984 	nfs4_opendata_put(opendata);
985 	return ret;
986 }
987 
988 static inline int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
989 {
990 	struct nfs_server *server = NFS_SERVER(state->inode);
991 	struct nfs4_exception exception = { };
992 	int err;
993 
994 	do {
995 		err = _nfs4_open_expired(ctx, state);
996 		if (err == -NFS4ERR_DELAY)
997 			nfs4_handle_exception(server, err, &exception);
998 	} while (exception.retry);
999 	return err;
1000 }
1001 
1002 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
1003 {
1004 	struct nfs_open_context *ctx;
1005 	int ret;
1006 
1007 	ctx = nfs4_state_find_open_context(state);
1008 	if (IS_ERR(ctx))
1009 		return PTR_ERR(ctx);
1010 	ret = nfs4_do_open_expired(ctx, state);
1011 	put_nfs_open_context(ctx);
1012 	return ret;
1013 }
1014 
1015 /*
1016  * on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-*
1017  * fields corresponding to attributes that were used to store the verifier.
1018  * Make sure we clobber those fields in the later setattr call
1019  */
1020 static inline void nfs4_exclusive_attrset(struct nfs4_opendata *opendata, struct iattr *sattr)
1021 {
1022 	if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_ACCESS) &&
1023 	    !(sattr->ia_valid & ATTR_ATIME_SET))
1024 		sattr->ia_valid |= ATTR_ATIME;
1025 
1026 	if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_MODIFY) &&
1027 	    !(sattr->ia_valid & ATTR_MTIME_SET))
1028 		sattr->ia_valid |= ATTR_MTIME;
1029 }
1030 
1031 /*
1032  * Returns a referenced nfs4_state
1033  */
1034 static int _nfs4_do_open(struct inode *dir, struct path *path, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
1035 {
1036 	struct nfs4_state_owner  *sp;
1037 	struct nfs4_state     *state = NULL;
1038 	struct nfs_server       *server = NFS_SERVER(dir);
1039 	struct nfs_client *clp = server->nfs_client;
1040 	struct nfs4_opendata *opendata;
1041 	int status;
1042 
1043 	/* Protect against reboot recovery conflicts */
1044 	status = -ENOMEM;
1045 	if (!(sp = nfs4_get_state_owner(server, cred))) {
1046 		dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
1047 		goto out_err;
1048 	}
1049 	status = nfs4_recover_expired_lease(server);
1050 	if (status != 0)
1051 		goto err_put_state_owner;
1052 	if (path->dentry->d_inode != NULL)
1053 		nfs4_return_incompatible_delegation(path->dentry->d_inode, flags & (FMODE_READ|FMODE_WRITE));
1054 	down_read(&clp->cl_sem);
1055 	status = -ENOMEM;
1056 	opendata = nfs4_opendata_alloc(path, sp, flags, sattr);
1057 	if (opendata == NULL)
1058 		goto err_release_rwsem;
1059 
1060 	if (path->dentry->d_inode != NULL)
1061 		opendata->state = nfs4_get_open_state(path->dentry->d_inode, sp);
1062 
1063 	status = _nfs4_proc_open(opendata);
1064 	if (status != 0)
1065 		goto err_opendata_put;
1066 
1067 	if (opendata->o_arg.open_flags & O_EXCL)
1068 		nfs4_exclusive_attrset(opendata, sattr);
1069 
1070 	state = nfs4_opendata_to_nfs4_state(opendata);
1071 	status = PTR_ERR(state);
1072 	if (IS_ERR(state))
1073 		goto err_opendata_put;
1074 	nfs4_opendata_put(opendata);
1075 	nfs4_put_state_owner(sp);
1076 	up_read(&clp->cl_sem);
1077 	*res = state;
1078 	return 0;
1079 err_opendata_put:
1080 	nfs4_opendata_put(opendata);
1081 err_release_rwsem:
1082 	up_read(&clp->cl_sem);
1083 err_put_state_owner:
1084 	nfs4_put_state_owner(sp);
1085 out_err:
1086 	*res = NULL;
1087 	return status;
1088 }
1089 
1090 
1091 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct path *path, int flags, struct iattr *sattr, struct rpc_cred *cred)
1092 {
1093 	struct nfs4_exception exception = { };
1094 	struct nfs4_state *res;
1095 	int status;
1096 
1097 	do {
1098 		status = _nfs4_do_open(dir, path, flags, sattr, cred, &res);
1099 		if (status == 0)
1100 			break;
1101 		/* NOTE: BAD_SEQID means the server and client disagree about the
1102 		 * book-keeping w.r.t. state-changing operations
1103 		 * (OPEN/CLOSE/LOCK/LOCKU...)
1104 		 * It is actually a sign of a bug on the client or on the server.
1105 		 *
1106 		 * If we receive a BAD_SEQID error in the particular case of
1107 		 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1108 		 * have unhashed the old state_owner for us, and that we can
1109 		 * therefore safely retry using a new one. We should still warn
1110 		 * the user though...
1111 		 */
1112 		if (status == -NFS4ERR_BAD_SEQID) {
1113 			printk(KERN_WARNING "NFS: v4 server %s "
1114 					" returned a bad sequence-id error!\n",
1115 					NFS_SERVER(dir)->nfs_client->cl_hostname);
1116 			exception.retry = 1;
1117 			continue;
1118 		}
1119 		/*
1120 		 * BAD_STATEID on OPEN means that the server cancelled our
1121 		 * state before it received the OPEN_CONFIRM.
1122 		 * Recover by retrying the request as per the discussion
1123 		 * on Page 181 of RFC3530.
1124 		 */
1125 		if (status == -NFS4ERR_BAD_STATEID) {
1126 			exception.retry = 1;
1127 			continue;
1128 		}
1129 		if (status == -EAGAIN) {
1130 			/* We must have found a delegation */
1131 			exception.retry = 1;
1132 			continue;
1133 		}
1134 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1135 					status, &exception));
1136 	} while (exception.retry);
1137 	return res;
1138 }
1139 
1140 static int _nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred,
1141 			    struct nfs_fattr *fattr, struct iattr *sattr,
1142 			    struct nfs4_state *state)
1143 {
1144 	struct nfs_server *server = NFS_SERVER(inode);
1145         struct nfs_setattrargs  arg = {
1146                 .fh             = NFS_FH(inode),
1147                 .iap            = sattr,
1148 		.server		= server,
1149 		.bitmask = server->attr_bitmask,
1150         };
1151         struct nfs_setattrres  res = {
1152 		.fattr		= fattr,
1153 		.server		= server,
1154         };
1155         struct rpc_message msg = {
1156 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1157 		.rpc_argp	= &arg,
1158 		.rpc_resp	= &res,
1159 		.rpc_cred	= cred,
1160         };
1161 	unsigned long timestamp = jiffies;
1162 	int status;
1163 
1164 	nfs_fattr_init(fattr);
1165 
1166 	if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1167 		/* Use that stateid */
1168 	} else if (state != NULL) {
1169 		nfs4_copy_stateid(&arg.stateid, state, current->files);
1170 	} else
1171 		memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1172 
1173 	status = rpc_call_sync(server->client, &msg, 0);
1174 	if (status == 0 && state != NULL)
1175 		renew_lease(server, timestamp);
1176 	return status;
1177 }
1178 
1179 static int nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred,
1180 			   struct nfs_fattr *fattr, struct iattr *sattr,
1181 			   struct nfs4_state *state)
1182 {
1183 	struct nfs_server *server = NFS_SERVER(inode);
1184 	struct nfs4_exception exception = { };
1185 	int err;
1186 	do {
1187 		err = nfs4_handle_exception(server,
1188 				_nfs4_do_setattr(inode, cred, fattr, sattr, state),
1189 				&exception);
1190 	} while (exception.retry);
1191 	return err;
1192 }
1193 
1194 struct nfs4_closedata {
1195 	struct path path;
1196 	struct inode *inode;
1197 	struct nfs4_state *state;
1198 	struct nfs_closeargs arg;
1199 	struct nfs_closeres res;
1200 	struct nfs_fattr fattr;
1201 	unsigned long timestamp;
1202 };
1203 
1204 static void nfs4_free_closedata(void *data)
1205 {
1206 	struct nfs4_closedata *calldata = data;
1207 	struct nfs4_state_owner *sp = calldata->state->owner;
1208 
1209 	nfs4_put_open_state(calldata->state);
1210 	nfs_free_seqid(calldata->arg.seqid);
1211 	nfs4_put_state_owner(sp);
1212 	path_put(&calldata->path);
1213 	kfree(calldata);
1214 }
1215 
1216 static void nfs4_close_done(struct rpc_task *task, void *data)
1217 {
1218 	struct nfs4_closedata *calldata = data;
1219 	struct nfs4_state *state = calldata->state;
1220 	struct nfs_server *server = NFS_SERVER(calldata->inode);
1221 
1222 	if (RPC_ASSASSINATED(task))
1223 		return;
1224         /* hmm. we are done with the inode, and in the process of freeing
1225 	 * the state_owner. we keep this around to process errors
1226 	 */
1227 	switch (task->tk_status) {
1228 		case 0:
1229 			nfs_set_open_stateid(state, &calldata->res.stateid, 0);
1230 			renew_lease(server, calldata->timestamp);
1231 			break;
1232 		case -NFS4ERR_STALE_STATEID:
1233 		case -NFS4ERR_EXPIRED:
1234 			break;
1235 		default:
1236 			if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1237 				rpc_restart_call(task);
1238 				return;
1239 			}
1240 	}
1241 	nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1242 }
1243 
1244 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1245 {
1246 	struct nfs4_closedata *calldata = data;
1247 	struct nfs4_state *state = calldata->state;
1248 	int clear_rd, clear_wr, clear_rdwr;
1249 
1250 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1251 		return;
1252 
1253 	clear_rd = clear_wr = clear_rdwr = 0;
1254 	spin_lock(&state->owner->so_lock);
1255 	/* Calculate the change in open mode */
1256 	if (state->n_rdwr == 0) {
1257 		if (state->n_rdonly == 0) {
1258 			clear_rd |= test_and_clear_bit(NFS_O_RDONLY_STATE, &state->flags);
1259 			clear_rdwr |= test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags);
1260 		}
1261 		if (state->n_wronly == 0) {
1262 			clear_wr |= test_and_clear_bit(NFS_O_WRONLY_STATE, &state->flags);
1263 			clear_rdwr |= test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags);
1264 		}
1265 	}
1266 	spin_unlock(&state->owner->so_lock);
1267 	if (!clear_rd && !clear_wr && !clear_rdwr) {
1268 		/* Note: exit _without_ calling nfs4_close_done */
1269 		task->tk_action = NULL;
1270 		return;
1271 	}
1272 	nfs_fattr_init(calldata->res.fattr);
1273 	if (test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0) {
1274 		task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1275 		calldata->arg.open_flags = FMODE_READ;
1276 	} else if (test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0) {
1277 		task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1278 		calldata->arg.open_flags = FMODE_WRITE;
1279 	}
1280 	calldata->timestamp = jiffies;
1281 	rpc_call_start(task);
1282 }
1283 
1284 static const struct rpc_call_ops nfs4_close_ops = {
1285 	.rpc_call_prepare = nfs4_close_prepare,
1286 	.rpc_call_done = nfs4_close_done,
1287 	.rpc_release = nfs4_free_closedata,
1288 };
1289 
1290 /*
1291  * It is possible for data to be read/written from a mem-mapped file
1292  * after the sys_close call (which hits the vfs layer as a flush).
1293  * This means that we can't safely call nfsv4 close on a file until
1294  * the inode is cleared. This in turn means that we are not good
1295  * NFSv4 citizens - we do not indicate to the server to update the file's
1296  * share state even when we are done with one of the three share
1297  * stateid's in the inode.
1298  *
1299  * NOTE: Caller must be holding the sp->so_owner semaphore!
