1 /* 2 * fs/nfs/nfs4proc.c 3 * 4 * Client-side procedure declarations for NFSv4. 5 * 6 * Copyright (c) 2002 The Regents of the University of Michigan. 7 * All rights reserved. 8 * 9 * Kendrick Smith <kmsmith@umich.edu> 10 * Andy Adamson <andros@umich.edu> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 #include <linux/mm.h> 39 #include <linux/utsname.h> 40 #include <linux/delay.h> 41 #include <linux/errno.h> 42 #include <linux/string.h> 43 #include <linux/sunrpc/clnt.h> 44 #include <linux/nfs.h> 45 #include <linux/nfs4.h> 46 #include <linux/nfs_fs.h> 47 #include <linux/nfs_page.h> 48 #include <linux/smp_lock.h> 49 #include <linux/namei.h> 50 #include <linux/mount.h> 51 52 #include "nfs4_fs.h" 53 #include "delegation.h" 54 55 #define NFSDBG_FACILITY NFSDBG_PROC 56 57 #define NFS4_POLL_RETRY_MIN (1*HZ) 58 #define NFS4_POLL_RETRY_MAX (15*HZ) 59 60 struct nfs4_opendata; 61 static int _nfs4_proc_open(struct nfs4_opendata *data); 62 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *); 63 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *); 64 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry); 65 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception); 66 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp); 67 extern u32 *nfs4_decode_dirent(u32 *p, struct nfs_entry *entry, int plus); 68 extern struct rpc_procinfo nfs4_procedures[]; 69 70 /* Prevent leaks of NFSv4 errors into userland */ 71 int nfs4_map_errors(int err) 72 { 73 if (err < -1000) { 74 dprintk("%s could not handle NFSv4 error %d\n", 75 __FUNCTION__, -err); 76 return -EIO; 77 } 78 return err; 79 } 80 81 /* 82 * This is our standard bitmap for GETATTR requests. 83 */ 84 const u32 nfs4_fattr_bitmap[2] = { 85 FATTR4_WORD0_TYPE 86 | FATTR4_WORD0_CHANGE 87 | FATTR4_WORD0_SIZE 88 | FATTR4_WORD0_FSID 89 | FATTR4_WORD0_FILEID, 90 FATTR4_WORD1_MODE 91 | FATTR4_WORD1_NUMLINKS 92 | FATTR4_WORD1_OWNER 93 | FATTR4_WORD1_OWNER_GROUP 94 | FATTR4_WORD1_RAWDEV 95 | FATTR4_WORD1_SPACE_USED 96 | FATTR4_WORD1_TIME_ACCESS 97 | FATTR4_WORD1_TIME_METADATA 98 | FATTR4_WORD1_TIME_MODIFY 99 }; 100 101 const u32 nfs4_statfs_bitmap[2] = { 102 FATTR4_WORD0_FILES_AVAIL 103 | FATTR4_WORD0_FILES_FREE 104 | FATTR4_WORD0_FILES_TOTAL, 105 FATTR4_WORD1_SPACE_AVAIL 106 | FATTR4_WORD1_SPACE_FREE 107 | FATTR4_WORD1_SPACE_TOTAL 108 }; 109 110 const u32 nfs4_pathconf_bitmap[2] = { 111 FATTR4_WORD0_MAXLINK 112 | FATTR4_WORD0_MAXNAME, 113 0 114 }; 115 116 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE 117 | FATTR4_WORD0_MAXREAD 118 | FATTR4_WORD0_MAXWRITE 119 | FATTR4_WORD0_LEASE_TIME, 120 0 121 }; 122 123 static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry, 124 struct nfs4_readdir_arg *readdir) 125 { 126 u32 *start, *p; 127 128 BUG_ON(readdir->count < 80); 129 if (cookie > 2) { 130 readdir->cookie = cookie; 131 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier)); 132 return; 133 } 134 135 readdir->cookie = 0; 136 memset(&readdir->verifier, 0, sizeof(readdir->verifier)); 137 if (cookie == 2) 138 return; 139 140 /* 141 * NFSv4 servers do not return entries for '.' and '..' 142 * Therefore, we fake these entries here. We let '.' 143 * have cookie 0 and '..' have cookie 1. Note that 144 * when talking to the server, we always send cookie 0 145 * instead of 1 or 2. 146 */ 147 start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0); 148 149 if (cookie == 0) { 150 *p++ = xdr_one; /* next */ 151 *p++ = xdr_zero; /* cookie, first word */ 152 *p++ = xdr_one; /* cookie, second word */ 153 *p++ = xdr_one; /* entry len */ 154 memcpy(p, ".\0\0\0", 4); /* entry */ 155 p++; 156 *p++ = xdr_one; /* bitmap length */ 157 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */ 158 *p++ = htonl(8); /* attribute buffer length */ 159 p = xdr_encode_hyper(p, dentry->d_inode->i_ino); 160 } 161 162 *p++ = xdr_one; /* next */ 163 *p++ = xdr_zero; /* cookie, first word */ 164 *p++ = xdr_two; /* cookie, second word */ 165 *p++ = xdr_two; /* entry len */ 166 memcpy(p, "..\0\0", 4); /* entry */ 167 p++; 168 *p++ = xdr_one; /* bitmap length */ 169 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */ 170 *p++ = htonl(8); /* attribute buffer length */ 171 p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino); 172 173 readdir->pgbase = (char *)p - (char *)start; 174 readdir->count -= readdir->pgbase; 175 kunmap_atomic(start, KM_USER0); 176 } 177 178 static void renew_lease(const struct nfs_server *server, unsigned long timestamp) 179 { 180 struct nfs4_client *clp = server->nfs4_state; 181 spin_lock(&clp->cl_lock); 182 if (time_before(clp->cl_last_renewal,timestamp)) 183 clp->cl_last_renewal = timestamp; 184 spin_unlock(&clp->cl_lock); 185 } 186 187 static void update_changeattr(struct inode *inode, struct nfs4_change_info *cinfo) 188 { 189 struct nfs_inode *nfsi = NFS_I(inode); 190 191 spin_lock(&inode->i_lock); 192 nfsi->cache_validity |= NFS_INO_INVALID_ATTR; 193 if (cinfo->before == nfsi->change_attr && cinfo->atomic) 194 nfsi->change_attr = cinfo->after; 195 spin_unlock(&inode->i_lock); 196 } 197 198 struct nfs4_opendata { 199 atomic_t count; 200 struct nfs_openargs o_arg; 201 struct nfs_openres o_res; 202 struct nfs_open_confirmargs c_arg; 203 struct nfs_open_confirmres c_res; 204 struct nfs_fattr f_attr; 205 struct nfs_fattr dir_attr; 206 struct dentry *dentry; 207 struct dentry *dir; 208 struct nfs4_state_owner *owner; 209 struct iattr attrs; 210 unsigned long timestamp; 211 int rpc_status; 212 int cancelled; 213 }; 214 215 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry, 216 struct nfs4_state_owner *sp, int flags, 217 const struct iattr *attrs) 218 { 219 struct dentry *parent = dget_parent(dentry); 220 struct inode *dir = parent->d_inode; 221 struct nfs_server *server = NFS_SERVER(dir); 222 struct nfs4_opendata *p; 223 224 p = kzalloc(sizeof(*p), GFP_KERNEL); 225 if (p == NULL) 226 goto err; 227 p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid); 228 if (p->o_arg.seqid == NULL) 229 goto err_free; 230 atomic_set(&p->count, 1); 231 p->dentry = dget(dentry); 232 p->dir = parent; 233 p->owner = sp; 234 atomic_inc(&sp->so_count); 235 p->o_arg.fh = NFS_FH(dir); 236 p->o_arg.open_flags = flags, 237 p->o_arg.clientid = server->nfs4_state->cl_clientid; 238 p->o_arg.id = sp->so_id; 239 p->o_arg.name = &dentry->d_name; 240 p->o_arg.server = server; 241 p->o_arg.bitmask = server->attr_bitmask; 242 p->o_arg.claim = NFS4_OPEN_CLAIM_NULL; 243 p->o_res.f_attr = &p->f_attr; 244 p->o_res.dir_attr = &p->dir_attr; 245 p->o_res.server = server; 246 nfs_fattr_init(&p->f_attr); 247 nfs_fattr_init(&p->dir_attr); 248 if (flags & O_EXCL) { 249 u32 *s = (u32 *) p->o_arg.u.verifier.data; 250 s[0] = jiffies; 251 s[1] = current->pid; 252 } else if (flags & O_CREAT) { 253 p->o_arg.u.attrs = &p->attrs; 254 memcpy(&p->attrs, attrs, sizeof(p->attrs)); 255 } 256 p->c_arg.fh = &p->o_res.fh; 257 p->c_arg.stateid = &p->o_res.stateid; 258 p->c_arg.seqid = p->o_arg.seqid; 259 return p; 260 err_free: 261 kfree(p); 262 err: 263 dput(parent); 264 return NULL; 265 } 266 267 static void nfs4_opendata_free(struct nfs4_opendata *p) 268 { 269 if (p != NULL && atomic_dec_and_test(&p->count)) { 270 nfs_free_seqid(p->o_arg.seqid); 271 nfs4_put_state_owner(p->owner); 272 dput(p->dir); 273 dput(p->dentry); 274 kfree(p); 275 } 276 } 277 278 /* Helper for asynchronous RPC calls */ 279 static int nfs4_call_async(struct rpc_clnt *clnt, 280 const struct rpc_call_ops *tk_ops, void *calldata) 281 { 282 struct rpc_task *task; 283 284 if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata))) 285 return -ENOMEM; 286 rpc_execute(task); 287 return 0; 288 } 289 290 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task) 291 { 292 sigset_t oldset; 293 int ret; 294 295 rpc_clnt_sigmask(task->tk_client, &oldset); 296 ret = rpc_wait_for_completion_task(task); 297 rpc_clnt_sigunmask(task->tk_client, &oldset); 298 return ret; 299 } 300 301 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags) 302 { 303 switch (open_flags) { 304 case FMODE_WRITE: 305 state->n_wronly++; 306 break; 307 case FMODE_READ: 308 state->n_rdonly++; 309 break; 310 case FMODE_READ|FMODE_WRITE: 311 state->n_rdwr++; 312 } 313 } 314 315 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags) 316 { 317 struct inode *inode = state->inode; 318 319 open_flags &= (FMODE_READ|FMODE_WRITE); 320 /* Protect against nfs4_find_state_byowner() */ 321 spin_lock(&state->owner->so_lock); 322 spin_lock(&inode->i_lock); 323 memcpy(&state->stateid, stateid, sizeof(state->stateid)); 324 update_open_stateflags(state, open_flags); 325 nfs4_state_set_mode_locked(state, state->state | open_flags); 326 spin_unlock(&inode->i_lock); 327 spin_unlock(&state->owner->so_lock); 328 } 329 330 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data) 331 { 332 struct inode *inode; 333 struct nfs4_state *state = NULL; 334 335 if (!