1300  */
1301 int nfs4_do_close(struct path *path, struct nfs4_state *state, int wait)
1302 {
1303 	struct nfs_server *server = NFS_SERVER(state->inode);
1304 	struct nfs4_closedata *calldata;
1305 	struct nfs4_state_owner *sp = state->owner;
1306 	struct rpc_task *task;
1307 	struct rpc_message msg = {
1308 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1309 		.rpc_cred = state->owner->so_cred,
1310 	};
1311 	struct rpc_task_setup task_setup_data = {
1312 		.rpc_client = server->client,
1313 		.rpc_message = &msg,
1314 		.callback_ops = &nfs4_close_ops,
1315 		.workqueue = nfsiod_workqueue,
1316 		.flags = RPC_TASK_ASYNC,
1317 	};
1318 	int status = -ENOMEM;
1319 
1320 	calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1321 	if (calldata == NULL)
1322 		goto out;
1323 	calldata->inode = state->inode;
1324 	calldata->state = state;
1325 	calldata->arg.fh = NFS_FH(state->inode);
1326 	calldata->arg.stateid = &state->open_stateid;
1327 	/* Serialization for the sequence id */
1328 	calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1329 	if (calldata->arg.seqid == NULL)
1330 		goto out_free_calldata;
1331 	calldata->arg.bitmask = server->attr_bitmask;
1332 	calldata->res.fattr = &calldata->fattr;
1333 	calldata->res.seqid = calldata->arg.seqid;
1334 	calldata->res.server = server;
1335 	calldata->path.mnt = mntget(path->mnt);
1336 	calldata->path.dentry = dget(path->dentry);
1337 
1338 	msg.rpc_argp = &calldata->arg,
1339 	msg.rpc_resp = &calldata->res,
1340 	task_setup_data.callback_data = calldata;
1341 	task = rpc_run_task(&task_setup_data);
1342 	if (IS_ERR(task))
1343 		return PTR_ERR(task);
1344 	status = 0;
1345 	if (wait)
1346 		status = rpc_wait_for_completion_task(task);
1347 	rpc_put_task(task);
1348 	return status;
1349 out_free_calldata:
1350 	kfree(calldata);
1351 out:
1352 	nfs4_put_open_state(state);
1353 	nfs4_put_state_owner(sp);
1354 	return status;
1355 }
1356 
1357 static int nfs4_intent_set_file(struct nameidata *nd, struct path *path, struct nfs4_state *state)
1358 {
1359 	struct file *filp;
1360 	int ret;
1361 
1362 	/* If the open_intent is for execute, we have an extra check to make */
1363 	if (nd->intent.open.flags & FMODE_EXEC) {
1364 		ret = nfs_may_open(state->inode,
1365 				state->owner->so_cred,
1366 				nd->intent.open.flags);
1367 		if (ret < 0)
1368 			goto out_close;
1369 	}
1370 	filp = lookup_instantiate_filp(nd, path->dentry, NULL);
1371 	if (!IS_ERR(filp)) {
1372 		struct nfs_open_context *ctx;
1373 		ctx = nfs_file_open_context(filp);
1374 		ctx->state = state;
1375 		return 0;
1376 	}
1377 	ret = PTR_ERR(filp);
1378 out_close:
1379 	nfs4_close_sync(path, state, nd->intent.open.flags);
1380 	return ret;
1381 }
1382 
1383 struct dentry *
1384 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1385 {
1386 	struct path path = {
1387 		.mnt = nd->path.mnt,
1388 		.dentry = dentry,
1389 	};
1390 	struct dentry *parent;
1391 	struct iattr attr;
1392 	struct rpc_cred *cred;
1393 	struct nfs4_state *state;
1394 	struct dentry *res;
1395 
1396 	if (nd->flags & LOOKUP_CREATE) {
1397 		attr.ia_mode = nd->intent.open.create_mode;
1398 		attr.ia_valid = ATTR_MODE;
1399 		if (!IS_POSIXACL(dir))
1400 			attr.ia_mode &= ~current->fs->umask;
1401 	} else {
1402 		attr.ia_valid = 0;
1403 		BUG_ON(nd->intent.open.flags & O_CREAT);
1404 	}
1405 
1406 	cred = rpc_lookup_cred();
1407 	if (IS_ERR(cred))
1408 		return (struct dentry *)cred;
1409 	parent = dentry->d_parent;
1410 	/* Protect against concurrent sillydeletes */
1411 	nfs_block_sillyrename(parent);
1412 	state = nfs4_do_open(dir, &path, nd->intent.open.flags, &attr, cred);
1413 	put_rpccred(cred);
1414 	if (IS_ERR(state)) {
1415 		if (PTR_ERR(state) == -ENOENT) {
1416 			d_add(dentry, NULL);
1417 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1418 		}
1419 		nfs_unblock_sillyrename(parent);
1420 		return (struct dentry *)state;
1421 	}
1422 	res = d_add_unique(dentry, igrab(state->inode));
1423 	if (res != NULL)
1424 		path.dentry = res;
1425 	nfs_set_verifier(path.dentry, nfs_save_change_attribute(dir));
1426 	nfs_unblock_sillyrename(parent);
1427 	nfs4_intent_set_file(nd, &path, state);
1428 	return res;
1429 }
1430 
1431 int
1432 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1433 {
1434 	struct path path = {
1435 		.mnt = nd->path.mnt,
1436 		.dentry = dentry,
1437 	};
1438 	struct rpc_cred *cred;
1439 	struct nfs4_state *state;
1440 
1441 	cred = rpc_lookup_cred();
1442 	if (IS_ERR(cred))
1443 		return PTR_ERR(cred);
1444 	state = nfs4_do_open(dir, &path, openflags, NULL, cred);
1445 	put_rpccred(cred);
1446 	if (IS_ERR(state)) {
1447 		switch (PTR_ERR(state)) {
1448 			case -EPERM:
1449 			case -EACCES:
1450 			case -EDQUOT:
1451 			case -ENOSPC:
1452 			case -EROFS:
1453 				lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1454 				return 1;
1455 			default:
1456 				goto out_drop;
1457 		}
1458 	}
1459 	if (state->inode == dentry->d_inode) {
1460 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1461 		nfs4_intent_set_file(nd, &path, state);
1462 		return 1;
1463 	}
1464 	nfs4_close_sync(&path, state, openflags);
1465 out_drop:
1466 	d_drop(dentry);
1467 	return 0;
1468 }
1469 
1470 
1471 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1472 {
1473 	struct nfs4_server_caps_res res = {};
1474 	struct rpc_message msg = {
1475 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1476 		.rpc_argp = fhandle,
1477 		.rpc_resp = &res,
1478 	};
1479 	int status;
1480 
1481 	status = rpc_call_sync(server->client, &msg, 0);
1482 	if (status == 0) {
1483 		memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1484 		if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1485 			server->caps |= NFS_CAP_ACLS;
1486 		if (res.has_links != 0)
1487 			server->caps |= NFS_CAP_HARDLINKS;
1488 		if (res.has_symlinks != 0)
1489 			server->caps |= NFS_CAP_SYMLINKS;
1490 		server->acl_bitmask = res.acl_bitmask;
1491 	}
1492 	return status;
1493 }
1494 
1495 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1496 {
1497 	struct nfs4_exception exception = { };
1498 	int err;
1499 	do {
1500 		err = nfs4_handle_exception(server,
1501 				_nfs4_server_capabilities(server, fhandle),
1502 				&exception);
1503 	} while (exception.retry);
1504 	return err;
1505 }
1506 
1507 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1508 		struct nfs_fsinfo *info)
1509 {
1510 	struct nfs4_lookup_root_arg args = {
1511 		.bitmask = nfs4_fattr_bitmap,
1512 	};
1513 	struct nfs4_lookup_res res = {
1514 		.server = server,
1515 		.fattr = info->fattr,
1516 		.fh = fhandle,
1517 	};
1518 	struct rpc_message msg = {
1519 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1520 		.rpc_argp = &args,
1521 		.rpc_resp = &res,
1522 	};
1523 	nfs_fattr_init(info->fattr);
1524 	return rpc_call_sync(server->client, &msg, 0);
1525 }
1526 
1527 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1528 		struct nfs_fsinfo *info)
1529 {
1530 	struct nfs4_exception exception = { };
1531 	int err;
1532 	do {
1533 		err = nfs4_handle_exception(server,
1534 				_nfs4_lookup_root(server, fhandle, info),
1535 				&exception);
1536 	} while (exception.retry);
1537 	return err;
1538 }
1539 
1540 /*
1541  * get the file handle for the "/" directory on the server
1542  */
1543 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1544 			      struct nfs_fsinfo *info)
1545 {
1546 	int status;
1547 
1548 	status = nfs4_lookup_root(server, fhandle, info);
1549 	if (status == 0)
1550 		status = nfs4_server_capabilities(server, fhandle);
1551 	if (status == 0)
1552 		status = nfs4_do_fsinfo(server, fhandle, info);
1553 	return nfs4_map_errors(status);
1554 }
1555 
1556 /*
1557  * Get locations and (maybe) other attributes of a referral.
1558  * Note that we'll actually follow the referral later when
1559  * we detect fsid mismatch in inode revalidation
1560  */
1561 static int nfs4_get_referral(struct inode *dir, const struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
1562 {
1563 	int status = -ENOMEM;
1564 	struct page *page = NULL;
1565 	struct nfs4_fs_locations *locations = NULL;
1566 
1567 	page = alloc_page(GFP_KERNEL);
1568 	if (page == NULL)
1569 		goto out;
1570 	locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
1571 	if (locations == NULL)
1572 		goto out;
1573 
1574 	status = nfs4_proc_fs_locations(dir, name, locations, page);
1575 	if (status != 0)
1576 		goto out;
1577 	/* Make sure server returned a different fsid for the referral */
1578 	if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
1579 		dprintk("%s: server did not return a different fsid for a referral at %s\n", __func__, name->name);
1580 		status = -EIO;
1581 		goto out;
1582 	}
1583 
1584 	memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
1585 	fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
1586 	if (!fattr->mode)
1587 		fattr->mode = S_IFDIR;
1588 	memset(fhandle, 0, sizeof(struct nfs_fh));
1589 out:
1590 	if (page)
1591 		__free_page(page);
1592 	if (locations)
1593 		kfree(locations);
1594 	return status;
1595 }
1596 
1597 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1598 {
1599 	struct nfs4_getattr_arg args = {
1600 		.fh = fhandle,
1601 		.bitmask = server->attr_bitmask,
1602 	};
1603 	struct nfs4_getattr_res res = {
1604 		.fattr = fattr,
1605 		.server = server,
1606 	};
1607 	struct rpc_message msg = {
1608 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1609 		.rpc_argp = &args,
1610 		.rpc_resp = &res,
1611 	};
1612 
1613 	nfs_fattr_init(fattr);
1614 	return rpc_call_sync(server->client, &msg, 0);
1615 }
1616 
1617 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1618 {
1619 	struct nfs4_exception exception = { };
1620 	int err;
1621 	do {
1622 		err = nfs4_handle_exception(server,
1623 				_nfs4_proc_getattr(server, fhandle, fattr),
1624 				&exception);
1625 	} while (exception.retry);
1626 	return err;
1627 }
1628 
1629 /*
1630  * The file is not closed if it is opened due to the a request to change
1631  * the size of the file. The open call will not be needed once the
1632  * VFS layer lookup-intents are implemented.
1633  *
1634  * Close is called when the inode is destroyed.
1635  * If we haven't opened the file for O_WRONLY, we
1636  * need to in the size_change case to obtain a stateid.
1637  *
1638  * Got race?
1639  * Because OPEN is always done by name in nfsv4, it is
1640  * possible that we opened a different file by the same
1641  * name.  We can recognize this race condition, but we
1642  * can't do anything about it besides returning an error.