(data->f_attr.valid & NFS_ATTR_FATTR)) 336 goto out; 337 inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr); 338 if (inode == NULL) 339 goto out; 340 state = nfs4_get_open_state(inode, data->owner); 341 if (state == NULL) 342 goto put_inode; 343 update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags); 344 put_inode: 345 iput(inode); 346 out: 347 return state; 348 } 349 350 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state) 351 { 352 struct nfs_inode *nfsi = NFS_I(state->inode); 353 struct nfs_open_context *ctx; 354 355 spin_lock(&state->inode->i_lock); 356 list_for_each_entry(ctx, &nfsi->open_files, list) { 357 if (ctx->state != state) 358 continue; 359 get_nfs_open_context(ctx); 360 spin_unlock(&state->inode->i_lock); 361 return ctx; 362 } 363 spin_unlock(&state->inode->i_lock); 364 return ERR_PTR(-ENOENT); 365 } 366 367 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid) 368 { 369 int ret; 370 371 opendata->o_arg.open_flags = openflags; 372 ret = _nfs4_proc_open(opendata); 373 if (ret != 0) 374 return ret; 375 memcpy(stateid->data, opendata->o_res.stateid.data, 376 sizeof(stateid->data)); 377 return 0; 378 } 379 380 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state) 381 { 382 nfs4_stateid stateid; 383 struct nfs4_state *newstate; 384 int mode = 0; 385 int delegation = 0; 386 int ret; 387 388 /* memory barrier prior to reading state->n_* */ 389 smp_rmb(); 390 if (state->n_rdwr != 0) { 391 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid); 392 if (ret != 0) 393 return ret; 394 mode |= FMODE_READ|FMODE_WRITE; 395 if (opendata->o_res.delegation_type != 0) 396 delegation = opendata->o_res.delegation_type; 397 smp_rmb(); 398 } 399 if (state->n_wronly != 0) { 400 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid); 401 if (ret != 0) 402 return ret; 403 mode |= FMODE_WRITE; 404 if (opendata->o_res.delegation_type != 0) 405 delegation = opendata->o_res.delegation_type; 406 smp_rmb(); 407 } 408 if (state->n_rdonly != 0) { 409 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid); 410 if (ret != 0) 411 return ret; 412 mode |= FMODE_READ; 413 } 414 clear_bit(NFS_DELEGATED_STATE, &state->flags); 415 if (mode == 0) 416 return 0; 417 if (opendata->o_res.delegation_type == 0) 418 opendata->o_res.delegation_type = delegation; 419 opendata->o_arg.open_flags |= mode; 420 newstate = nfs4_opendata_to_nfs4_state(opendata); 421 if (newstate != NULL) { 422 if (opendata->o_res.delegation_type != 0) { 423 struct nfs_inode *nfsi = NFS_I(newstate->inode); 424 int delegation_flags = 0; 425 if (nfsi->delegation) 426 delegation_flags = nfsi->delegation->flags; 427 if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM)) 428 nfs_inode_set_delegation(newstate->inode, 429 opendata->owner->so_cred, 430 &opendata->o_res); 431 else 432 nfs_inode_reclaim_delegation(newstate->inode, 433 opendata->owner->so_cred, 434 &opendata->o_res); 435 } 436 nfs4_close_state(newstate, opendata->o_arg.open_flags); 437 } 438 if (newstate != state) 439 return -ESTALE; 440 return 0; 441 } 442 443 /* 444 * OPEN_RECLAIM: 445 * reclaim state on the server after a reboot. 446 */ 447 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry) 448 { 449 struct nfs_delegation *delegation = NFS_I(state->inode)->delegation; 450 struct nfs4_opendata *opendata; 451 int delegation_type = 0; 452 int status; 453 454 if (delegation != NULL) { 455 if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) { 456 memcpy(&state->stateid, &delegation->stateid, 457 sizeof(state->stateid)); 458 set_bit(NFS_DELEGATED_STATE, &state->flags); 459 return 0; 460 } 461 delegation_type = delegation->type; 462 } 463 opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL); 464 if (opendata == NULL) 465 return -ENOMEM; 466 opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS; 467 opendata->o_arg.fh = NFS_FH(state->inode); 468 nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh); 469 opendata->o_arg.u.delegation_type = delegation_type; 470 status = nfs4_open_recover(opendata, state); 471 nfs4_opendata_free(opendata); 472 return status; 473 } 474 475 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry) 476 { 477 struct nfs_server *server = NFS_SERVER(state->inode); 478 struct nfs4_exception exception = { }; 479 int err; 480 do { 481 err = _nfs4_do_open_reclaim(sp, state, dentry); 482 if (err != -NFS4ERR_DELAY) 483 break; 484 nfs4_handle_exception(server, err, &exception); 485 } while (exception.retry); 486 return err; 487 } 488 489 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state) 490 { 491 struct nfs_open_context *ctx; 492 int ret; 493 494 ctx = nfs4_state_find_open_context(state); 495 if (IS_ERR(ctx)) 496 return PTR_ERR(ctx); 497 ret = nfs4_do_open_reclaim(sp, state, ctx->dentry); 498 put_nfs_open_context(ctx); 499 return ret; 500 } 501 502 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state) 503 { 504 struct nfs4_state_owner *sp = state->owner; 505 struct nfs4_opendata *opendata; 506 int ret; 507 508 if (!test_bit(NFS_DELEGATED_STATE, &state->flags)) 509 return 0; 510 opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL); 511 if (opendata == NULL) 512 return -ENOMEM; 513 opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR; 514 memcpy(opendata->o_arg.u.delegation.data, state->stateid.data, 515 sizeof(opendata->o_arg.u.delegation.data)); 516 ret = nfs4_open_recover(opendata, state); 517 nfs4_opendata_free(opendata); 518 return ret; 519 } 520 521 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state) 522 { 523 struct nfs4_exception exception = { }; 524 struct nfs_server *server = NFS_SERVER(dentry->d_inode); 525 int err; 526 do { 527 err = _nfs4_open_delegation_recall(dentry, state); 528 switch (err) { 529 case 0: 530 return err; 531 case -NFS4ERR_STALE_CLIENTID: 532 case -NFS4ERR_STALE_STATEID: 533 case -NFS4ERR_EXPIRED: 534 /* Don't recall a delegation if it was lost */ 535 nfs4_schedule_state_recovery(server->nfs4_state); 536 return err; 537 } 538 err = nfs4_handle_exception(server, err, &exception); 539 } while (exception.retry); 540 return err; 541 } 542 543 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata) 544 { 545 struct nfs4_opendata *data = calldata; 546 struct rpc_message msg = { 547 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM], 548 .rpc_argp = &data->c_arg, 549 .rpc_resp = &data->c_res, 550 .rpc_cred = data->owner->so_cred, 551 }; 552 data->timestamp = jiffies; 553 rpc_call_setup(task, &msg, 0); 554 } 555 556 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata) 557 { 558 struct nfs4_opendata *data = calldata; 559 560 data->rpc_status = task->tk_status; 561 if (RPC_ASSASSINATED(task)) 562 return; 563 if (data->rpc_status == 0) { 564 memcpy(data->o_res.stateid.data, data->c_res.stateid.data, 565 sizeof(data->o_res.stateid.data)); 566 renew_lease(data->o_res.server, data->timestamp); 567 } 568 nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid); 569 nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status); 570 } 571 572 static void nfs4_open_confirm_release(void *calldata) 573 { 574 struct nfs4_opendata *data = calldata; 575 struct nfs4_state *state = NULL; 576 577 /* If this request hasn't been cancelled, do nothing */ 578 if (data->cancelled == 0) 579 goto out_free; 580 /* In case of error, no cleanup! */ 581 if (data->rpc_status != 0) 582 goto out_free; 583 nfs_confirm_seqid(&data->owner->so_seqid, 0); 584 state = nfs4_opendata_to_nfs4_state(data); 585 if (state != NULL) 586 nfs4_close_state(state, data->o_arg.open_flags); 587 out_free: 588 nfs4_opendata_free(data); 589 } 590 591 static const struct rpc_call_ops nfs4_open_confirm_ops = { 592 .rpc_call_prepare = nfs4_open_confirm_prepare, 593 .rpc_call_done = nfs4_open_confirm_done, 594 .rpc_release = nfs4_open_confirm_release, 595 }; 596 597 /* 598 * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata 599 */ 600 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data) 601 { 602 struct nfs_server *server = NFS_SERVER(data->dir->d_inode); 603 struct rpc_task *task; 604 int status; 605 606 atomic_inc(&data->count); 607 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data); 608 if (IS_ERR(task)) { 609 nfs4_opendata_free(data); 610 return PTR_ERR(task); 611 } 612 status = nfs4_wait_for_completion_rpc_task(task); 613 if (status != 0) { 614 data->cancelled = 1; 615 smp_wmb(); 616 } else 617 status = data->rpc_status; 618 rpc_release_task(task); 619 return status; 620 } 621 622 static void nfs4_open_prepare(struct rpc_task *task, void *calldata) 623 { 624 struct nfs4_opendata *data = calldata; 625 struct nfs4_state_owner *sp = data->owner; 626 struct rpc_message msg = { 627 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN], 628 .rpc_argp = &data->o_arg, 629 .rpc_resp = &data->o_res, 630 .rpc_cred = sp->so_cred, 631 }; 632 633 if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0) 634 return; 635 /* Update sequence id. */ 636 data->o_arg.id = sp->so_id; 637 data->o_arg.clientid = sp->so_client->cl_clientid; 638 if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS) 639 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR]; 640 data->timestamp = jiffies; 641 rpc_call_setup(task, &msg, 0); 642 } 643 644 static void nfs4_open_done(struct rpc_task *task, void *calldata) 645 { 646 struct nfs4_opendata *data = calldata; 647 648 data->rpc_status = task->tk_status; 649 if (RPC_ASSASSINATED(task)) 650 return; 651 if (task->tk_status == 0) { 652 switch (data->o_res.f_attr->mode & S_IFMT) { 653 case S_IFREG: 654 break; 655 case S_IFLNK: 656 data->rpc_status = -ELOOP; 657 break; 658 case S_IFDIR: 659 data->rpc_status = -EISDIR; 660 break; 661 default: 662 data->rpc_status = -ENOTDIR; 663 } 664 renew_lease(data->o_res.server, data->timestamp); 665 } 666 nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid); 667 } 668 669 static void nfs4_open_release(void *calldata) 670 { 671 struct nfs4_opendata *data = calldata; 672 struct nfs4_state *state = NULL; 673 674 /* If this request hasn't been cancelled, do nothing */ 675 if (data->cancelled == 0) 676 goto out_free; 677 /* In case of error, no cleanup! */ 678 if (data->rpc_status != 0) 679 goto out_free; 680 /* In case we need an open_confirm, no cleanup! */ 681 if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM) 682 goto out_free; 683 nfs_confirm_seqid(&data->owner->so_seqid, 0); 684 state = nfs4_opendata_to_nfs4_state(data); 685 if (state != NULL) 686 nfs4_close_state(state, data->o_arg.open_flags); 687 out_free: 688 nfs4_opendata_free(data); 689 } 690 691 static const struct rpc_call_ops nfs4_open_ops = { 692 .rpc_call_prepare = nfs4_open_prepare, 693 .rpc_call_done = nfs4_open_done, 694 .rpc_release = nfs4_open_release, 695 }; 696 697 /* 698 * Note: On error, nfs4_proc_open will free the struct nfs4_opendata 699 */ 700 static int _nfs4_proc_open(struct nfs4_opendata *data) 701 { 702 struct inode *dir = data->dir->d_inode; 703 struct nfs_server *server = NFS_SERVER(dir); 704 struct nfs_openargs *o_arg = &data->o_arg; 705 struct nfs_openres *o_res = &data->o_res; 706 struct rpc_task *task; 707 int status; 708 709 atomic_inc(&data->count); 710 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data); 711 if (IS_ERR(task)) { 712 nfs4_opendata_free(data); 713 return PTR_ERR(task); 714 } 715 status = nfs4_wait_for_completion_rpc_task(task); 716 if (status != 0) { 717 data->cancelled = 1; 718 smp_wmb(); 719 } else 720 status = data->rpc_status; 721 rpc_release_task(task); 722 if (status != 0) 723 return status; 724 725 if (o_arg->open_flags & O_CREAT) { 726 update_changeattr(dir, &o_res->cinfo); 727 nfs_post_op_update_inode(dir, o_res->dir_attr); 728 } else 729 nfs_refresh_inode(dir, o_res->dir_attr); 730 if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) { 731 status = _nfs4_proc_open_confirm(data); 732 if (status != 0) 733 return status; 734 } 735 nfs_confirm_seqid(&data->owner->so_seqid, 0); 736 if (!