1643  *
1644  * This will be fixed with VFS changes (lookup-intent).
1645  */
1646 static int
1647 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1648 		  struct iattr *sattr)
1649 {
1650 	struct inode *inode = dentry->d_inode;
1651 	struct rpc_cred *cred = NULL;
1652 	struct nfs4_state *state = NULL;
1653 	int status;
1654 
1655 	nfs_fattr_init(fattr);
1656 
1657 	/* Search for an existing open(O_WRITE) file */
1658 	if (sattr->ia_valid & ATTR_FILE) {
1659 		struct nfs_open_context *ctx;
1660 
1661 		ctx = nfs_file_open_context(sattr->ia_file);
1662 		if (ctx) {
1663 			cred = ctx->cred;
1664 			state = ctx->state;
1665 		}
1666 	}
1667 
1668 	status = nfs4_do_setattr(inode, cred, fattr, sattr, state);
1669 	if (status == 0)
1670 		nfs_setattr_update_inode(inode, sattr);
1671 	return status;
1672 }
1673 
1674 static int _nfs4_proc_lookupfh(struct nfs_server *server, const struct nfs_fh *dirfh,
1675 		const struct qstr *name, struct nfs_fh *fhandle,
1676 		struct nfs_fattr *fattr)
1677 {
1678 	int		       status;
1679 	struct nfs4_lookup_arg args = {
1680 		.bitmask = server->attr_bitmask,
1681 		.dir_fh = dirfh,
1682 		.name = name,
1683 	};
1684 	struct nfs4_lookup_res res = {
1685 		.server = server,
1686 		.fattr = fattr,
1687 		.fh = fhandle,
1688 	};
1689 	struct rpc_message msg = {
1690 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1691 		.rpc_argp = &args,
1692 		.rpc_resp = &res,
1693 	};
1694 
1695 	nfs_fattr_init(fattr);
1696 
1697 	dprintk("NFS call  lookupfh %s\n", name->name);
1698 	status = rpc_call_sync(server->client, &msg, 0);
1699 	dprintk("NFS reply lookupfh: %d\n", status);
1700 	return status;
1701 }
1702 
1703 static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1704 			      struct qstr *name, struct nfs_fh *fhandle,
1705 			      struct nfs_fattr *fattr)
1706 {
1707 	struct nfs4_exception exception = { };
1708 	int err;
1709 	do {
1710 		err = _nfs4_proc_lookupfh(server, dirfh, name, fhandle, fattr);
1711 		/* FIXME: !!!! */
1712 		if (err == -NFS4ERR_MOVED) {
1713 			err = -EREMOTE;
1714 			break;
1715 		}
1716 		err = nfs4_handle_exception(server, err, &exception);
1717 	} while (exception.retry);
1718 	return err;
1719 }
1720 
1721 static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name,
1722 		struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1723 {
1724 	int status;
1725 
1726 	dprintk("NFS call  lookup %s\n", name->name);
1727 	status = _nfs4_proc_lookupfh(NFS_SERVER(dir), NFS_FH(dir), name, fhandle, fattr);
1728 	if (status == -NFS4ERR_MOVED)
1729 		status = nfs4_get_referral(dir, name, fattr, fhandle);
1730 	dprintk("NFS reply lookup: %d\n", status);
1731 	return status;
1732 }
1733 
1734 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1735 {
1736 	struct nfs4_exception exception = { };
1737 	int err;
1738 	do {
1739 		err = nfs4_handle_exception(NFS_SERVER(dir),
1740 				_nfs4_proc_lookup(dir, name, fhandle, fattr),
1741 				&exception);
1742 	} while (exception.retry);
1743 	return err;
1744 }
1745 
1746 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1747 {
1748 	struct nfs_server *server = NFS_SERVER(inode);
1749 	struct nfs_fattr fattr;
1750 	struct nfs4_accessargs args = {
1751 		.fh = NFS_FH(inode),
1752 		.bitmask = server->attr_bitmask,
1753 	};
1754 	struct nfs4_accessres res = {
1755 		.server = server,
1756 		.fattr = &fattr,
1757 	};
1758 	struct rpc_message msg = {
1759 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1760 		.rpc_argp = &args,
1761 		.rpc_resp = &res,
1762 		.rpc_cred = entry->cred,
1763 	};
1764 	int mode = entry->mask;
1765 	int status;
1766 
1767 	/*
1768 	 * Determine which access bits we want to ask for...
1769 	 */
1770 	if (mode & MAY_READ)
1771 		args.access |= NFS4_ACCESS_READ;
1772 	if (S_ISDIR(inode->i_mode)) {
1773 		if (mode & MAY_WRITE)
1774 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1775 		if (mode & MAY_EXEC)
1776 			args.access |= NFS4_ACCESS_LOOKUP;
1777 	} else {
1778 		if (mode & MAY_WRITE)
1779 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1780 		if (mode & MAY_EXEC)
1781 			args.access |= NFS4_ACCESS_EXECUTE;
1782 	}
1783 	nfs_fattr_init(&fattr);
1784 	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1785 	if (!status) {
1786 		entry->mask = 0;
1787 		if (res.access & NFS4_ACCESS_READ)
1788 			entry->mask |= MAY_READ;
1789 		if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1790 			entry->mask |= MAY_WRITE;
1791 		if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1792 			entry->mask |= MAY_EXEC;
1793 		nfs_refresh_inode(inode, &fattr);
1794 	}
1795 	return status;
1796 }
1797 
1798 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1799 {
1800 	struct nfs4_exception exception = { };
1801 	int err;
1802 	do {
1803 		err = nfs4_handle_exception(NFS_SERVER(inode),
1804 				_nfs4_proc_access(inode, entry),
1805 				&exception);
1806 	} while (exception.retry);
1807 	return err;
1808 }
1809 
1810 /*
1811  * TODO: For the time being, we don't try to get any attributes
1812  * along with any of the zero-copy operations READ, READDIR,
1813  * READLINK, WRITE.
1814  *
1815  * In the case of the first three, we want to put the GETATTR
1816  * after the read-type operation -- this is because it is hard
1817  * to predict the length of a GETATTR response in v4, and thus
1818  * align the READ data correctly.  This means that the GETATTR
1819  * may end up partially falling into the page cache, and we should
1820  * shift it into the 'tail' of the xdr_buf before processing.
1821  * To do this efficiently, we need to know the total length
1822  * of data received, which doesn't seem to be available outside
1823  * of the RPC layer.
1824  *
1825  * In the case of WRITE, we also want to put the GETATTR after
1826  * the operation -- in this case because we want to make sure
1827  * we get the post-operation mtime and size.  This means that
1828  * we can't use xdr_encode_pages() as written: we need a variant
1829  * of it which would leave room in the 'tail' iovec.
1830  *
1831  * Both of these changes to the XDR layer would in fact be quite
1832  * minor, but I decided to leave them for a subsequent patch.
1833  */
1834 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1835 		unsigned int pgbase, unsigned int pglen)
1836 {
1837 	struct nfs4_readlink args = {
1838 		.fh       = NFS_FH(inode),
1839 		.pgbase	  = pgbase,
1840 		.pglen    = pglen,
1841 		.pages    = &page,
1842 	};
1843 	struct rpc_message msg = {
1844 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1845 		.rpc_argp = &args,
1846 		.rpc_resp = NULL,
1847 	};
1848 
1849 	return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1850 }
1851 
1852 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1853 		unsigned int pgbase, unsigned int pglen)
1854 {
1855 	struct nfs4_exception exception = { };
1856 	int err;
1857 	do {
1858 		err = nfs4_handle_exception(NFS_SERVER(inode),
1859 				_nfs4_proc_readlink(inode, page, pgbase, pglen),
1860 				&exception);
1861 	} while (exception.retry);
1862 	return err;
1863 }
1864 
1865 /*
1866  * Got race?
1867  * We will need to arrange for the VFS layer to provide an atomic open.
1868  * Until then, this create/open method is prone to inefficiency and race
1869  * conditions due to the lookup, create, and open VFS calls from sys_open()
1870  * placed on the wire.
1871  *
1872  * Given the above sorry state of affairs, I'm simply sending an OPEN.
1873  * The file will be opened again in the subsequent VFS open call
1874  * (nfs4_proc_file_open).
1875  *
1876  * The open for read will just hang around to be used by any process that
1877  * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1878  */
1879 
1880 static int
1881 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1882                  int flags, struct nameidata *nd)
1883 {
1884 	struct path path = {
1885 		.mnt = nd->path.mnt,
1886 		.dentry = dentry,
1887 	};
1888 	struct nfs4_state *state;
1889 	struct rpc_cred *cred;
1890 	int status = 0;
1891 
1892 	cred = rpc_lookup_cred();
1893 	if (IS_ERR(cred)) {
1894 		status = PTR_ERR(cred);
1895 		goto out;
1896 	}
1897 	state = nfs4_do_open(dir, &path, flags, sattr, cred);
1898 	d_drop(dentry);
1899 	if (IS_ERR(state)) {
1900 		status = PTR_ERR(state);
1901 		goto out_putcred;
1902 	}
1903 	d_add(dentry, igrab(state->inode));
1904 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1905 	if (flags & O_EXCL) {
1906 		struct nfs_fattr fattr;
1907 		status = nfs4_do_setattr(state->inode, cred, &fattr, sattr, state);
1908 		if (status == 0)
1909 			nfs_setattr_update_inode(state->inode, sattr);
1910 		nfs_post_op_update_inode(state->inode, &fattr);
1911 	}
1912 	if (status == 0 && (nd->flags & LOOKUP_OPEN) != 0)
1913 		status = nfs4_intent_set_file(nd, &path, state);
1914 	else
1915 		nfs4_close_sync(&path, state, flags);
1916 out_putcred:
1917 	put_rpccred(cred);
1918 out:
1919 	return status;
1920 }
1921 
1922 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1923 {
1924 	struct nfs_server *server = NFS_SERVER(dir);
1925 	struct nfs_removeargs args = {
1926 		.fh = NFS_FH(dir),
1927 		.name.len = name->len,
1928 		.name.name = name->name,
1929 		.bitmask = server->attr_bitmask,
1930 	};
1931 	struct nfs_removeres res = {
1932 		.server = server,
1933 	};
1934 	struct rpc_message msg = {
1935 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1936 		.rpc_argp = &args,
1937 		.rpc_resp = &res,
1938 	};
1939 	int			status;
1940 
1941 	nfs_fattr_init(&res.dir_attr);
1942 	status = rpc_call_sync(server->client, &msg, 0);
1943 	if (status == 0) {
1944 		update_changeattr(dir, &res.cinfo);
1945 		nfs_post_op_update_inode(dir, &res.dir_attr);
1946 	}
1947 	return status;
1948 }
1949 
1950 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1951 {
1952 	struct nfs4_exception exception = { };
1953 	int err;
1954 	do {
1955 		err = nfs4_handle_exception(NFS_SERVER(dir),
1956 				_nfs4_proc_remove(dir, name),
1957 				&exception);
1958 	} while (exception.retry);
1959 	return err;
1960 }
1961 
1962 static void nfs4_proc_unlink_setup(struct rpc_message *msg, struct inode *dir)
1963 {
1964 	struct nfs_server *server = NFS_SERVER(dir);
1965 	struct nfs_removeargs *args = msg->rpc_argp;
1966 	struct nfs_removeres *res = msg->rpc_resp;
1967 
1968 	args->bitmask = server->attr_bitmask;
1969 	res->server = server;
1970 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1971 }
1972 
1973 static int nfs4_proc_unlink_done(struct rpc_task *task, struct inode *dir)
1974 {
1975 	struct nfs_removeres *res = task->tk_msg.rpc_resp;
1976 
1977 	if (nfs4_async_handle_error(task, res->server) == -EAGAIN)
1978 		return 0;
1979 	update_changeattr(dir, &res->cinfo);
1980 	nfs_post_op_update_inode(dir, &res->dir_attr);
1981 	return 1;
1982 }
1983 
1984 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1985 		struct inode *new_dir, struct qstr *new_name)
1986 {
1987 	struct nfs_server *server = NFS_SERVER(old_dir);
1988 	struct nfs4_rename_arg arg = {
1989 		.old_dir = NFS_FH(old_dir),
1990 		.new_dir = NFS_FH(new_dir),
1991 		.old_name = old_name,
1992 		.new_name = new_name,
1993 		.bitmask = server->attr_bitmask,
1994 	};
1995 	struct nfs_fattr old_fattr, new_fattr;
1996 	struct nfs4_rename_res res = {
1997 		.server = server,
1998 		.old_fattr = &old_fattr,
1999 		.new_fattr = &new_fattr,
2000 	};
2001 	struct rpc_message msg = {
2002 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
2003 		.rpc_argp = &arg,
2004 		.rpc_resp = &res,
2005 	};
2006 	int			status;
2007 
2008 	nfs_fattr_init(res.old_fattr);
2009 	nfs_fattr_init(res.new_fattr);
2010 	status = rpc_call_sync(server->client, &msg, 0);
2011 
2012 	if (!status) {
2013 		update_changeattr(old_dir, &res.old_cinfo);
2014 		nfs_post_op_update_inode(old_dir, res.old_fattr);
2015 		update_changeattr(new_dir, &res.new_cinfo);
2016 		nfs_post_op_update_inode(new_dir, res.new_fattr);
2017 	}
2018 	return status;
2019 }
2020 
2021 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
2022 		struct inode *new_dir, struct qstr *new_name)
2023 {
2024 	struct nfs4_exception exception = { };
2025 	int err;
2026 	do {
2027 		err = nfs4_handle_exception(NFS_SERVER(old_dir),
2028 				_nfs4_proc_rename(old_dir, old_name,
2029 					new_dir, new_name),
2030 				&exception);
2031 	} while (exception.retry);
2032 	return err;
2033 }
2034 
2035 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2036 {
2037 	struct nfs_server *server = NFS_SERVER(inode);
2038 	struct nfs4_link_arg arg = {
2039 		.fh     = NFS_FH(inode),
2040 		.dir_fh = NFS_FH(dir),
2041 		.name   = name,
2042 		.bitmask = server->attr_bitmask,
2043 	};
2044 	struct nfs_fattr fattr, dir_attr;
2045 	struct nfs4_link_res res = {
2046 		.server = server,
2047 		.fattr = &fattr,
2048 		.dir_attr = &dir_attr,
2049 	};
2050 	struct rpc_message msg = {
2051 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
2052 		.rpc_argp = &arg,
2053 		.rpc_resp = &res,
2054 	};
2055 	int			status;
2056 
2057 	nfs_fattr_init(res.fattr);
2058 	nfs_fattr_init(res.dir_attr);
2059 	status = rpc_call_sync(server->client, &msg, 0);
2060 	if (!status) {
2061 		update_changeattr(dir, &res.cinfo);
2062 		nfs_post_op_update_inode(dir, res.dir_attr);
2063 		nfs_post_op_update_inode(inode, res.fattr);
2064 	}
2065 
2066 	return status;
2067 }
2068 
2069 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2070 {
2071 	struct nfs4_exception exception = { };
2072 	int err;
2073 	do {
2074 		err = nfs4_handle_exception(NFS_SERVER(inode),
2075 				_nfs4_proc_link(inode, dir, name),
2076 				&exception);
2077 	} while (exception.retry);
2078 	return err;
2079 }
2080 
2081 struct nfs4_createdata {
2082 	struct rpc_message msg;
2083 	struct nfs4_create_arg arg;
2084 	struct nfs4_create_res res;
2085 	struct nfs_fh fh;
2086 	struct nfs_fattr fattr;
2087 	struct nfs_fattr dir_fattr;
2088 };
2089 
2090 static struct nfs4_createdata *nfs4_alloc_createdata(struct inode *dir,
2091 		struct qstr *name, struct iattr *sattr, u32 ftype)
2092 {
2093 	struct nfs4_createdata *data;
2094 
2095 	data = kzalloc(sizeof(*data), GFP_KERNEL);
2096 	if (data != NULL) {
2097 		struct nfs_server *server = NFS_SERVER(dir);
2098 
2099 		data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE];
2100 		data->msg.rpc_argp = &data->arg;
2101 		data->msg.rpc_resp = &data->res;
2102 		data->arg.dir_fh = NFS_FH(dir);
2103 		data->arg.server = server;
2104 		data->arg.name = name;
2105 		data->arg.attrs = sattr;
2106 		data->arg.ftype = ftype;
2107 		data->arg.bitmask = server->attr_bitmask;
2108 		data->res.server = server;
2109 		data->res.fh = &data->fh;
2110 		data->res.fattr = &data->fattr;
2111 		data->res.dir_fattr = &data->dir_fattr;
2112 		nfs_fattr_init(data->res.fattr);
2113 		nfs_fattr_init(data->res.dir_fattr);
2114 	}
2115 	return data;
2116 }
2117 
2118 static int nfs4_do_create(struct inode *dir, struct dentry *dentry, struct nfs4_createdata *data)
2119 {
2120 	int status = rpc_call_sync(NFS_CLIENT(dir), &data->msg, 0);
2121 	if (status == 0) {
2122 		update_changeattr(dir, &data->res.dir_cinfo);
2123 		nfs_post_op_update_inode(dir, data->res.dir_fattr);
2124 		status = nfs_instantiate(dentry, data->res.fh, data->res.fattr);
2125 	}
2126 	return status;
2127 }
2128 
2129 static void nfs4_free_createdata(struct nfs4_createdata *data)
2130 {
2131 	kfree(data);
2132 }
2133 
2134 static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2135 		struct page *page, unsigned int len, struct iattr *sattr)
2136 {
2137 	struct nfs4_createdata *data;
2138 	int status = -ENAMETOOLONG;
2139 
2140 	if (len > NFS4_MAXPATHLEN)
2141 		goto out;
2142 
2143 	status = -ENOMEM;
2144 	data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4LNK);
2145 	if (data == NULL)
2146 		goto out;
2147 
2148 	data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK];
2149 	data->arg.u.symlink.pages = &page;
2150 	data->arg.u.symlink.len = len;
2151 
2152 	status = nfs4_do_create(dir, dentry, data);
2153 
2154 	nfs4_free_createdata(data);
2155 out:
2156 	return status;
2157 }
2158 
2159 static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2160 		struct page *page, unsigned int len, struct iattr *sattr)
2161 {
2162 	struct nfs4_exception exception = { };
2163 	int err;
2164 	do {
2165 		err = nfs4_handle_exception(NFS_SERVER(dir),
2166 				_nfs4_proc_symlink(dir, dentry, page,
2167 							len, sattr),
2168 				&exception);
2169 	} while (exception.retry);
2170 	return err;
2171 }
2172 
2173 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2174 		struct iattr *sattr)
2175 {
2176 	struct nfs4_createdata *data;
2177 	int status = -ENOMEM;
2178 
2179 	data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4DIR);
2180 	if (data == NULL)
2181 		goto out;
2182 
2183 	status = nfs4_do_create(dir, dentry, data);
2184 
2185 	nfs4_free_createdata(data);
2186 out:
2187 	return status;
2188 }
2189 
2190 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2191 		struct iattr *sattr)
2192 {
2193 	struct nfs4_exception exception = { };
2194 	int err;
2195 	do {
2196 		err = nfs4_handle_exception(NFS_SERVER(dir),
2197 				_nfs4_proc_mkdir(dir, dentry, sattr),
2198 				&exception);
2199 	} while (exception.retry);
2200 	return err;
2201 }
2202 
2203 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2204                   u64 cookie, struct page *page, unsigned int count, int plus)
2205 {
2206 	struct inode		*dir = dentry->d_inode;
2207 	struct nfs4_readdir_arg args = {
2208 		.fh = NFS_FH(dir),
2209 		.pages = &page,
2210 		.pgbase = 0,
2211 		.count = count,
2212 		.bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2213 	};
2214 	struct nfs4_readdir_res res;
2215 	struct rpc_message msg = {
2216 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2217 		.rpc_argp = &args,
2218 		.rpc_resp = &res,
2219 		.rpc_cred = cred,
2220 	};
2221 	int			status;
2222 
2223 	dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __func__,
2224 			dentry->d_parent->d_name.name,
2225 			dentry->d_name.name,
2226 			(unsigned long long)cookie);
2227 	nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2228 	res.pgbase = args.pgbase;
2229 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2230 	if (status == 0)
2231 		memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2232 
2233 	nfs_invalidate_atime(dir);
2234 
2235 	dprintk("%s: returns %d\n", __func__, status);
2236 	return status;
2237 }
2238 
2239 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2240                   u64 cookie, struct page *page, unsigned int count, int plus)
2241 {
2242 	struct nfs4_exception exception = { };
2243 	int err;
2244 	do {
2245 		err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2246 				_nfs4_proc_readdir(dentry, cred, cookie,
2247 					page, count, plus),
2248 				&exception);
2249 	} while (exception.retry);
2250 	return err;
2251 }
2252 
2253 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2254 		struct iattr *sattr, dev_t rdev)
2255 {
2256 	struct nfs4_createdata *data;
2257 	int mode = sattr->ia_mode;
2258 	int status = -ENOMEM;
2259 
2260 	BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2261 	BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2262 
2263 	data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4SOCK);
2264 	if (data == NULL)
2265 		goto out;
2266 
2267 	if (S_ISFIFO(mode))
2268 		data->arg.ftype = NF4FIFO;
2269 	else if (S_ISBLK(mode)) {
2270 		data->arg.ftype = NF4BLK;
2271 		data->arg.u.device.specdata1 = MAJOR(rdev);
2272 		data->arg.u.device.specdata2 = MINOR(rdev);
2273 	}
2274 	else if (S_ISCHR(mode)) {
2275 		data->arg.ftype = NF4CHR;
2276 		data->arg.u.device.specdata1 = MAJOR(rdev);
2277 		data->arg.u.device.specdata2 = MINOR(rdev);
2278 	}
2279 
2280 	status = nfs4_do_create(dir, dentry, data);
2281 
2282 	nfs4_free_createdata(data);
2283 out:
2284 	return status;
2285 }
2286 
2287 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2288 		struct iattr *sattr, dev_t rdev)
2289 {
2290 	struct nfs4_exception exception = { };
2291 	int err;
2292 	do {
2293 		err = nfs4_handle_exception(NFS_SERVER(dir),
2294 				_nfs4_proc_mknod(dir, dentry, sattr, rdev),
2295 				&exception);
2296 	} while (exception.retry);
2297 	return err;
2298 }
2299 
2300 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2301 		 struct nfs_fsstat *fsstat)
2302 {
2303 	struct nfs4_statfs_arg args = {
2304 		.fh = fhandle,
2305 		.bitmask = server->attr_bitmask,
2306 	};
2307 	struct rpc_message msg = {
2308 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2309 		.rpc_argp = &args,
2310 		.rpc_resp = fsstat,
2311 	};
2312 
2313 	nfs_fattr_init(fsstat->fattr);
2314 	return rpc_call_sync(server->client, &msg, 0);
2315 }
2316 
2317 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2318 {
2319 	struct nfs4_exception exception = { };
2320 	int err;
2321 	do {
2322 		err = nfs4_handle_exception(server,
2323 				_nfs4_proc_statfs(server, fhandle, fsstat),
2324 				&exception);
2325 	} while (exception.retry);
2326 	return err;
2327 }
2328 
2329 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2330 		struct nfs_fsinfo *fsinfo)
2331 {
2332 	struct nfs4_fsinfo_arg args = {
2333 		.fh = fhandle,
2334 		.bitmask = server->attr_bitmask,
2335 	};
2336 	struct rpc_message msg = {
2337 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2338 		.rpc_argp = &args,
2339 		.rpc_resp = fsinfo,
2340 	};
2341 
2342 	return rpc_call_sync(server->client, &msg, 0);
2343 }
2344 
2345 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2346 {
2347 	struct nfs4_exception exception = { };
2348 	int err;
2349 
2350 	do {
2351 		err = nfs4_handle_exception(server,
2352 				_nfs4_do_fsinfo(server, fhandle, fsinfo),
2353 				&exception);
2354 	} while (exception.retry);
2355 	return err;
2356 }
2357 
2358 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2359 {
2360 	nfs_fattr_init(fsinfo->fattr);
2361 	return nfs4_do_fsinfo(server, fhandle, fsinfo);
2362 }
2363 
2364 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2365 		struct nfs_pathconf *pathconf)
2366 {
2367 	struct nfs4_pathconf_arg args = {
2368 		.fh = fhandle,
2369 		.bitmask = server->attr_bitmask,
2370 	};
2371 	struct rpc_message msg = {
2372 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2373 		.rpc_argp = &args,
2374 		.rpc_resp = pathconf,
2375 	};
2376 
2377 	/* None of the pathconf attributes are mandatory to implement */
2378 	if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2379 		memset(pathconf, 0, sizeof(*pathconf));
2380 		return 0;
2381 	}
2382 
2383 	nfs_fattr_init(pathconf->fattr);
2384 	return rpc_call_sync(server->client, &msg, 0);
2385 }
2386 
2387 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2388 		struct nfs_pathconf *pathconf)
2389 {
2390 	struct nfs4_exception exception = { };
2391 	int err;
2392 
2393 	do {
2394 		err = nfs4_handle_exception(server,
2395 				_nfs4_proc_pathconf(server, fhandle, pathconf),
2396 				&exception);
2397 	} while (exception.retry);
2398 	return err;
2399 }
2400 
2401 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2402 {
2403 	struct nfs_server *server = NFS_SERVER(data->inode);
2404 
2405 	if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2406 		rpc_restart_call(task);
2407 		return -EAGAIN;
2408 	}
2409 
2410 	nfs_invalidate_atime(data->inode);