(o_res->f_attr->valid & NFS_ATTR_FATTR)) 737 return server->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr); 738 return 0; 739 } 740 741 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags) 742 { 743 struct nfs_access_entry cache; 744 int mask = 0; 745 int status; 746 747 if (openflags & FMODE_READ) 748 mask |= MAY_READ; 749 if (openflags & FMODE_WRITE) 750 mask |= MAY_WRITE; 751 status = nfs_access_get_cached(inode, cred, &cache); 752 if (status == 0) 753 goto out; 754 755 /* Be clever: ask server to check for all possible rights */ 756 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 757 cache.cred = cred; 758 cache.jiffies = jiffies; 759 status = _nfs4_proc_access(inode, &cache); 760 if (status != 0) 761 return status; 762 nfs_access_add_cache(inode, &cache); 763 out: 764 if ((cache.mask & mask) == mask) 765 return 0; 766 return -EACCES; 767 } 768 769 int nfs4_recover_expired_lease(struct nfs_server *server) 770 { 771 struct nfs4_client *clp = server->nfs4_state; 772 773 if (test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state)) 774 nfs4_schedule_state_recovery(clp); 775 return nfs4_wait_clnt_recover(server->client, clp); 776 } 777 778 /* 779 * OPEN_EXPIRED: 780 * reclaim state on the server after a network partition. 781 * Assumes caller holds the appropriate lock 782 */ 783 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry) 784 { 785 struct inode *inode = state->inode; 786 struct nfs_delegation *delegation = NFS_I(inode)->delegation; 787 struct nfs4_opendata *opendata; 788 int openflags = state->state & (FMODE_READ|FMODE_WRITE); 789 int ret; 790 791 if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) { 792 ret = _nfs4_do_access(inode, sp->so_cred, openflags); 793 if (ret < 0) 794 return ret; 795 memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid)); 796 set_bit(NFS_DELEGATED_STATE, &state->flags); 797 return 0; 798 } 799 opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL); 800 if (opendata == NULL) 801 return -ENOMEM; 802 ret = nfs4_open_recover(opendata, state); 803 if (ret == -ESTALE) { 804 /* Invalidate the state owner so we don't ever use it again */ 805 nfs4_drop_state_owner(sp); 806 d_drop(dentry); 807 } 808 nfs4_opendata_free(opendata); 809 return ret; 810 } 811 812 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry) 813 { 814 struct nfs_server *server = NFS_SERVER(dentry->d_inode); 815 struct nfs4_exception exception = { }; 816 int err; 817 818 do { 819 err = _nfs4_open_expired(sp, state, dentry); 820 if (err == -NFS4ERR_DELAY) 821 nfs4_handle_exception(server, err, &exception); 822 } while (exception.retry); 823 return err; 824 } 825 826 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state) 827 { 828 struct nfs_open_context *ctx; 829 int ret; 830 831 ctx = nfs4_state_find_open_context(state); 832 if (IS_ERR(ctx)) 833 return PTR_ERR(ctx); 834 ret = nfs4_do_open_expired(sp, state, ctx->dentry); 835 put_nfs_open_context(ctx); 836 return ret; 837 } 838 839 /* 840 * Returns a referenced nfs4_state if there is an open delegation on the file 841 */ 842 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res) 843 { 844 struct nfs_delegation *delegation; 845 struct nfs_server *server = NFS_SERVER(inode); 846 struct nfs4_client *clp = server->nfs4_state; 847 struct nfs_inode *nfsi = NFS_I(inode); 848 struct nfs4_state_owner *sp = NULL; 849 struct nfs4_state *state = NULL; 850 int open_flags = flags & (FMODE_READ|FMODE_WRITE); 851 int err; 852 853 err = -ENOMEM; 854 if (!(sp = nfs4_get_state_owner(server, cred))) { 855 dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__); 856 return err; 857 } 858 err = nfs4_recover_expired_lease(server); 859 if (err != 0) 860 goto out_put_state_owner; 861 /* Protect against reboot recovery - NOTE ORDER! */ 862 down_read(&clp->cl_sem); 863 /* Protect against delegation recall */ 864 down_read(&nfsi->rwsem); 865 delegation = NFS_I(inode)->delegation; 866 err = -ENOENT; 867 if (delegation == NULL || (delegation->type & open_flags) != open_flags) 868 goto out_err; 869 err = -ENOMEM; 870 state = nfs4_get_open_state(inode, sp); 871 if (state == NULL) 872 goto out_err; 873 874 err = -ENOENT; 875 if ((state->state & open_flags) == open_flags) { 876 spin_lock(&inode->i_lock); 877 update_open_stateflags(state, open_flags); 878 spin_unlock(&inode->i_lock); 879 goto out_ok; 880 } else if (state->state != 0) 881 goto out_put_open_state; 882 883 lock_kernel(); 884 err = _nfs4_do_access(inode, cred, open_flags); 885 unlock_kernel(); 886 if (err != 0) 887 goto out_put_open_state; 888 set_bit(NFS_DELEGATED_STATE, &state->flags); 889 update_open_stateid(state, &delegation->stateid, open_flags); 890 out_ok: 891 nfs4_put_state_owner(sp); 892 up_read(&nfsi->rwsem); 893 up_read(&clp->cl_sem); 894 *res = state; 895 return 0; 896 out_put_open_state: 897 nfs4_put_open_state(state); 898 out_err: 899 up_read(&nfsi->rwsem); 900 up_read(&clp->cl_sem); 901 if (err != -EACCES) 902 nfs_inode_return_delegation(inode); 903 out_put_state_owner: 904 nfs4_put_state_owner(sp); 905 return err; 906 } 907 908 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred) 909 { 910 struct nfs4_exception exception = { }; 911 struct nfs4_state *res; 912 int err; 913 914 do { 915 err = _nfs4_open_delegated(inode, flags, cred, &res); 916 if (err == 0) 917 break; 918 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode), 919 err, &exception)); 920 } while (exception.retry); 921 return res; 922 } 923 924 /* 925 * Returns a referenced nfs4_state 926 */ 927 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res) 928 { 929 struct nfs4_state_owner *sp; 930 struct nfs4_state *state = NULL; 931 struct nfs_server *server = NFS_SERVER(dir); 932 struct nfs4_client *clp = server->nfs4_state; 933 struct nfs4_opendata *opendata; 934 int status; 935 936 /* Protect against reboot recovery conflicts */ 937 status = -ENOMEM; 938 if (!(sp = nfs4_get_state_owner(server, cred))) { 939 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n"); 940 goto out_err; 941 } 942 status = nfs4_recover_expired_lease(server); 943 if (status != 0) 944 goto err_put_state_owner; 945 down_read(&clp->cl_sem); 946 status = -ENOMEM; 947 opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr); 948 if (opendata == NULL) 949 goto err_put_state_owner; 950 951 status = _nfs4_proc_open(opendata); 952 if (status != 0) 953 goto err_opendata_free; 954 955 status = -ENOMEM; 956 state = nfs4_opendata_to_nfs4_state(opendata); 957 if (state == NULL) 958 goto err_opendata_free; 959 if (opendata->o_res.delegation_type != 0) 960 nfs_inode_set_delegation(state->inode, cred, &opendata->o_res); 961 nfs4_opendata_free(opendata); 962 nfs4_put_state_owner(sp); 963 up_read(&clp->cl_sem); 964 *res = state; 965 return 0; 966 err_opendata_free: 967 nfs4_opendata_free(opendata); 968 err_put_state_owner: 969 nfs4_put_state_owner(sp); 970 out_err: 971 /* Note: clp->cl_sem must be released before nfs4_put_open_state()! */ 972 up_read(&clp->cl_sem); 973 *res = NULL; 974 return status; 975 } 976 977 978 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred) 979 { 980 struct nfs4_exception exception = { }; 981 struct nfs4_state *res; 982 int status; 983 984 do { 985 status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res); 986 if (status == 0) 987 break; 988 /* NOTE: BAD_SEQID means the server and client disagree about the 989 * book-keeping w.r.t. state-changing operations 990 * (OPEN/CLOSE/LOCK/LOCKU...) 991 * It is actually a sign of a bug on the client or on the server. 992 * 993 * If we receive a BAD_SEQID error in the particular case of 994 * doing an OPEN, we assume that nfs_increment_open_seqid() will 995 * have unhashed the old state_owner for us, and that we can 996 * therefore safely retry using a new one. We should still warn 997 * the user though... 998 */ 999 if (status == -NFS4ERR_BAD_SEQID) { 1000 printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n"); 1001 exception.retry = 1; 1002 continue; 1003 } 1004 /* 1005 * BAD_STATEID on OPEN means that the server cancelled our 1006 * state before it received the OPEN_CONFIRM. 1007 * Recover by retrying the request as per the discussion 1008 * on Page 181 of RFC3530. 1009 */ 1010 if (status == -NFS4ERR_BAD_STATEID) { 1011 exception.retry = 1; 1012 continue; 1013 } 1014 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir), 1015 status, &exception)); 1016 } while (exception.retry); 1017 return res; 1018 } 1019 1020 static int _nfs4_do_setattr(struct nfs_server *server, struct nfs_fattr *fattr, 1021 struct nfs_fh *fhandle, struct iattr *sattr, 1022 struct nfs4_state *state) 1023 { 1024 struct nfs_setattrargs arg = { 1025 .fh = fhandle, 1026 .iap = sattr, 1027 .server = server, 1028 .bitmask = server->attr_bitmask, 1029 }; 1030 struct nfs_setattrres res = { 1031 .fattr = fattr, 1032 .server = server, 1033 }; 1034 struct rpc_message msg = { 1035 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR], 1036 .rpc_argp = &arg, 1037 .rpc_resp = &res, 1038 }; 1039 unsigned long timestamp = jiffies; 1040 int status; 1041 1042 nfs_fattr_init(fattr); 1043 1044 if (state != NULL) { 1045 msg.rpc_cred = state->owner->so_cred; 1046 nfs4_copy_stateid(&arg.stateid, state, current->files); 1047 } else 1048 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid)); 1049 1050 status = rpc_call_sync(server->client, &msg, 0); 1051 if (status == 0 && state != NULL) 1052 renew_lease(server, timestamp); 1053 return status; 1054 } 1055 1056 static int nfs4_do_setattr(struct nfs_server *server, struct nfs_fattr *fattr, 1057 struct nfs_fh *fhandle, struct iattr *sattr, 1058 struct nfs4_state *state) 1059 { 1060 struct nfs4_exception exception = { }; 1061 int err; 1062 do { 1063 err = nfs4_handle_exception(server, 1064 _nfs4_do_setattr(server, fattr, fhandle, sattr, 1065 state), 1066 &exception); 1067 } while (exception.retry); 1068 return err; 1069 } 1070 1071 struct nfs4_closedata { 1072 struct inode *inode; 1073 struct nfs4_state *state; 1074 struct nfs_closeargs arg; 1075 struct nfs_closeres res; 1076 struct nfs_fattr fattr; 1077 unsigned long timestamp; 1078 }; 1079 1080 static void nfs4_free_closedata(void *data) 1081 { 1082 struct nfs4_closedata *calldata = data; 1083 struct nfs4_state_owner *sp = calldata->state->owner; 1084 1085 nfs4_put_open_state(calldata->state); 1086 