2411 	if (task->tk_status > 0)
2412 		renew_lease(server, data->timestamp);
2413 	return 0;
2414 }
2415 
2416 static void nfs4_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg)
2417 {
2418 	data->timestamp   = jiffies;
2419 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ];
2420 }
2421 
2422 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2423 {
2424 	struct inode *inode = data->inode;
2425 
2426 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2427 		rpc_restart_call(task);
2428 		return -EAGAIN;
2429 	}
2430 	if (task->tk_status >= 0) {
2431 		renew_lease(NFS_SERVER(inode), data->timestamp);
2432 		nfs_post_op_update_inode_force_wcc(inode, data->res.fattr);
2433 	}
2434 	return 0;
2435 }
2436 
2437 static void nfs4_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg)
2438 {
2439 	struct nfs_server *server = NFS_SERVER(data->inode);
2440 
2441 	data->args.bitmask = server->attr_bitmask;
2442 	data->res.server = server;
2443 	data->timestamp   = jiffies;
2444 
2445 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE];
2446 }
2447 
2448 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2449 {
2450 	struct inode *inode = data->inode;
2451 
2452 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2453 		rpc_restart_call(task);
2454 		return -EAGAIN;
2455 	}
2456 	nfs_refresh_inode(inode, data->res.fattr);
2457 	return 0;
2458 }
2459 
2460 static void nfs4_proc_commit_setup(struct nfs_write_data *data, struct rpc_message *msg)
2461 {
2462 	struct nfs_server *server = NFS_SERVER(data->inode);
2463 
2464 	data->args.bitmask = server->attr_bitmask;
2465 	data->res.server = server;
2466 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT];
2467 }
2468 
2469 /*
2470  * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2471  * standalone procedure for queueing an asynchronous RENEW.
2472  */
2473 static void nfs4_renew_done(struct rpc_task *task, void *data)
2474 {
2475 	struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp;
2476 	unsigned long timestamp = (unsigned long)data;
2477 
2478 	if (task->tk_status < 0) {
2479 		switch (task->tk_status) {
2480 			case -NFS4ERR_STALE_CLIENTID:
2481 			case -NFS4ERR_EXPIRED:
2482 			case -NFS4ERR_CB_PATH_DOWN:
2483 				nfs4_schedule_state_recovery(clp);
2484 		}
2485 		return;
2486 	}
2487 	spin_lock(&clp->cl_lock);
2488 	if (time_before(clp->cl_last_renewal,timestamp))
2489 		clp->cl_last_renewal = timestamp;
2490 	spin_unlock(&clp->cl_lock);
2491 }
2492 
2493 static const struct rpc_call_ops nfs4_renew_ops = {
2494 	.rpc_call_done = nfs4_renew_done,
2495 };
2496 
2497 int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
2498 {
2499 	struct rpc_message msg = {
2500 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2501 		.rpc_argp	= clp,
2502 		.rpc_cred	= cred,
2503 	};
2504 
2505 	return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2506 			&nfs4_renew_ops, (void *)jiffies);
2507 }
2508 
2509 int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
2510 {
2511 	struct rpc_message msg = {
2512 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2513 		.rpc_argp	= clp,
2514 		.rpc_cred	= cred,
2515 	};
2516 	unsigned long now = jiffies;
2517 	int status;
2518 
2519 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2520 	if (status < 0)
2521 		return status;
2522 	spin_lock(&clp->cl_lock);
2523 	if (time_before(clp->cl_last_renewal,now))
2524 		clp->cl_last_renewal = now;
2525 	spin_unlock(&clp->cl_lock);
2526 	return 0;
2527 }
2528 
2529 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2530 {
2531 	return (server->caps & NFS_CAP_ACLS)
2532 		&& (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2533 		&& (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2534 }
2535 
2536 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2537  * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2538  * the stack.
2539  */
2540 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2541 
2542 static void buf_to_pages(const void *buf, size_t buflen,
2543 		struct page **pages, unsigned int *pgbase)
2544 {
2545 	const void *p = buf;
2546 
2547 	*pgbase = offset_in_page(buf);
2548 	p -= *pgbase;
2549 	while (p < buf + buflen) {
2550 		*(pages++) = virt_to_page(p);
2551 		p += PAGE_CACHE_SIZE;
2552 	}
2553 }
2554 
2555 struct nfs4_cached_acl {
2556 	int cached;
2557 	size_t len;
2558 	char data[0];
2559 };
2560 
2561 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2562 {
2563 	struct nfs_inode *nfsi = NFS_I(inode);
2564 
2565 	spin_lock(&inode->i_lock);
2566 	kfree(nfsi->nfs4_acl);
2567 	nfsi->nfs4_acl = acl;
2568 	spin_unlock(&inode->i_lock);
2569 }
2570 
2571 static void nfs4_zap_acl_attr(struct inode *inode)
2572 {
2573 	nfs4_set_cached_acl(inode, NULL);
2574 }
2575 
2576 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2577 {
2578 	struct nfs_inode *nfsi = NFS_I(inode);
2579 	struct nfs4_cached_acl *acl;
2580 	int ret = -ENOENT;
2581 
2582 	spin_lock(&inode->i_lock);
2583 	acl = nfsi->nfs4_acl;
2584 	if (acl == NULL)
2585 		goto out;
2586 	if (buf == NULL) /* user is just asking for length */
2587 		goto out_len;
2588 	if (acl->cached == 0)
2589 		goto out;
2590 	ret = -ERANGE; /* see getxattr(2) man page */
2591 	if (acl->len > buflen)
2592 		goto out;
2593 	memcpy(buf, acl->data, acl->len);
2594 out_len:
2595 	ret = acl->len;
2596 out:
2597 	spin_unlock(&inode->i_lock);
2598 	return ret;
2599 }
2600 
2601 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2602 {
2603 	struct nfs4_cached_acl *acl;
2604 
2605 	if (buf && acl_len <= PAGE_SIZE) {
2606 		acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2607 		if (acl == NULL)
2608 			goto out;
2609 		acl->cached = 1;
2610 		memcpy(acl->data, buf, acl_len);
2611 	} else {
2612 		acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2613 		if (acl == NULL)
2614 			goto out;
2615 		acl->cached = 0;
2616 	}
2617 	acl->len = acl_len;
2618 out:
2619 	nfs4_set_cached_acl(inode, acl);
2620 }
2621 
2622 static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2623 {
2624 	struct page *pages[NFS4ACL_MAXPAGES];
2625 	struct nfs_getaclargs args = {
2626 		.fh = NFS_FH(inode),
2627 		.acl_pages = pages,
2628 		.acl_len = buflen,
2629 	};
2630 	size_t resp_len = buflen;
2631 	void *resp_buf;
2632 	struct rpc_message msg = {
2633 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2634 		.rpc_argp = &args,
2635 		.rpc_resp = &resp_len,
2636 	};
2637 	struct page *localpage = NULL;
2638 	int ret;
2639 
2640 	if (buflen < PAGE_SIZE) {
2641 		/* As long as we're doing a round trip to the server anyway,
2642 		 * let's be prepared for a page of acl data. */
2643 		localpage = alloc_page(GFP_KERNEL);
2644 		resp_buf = page_address(localpage);
2645 		if (localpage == NULL)
2646 			return -ENOMEM;
2647 		args.acl_pages[0] = localpage;
2648 		args.acl_pgbase = 0;
2649 		resp_len = args.acl_len = PAGE_SIZE;
2650 	} else {
2651 		resp_buf = buf;
2652 		buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2653 	}
2654 	ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2655 	if (ret)
2656 		goto out_free;
2657 	if (resp_len > args.acl_len)
2658 		nfs4_write_cached_acl(inode, NULL, resp_len);
2659 	else
2660 		nfs4_write_cached_acl(inode, resp_buf, resp_len);
2661 	if (buf) {
2662 		ret = -ERANGE;
2663 		if (resp_len > buflen)
2664 			goto out_free;
2665 		if (localpage)
2666 			memcpy(buf, resp_buf, resp_len);
2667 	}
2668 	ret = resp_len;
2669 out_free:
2670 	if (localpage)
2671 		__free_page(localpage);
2672 	return ret;
2673 }
2674 
2675 static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2676 {
2677 	struct nfs4_exception exception = { };
2678 	ssize_t ret;
2679 	do {
2680 		ret = __nfs4_get_acl_uncached(inode, buf, buflen);
2681 		if (ret >= 0)
2682 			break;
2683 		ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
2684 	} while (exception.retry);
2685 	return ret;
2686 }
2687 
2688 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2689 {
2690 	struct nfs_server *server = NFS_SERVER(inode);
2691 	int ret;
2692 
2693 	if (!nfs4_server_supports_acls(server))
2694 		return -EOPNOTSUPP;
2695 	ret = nfs_revalidate_inode(server, inode);
2696 	if (ret < 0)
2697 		return ret;
2698 	if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_ACL)
2699 		nfs_zap_acl_cache(inode);
2700 	ret = nfs4_read_cached_acl(inode, buf, buflen);
2701 	if (ret != -ENOENT)
2702 		return ret;
2703 	return nfs4_get_acl_uncached(inode, buf, buflen);
2704 }
2705 
2706 static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2707 {
2708 	struct nfs_server *server = NFS_SERVER(inode);
2709 	struct page *pages[NFS4ACL_MAXPAGES];
2710 	struct nfs_setaclargs arg = {
2711 		.fh		= NFS_FH(inode),
2712 		.acl_pages	= pages,
2713 		.acl_len	= buflen,
2714 	};
2715 	struct rpc_message msg = {
2716 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2717 		.rpc_argp	= &arg,
2718 		.rpc_resp	= NULL,
2719 	};
2720 	int ret;
2721 
2722 	if (!nfs4_server_supports_acls(server))
2723 		return -EOPNOTSUPP;
2724 	nfs_inode_return_delegation(inode);
2725 	buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2726 	ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2727 	nfs_access_zap_cache(inode);
2728 	nfs_zap_acl_cache(inode);
2729 	return ret;
2730 }
2731 
2732 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2733 {
2734 	struct nfs4_exception exception = { };
2735 	int err;
2736 	do {
2737 		err = nfs4_handle_exception(NFS_SERVER(inode),
2738 				__nfs4_proc_set_acl(inode, buf, buflen),
2739 				&exception);
2740 	} while (exception.retry);
2741 	return err;
2742 }
2743 
2744 static int
2745 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2746 {
2747 	struct nfs_client *clp = server->nfs_client;
2748 
2749 	if (!clp || task->tk_status >= 0)
2750 		return 0;
2751 	switch(task->tk_status) {
2752 		case -NFS4ERR_STALE_CLIENTID:
2753 		case -NFS4ERR_STALE_STATEID:
2754 		case -NFS4ERR_EXPIRED:
2755 			rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL);
2756 			nfs4_schedule_state_recovery(clp);
2757 			if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2758 				rpc_wake_up_queued_task(&clp->cl_rpcwaitq, task);
2759 			task->tk_status = 0;
2760 			return -EAGAIN;
2761 		case -NFS4ERR_DELAY:
2762 			nfs_inc_server_stats(server, NFSIOS_DELAY);
2763 		case -NFS4ERR_GRACE:
2764 			rpc_delay(task, NFS4_POLL_RETRY_MAX);
2765 			task->tk_status = 0;
2766 			return -EAGAIN;
2767 		case -NFS4ERR_OLD_STATEID:
2768 			task->tk_status = 0;
2769 			return -EAGAIN;
2770 	}
2771 	task->tk_status = nfs4_map_errors(task->tk_status);
2772 	return 0;
2773 }
2774 
2775 static int nfs4_wait_bit_killable(void *word)
2776 {
2777 	if (fatal_signal_pending(current))
2778 		return -ERESTARTSYS;
2779 	schedule();
2780 	return 0;
2781 }
2782 
2783 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp)
2784 {
2785 	int res;
2786 
2787 	might_sleep();
2788 
2789 	rwsem_acquire(&clp->cl_sem.dep_map, 0, 0, _RET_IP_);
2790 
2791 	res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2792 			nfs4_wait_bit_killable, TASK_KILLABLE);
2793 
2794 	rwsem_release(&clp->cl_sem.dep_map, 1, _RET_IP_);
2795 	return res;
2796 }
2797 
2798 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2799 {
2800 	int res = 0;
2801 
2802 	might_sleep();
2803 
2804 	if (*timeout <= 0)
2805 		*timeout = NFS4_POLL_RETRY_MIN;
2806 	if (*timeout > NFS4_POLL_RETRY_MAX)
2807 		*timeout = NFS4_POLL_RETRY_MAX;
2808 	schedule_timeout_killable(*timeout);
2809 	if (fatal_signal_pending(current))
2810 		res = -ERESTARTSYS;
2811 	*timeout <<= 1;
2812 	return res;
2813 }
2814 
2815 /* This is the error handling routine for processes that are allowed
2816  * to sleep.
2817  */
2818 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2819 {
2820 	struct nfs_client *clp = server->nfs_client;
2821 	int ret = errorcode;
2822 
2823 	exception->retry = 0;
2824 	switch(errorcode) {
2825 		case 0:
2826 			return 0;
2827 		case -NFS4ERR_STALE_CLIENTID:
2828 		case -NFS4ERR_STALE_STATEID:
2829 		case -NFS4ERR_EXPIRED:
2830 			nfs4_schedule_state_recovery(clp);
2831 			ret = nfs4_wait_clnt_recover(server->client, clp);
2832 			if (ret == 0)
2833 				exception->retry = 1;
2834 			break;
2835 		case -NFS4ERR_FILE_OPEN:
2836 		case -NFS4ERR_GRACE:
2837 		case -NFS4ERR_DELAY:
2838 			ret = nfs4_delay(server->client, &exception->timeout);
2839 			if (ret != 0)
2840 				break;
2841 		case -NFS4ERR_OLD_STATEID:
2842 			exception->retry = 1;
2843 	}
2844 	/* We failed to handle the error */
2845 	return nfs4_map_errors(ret);
2846 }
2847 
2848 int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2849 {
2850 	nfs4_verifier sc_verifier;
2851 	struct nfs4_setclientid setclientid = {
2852 		.sc_verifier = &sc_verifier,
2853 		.sc_prog = program,
2854 	};
2855 	struct rpc_message msg = {
2856 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2857 		.rpc_argp = &setclientid,
2858 		.rpc_resp = clp,
2859 		.rpc_cred = cred,
2860 	};
2861 	__be32 *p;
2862 	int loop = 0;
2863 	int status;
2864 
2865 	p = (__be32*)sc_verifier.data;
2866 	*p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2867 	*p = htonl((u32)clp->cl_boot_time.tv_nsec);
2868 
2869 	for(;;) {
2870 		setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2871 				sizeof(setclientid.sc_name), "%s/%s %s %s %u",
2872 				clp->cl_ipaddr,
2873 				rpc_peeraddr2str(clp->cl_rpcclient,
2874 							RPC_DISPLAY_ADDR),
2875 				rpc_peeraddr2str(clp->cl_rpcclient,
2876 							RPC_DISPLAY_PROTO),
2877 				clp->cl_rpcclient->cl_auth->au_ops->au_name,
2878 				clp->cl_id_uniquifier);
2879 		setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2880 				sizeof(setclientid.sc_netid),
2881 				rpc_peeraddr2str(clp->cl_rpcclient,
2882 							RPC_DISPLAY_NETID));
2883 		setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2884 				sizeof(setclientid.sc_uaddr), "%s.%u.%u",
2885 				clp->cl_ipaddr, port >> 8, port & 255);
2886 
2887 		status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2888 		if (status != -NFS4ERR_CLID_INUSE)
2889 			break;
2890 		if (signalled())
2891 			break;
2892 		if (loop++ & 1)
2893 			ssleep(clp->cl_lease_time + 1);
2894 		else
2895 			if (++clp->cl_id_uniquifier == 0)
2896 				break;
2897 	}
2898 	return status;
2899 }
2900 
2901 static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2902 {
2903 	struct nfs_fsinfo fsinfo;
2904 	struct rpc_message msg = {
2905 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2906 		.rpc_argp = clp,
2907 		.rpc_resp = &fsinfo,
2908 		.rpc_cred = cred,
2909 	};
2910 	unsigned long now;
2911 	int status;
2912 
2913 	now = jiffies;
2914 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2915 	if (status == 0) {
2916 		spin_lock(&clp->cl_lock);
2917 		clp->cl_lease_time = fsinfo.lease_time * HZ;
2918 		clp->cl_last_renewal = now;
2919 		clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2920 		spin_unlock(&clp->cl_lock);
2921 	}
2922 	return status;
2923 }
2924 
2925 int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2926 {
2927 	long timeout = 0;
2928 	int err;
2929 	do {
2930 		err = _nfs4_proc_setclientid_confirm(clp, cred);
2931 		switch (err) {
2932 			case 0:
2933 				return err;
2934 			case -NFS4ERR_RESOURCE:
2935 				/* The IBM lawyers misread another document! */
2936 			case -NFS4ERR_DELAY:
2937 				err = nfs4_delay(clp->cl_rpcclient, &timeout);
2938 		}
2939 	} while (err == 0);
2940 	return err;
2941 }
2942 
2943 struct nfs4_delegreturndata {
2944 	struct nfs4_delegreturnargs args;
2945 	struct nfs4_delegreturnres res;
2946 	struct nfs_fh fh;
2947 	nfs4_stateid stateid;
2948 	unsigned long timestamp;
2949 	struct nfs_fattr fattr;
2950 	int rpc_status;
2951 };
2952 
2953 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
2954 {
2955 	struct nfs4_delegreturndata *data = calldata;
2956 	data->rpc_status = task->tk_status;
2957 	if (data->rpc_status == 0)
2958 		renew_lease(data->res.server, data->timestamp);
2959 }
2960 
2961 static void nfs4_delegreturn_release(void *calldata)
2962 {
2963 	kfree(calldata);
2964 }
2965 
2966 static const struct rpc_call_ops nfs4_delegreturn_ops = {
2967 	.rpc_call_done = nfs4_delegreturn_done,
2968 	.rpc_release = nfs4_delegreturn_release,
2969 };
2970 
2971 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync)
2972 {
2973 	struct nfs4_delegreturndata *data;
2974 	struct nfs_server *server = NFS_SERVER(inode);
2975 	struct rpc_task *task;
2976 	struct rpc_message msg = {
2977 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2978 		.rpc_cred = cred,
2979 	};
2980 	struct rpc_task_setup task_setup_data = {
2981 		.rpc_client = server->client,
2982 		.rpc_message = &msg,
2983 		.callback_ops = &nfs4_delegreturn_ops,
2984 		.flags = RPC_TASK_ASYNC,
2985 	};
2986 	int status = 0;
2987 
2988 	data = kmalloc(sizeof(*data), GFP_KERNEL);
2989 	if (data == NULL)
2990 		return -ENOMEM;
2991 	data->args.fhandle = &data->fh;
2992 	data->args.stateid = &data->stateid;
2993 	data->args.bitmask = server->attr_bitmask;
2994 	nfs_copy_fh(&data->fh, NFS_FH(inode));
2995 	memcpy(&data->stateid, stateid, sizeof(data->stateid));
2996 	data->res.fattr = &data->fattr;
2997 	data->res.server = server;
2998 	nfs_fattr_init(data->res.fattr);
2999 	data->timestamp = jiffies;
3000 	data->rpc_status = 0;
3001 
3002 	task_setup_data.callback_data = data;
3003 	msg.rpc_argp = &data->args,
3004 	msg.rpc_resp = &data->res,
3005 	task = rpc_run_task(&task_setup_data);
3006 	if (IS_ERR(task))
3007 		return PTR_ERR(task);
3008 	if (!issync)
3009 		goto out;
3010 	status = nfs4_wait_for_completion_rpc_task(task);
3011 	if (status != 0)
3012 		goto out;
3013 	status = data->rpc_status;
3014 	if (status != 0)
3015 		goto out;
3016 	nfs_refresh_inode(inode, &data->fattr);
3017 out:
3018 	rpc_put_task(task);
3019 	return status;
3020 }
3021 
3022 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync)
3023 {
3024 	struct nfs_server *server = NFS_SERVER(inode);
3025 	struct nfs4_exception exception = { };
3026 	int err;
3027 	do {
3028 		err = _nfs4_proc_delegreturn(inode, cred, stateid, issync);
3029 		switch (err) {
3030 			case -NFS4ERR_STALE_STATEID:
3031 			case -NFS4ERR_EXPIRED:
3032 			case 0:
3033 				return 0;
3034 		}
3035 		err = nfs4_handle_exception(server, err, &exception);
3036 	} while (exception.retry);
3037 	return err;
3038 }
3039 
3040 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3041 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3042 
3043 /*
3044  * sleep, with exponential backoff, and retry the LOCK operation.