nfs_free_seqid(calldata->arg.seqid); 1087 nfs4_put_state_owner(sp); 1088 kfree(calldata); 1089 } 1090 1091 static void nfs4_close_done(struct rpc_task *task, void *data) 1092 { 1093 struct nfs4_closedata *calldata = data; 1094 struct nfs4_state *state = calldata->state; 1095 struct nfs_server *server = NFS_SERVER(calldata->inode); 1096 1097 if (RPC_ASSASSINATED(task)) 1098 return; 1099 /* hmm. we are done with the inode, and in the process of freeing 1100 * the state_owner. we keep this around to process errors 1101 */ 1102 nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid); 1103 switch (task->tk_status) { 1104 case 0: 1105 memcpy(&state->stateid, &calldata->res.stateid, 1106 sizeof(state->stateid)); 1107 renew_lease(server, calldata->timestamp); 1108 break; 1109 case -NFS4ERR_STALE_STATEID: 1110 case -NFS4ERR_EXPIRED: 1111 nfs4_schedule_state_recovery(server->nfs4_state); 1112 break; 1113 default: 1114 if (nfs4_async_handle_error(task, server) == -EAGAIN) { 1115 rpc_restart_call(task); 1116 return; 1117 } 1118 } 1119 nfs_refresh_inode(calldata->inode, calldata->res.fattr); 1120 } 1121 1122 static void nfs4_close_prepare(struct rpc_task *task, void *data) 1123 { 1124 struct nfs4_closedata *calldata = data; 1125 struct nfs4_state *state = calldata->state; 1126 struct rpc_message msg = { 1127 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE], 1128 .rpc_argp = &calldata->arg, 1129 .rpc_resp = &calldata->res, 1130 .rpc_cred = state->owner->so_cred, 1131 }; 1132 int mode = 0, old_mode; 1133 1134 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0) 1135 return; 1136 /* Recalculate the new open mode in case someone reopened the file 1137 * while we were waiting in line to be scheduled. 1138 */ 1139 spin_lock(&state->owner->so_lock); 1140 spin_lock(&calldata->inode->i_lock); 1141 mode = old_mode = state->state; 1142 if (state->n_rdwr == 0) { 1143 if (state->n_rdonly == 0) 1144 mode &= ~FMODE_READ; 1145 if (state->n_wronly == 0) 1146 mode &= ~FMODE_WRITE; 1147 } 1148 nfs4_state_set_mode_locked(state, mode); 1149 spin_unlock(&calldata->inode->i_lock); 1150 spin_unlock(&state->owner->so_lock); 1151 if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) { 1152 /* Note: exit _without_ calling nfs4_close_done */ 1153 task->tk_action = NULL; 1154 return; 1155 } 1156 nfs_fattr_init(calldata->res.fattr); 1157 if (mode != 0) 1158 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE]; 1159 calldata->arg.open_flags = mode; 1160 calldata->timestamp = jiffies; 1161 rpc_call_setup(task, &msg, 0); 1162 } 1163 1164 static const struct rpc_call_ops nfs4_close_ops = { 1165 .rpc_call_prepare = nfs4_close_prepare, 1166 .rpc_call_done = nfs4_close_done, 1167 .rpc_release = nfs4_free_closedata, 1168 }; 1169 1170 /* 1171 * It is possible for data to be read/written from a mem-mapped file 1172 * after the sys_close call (which hits the vfs layer as a flush). 1173 * This means that we can't safely call nfsv4 close on a file until 1174 * the inode is cleared. This in turn means that we are not good 1175 * NFSv4 citizens - we do not indicate to the server to update the file's 1176 * share state even when we are done with one of the three share 1177 * stateid's in the inode. 1178 * 1179 * NOTE: Caller must be holding the sp->so_owner semaphore! 1180 */ 1181 int nfs4_do_close(struct inode *inode, struct nfs4_state *state) 1182 { 1183 struct nfs_server *server = NFS_SERVER(inode); 1184 struct nfs4_closedata *calldata; 1185 int status = -ENOMEM; 1186 1187 calldata = kmalloc(sizeof(*calldata), GFP_KERNEL); 1188 if (calldata == NULL) 1189 goto out; 1190 calldata->inode = inode; 1191 calldata->state = state; 1192 calldata->arg.fh = NFS_FH(inode); 1193 calldata->arg.stateid = &state->stateid; 1194 /* Serialization for the sequence id */ 1195 calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid); 1196 if (calldata->arg.seqid == NULL) 1197 goto out_free_calldata; 1198 calldata->arg.bitmask = server->attr_bitmask; 1199 calldata->res.fattr = &calldata->fattr; 1200 calldata->res.server = server; 1201 1202 status = nfs4_call_async(server->client, &nfs4_close_ops, calldata); 1203 if (status == 0) 1204 goto out; 1205 1206 nfs_free_seqid(calldata->arg.seqid); 1207 out_free_calldata: 1208 kfree(calldata); 1209 out: 1210 return status; 1211 } 1212 1213 static void nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state) 1214 { 1215 struct file *filp; 1216 1217 filp = lookup_instantiate_filp(nd, dentry, NULL); 1218 if (!IS_ERR(filp)) { 1219 struct nfs_open_context *ctx; 1220 ctx = (struct nfs_open_context *)filp->private_data; 1221 ctx->state = state; 1222 } else 1223 nfs4_close_state(state, nd->intent.open.flags); 1224 } 1225 1226 struct dentry * 1227 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 1228 { 1229 struct iattr attr; 1230 struct rpc_cred *cred; 1231 struct nfs4_state *state; 1232 struct dentry *res; 1233 1234 if (nd->flags & LOOKUP_CREATE) { 1235 attr.ia_mode = nd->intent.open.create_mode; 1236 attr.ia_valid = ATTR_MODE; 1237 if (!IS_POSIXACL(dir)) 1238 attr.ia_mode &= ~current->fs->umask; 1239 } else { 1240 attr.ia_valid = 0; 1241 BUG_ON(nd->intent.open.flags & O_CREAT); 1242 } 1243 1244 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0); 1245 if (IS_ERR(cred)) 1246 return (struct dentry *)cred; 1247 state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred); 1248 put_rpccred(cred); 1249 if (IS_ERR(state)) { 1250 if (PTR_ERR(state) == -ENOENT) 1251 d_add(dentry, NULL); 1252 return (struct dentry *)state; 1253 } 1254 res = d_add_unique(dentry, igrab(state->inode)); 1255 if (res != NULL) 1256 dentry = res; 1257 nfs4_intent_set_file(nd, dentry, state); 1258 return res; 1259 } 1260 1261 int 1262 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd) 1263 { 1264 struct rpc_cred *cred; 1265 struct nfs4_state *state; 1266 1267 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0); 1268 if (IS_ERR(cred)) 1269 return PTR_ERR(cred); 1270 state = nfs4_open_delegated(dentry->d_inode, openflags, cred); 1271 if (IS_ERR(state)) 1272 state = nfs4_do_open(dir, dentry, openflags, NULL, cred); 1273 put_rpccred(cred); 1274 if (IS_ERR(state)) { 1275 switch (PTR_ERR(state)) { 1276 case -EPERM: 1277 case -EACCES: 1278 case -EDQUOT: 1279 case -ENOSPC: 1280 case -EROFS: 1281 lookup_instantiate_filp(nd, (struct dentry *)state, NULL); 1282 return 1; 1283 case -ENOENT: 1284 if (dentry->d_inode == NULL) 1285 return 1; 1286 } 1287 goto out_drop; 1288 } 1289 if (state->inode == dentry->d_inode) { 1290 nfs4_intent_set_file(nd, dentry, state); 1291 return 1; 1292 } 1293 nfs4_close_state(state, openflags); 1294 out_drop: 1295 d_drop(dentry); 1296 return 0; 1297 } 1298 1299 1300 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle) 1301 { 1302 struct nfs4_server_caps_res res = {}; 1303 struct rpc_message msg = { 1304 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS], 1305 .rpc_argp = fhandle, 1306 .rpc_resp = &res, 1307 }; 1308 int status; 1309 1310 status = rpc_call_sync(server->client, &msg, 0); 1311 if (status == 0) { 1312 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask)); 1313 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL) 1314 server->caps |= NFS_CAP_ACLS; 1315 if (res.has_links != 0) 1316 server->caps |= NFS_CAP_HARDLINKS; 1317 if (res.has_symlinks != 0) 1318 server->caps |= NFS_CAP_SYMLINKS; 1319 server->acl_bitmask = res.acl_bitmask; 1320 } 1321 return status; 1322 } 1323 1324 static int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle) 1325 { 1326 struct nfs4_exception exception = { }; 1327 int err; 1328 do { 1329 err = nfs4_handle_exception(server, 1330 _nfs4_server_capabilities(server, fhandle), 1331 &exception); 1332 } while (exception.retry); 1333 return err; 1334 } 1335 1336 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle, 1337 struct nfs_fsinfo *info) 1338 { 1339 struct nfs4_lookup_root_arg args = { 1340 .bitmask = nfs4_fattr_bitmap, 1341 }; 1342 struct nfs4_lookup_res res = { 1343 .server = server, 1344 .fattr = info->fattr, 1345 .fh = fhandle, 1346 }; 1347 struct rpc_message msg = { 1348 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT], 1349 .rpc_argp = &args, 1350 .rpc_resp = &res, 1351 }; 1352 nfs_fattr_init(info->fattr); 1353 return rpc_call_sync(server->client, &msg, 0); 1354 } 1355 1356 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle, 1357 struct nfs_fsinfo *info) 1358 { 1359 struct nfs4_exception exception = { }; 1360 int err; 1361 do { 1362 err = nfs4_handle_exception(server, 1363 _nfs4_lookup_root(server, fhandle, info), 1364 &exception); 1365 } while (exception.retry); 1366 return err; 1367 } 1368 1369 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle, 1370 struct nfs_fsinfo *info) 1371 { 1372 struct nfs_fattr * fattr = info->fattr; 1373 unsigned char * p; 1374 struct qstr q; 1375 struct nfs4_lookup_arg args = { 1376 .dir_fh = fhandle, 1377 .name = &q, 1378 .bitmask = nfs4_fattr_bitmap, 1379 }; 1380 struct nfs4_lookup_res res = { 1381 .server = server, 1382 .fattr = fattr, 1383 .fh = fhandle, 1384 }; 1385 struct rpc_message msg = { 1386 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP], 1387 .rpc_argp = &args, 1388 .rpc_resp = &res, 1389 }; 1390 int status; 1391 1392 /* 1393 * Now we do a separate LOOKUP for each component of the mount path. 1394 * The LOOKUPs are done separately so that we can conveniently 1395 * catch an ERR_WRONGSEC if it occurs along the way... 1396 */ 1397 status = nfs4_lookup_root(server, fhandle, info); 1398 if (status) 1399 goto out; 1400 1401 p = server->mnt_path; 1402 for (;;) { 1403 struct nfs4_exception exception = { }; 1404 1405 while (*p == '/') 1406 p++; 1407 if (!*p) 1408 break; 1409 q.name = p; 1410 while (*p && (*p != '/')) 1411 p++; 1412 q.len = p - q.name; 1413 1414 do { 1415 nfs_fattr_init(fattr); 1416 status = nfs4_handle_exception(server, 1417 rpc_call_sync(server->client, &msg, 0), 1418 &exception); 1419 } while (exception.retry); 1420 if (status == 0) 1421 continue; 1422 if (status == -ENOENT) { 1423 printk(KERN_NOTICE "NFS: mount path %s does not exist!\n", server->mnt_path); 1424 printk(KERN_NOTICE "NFS: suggestion: try mounting '/' instead.