3045  */
3046 static unsigned long
3047 nfs4_set_lock_task_retry(unsigned long timeout)
3048 {
3049 	schedule_timeout_killable(timeout);
3050 	timeout <<= 1;
3051 	if (timeout > NFS4_LOCK_MAXTIMEOUT)
3052 		return NFS4_LOCK_MAXTIMEOUT;
3053 	return timeout;
3054 }
3055 
3056 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3057 {
3058 	struct inode *inode = state->inode;
3059 	struct nfs_server *server = NFS_SERVER(inode);
3060 	struct nfs_client *clp = server->nfs_client;
3061 	struct nfs_lockt_args arg = {
3062 		.fh = NFS_FH(inode),
3063 		.fl = request,
3064 	};
3065 	struct nfs_lockt_res res = {
3066 		.denied = request,
3067 	};
3068 	struct rpc_message msg = {
3069 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3070 		.rpc_argp       = &arg,
3071 		.rpc_resp       = &res,
3072 		.rpc_cred	= state->owner->so_cred,
3073 	};
3074 	struct nfs4_lock_state *lsp;
3075 	int status;
3076 
3077 	down_read(&clp->cl_sem);
3078 	arg.lock_owner.clientid = clp->cl_clientid;
3079 	status = nfs4_set_lock_state(state, request);
3080 	if (status != 0)
3081 		goto out;
3082 	lsp = request->fl_u.nfs4_fl.owner;
3083 	arg.lock_owner.id = lsp->ls_id.id;
3084 	status = rpc_call_sync(server->client, &msg, 0);
3085 	switch (status) {
3086 		case 0:
3087 			request->fl_type = F_UNLCK;
3088 			break;
3089 		case -NFS4ERR_DENIED:
3090 			status = 0;
3091 	}
3092 	request->fl_ops->fl_release_private(request);
3093 out:
3094 	up_read(&clp->cl_sem);
3095 	return status;
3096 }
3097 
3098 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3099 {
3100 	struct nfs4_exception exception = { };
3101 	int err;
3102 
3103 	do {
3104 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3105 				_nfs4_proc_getlk(state, cmd, request),
3106 				&exception);
3107 	} while (exception.retry);
3108 	return err;
3109 }
3110 
3111 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3112 {
3113 	int res = 0;
3114 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3115 		case FL_POSIX:
3116 			res = posix_lock_file_wait(file, fl);
3117 			break;
3118 		case FL_FLOCK:
3119 			res = flock_lock_file_wait(file, fl);
3120 			break;
3121 		default:
3122 			BUG();
3123 	}
3124 	return res;
3125 }
3126 
3127 struct nfs4_unlockdata {
3128 	struct nfs_locku_args arg;
3129 	struct nfs_locku_res res;
3130 	struct nfs4_lock_state *lsp;
3131 	struct nfs_open_context *ctx;
3132 	struct file_lock fl;
3133 	const struct nfs_server *server;
3134 	unsigned long timestamp;
3135 };
3136 
3137 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3138 		struct nfs_open_context *ctx,
3139 		struct nfs4_lock_state *lsp,
3140 		struct nfs_seqid *seqid)
3141 {
3142 	struct nfs4_unlockdata *p;
3143 	struct inode *inode = lsp->ls_state->inode;
3144 
3145 	p = kmalloc(sizeof(*p), GFP_KERNEL);
3146 	if (p == NULL)
3147 		return NULL;
3148 	p->arg.fh = NFS_FH(inode);
3149 	p->arg.fl = &p->fl;
3150 	p->arg.seqid = seqid;
3151 	p->res.seqid = seqid;
3152 	p->arg.stateid = &lsp->ls_stateid;
3153 	p->lsp = lsp;
3154 	atomic_inc(&lsp->ls_count);
3155 	/* Ensure we don't close file until we're done freeing locks! */
3156 	p->ctx = get_nfs_open_context(ctx);
3157 	memcpy(&p->fl, fl, sizeof(p->fl));
3158 	p->server = NFS_SERVER(inode);
3159 	return p;
3160 }
3161 
3162 static void nfs4_locku_release_calldata(void *data)
3163 {
3164 	struct nfs4_unlockdata *calldata = data;
3165 	nfs_free_seqid(calldata->arg.seqid);
3166 	nfs4_put_lock_state(calldata->lsp);
3167 	put_nfs_open_context(calldata->ctx);
3168 	kfree(calldata);
3169 }
3170 
3171 static void nfs4_locku_done(struct rpc_task *task, void *data)
3172 {
3173 	struct nfs4_unlockdata *calldata = data;
3174 
3175 	if (RPC_ASSASSINATED(task))
3176 		return;
3177 	switch (task->tk_status) {
3178 		case 0:
3179 			memcpy(calldata->lsp->ls_stateid.data,
3180 					calldata->res.stateid.data,
3181 					sizeof(calldata->lsp->ls_stateid.data));
3182 			renew_lease(calldata->server, calldata->timestamp);
3183 			break;
3184 		case -NFS4ERR_STALE_STATEID:
3185 		case -NFS4ERR_EXPIRED:
3186 			break;
3187 		default:
3188 			if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN)
3189 				rpc_restart_call(task);
3190 	}
3191 }
3192 
3193 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3194 {
3195 	struct nfs4_unlockdata *calldata = data;
3196 
3197 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3198 		return;
3199 	if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3200 		/* Note: exit _without_ running nfs4_locku_done */
3201 		task->tk_action = NULL;
3202 		return;
3203 	}
3204 	calldata->timestamp = jiffies;
3205 	rpc_call_start(task);
3206 }
3207 
3208 static const struct rpc_call_ops nfs4_locku_ops = {
3209 	.rpc_call_prepare = nfs4_locku_prepare,
3210 	.rpc_call_done = nfs4_locku_done,
3211 	.rpc_release = nfs4_locku_release_calldata,
3212 };
3213 
3214 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3215 		struct nfs_open_context *ctx,
3216 		struct nfs4_lock_state *lsp,
3217 		struct nfs_seqid *seqid)
3218 {
3219 	struct nfs4_unlockdata *data;
3220 	struct rpc_message msg = {
3221 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3222 		.rpc_cred = ctx->cred,
3223 	};
3224 	struct rpc_task_setup task_setup_data = {
3225 		.rpc_client = NFS_CLIENT(lsp->ls_state->inode),
3226 		.rpc_message = &msg,
3227 		.callback_ops = &nfs4_locku_ops,
3228 		.workqueue = nfsiod_workqueue,
3229 		.flags = RPC_TASK_ASYNC,
3230 	};
3231 
3232 	/* Ensure this is an unlock - when canceling a lock, the
3233 	 * canceled lock is passed in, and it won't be an unlock.
3234 	 */
3235 	fl->fl_type = F_UNLCK;
3236 
3237 	data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3238 	if (data == NULL) {
3239 		nfs_free_seqid(seqid);
3240 		return ERR_PTR(-ENOMEM);
3241 	}
3242 
3243 	msg.rpc_argp = &data->arg,
3244 	msg.rpc_resp = &data->res,
3245 	task_setup_data.callback_data = data;
3246 	return rpc_run_task(&task_setup_data);
3247 }
3248 
3249 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3250 {
3251 	struct nfs_seqid *seqid;
3252 	struct nfs4_lock_state *lsp;
3253 	struct rpc_task *task;
3254 	int status = 0;
3255 	unsigned char fl_flags = request->fl_flags;
3256 
3257 	status = nfs4_set_lock_state(state, request);
3258 	/* Unlock _before_ we do the RPC call */
3259 	request->fl_flags |= FL_EXISTS;
3260 	if (do_vfs_lock(request->fl_file, request) == -ENOENT)
3261 		goto out;
3262 	if (status != 0)
3263 		goto out;
3264 	/* Is this a delegated lock? */
3265 	if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3266 		goto out;
3267 	lsp = request->fl_u.nfs4_fl.owner;
3268 	seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3269 	status = -ENOMEM;
3270 	if (seqid == NULL)
3271 		goto out;
3272 	task = nfs4_do_unlck(request, nfs_file_open_context(request->fl_file), lsp, seqid);
3273 	status = PTR_ERR(task);
3274 	if (IS_ERR(task))
3275 		goto out;
3276 	status = nfs4_wait_for_completion_rpc_task(task);
3277 	rpc_put_task(task);
3278 out:
3279 	request->fl_flags = fl_flags;
3280 	return status;
3281 }
3282 
3283 struct nfs4_lockdata {
3284 	struct nfs_lock_args arg;
3285 	struct nfs_lock_res res;
3286 	struct nfs4_lock_state *lsp;
3287 	struct nfs_open_context *ctx;
3288 	struct file_lock fl;
3289 	unsigned long timestamp;
3290 	int rpc_status;
3291 	int cancelled;
3292 };
3293 
3294 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3295 		struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3296 {
3297 	struct nfs4_lockdata *p;
3298 	struct inode *inode = lsp->ls_state->inode;
3299 	struct nfs_server *server = NFS_SERVER(inode);
3300 
3301 	p = kzalloc(sizeof(*p), GFP_KERNEL);
3302 	if (p == NULL)
3303 		return NULL;
3304 
3305 	p->arg.fh = NFS_FH(inode);
3306 	p->arg.fl = &p->fl;
3307 	p->arg.open_seqid = nfs_alloc_seqid(&lsp->ls_state->owner->so_seqid);
3308 	if (p->arg.open_seqid == NULL)
3309 		goto out_free;
3310 	p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3311 	if (p->arg.lock_seqid == NULL)
3312 		goto out_free_seqid;
3313 	p->arg.lock_stateid = &lsp->ls_stateid;
3314 	p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
3315 	p->arg.lock_owner.id = lsp->ls_id.id;
3316 	p->res.lock_seqid = p->arg.lock_seqid;
3317 	p->lsp = lsp;
3318 	atomic_inc(&lsp->ls_count);
3319 	p->ctx = get_nfs_open_context(ctx);
3320 	memcpy(&p->fl, fl, sizeof(p->fl));
3321 	return p;
3322 out_free_seqid:
3323 	nfs_free_seqid(p->arg.open_seqid);
3324 out_free:
3325 	kfree(p);
3326 	return NULL;
3327 }
3328 
3329 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3330 {
3331 	struct nfs4_lockdata *data = calldata;
3332 	struct nfs4_state *state = data->lsp->ls_state;
3333 
3334 	dprintk("%s: begin!\n", __func__);
3335 	if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3336 		return;
3337 	/* Do we need to do an open_to_lock_owner? */
3338 	if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3339 		if (nfs_wait_on_sequence(data->arg.open_seqid, task) != 0)
3340 			return;
3341 		data->arg.open_stateid = &state->stateid;
3342 		data->arg.new_lock_owner = 1;
3343 		data->res.open_seqid = data->arg.open_seqid;
3344 	} else
3345 		data->arg.new_lock_owner = 0;
3346 	data->timestamp = jiffies;
3347 	rpc_call_start(task);
3348 	dprintk("%s: done!, ret = %d\n", __func__, data->rpc_status);
3349 }
3350 
3351 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3352 {
3353 	struct nfs4_lockdata *data = calldata;
3354 
3355 	dprintk("%s: begin!\n", __func__);
3356 
3357 	data->rpc_status = task->tk_status;
3358 	if (RPC_ASSASSINATED(task))
3359 		goto out;
3360 	if (data->arg.new_lock_owner != 0) {
3361 		if (data->rpc_status == 0)
3362 			nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3363 		else
3364 			goto out;
3365 	}
3366 	if (data->rpc_status == 0) {
3367 		memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3368 					sizeof(data->lsp->ls_stateid.data));
3369 		data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3370 		renew_lease(NFS_SERVER(data->ctx->path.dentry->d_inode), data->timestamp);
3371 	}
3372 out:
3373 	dprintk("%s: done, ret = %d!\n", __func__, data->rpc_status);
3374 }
3375 
3376 static void nfs4_lock_release(void *calldata)
3377 {
3378 	struct nfs4_lockdata *data = calldata;
3379 
3380 	dprintk("%s: begin!\n", __func__);
3381 	nfs_free_seqid(data->arg.open_seqid);
3382 	if (data->cancelled != 0) {
3383 		struct rpc_task *task;
3384 		task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3385 				data->arg.lock_seqid);
3386 		if (!IS_ERR(task))
3387 			rpc_put_task(task);
3388 		dprintk("%s: cancelling lock!\n", __func__);
3389 	} else
3390 		nfs_free_seqid(data->arg.lock_seqid);