\n"); 1425 } 1426 break; 1427 } 1428 if (status == 0) 1429 status = nfs4_server_capabilities(server, fhandle); 1430 if (status == 0) 1431 status = nfs4_do_fsinfo(server, fhandle, info); 1432 out: 1433 return status; 1434 } 1435 1436 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr) 1437 { 1438 struct nfs4_getattr_arg args = { 1439 .fh = fhandle, 1440 .bitmask = server->attr_bitmask, 1441 }; 1442 struct nfs4_getattr_res res = { 1443 .fattr = fattr, 1444 .server = server, 1445 }; 1446 struct rpc_message msg = { 1447 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR], 1448 .rpc_argp = &args, 1449 .rpc_resp = &res, 1450 }; 1451 1452 nfs_fattr_init(fattr); 1453 return rpc_call_sync(server->client, &msg, 0); 1454 } 1455 1456 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr) 1457 { 1458 struct nfs4_exception exception = { }; 1459 int err; 1460 do { 1461 err = nfs4_handle_exception(server, 1462 _nfs4_proc_getattr(server, fhandle, fattr), 1463 &exception); 1464 } while (exception.retry); 1465 return err; 1466 } 1467 1468 /* 1469 * The file is not closed if it is opened due to the a request to change 1470 * the size of the file. The open call will not be needed once the 1471 * VFS layer lookup-intents are implemented. 1472 * 1473 * Close is called when the inode is destroyed. 1474 * If we haven't opened the file for O_WRONLY, we 1475 * need to in the size_change case to obtain a stateid. 1476 * 1477 * Got race? 1478 * Because OPEN is always done by name in nfsv4, it is 1479 * possible that we opened a different file by the same 1480 * name. We can recognize this race condition, but we 1481 * can't do anything about it besides returning an error. 1482 * 1483 * This will be fixed with VFS changes (lookup-intent). 1484 */ 1485 static int 1486 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr, 1487 struct iattr *sattr) 1488 { 1489 struct rpc_cred *cred; 1490 struct inode *inode = dentry->d_inode; 1491 struct nfs_open_context *ctx; 1492 struct nfs4_state *state = NULL; 1493 int status; 1494 1495 nfs_fattr_init(fattr); 1496 1497 cred = rpcauth_lookupcred(NFS_SERVER(inode)->client->cl_auth, 0); 1498 if (IS_ERR(cred)) 1499 return PTR_ERR(cred); 1500 1501 /* Search for an existing open(O_WRITE) file */ 1502 ctx = nfs_find_open_context(inode, cred, FMODE_WRITE); 1503 if (ctx != NULL) 1504 state = ctx->state; 1505 1506 status = nfs4_do_setattr(NFS_SERVER(inode), fattr, 1507 NFS_FH(inode), sattr, state); 1508 if (status == 0) 1509 nfs_setattr_update_inode(inode, sattr); 1510 if (ctx != NULL) 1511 put_nfs_open_context(ctx); 1512 put_rpccred(cred); 1513 return status; 1514 } 1515 1516 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name, 1517 struct nfs_fh *fhandle, struct nfs_fattr *fattr) 1518 { 1519 int status; 1520 struct nfs_server *server = NFS_SERVER(dir); 1521 struct nfs4_lookup_arg args = { 1522 .bitmask = server->attr_bitmask, 1523 .dir_fh = NFS_FH(dir), 1524 .name = name, 1525 }; 1526 struct nfs4_lookup_res res = { 1527 .server = server, 1528 .fattr = fattr, 1529 .fh = fhandle, 1530 }; 1531 struct rpc_message msg = { 1532 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP], 1533 .rpc_argp = &args, 1534 .rpc_resp = &res, 1535 }; 1536 1537 nfs_fattr_init(fattr); 1538 1539 dprintk("NFS call lookup %s\n", name->name); 1540 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); 1541 dprintk("NFS reply lookup: %d\n", status); 1542 return status; 1543 } 1544 1545 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) 1546 { 1547 struct nfs4_exception exception = { }; 1548 int err; 1549 do { 1550 err = nfs4_handle_exception(NFS_SERVER(dir), 1551 _nfs4_proc_lookup(dir, name, fhandle, fattr), 1552 &exception); 1553 } while (exception.retry); 1554 return err; 1555 } 1556 1557 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry) 1558 { 1559 struct nfs4_accessargs args = { 1560 .fh = NFS_FH(inode), 1561 }; 1562 struct nfs4_accessres res = { 0 }; 1563 struct rpc_message msg = { 1564 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS], 1565 .rpc_argp = &args, 1566 .rpc_resp = &res, 1567 .rpc_cred = entry->cred, 1568 }; 1569 int mode = entry->mask; 1570 int status; 1571 1572 /* 1573 * Determine which access bits we want to ask for... 1574 */ 1575 if (mode & MAY_READ) 1576 args.access |= NFS4_ACCESS_READ; 1577 if (S_ISDIR(inode->i_mode)) { 1578 if (mode & MAY_WRITE) 1579 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE; 1580 if (mode & MAY_EXEC) 1581 args.access |= NFS4_ACCESS_LOOKUP; 1582 } else { 1583 if (mode & MAY_WRITE) 1584 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND; 1585 if (mode & MAY_EXEC) 1586 args.access |= NFS4_ACCESS_EXECUTE; 1587 } 1588 status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); 1589 if (!status) { 1590 entry->mask = 0; 1591 if (res.access & NFS4_ACCESS_READ) 1592 entry->mask |= MAY_READ; 1593 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 1594 entry->mask |= MAY_WRITE; 1595 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 1596 entry->mask |= MAY_EXEC; 1597 } 1598 return status; 1599 } 1600 1601 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry) 1602 { 1603 struct nfs4_exception exception = { }; 1604 int err; 1605 do { 1606 err = nfs4_handle_exception(NFS_SERVER(inode), 1607 _nfs4_proc_access(inode, entry), 1608 &exception); 1609 } while (exception.retry); 1610 return err; 1611 } 1612 1613 /* 1614 * TODO: For the time being, we don't try to get any attributes 1615 * along with any of the zero-copy operations READ, READDIR, 1616 * READLINK, WRITE. 1617 * 1618 * In the case of the first three, we want to put the GETATTR 1619 * after the read-type operation -- this is because it is hard 1620 * to predict the length of a GETATTR response in v4, and thus 1621 * align the READ data correctly. This means that the GETATTR 1622 * may end up partially falling into the page cache, and we should 1623 * shift it into the 'tail' of the xdr_buf before processing. 1624 * To do this efficiently, we need to know the total length 1625 * of data received, which doesn't seem to be available outside 1626 * of the RPC layer. 1627 * 1628 * In the case of WRITE, we also want to put the GETATTR after 1629 * the operation -- in this case because we want to make sure 1630 * we get the post-operation mtime and size. This means that 1631 * we can't use xdr_encode_pages() as written: we need a variant 1632 * of it which would leave room in the 'tail' iovec. 1633 * 1634 * Both of these changes to the XDR layer would in fact be quite 1635 * minor, but I decided to leave them for a subsequent patch. 1636 */ 1637 static int _nfs4_proc_readlink(struct inode *inode, struct page *page, 1638 unsigned int pgbase, unsigned int pglen) 1639 { 1640 struct nfs4_readlink args = { 1641 .fh = NFS_FH(inode), 1642 .pgbase = pgbase, 1643 .pglen = pglen, 1644 .pages = &page, 1645 }; 1646 struct rpc_message msg = { 1647 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK], 1648 .rpc_argp = &args, 1649 .rpc_resp = NULL, 1650 }; 1651 1652 return rpc_call_sync(NFS_CLIENT(inode), &msg, 0); 1653 } 1654 1655 static int nfs4_proc_readlink(struct inode *inode, struct page *page, 1656 unsigned int pgbase, unsigned int pglen) 1657 { 1658 struct nfs4_exception exception = { }; 1659 int err; 1660 do { 1661 err = nfs4_handle_exception(NFS_SERVER(inode), 1662 _nfs4_proc_readlink(inode, page, pgbase, pglen), 1663 &exception); 1664 } while (exception.retry); 1665 return err; 1666 } 1667 1668 static int _nfs4_proc_read(struct nfs_read_data *rdata) 1669 { 1670 int flags = rdata->flags; 1671 struct inode *inode = rdata->inode; 1672 struct nfs_fattr *fattr = rdata->res.fattr; 1673 struct nfs_server *server = NFS_SERVER(inode); 1674 struct rpc_message msg = { 1675 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ], 1676 .rpc_argp = &rdata->args, 1677 .rpc_resp = &rdata->res, 1678 .rpc_cred = rdata->cred, 1679 }; 1680 unsigned long timestamp = jiffies; 1681 int status; 1682 1683 dprintk("NFS call read %d @ %Ld\n", rdata->args.count, 1684 (long long) rdata->args.offset); 1685 1686 nfs_fattr_init(fattr); 1687 status = rpc_call_sync(server->client, &msg, flags); 1688 if (!status) 1689 renew_lease(server, timestamp); 1690 dprintk("NFS reply read: %d\n", status); 1691 return status; 1692 } 1693 1694 static int nfs4_proc_read(struct nfs_read_data *rdata) 1695 { 1696 struct nfs4_exception exception = { }; 1697 int err; 1698 do { 1699 err = nfs4_handle_exception(NFS_SERVER(rdata->inode), 1700 _nfs4_proc_read(rdata), 1701 &exception); 1702 } while (exception.retry); 1703 return err; 1704 } 1705 1706 static int _nfs4_proc_write(struct nfs_write_data *wdata) 1707 { 1708 int rpcflags = wdata->flags; 1709 struct inode *inode = wdata->inode; 1710 struct nfs_fattr *fattr = wdata->res.fattr; 1711 struct nfs_server *server = NFS_SERVER(inode); 1712 struct rpc_message msg = { 1713 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE], 1714 .rpc_argp = &wdata->args, 1715 .rpc_resp = &wdata->res, 1716 .rpc_cred = wdata->cred, 1717 }; 1718 int status; 1719 1720 dprintk("NFS call write %d @ %Ld\n", wdata->args.count, 1721 (long long) wdata->args.offset); 1722 1723 wdata->args.bitmask = server->attr_bitmask; 1724 wdata->res.server = server; 1725 wdata->timestamp = jiffies; 1726 nfs_fattr_init(fattr); 1727 status = rpc_call_sync(server->client, &msg, rpcflags); 1728 dprintk("NFS reply write: %d\n", status); 1729 if (status < 0) 1730 return status; 1731 renew_lease(server, wdata->timestamp); 1732 nfs_post_op_update_inode(inode, fattr); 1733 return wdata->res.count; 1734 } 1735 1736 static int nfs4_proc_write(struct nfs_write_data *wdata) 1737 { 1738 struct nfs4_exception exception = { }; 1739 int err; 1740 do { 1741 err = nfs4_handle_exception(NFS_SERVER(wdata->inode), 1742 _nfs4_proc_write(wdata), 1743 &exception); 1744 } while (exception.retry); 1745 return err; 1746 } 1747 1748 static int _nfs4_proc_commit(struct nfs_write_data *cdata) 1749 { 1750 struct inode *inode = cdata->inode; 1751 struct nfs_fattr *fattr = cdata->res.fattr; 1752 struct nfs_server *server = NFS_SERVER(inode); 1753 struct rpc_message msg = { 1754 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT], 1755 .rpc_argp = &cdata->args, 1756 .rpc_resp = &cdata->res, 1757 .rpc_cred = cdata->cred, 1758 }; 1759 int status; 1760 1761 dprintk("NFS call commit %d @ %Ld\n", cdata->args.count, 1762 (long long) cdata->args.offset); 1763 1764 cdata->args.bitmask = server->attr_bitmask; 1765 cdata->res.server = server; 1766 cdata->timestamp = jiffies; 1767 nfs_fattr_init(fattr); 1768 status = rpc_call_sync(server->client, &msg, 0); 1769 if (status >= 0) 1770 renew_lease(server, cdata->timestamp); 1771 dprintk("NFS reply commit: %d\n", status); 1772 if (status >= 0) 1773 nfs_post_op_update_inode(inode, fattr); 1774 return status; 1775 } 1776 1777 static int nfs4_proc_commit(struct nfs_write_data *cdata) 1778 { 1779 struct nfs4_exception exception = { }; 1780 int err; 1781 do { 1782 err = nfs4_handle_exception(NFS_SERVER(cdata->inode), 1783 _nfs4_proc_commit(cdata), 1784 &exception); 1785 } while (exception.retry); 1786 return err; 1787 } 1788 1789 /* 1790 * Got race? 1791 * We will need to arrange for the VFS layer to provide an atomic open. 1792 * Until then, this create/open method is prone to inefficiency and race 1793 * conditions due to the lookup, create, and open VFS calls from sys_open() 1794 * placed on the wire. 1795 * 1796 * Given the above sorry state of affairs, I'm simply sending an OPEN. 1797 * The file will be opened again in the subsequent VFS open call 1798 * (nfs4_proc_file_open). 