3391 	nfs4_put_lock_state(data->lsp);
3392 	put_nfs_open_context(data->ctx);
3393 	kfree(data);
3394 	dprintk("%s: done!\n", __func__);
3395 }
3396 
3397 static const struct rpc_call_ops nfs4_lock_ops = {
3398 	.rpc_call_prepare = nfs4_lock_prepare,
3399 	.rpc_call_done = nfs4_lock_done,
3400 	.rpc_release = nfs4_lock_release,
3401 };
3402 
3403 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3404 {
3405 	struct nfs4_lockdata *data;
3406 	struct rpc_task *task;
3407 	struct rpc_message msg = {
3408 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3409 		.rpc_cred = state->owner->so_cred,
3410 	};
3411 	struct rpc_task_setup task_setup_data = {
3412 		.rpc_client = NFS_CLIENT(state->inode),
3413 		.rpc_message = &msg,
3414 		.callback_ops = &nfs4_lock_ops,
3415 		.workqueue = nfsiod_workqueue,
3416 		.flags = RPC_TASK_ASYNC,
3417 	};
3418 	int ret;
3419 
3420 	dprintk("%s: begin!\n", __func__);
3421 	data = nfs4_alloc_lockdata(fl, nfs_file_open_context(fl->fl_file),
3422 			fl->fl_u.nfs4_fl.owner);
3423 	if (data == NULL)
3424 		return -ENOMEM;
3425 	if (IS_SETLKW(cmd))
3426 		data->arg.block = 1;
3427 	if (reclaim != 0)
3428 		data->arg.reclaim = 1;
3429 	msg.rpc_argp = &data->arg,
3430 	msg.rpc_resp = &data->res,
3431 	task_setup_data.callback_data = data;
3432 	task = rpc_run_task(&task_setup_data);
3433 	if (IS_ERR(task))
3434 		return PTR_ERR(task);
3435 	ret = nfs4_wait_for_completion_rpc_task(task);
3436 	if (ret == 0) {
3437 		ret = data->rpc_status;
3438 		if (ret == -NFS4ERR_DENIED)
3439 			ret = -EAGAIN;
3440 	} else
3441 		data->cancelled = 1;
3442 	rpc_put_task(task);
3443 	dprintk("%s: done, ret = %d!\n", __func__, ret);
3444 	return ret;
3445 }
3446 
3447 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3448 {
3449 	struct nfs_server *server = NFS_SERVER(state->inode);
3450 	struct nfs4_exception exception = { };
3451 	int err;
3452 
3453 	do {
3454 		/* Cache the lock if possible... */
3455 		if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3456 			return 0;
3457 		err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3458 		if (err != -NFS4ERR_DELAY)
3459 			break;
3460 		nfs4_handle_exception(server, err, &exception);
3461 	} while (exception.retry);
3462 	return err;
3463 }
3464 
3465 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3466 {
3467 	struct nfs_server *server = NFS_SERVER(state->inode);
3468 	struct nfs4_exception exception = { };
3469 	int err;
3470 
3471 	err = nfs4_set_lock_state(state, request);
3472 	if (err != 0)
3473 		return err;
3474 	do {
3475 		if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3476 			return 0;
3477 		err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3478 		if (err != -NFS4ERR_DELAY)
3479 			break;
3480 		nfs4_handle_exception(server, err, &exception);
3481 	} while (exception.retry);
3482 	return err;
3483 }
3484 
3485 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3486 {
3487 	struct nfs_client *clp = state->owner->so_client;
3488 	unsigned char fl_flags = request->fl_flags;
3489 	int status;
3490 
3491 	/* Is this a delegated open? */
3492 	status = nfs4_set_lock_state(state, request);
3493 	if (status != 0)
3494 		goto out;
3495 	request->fl_flags |= FL_ACCESS;
3496 	status = do_vfs_lock(request->fl_file, request);
3497 	if (status < 0)
3498 		goto out;
3499 	down_read(&clp->cl_sem);
3500 	if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3501 		struct nfs_inode *nfsi = NFS_I(state->inode);
3502 		/* Yes: cache locks! */
3503 		down_read(&nfsi->rwsem);
3504 		/* ...but avoid races with delegation recall... */
3505 		if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3506 			request->fl_flags = fl_flags & ~FL_SLEEP;
3507 			status = do_vfs_lock(request->fl_file, request);
3508 			up_read(&nfsi->rwsem);
3509 			goto out_unlock;
3510 		}
3511 		up_read(&nfsi->rwsem);
3512 	}
3513 	status = _nfs4_do_setlk(state, cmd, request, 0);
3514 	if (status != 0)
3515 		goto out_unlock;
3516 	/* Note: we always want to sleep here! */
3517 	request->fl_flags = fl_flags | FL_SLEEP;
3518 	if (do_vfs_lock(request->fl_file, request) < 0)
3519 		printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __func__);
3520 out_unlock:
3521 	up_read(&clp->cl_sem);
3522 out:
3523 	request->fl_flags = fl_flags;
3524 	return status;
3525 }
3526 
3527 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3528 {
3529 	struct nfs4_exception exception = { };
3530 	int err;
3531 
3532 	do {
3533 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3534 				_nfs4_proc_setlk(state, cmd, request),
3535 				&exception);
3536 	} while (exception.retry);
3537 	return err;
3538 }
3539 
3540 static int
3541 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3542 {
3543 	struct nfs_open_context *ctx;
3544 	struct nfs4_state *state;
3545 	unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3546 	int status;
3547 
3548 	/* verify open state */
3549 	ctx = nfs_file_open_context(filp);
3550 	state = ctx->state;
3551 
3552 	if (request->fl_start < 0 || request->fl_end < 0)
3553 		return -EINVAL;
3554 
3555 	if (IS_GETLK(cmd))
3556 		return nfs4_proc_getlk(state, F_GETLK, request);
3557 
3558 	if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3559 		return -EINVAL;
3560 
3561 	if (request->fl_type == F_UNLCK)
3562 		return nfs4_proc_unlck(state, cmd, request);
3563 
3564 	do {
3565 		status = nfs4_proc_setlk(state, cmd, request);
3566 		if ((status != -EAGAIN) || IS_SETLK(cmd))
3567 			break;
3568 		timeout = nfs4_set_lock_task_retry(timeout);
3569 		status = -ERESTARTSYS;
3570 		if (signalled())
3571 			break;
3572 	} while(status < 0);
3573 	return status;
3574 }
3575 
3576 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3577 {
3578 	struct nfs_server *server = NFS_SERVER(state->inode);
3579 	struct nfs4_exception exception = { };
3580 	int err;
3581 
3582 	err = nfs4_set_lock_state(state, fl);
3583 	if (err != 0)
3584 		goto out;
3585 	do {
3586 		err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3587 		if (err != -NFS4ERR_DELAY)
3588 			break;
3589 		err = nfs4_handle_exception(server, err, &exception);
3590 	} while (exception.retry);
3591 out:
3592 	return err;
3593 }
3594 
3595 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3596 
3597 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3598 		size_t buflen, int flags)
3599 {
3600 	struct inode *inode = dentry->d_inode;
3601 
3602 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3603 		return -EOPNOTSUPP;
3604 
3605 	return nfs4_proc_set_acl(inode, buf, buflen);
3606 }
3607 
3608 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3609  * and that's what we'll do for e.g. user attributes that haven't been set.
3610  * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3611  * attributes in kernel-managed attribute namespaces. */
3612 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3613 		size_t buflen)
3614 {
3615 	struct inode *inode = dentry->d_inode;
3616 
3617 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3618 		return -EOPNOTSUPP;
3619 
3620 	return nfs4_proc_get_acl(inode, buf, buflen);
3621 }
3622 
3623 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3624 {
3625 	size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3626 
3627 	if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3628 		return 0;
3629 	if (buf && buflen < len)
3630 		return -ERANGE;
3631 	if (buf)
3632 		memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3633 	return len;
3634 }
3635 
3636 int nfs4_proc_fs_locations(struct inode *dir, const struct qstr *name,
3637 		struct nfs4_fs_locations *fs_locations, struct page *page)
3638 {
3639 	struct nfs_server *server = NFS_SERVER(dir);
3640 	u32 bitmask[2] = {
3641 		[0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
3642 		[1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
3643 	};
3644 	struct nfs4_fs_locations_arg args = {
3645 		.dir_fh = NFS_FH(dir),
3646 		.name = name,
3647 		.page = page,
3648 		.bitmask = bitmask,
3649 	};
3650 	struct rpc_message msg = {
3651 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3652 		.rpc_argp = &args,
3653 		.rpc_resp = fs_locations,
3654 	};
3655 	int status;
3656 
3657 	dprintk("%s: start\n", __func__);
3658 	nfs_fattr_init(&fs_locations->fattr);
3659 	fs_locations->server = server;
3660 	fs_locations->nlocations = 0;
3661 	status = rpc_call_sync(server->client, &msg, 0);
3662 	dprintk("%s: returned status = %d\n", __func__, status);
3663 	return status;
3664 }
3665 
3666 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3667 	.recover_open	= nfs4_open_reclaim,
3668 	.recover_lock	= nfs4_lock_reclaim,
3669 };
3670 
3671 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3672 	.recover_open	= nfs4_open_expired,
3673 	.recover_lock	= nfs4_lock_expired,
3674 };
3675 
3676 static const struct inode_operations nfs4_file_inode_operations = {
3677 	.permission	= nfs_permission,
3678 	.getattr	= nfs_getattr,
3679 	.setattr	= nfs_setattr,
3680 	.getxattr	= nfs4_getxattr,
3681 	.setxattr	= nfs4_setxattr,
3682 	.listxattr	= nfs4_listxattr,
3683 };
3684 
3685 const struct nfs_rpc_ops nfs_v4_clientops = {
3686 	.version	= 4,			/* protocol version */
3687 	.dentry_ops	= &nfs4_dentry_operations,
3688 	.dir_inode_ops	= &nfs4_dir_inode_operations,
3689 	.file_inode_ops	= &nfs4_file_inode_operations,
3690 	.getroot	= nfs4_proc_get_root,
3691 	.getattr	= nfs4_proc_getattr,
3692 	.setattr	= nfs4_proc_setattr,
3693 	.lookupfh	= nfs4_proc_lookupfh,
3694 	.lookup		= nfs4_proc_lookup,
3695 	.access		= nfs4_proc_access,
3696 	.readlink	= nfs4_proc_readlink,
3697 	.create		= nfs4_proc_create,
3698 	.remove		= nfs4_proc_remove,
3699 	.unlink_setup	= nfs4_proc_unlink_setup,
3700 	.unlink_done	= nfs4_proc_unlink_done,
3701 	.rename		= nfs4_proc_rename,
3702 	.link		= nfs4_proc_link,
3703 	.symlink	= nfs4_proc_symlink,
3704 	.mkdir		= nfs4_proc_mkdir,
3705 	.rmdir		= nfs4_proc_remove,
3706 	.readdir	= nfs4_proc_readdir,
3707 	.mknod		= nfs4_proc_mknod,
3708 	.statfs		= nfs4_proc_statfs,
3709 	.fsinfo		= nfs4_proc_fsinfo,
3710 	.pathconf	= nfs4_proc_pathconf,
3711 	.set_capabilities = nfs4_server_capabilities,
3712 	.decode_dirent	= nfs4_decode_dirent,
3713 	.read_setup	= nfs4_proc_read_setup,
3714 	.read_done	= nfs4_read_done,
3715 	.write_setup	= nfs4_proc_write_setup,
3716 	.write_done	= nfs4_write_done,
3717 	.commit_setup	= nfs4_proc_commit_setup,
3718 	.commit_done	= nfs4_commit_done,
3719 	.lock		= nfs4_proc_lock,
3720 	.clear_acl_cache = nfs4_zap_acl_attr,
3721 };
3722 
3723 /*
3724  * Local variables:
3725  *  c-basic-offset: 8
3726  * End:
3727  */
3728