1799 * 1800 * The open for read will just hang around to be used by any process that 1801 * opens the file O_RDONLY. This will all be resolved with the VFS changes. 1802 */ 1803 1804 static int 1805 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr, 1806 int flags, struct nameidata *nd) 1807 { 1808 struct nfs4_state *state; 1809 struct rpc_cred *cred; 1810 int status = 0; 1811 1812 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0); 1813 if (IS_ERR(cred)) { 1814 status = PTR_ERR(cred); 1815 goto out; 1816 } 1817 state = nfs4_do_open(dir, dentry, flags, sattr, cred); 1818 put_rpccred(cred); 1819 if (IS_ERR(state)) { 1820 status = PTR_ERR(state); 1821 goto out; 1822 } 1823 d_instantiate(dentry, igrab(state->inode)); 1824 if (flags & O_EXCL) { 1825 struct nfs_fattr fattr; 1826 status = nfs4_do_setattr(NFS_SERVER(dir), &fattr, 1827 NFS_FH(state->inode), sattr, state); 1828 if (status == 0) 1829 nfs_setattr_update_inode(state->inode, sattr); 1830 } 1831 if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN)) 1832 nfs4_intent_set_file(nd, dentry, state); 1833 else 1834 nfs4_close_state(state, flags); 1835 out: 1836 return status; 1837 } 1838 1839 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name) 1840 { 1841 struct nfs_server *server = NFS_SERVER(dir); 1842 struct nfs4_remove_arg args = { 1843 .fh = NFS_FH(dir), 1844 .name = name, 1845 .bitmask = server->attr_bitmask, 1846 }; 1847 struct nfs_fattr dir_attr; 1848 struct nfs4_remove_res res = { 1849 .server = server, 1850 .dir_attr = &dir_attr, 1851 }; 1852 struct rpc_message msg = { 1853 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE], 1854 .rpc_argp = &args, 1855 .rpc_resp = &res, 1856 }; 1857 int status; 1858 1859 nfs_fattr_init(res.dir_attr); 1860 status = rpc_call_sync(server->client, &msg, 0); 1861 if (status == 0) { 1862 update_changeattr(dir, &res.cinfo); 1863 nfs_post_op_update_inode(dir, res.dir_attr); 1864 } 1865 return status; 1866 } 1867 1868 static int nfs4_proc_remove(struct inode *dir, struct qstr *name) 1869 { 1870 struct nfs4_exception exception = { }; 1871 int err; 1872 do { 1873 err = nfs4_handle_exception(NFS_SERVER(dir), 1874 _nfs4_proc_remove(dir, name), 1875 &exception); 1876 } while (exception.retry); 1877 return err; 1878 } 1879 1880 struct unlink_desc { 1881 struct nfs4_remove_arg args; 1882 struct nfs4_remove_res res; 1883 struct nfs_fattr dir_attr; 1884 }; 1885 1886 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir, 1887 struct qstr *name) 1888 { 1889 struct nfs_server *server = NFS_SERVER(dir->d_inode); 1890 struct unlink_desc *up; 1891 1892 up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL); 1893 if (!up) 1894 return -ENOMEM; 1895 1896 up->args.fh = NFS_FH(dir->d_inode); 1897 up->args.name = name; 1898 up->args.bitmask = server->attr_bitmask; 1899 up->res.server = server; 1900 up->res.dir_attr = &up->dir_attr; 1901 1902 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE]; 1903 msg->rpc_argp = &up->args; 1904 msg->rpc_resp = &up->res; 1905 return 0; 1906 } 1907 1908 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task) 1909 { 1910 struct rpc_message *msg = &task->tk_msg; 1911 struct unlink_desc *up; 1912 1913 if (msg->rpc_resp != NULL) { 1914 up = container_of(msg->rpc_resp, struct unlink_desc, res); 1915 update_changeattr(dir->d_inode, &up->res.cinfo); 1916 nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr); 1917 kfree(up); 1918 msg->rpc_resp = NULL; 1919 msg->rpc_argp = NULL; 1920 } 1921 return 0; 1922 } 1923 1924 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name, 1925 struct inode *new_dir, struct qstr *new_name) 1926 { 1927 struct nfs_server *server = NFS_SERVER(old_dir); 1928 struct nfs4_rename_arg arg = { 1929 .old_dir = NFS_FH(old_dir), 1930 .new_dir = NFS_FH(new_dir), 1931 .old_name = old_name, 1932 .new_name = new_name, 1933 .bitmask = server->attr_bitmask, 1934 }; 1935 struct nfs_fattr old_fattr, new_fattr; 1936 struct nfs4_rename_res res = { 1937 .server = server, 1938 .old_fattr = &old_fattr, 1939 .new_fattr = &new_fattr, 1940 }; 1941 struct rpc_message msg = { 1942 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME], 1943 .rpc_argp = &arg, 1944 .rpc_resp = &res, 1945 }; 1946 int status; 1947 1948 nfs_fattr_init(res.old_fattr); 1949 nfs_fattr_init(res.new_fattr); 1950 status = rpc_call_sync(server->client, &msg, 0); 1951 1952 if (!status) { 1953 update_changeattr(old_dir, &res.old_cinfo); 1954 nfs_post_op_update_inode(old_dir, res.old_fattr); 1955 update_changeattr(new_dir, &res.new_cinfo); 1956 nfs_post_op_update_inode(new_dir, res.new_fattr); 1957 } 1958 return status; 1959 } 1960 1961 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name, 1962 struct inode *new_dir, struct qstr *new_name) 1963 { 1964 struct nfs4_exception exception = { }; 1965 int err; 1966 do { 1967 err = nfs4_handle_exception(NFS_SERVER(old_dir), 1968 _nfs4_proc_rename(old_dir, old_name, 1969 new_dir, new_name), 1970 &exception); 1971 } while (exception.retry); 1972 return err; 1973 } 1974 1975 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) 1976 { 1977 struct nfs_server *server = NFS_SERVER(inode); 1978 struct nfs4_link_arg arg = { 1979 .fh = NFS_FH(inode), 1980 .dir_fh = NFS_FH(dir), 1981 .name = name, 1982 .bitmask = server->attr_bitmask, 1983 }; 1984 struct nfs_fattr fattr, dir_attr; 1985 struct nfs4_link_res res = { 1986 .server = server, 1987 .fattr = &fattr, 1988 .dir_attr = &dir_attr, 1989 }; 1990 struct rpc_message msg = { 1991 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK], 1992 .rpc_argp = &arg, 1993 .rpc_resp = &res, 1994 }; 1995 int status; 1996 1997 nfs_fattr_init(res.fattr); 1998 nfs_fattr_init(res.dir_attr); 1999 status = rpc_call_sync(server->client, &msg, 0); 2000 if (!status) { 2001 update_changeattr(dir, &res.cinfo); 2002 nfs_post_op_update_inode(dir, res.dir_attr); 2003 nfs_refresh_inode(inode, res.fattr); 2004 } 2005 2006 return status; 2007 } 2008 2009 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) 2010 { 2011 struct nfs4_exception exception = { }; 2012 int err; 2013 do { 2014 err = nfs4_handle_exception(NFS_SERVER(inode), 2015 _nfs4_proc_link(inode, dir, name), 2016 &exception); 2017 } while (exception.retry); 2018 return err; 2019 } 2020 2021 static int _nfs4_proc_symlink(struct inode *dir, struct qstr *name, 2022 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle, 2023 struct nfs_fattr *fattr) 2024 { 2025 struct nfs_server *server = NFS_SERVER(dir); 2026 struct nfs_fattr dir_fattr; 2027 struct nfs4_create_arg arg = { 2028 .dir_fh = NFS_FH(dir), 2029 .server = server, 2030 .name = name, 2031 .attrs = sattr, 2032 .ftype = NF4LNK, 2033 .bitmask = server->attr_bitmask, 2034 }; 2035 struct nfs4_create_res res = { 2036 .server = server, 2037 .fh = fhandle, 2038 .fattr = fattr, 2039 .dir_fattr = &dir_fattr, 2040 }; 2041 struct rpc_message msg = { 2042 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK], 2043 .rpc_argp = &arg, 2044 .rpc_resp = &res, 2045 }; 2046 int status; 2047 2048 if (path->len > NFS4_MAXPATHLEN) 2049 return -ENAMETOOLONG; 2050 arg.u.symlink = path; 2051 nfs_fattr_init(fattr); 2052 nfs_fattr_init(&dir_fattr); 2053 2054 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); 2055 if (!status) 2056 update_changeattr(dir, &res.dir_cinfo); 2057 nfs_post_op_update_inode(dir, res.dir_fattr); 2058 return status; 2059 } 2060 2061 static int nfs4_proc_symlink(struct inode *dir, struct qstr *name, 2062 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle, 2063 struct nfs_fattr *fattr) 2064 { 2065 struct nfs4_exception exception = { }; 2066 int err; 2067 do { 2068 err = nfs4_handle_exception(NFS_SERVER(dir), 2069 _nfs4_proc_symlink(dir, name, path, sattr, 2070 fhandle, fattr), 2071 &exception); 2072 } while (exception.retry); 2073 return err; 2074 } 2075 2076 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry, 2077 struct iattr *sattr) 2078 { 2079 struct nfs_server *server = NFS_SERVER(dir); 2080 struct nfs_fh fhandle; 2081 struct nfs_fattr fattr, dir_fattr; 2082 struct nfs4_create_arg arg = { 2083 .dir_fh = NFS_FH(dir), 2084 .server = server, 2085 .name = &dentry->d_name, 2086 .attrs = sattr, 2087 .ftype = NF4DIR, 2088 .bitmask = server->attr_bitmask, 2089 }; 2090 struct nfs4_create_res res = { 2091 .server = server, 2092 .fh = &fhandle, 2093 .fattr = &fattr, 2094 .dir_fattr = &dir_fattr, 2095 }; 2096 struct rpc_message msg = { 2097 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE], 2098 .rpc_argp = &arg, 2099 .rpc_resp = &res, 2100 }; 2101 int status; 2102 2103 nfs_fattr_init(&fattr); 2104 nfs_fattr_init(&dir_fattr); 2105 2106 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); 2107 if (!status) { 2108 update_changeattr(dir, &res.dir_cinfo); 2109 nfs_post_op_update_inode(dir, res.dir_fattr); 2110 status = nfs_instantiate(dentry, &fhandle, &fattr); 2111 } 2112 return status; 2113 } 2114 2115 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry, 2116 struct iattr *sattr) 2117 { 2118 struct nfs4_exception exception = { }; 2119 int err; 2120 do { 2121 err = nfs4_handle_exception(NFS_SERVER(dir), 2122 _nfs4_proc_mkdir(dir, dentry, sattr), 2123 &exception); 2124 } while (exception.retry); 2125 return err; 2126 } 2127 2128 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, 2129 u64 cookie, struct page *page, unsigned int count, int plus) 2130 { 2131 struct inode *dir = dentry->d_inode; 2132 struct nfs4_readdir_arg args = { 2133 .fh = NFS_FH(dir), 2134 .pages = &page, 2135 .pgbase = 0, 2136 .count = count, 2137 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask, 2138 }; 2139 struct nfs4_readdir_res res; 2140 struct rpc_message msg = { 2141 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR], 2142 .rpc_argp = &args, 2143 .rpc_resp = &res, 2144 .rpc_cred = cred, 2145 }; 2146 int status; 2147 2148 dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__, 2149 dentry->d_parent->d_name.name, 2150 dentry->d_name.name, 2151 (unsigned long long)cookie); 2152 lock_kernel(); 2153 nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args); 2154 res.pgbase = args.pgbase; 2155 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); 2156 if (status == 0) 2157 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE); 2158 unlock_kernel(); 2159 dprintk("%s: returns %d\n", __FUNCTION__, status); 2160 return status; 2161 } 2162 2163 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, 2164 u64 cookie, struct page *page, unsigned int count, int plus) 2165 { 2166 struct nfs4_exception exception = { }; 2167 int err; 2168 do { 2169 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode), 2170 _nfs4_proc_readdir(dentry, cred, cookie, 2171 page, count, plus), 2172 &exception); 2173 } while (exception.retry); 2174 return err; 2175 } 2176 2177 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry, 2178 struct iattr *sattr, dev_t rdev) 2179 { 2180 struct nfs_server *server = NFS_SERVER(dir); 2181 struct nfs_fh fh; 2182 struct nfs_fattr fattr, dir_fattr; 2183 struct nfs4_create_arg arg = { 2184 .dir_fh = NFS_FH(dir), 2185 .server = server, 2186 .name = &dentry->d_name, 2187 .attrs = sattr, 2188 .bitmask = server->attr_bitmask, 2189 }; 2190 struct nfs4_create_res res = { 2191 .server = server, 2192 .fh = &fh, 2193 .fattr = &fattr, 2194 .dir_fattr = &dir_fattr, 2195 }; 2196 struct rpc_message msg = { 2197 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE], 2198 .rpc_argp = &arg, 2199 .rpc_resp = &res, 2200 }; 2201 int status; 2202 int mode = sattr->ia_mode; 2203 2204 nfs_fattr_init(&fattr); 2205 nfs_fattr_init(&dir_fattr); 2206 2207 BUG_ON(!(sattr->ia_valid & ATTR_MODE)); 2208 BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode)); 2209 if (S_ISFIFO(mode)) 2210 arg.ftype = NF4FIFO; 2211 else if (S_ISBLK(mode)) { 2212 arg.ftype = NF4BLK; 2213 arg.u.device.specdata1 = MAJOR(rdev); 2214 arg.u.device.specdata2 = MINOR(rdev); 2215 } 2216 else if (S_ISCHR(mode)) { 2217 arg.ftype = NF4CHR; 2218 arg.u.device.specdata1 = MAJOR(rdev); 2219 arg.u.device.specdata2 = MINOR(rdev); 2220 } 2221 else 2222 arg.ftype = NF4SOCK; 2223 2224 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); 2225 if (status == 0) { 2226 update_changeattr(dir, &res.dir_cinfo); 2227 nfs_post_op_update_inode(dir, res.dir_fattr); 2228 status = nfs_instantiate(dentry, &fh, &fattr); 2229 } 2230 return status; 2231 } 2232 2233 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry, 2234 struct iattr *sattr, dev_t rdev) 2235 { 2236 struct nfs4_exception exception = { }; 2237 int err; 2238 do { 2239 err = nfs4_handle_exception(NFS_SERVER(dir), 2240 _nfs4_proc_mknod(dir, dentry, sattr, rdev), 2241 &exception); 2242 } while (exception.retry); 2243 return err; 2244 } 2245 2246 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, 2247 struct nfs_fsstat *fsstat) 2248 { 2249 struct nfs4_statfs_arg args = { 2250 .fh = fhandle, 2251 .bitmask = server->attr_bitmask, 2252 }; 2253 struct rpc_message msg = { 2254 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS], 2255 .rpc_argp = &args, 2256 .rpc_resp = fsstat, 2257 }; 2258 2259 nfs_fattr_init(fsstat->fattr); 2260 return rpc_call_sync(server->client, &msg, 0); 2261 } 2262 2263 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat) 2264 { 2265 struct nfs4_exception exception = { }; 2266 int err; 2267 do { 2268 err = nfs4_handle_exception(server, 2269 _nfs4_proc_statfs(server, fhandle, fsstat), 2270 &exception); 2271 } while (exception.retry); 2272 return err; 2273 } 2274 2275 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, 2276 struct nfs_fsinfo *fsinfo) 2277 { 2278 struct nfs4_fsinfo_arg args = { 2279 .fh = fhandle, 2280 .bitmask = server->attr_bitmask, 2281 }; 2282 struct rpc_message msg = { 2283 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO], 2284 .rpc_argp = &args, 2285 .rpc_resp = fsinfo, 2286 }; 2287 2288 return rpc_call_sync(server->client, &msg, 0); 2289 } 2290 2291 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) 2292 { 2293 struct nfs4_exception exception = { }; 2294 int err; 2295 2296 do { 2297 err = nfs4_handle_exception(server, 2298 _nfs4_do_fsinfo(server, fhandle, fsinfo), 2299 &exception); 2300 } while (exception.retry); 2301 return err; 2302 } 2303 2304 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) 2305 { 2306 nfs_fattr_init(fsinfo->fattr); 2307 return nfs4_do_fsinfo(server, fhandle, fsinfo); 2308 } 2309 2310 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, 2311 struct nfs_pathconf *pathconf) 2312 { 2313 struct nfs4_pathconf_arg args = { 2314 .fh = fhandle, 2315 .bitmask = server->attr_bitmask, 2316 }; 2317 struct rpc_message msg = { 2318 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF], 2319 .rpc_argp = &args, 2320 .rpc_resp = pathconf, 2321 }; 2322 2323 /* None of the pathconf attributes are mandatory to implement */ 2324 if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) { 2325 memset(pathconf, 0, sizeof(*pathconf)); 2326 return 0; 2327 } 2328 2329 nfs_fattr_init(pathconf->fattr); 2330 return rpc_call_sync(server->client, &msg, 0); 2331 } 2332 2333 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, 2334 struct nfs_pathconf *pathconf) 2335 { 2336 struct nfs4_exception exception = { }; 2337 int err; 2338 2339 do { 2340 err = nfs4_handle_exception(server, 2341 _nfs4_proc_pathconf(server, fhandle, pathconf), 2342 &exception); 2343 } while (exception.retry); 2344 return err; 2345 } 2346 2347 static void nfs4_read_done(struct rpc_task *task, void *calldata) 2348 { 2349 struct nfs_read_data *data = calldata; 2350 struct inode *inode = data->inode; 2351 2352 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) { 2353 rpc_restart_call(task); 2354 return; 2355 } 2356 if (task->tk_status > 0) 2357 renew_lease(NFS_SERVER(inode), data->timestamp); 2358 /* Call back common NFS readpage processing */ 2359 nfs_readpage_result(task, calldata); 2360 } 2361 2362 static const struct rpc_call_ops nfs4_read_ops = { 2363 .rpc_call_done = nfs4_read_done, 2364 .rpc_release = nfs_readdata_release, 2365 }; 2366 2367 static void 2368 nfs4_proc_read_setup(struct nfs_read_data *data) 2369 { 2370 struct rpc_task *task = &data->task; 2371 struct rpc_message msg = { 2372 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ], 2373 .rpc_argp = &data->args, 2374 .rpc_resp = &data->res, 2375 .rpc_cred = data->cred, 2376 }; 2377 struct inode *inode = data->inode; 2378 int flags; 2379 2380 data->timestamp = jiffies; 2381 2382 /* N.B. Do we need to test? Never called for swapfile inode */ 2383 flags = RPC_TASK_ASYNC | (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0); 2384 2385 /* Finalize the task. */ 2386 rpc_init_task(task, NFS_CLIENT(inode), flags, &nfs4_read_ops, data); 2387 rpc_call_setup(task, &msg, 0); 2388 } 2389 2390 static void nfs4_write_done(struct rpc_task *task, void *calldata) 2391 { 2392 struct nfs_write_data *data = calldata; 2393 struct inode *inode = data->inode; 2394 2395 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) { 2396 rpc_restart_call(task); 2397 return; 2398 } 2399 if (task->tk_status >= 0) { 2400 renew_lease(NFS_SERVER(inode), data->timestamp); 2401 nfs_post_op_update_inode(inode, data->res.fattr); 2402 } 2403 /* Call back common NFS writeback processing */ 2404 nfs_writeback_done(task, calldata); 2405 } 2406 2407 static const struct rpc_call_ops nfs4_write_ops = { 2408 .rpc_call_done = nfs4_write_done, 2409 .rpc_release = nfs_writedata_release, 2410 }; 2411 2412 static void 2413 nfs4_proc_write_setup(struct nfs_write_data *data, int how) 2414 { 2415 struct rpc_task *task = &data->task; 2416 struct rpc_message msg = { 2417 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE], 2418 .rpc_argp = &data->args, 2419 .rpc_resp = &data->res, 2420 .rpc_cred = data->cred, 2421 }; 2422 struct inode *inode = data->inode; 2423 struct nfs_server *server = NFS_SERVER(inode); 2424 int stable; 2425 int flags; 2426 2427 if (how & FLUSH_STABLE) { 2428 if (!NFS_I(inode)->ncommit) 2429 stable = NFS_FILE_SYNC; 2430 else 2431 stable = NFS_DATA_SYNC; 2432 } else 2433 stable = NFS_UNSTABLE; 2434 data->args.stable = stable; 2435 data->args.bitmask = server->attr_bitmask; 2436 data->res.server = server; 2437 2438 data->timestamp = jiffies; 2439 2440 /* Set the initial flags for the task. */ 2441 flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 2442 2443 /* Finalize the task. */ 2444 rpc_init_task(task, NFS_CLIENT(inode), flags, &nfs4_write_ops, data); 2445 rpc_call_setup(task, &msg, 0); 2446 } 2447 2448 static void nfs4_commit_done(struct rpc_task *task, void *calldata) 2449 { 2450 struct nfs_write_data *data = calldata; 2451 struct inode *inode = data->inode; 2452 2453 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) { 2454 rpc_restart_call(task); 2455 return; 2456 } 2457 if (task->tk_status >= 0) 2458 nfs_post_op_update_inode(inode, data->res.fattr); 2459 /* Call back common NFS writeback processing */ 2460 nfs_commit_done(task, calldata); 2461 } 2462 2463 static const struct rpc_call_ops nfs4_commit_ops = { 2464 .rpc_call_done = nfs4_commit_done, 2465 .rpc_release = nfs_commit_release, 2466 }; 2467 2468 static void 2469 nfs4_proc_commit_setup(struct nfs_write_data *data, int how) 2470 { 2471 struct rpc_task *task = &data->task; 2472 struct rpc_message msg = { 2473 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT], 2474 .rpc_argp = &data->args, 2475 .rpc_resp = &data->res, 2476 .rpc_cred = data->cred, 2477 }; 2478 struct inode *inode = data->inode; 2479 struct nfs_server *server = NFS_SERVER(inode); 2480 int flags; 2481 2482 data->args.bitmask = server->attr_bitmask; 2483 data->res.server = server; 2484 2485 /* Set the initial flags for the task. */ 2486 flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 2487 2488 /* Finalize the task. */ 2489 rpc_init_task(task, NFS_CLIENT(inode), flags, &nfs4_commit_ops, data); 2490 rpc_call_setup(task, &msg, 0); 2491 } 2492 2493 /* 2494 * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special 2495 * standalone procedure for queueing an asynchronous RENEW. 2496 */ 2497 static void nfs4_renew_done(struct rpc_task *task, void *data) 2498 { 2499 struct nfs4_client *clp = (struct nfs4_client *)task->tk_msg.rpc_argp; 2500 unsigned long timestamp = (unsigned long)data; 2501 2502 if (task->tk_status < 0) { 2503 switch (task->tk_status) { 2504 case -NFS4ERR_STALE_CLIENTID: 2505 case -NFS4ERR_EXPIRED: 2506 case -NFS4ERR_CB_PATH_DOWN: 2507 nfs4_schedule_state_recovery(clp); 2508 } 2509 return; 2510 } 2511 spin_lock(&clp->cl_lock); 2512 if (time_before(clp->cl_last_renewal,timestamp)) 2513 clp->cl_last_renewal = timestamp; 2514 spin_unlock(&clp->cl_lock); 2515 } 2516 2517 static const struct rpc_call_ops nfs4_renew_ops = { 2518 .rpc_call_done = nfs4_renew_done, 2519 }; 2520 2521 int nfs4_proc_async_renew(struct nfs4_client *clp, struct rpc_cred *cred) 2522 { 2523 struct rpc_message msg = { 2524 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW], 2525 .rpc_argp = clp, 2526 .rpc_cred = cred, 2527 }; 2528 2529 return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT, 2530 &nfs4_renew_ops, (void *)jiffies); 2531 } 2532 2533 int nfs4_proc_renew(struct nfs4_client *clp, struct rpc_cred *cred) 2534 { 2535 struct rpc_message msg = { 2536 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW], 2537 .rpc_argp = clp, 2538 .rpc_cred = cred, 2539 }; 2540 unsigned long now = jiffies; 2541 int status; 2542 2543 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); 2544 if (status < 0) 2545 return status; 2546 spin_lock(&clp->cl_lock); 2547 if (time_before(clp->cl_last_renewal,now)) 2548 clp->cl_last_renewal = now; 2549 spin_unlock(&clp->cl_lock); 2550 return 0; 2551 } 2552 2553 static inline int nfs4_server_supports_acls(struct nfs_server *server) 2554 { 2555 return (server->caps & NFS_CAP_ACLS) 2556 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL) 2557 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL); 2558 } 2559 2560 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that 2561 * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on 2562 * the stack. 2563 */ 2564 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT) 2565 2566 static void buf_to_pages(const void *buf, size_t buflen, 2567 struct page **pages, unsigned int *pgbase) 2568 { 2569 const void *p = buf; 2570 2571 *pgbase = offset_in_page(buf); 2572 p -= *pgbase; 2573 while (p < buf + buflen) { 2574 *(pages++) = virt_to_page(p); 2575 p += PAGE_CACHE_SIZE; 2576 } 2577 } 2578 2579 struct nfs4_cached_acl { 2580 int cached; 2581 size_t len; 2582 char data[0]; 2583 }; 2584 2585 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl) 2586 { 2587 struct nfs_inode *nfsi = NFS_I(inode); 2588 2589 spin_lock(&inode->i_lock); 2590 kfree(nfsi->nfs4_acl); 2591 nfsi->nfs4_acl = acl; 2592 spin_unlock(&inode->i_lock); 2593 } 2594 2595 static void nfs4_zap_acl_attr(struct inode *inode) 2596 { 2597 nfs4_set_cached_acl(inode, NULL); 2598 } 2599 2600 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen) 2601 { 2602 struct nfs_inode *nfsi = NFS_I(inode); 2603 struct nfs4_cached_acl *acl; 2604 int ret = -ENOENT; 2605 2606 spin_lock(&inode->i_lock); 2607 acl = nfsi->nfs4_acl; 2608 if (acl == NULL) 2609 goto out; 2610 if (buf == NULL) /* user is just asking for length */ 2611 goto out_len; 2612 if (acl->cached == 0) 2613 goto out; 2614 ret = -ERANGE; /* see getxattr(2) man page */ 2615 if (acl->len > buflen) 2616 goto out; 2617 memcpy(buf, acl->data, acl->len); 2618 out_len: 2619 ret = acl->len; 2620 out: 2621 spin_unlock(&inode->i_lock); 2622 return ret; 2623 } 2624 2625 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len) 2626 { 2627 struct nfs4_cached_acl *acl; 2628 2629 if (buf && acl_len <= PAGE_SIZE) { 2630 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL); 2631 if (acl == NULL) 2632 goto out; 2633 acl->cached = 1; 2634 memcpy(acl->data, buf, acl_len); 2635 } else { 2636 acl = kmalloc(sizeof(*acl), GFP_KERNEL); 2637 if (acl == NULL) 2638 goto out; 2639 acl->cached = 0; 2640 } 2641 acl->len = acl_len; 2642 out: 2643 nfs4_set_cached_acl(inode, acl); 2644 } 2645 2646 static inline ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen) 2647 { 2648 struct page *pages[NFS4ACL_MAXPAGES]; 2649 struct nfs_getaclargs args = { 2650 .fh = NFS_FH(inode), 2651 .acl_pages = pages, 2652 .acl_len = buflen, 2653 }; 2654 size_t resp_len = buflen; 2655 void *resp_buf; 2656 struct rpc_message msg = { 2657 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL], 2658 .rpc_argp = &args, 2659 .rpc_resp = &resp_len, 2660 }; 2661 struct page *localpage = NULL; 2662 int ret; 2663 2664 if (buflen < PAGE_SIZE) { 2665 /* As long as we're doing a round trip to the server anyway, 2666 * let's be prepared for a page of acl data. */ 2667 localpage = alloc_page(GFP_KERNEL); 2668 resp_buf = page_address(localpage); 2669 if (localpage == NULL) 2670 return -ENOMEM; 2671 args.acl_pages[0] = localpage; 2672 args.acl_pgbase = 0; 2673 resp_len = args.acl_len = PAGE_SIZE; 2674 } else { 2675 resp_buf = buf; 2676 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase); 2677 } 2678 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); 2679 if (ret) 2680 goto out_free; 2681 if (resp_len > args.acl_len) 2682 nfs4_write_cached_acl(inode, NULL, resp_len); 2683 else 2684 nfs4_write_cached_acl(inode, resp_buf, resp_len); 2685 if (buf) { 2686 ret = -ERANGE; 2687 if (resp_len > buflen) 2688 goto out_free; 2689 if (localpage) 2690 memcpy(buf, resp_buf, resp_len); 2691 } 2692 ret = resp_len; 2693 out_free: 2694 if (localpage) 2695 __free_page(localpage); 2696 return ret; 2697 } 2698 2699 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen) 2700 { 2701 struct nfs_server *server = NFS_SERVER(inode); 2702 int ret; 2703 2704 if (!nfs4_server_supports_acls(server)) 2705 return -EOPNOTSUPP; 2706 ret = nfs_revalidate_inode(server, inode); 2707 if (ret < 0) 2708 return ret; 2709 ret = nfs4_read_cached_acl(inode, buf, buflen); 2710 if (ret != -ENOENT) 2711 return ret; 2712 return nfs4_get_acl_uncached(inode, buf, buflen); 2713 } 2714 2715 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen) 2716 { 2717 struct nfs_server *server = NFS_SERVER(inode); 2718 struct page *pages[NFS4ACL_MAXPAGES]; 2719 struct nfs_setaclargs arg = { 2720 .fh = NFS_FH(inode), 2721 .acl_pages = pages, 2722 .acl_len = buflen, 2723 }; 2724 struct rpc_message msg = { 2725 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL], 2726 .rpc_argp = &arg, 2727 .rpc_resp = NULL, 2728 }; 2729 int ret; 2730 2731 if (!nfs4_server_supports_acls(server)) 2732 return -EOPNOTSUPP; 2733 nfs_inode_return_delegation(inode); 2734 buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase); 2735 ret = rpc_call_sync(NFS_SERVER(inode)->client, &msg, 0); 2736 if (ret == 0) 2737 nfs4_write_cached_acl(inode, buf, buflen); 2738 return ret; 2739 } 2740 2741 static int 2742 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server) 2743 { 2744 struct nfs4_client *clp = server->nfs4_state; 2745 2746 if (!clp || task->tk_status >= 0) 2747 return 0; 2748 switch(task->tk_status) { 2749 case -NFS4ERR_STALE_CLIENTID: 2750 case -NFS4ERR_STALE_STATEID: 2751 case -NFS4ERR_EXPIRED: 2752 rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL); 2753 nfs4_schedule_state_recovery(clp); 2754 if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0) 2755 rpc_wake_up_task(task); 2756 task->tk_status = 0; 2757 return -EAGAIN; 2758 case -NFS4ERR_GRACE: 2759 case -NFS4ERR_DELAY: 2760 rpc_delay(task, NFS4_POLL_RETRY_MAX); 2761 task->tk_status = 0; 2762 return -EAGAIN; 2763 case -NFS4ERR_OLD_STATEID: 2764 task->tk_status = 0; 2765 return -EAGAIN; 2766 } 2767 task->tk_status = nfs4_map_errors(task->tk_status); 2768 return 0; 2769 } 2770 2771 static int nfs4_wait_bit_interruptible(void *word) 2772 { 2773 if (signal_pending(current)) 2774 return -ERESTARTSYS; 2775 schedule(); 2776 return 0; 2777 } 2778 2779 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp) 2780 { 2781 sigset_t oldset; 2782 int res; 2783 2784 might_sleep(); 2785 2786 rpc_clnt_sigmask(clnt, &oldset); 2787 res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER, 2788 nfs4_wait_bit_interruptible, 2789 TASK_INTERRUPTIBLE); 2790 rpc_clnt_sigunmask(clnt, &oldset); 2791 return res; 2792 } 2793 2794 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout) 2795 { 2796 sigset_t oldset; 2797 int res = 0; 2798 2799 might_sleep(); 2800 2801 if (*timeout <= 0) 2802 *timeout = NFS4_POLL_RETRY_MIN; 2803 if (*timeout > NFS4_POLL_RETRY_MAX) 2804 *timeout = NFS4_POLL_RETRY_MAX; 2805 rpc_clnt_sigmask(clnt, &oldset); 2806 if (clnt->cl_intr) { 2807 schedule_timeout_interruptible(*timeout); 2808 if (signalled()) 2809 res = -ERESTARTSYS; 2810 } else 2811 schedule_timeout_uninterruptible(*timeout); 2812 rpc_clnt_sigunmask(clnt, &oldset); 2813 *timeout <<= 1; 2814 return res; 2815 } 2816 2817 /* This is the error handling routine for processes that are allowed 2818 * to sleep. 2819 */ 2820 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception) 2821 { 2822 struct nfs4_client *clp = server->nfs4_state; 2823 int ret = errorcode; 2824 2825 exception->retry = 0; 2826 switch(errorcode) { 2827 case 0: 2828 return 0; 2829 case -NFS4ERR_STALE_CLIENTID: 2830 case -NFS4ERR_STALE_STATEID: 2831 case -NFS4ERR_EXPIRED: 2832 nfs4_schedule_state_recovery(clp); 2833 ret = nfs4_wait_clnt_recover(server->client, clp); 2834 if (ret == 0) 2835 exception->retry = 1; 2836 break; 2837 case -NFS4ERR_GRACE: 2838 case -NFS4ERR_DELAY: 2839 ret = nfs4_delay(server->client, &exception->timeout); 2840 if (ret != 0) 2841 break; 2842 case -NFS4ERR_OLD_STATEID: 2843 exception->retry = 1; 2844 } 2845 /* We failed to handle the error */ 2846 return nfs4_map_errors(ret); 2847 } 2848 2849 int nfs4_proc_setclientid(struct nfs4_client *clp, u32 program, unsigned short port, struct rpc_cred *cred) 2850 { 2851 nfs4_verifier sc_verifier; 2852 struct nfs4_setclientid setclientid = { 2853 .sc_verifier = &sc_verifier, 2854 .sc_prog = program, 2855 }; 2856 struct rpc_message msg = { 2857 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID], 2858 .rpc_argp = &setclientid, 2859 .rpc_resp = clp, 2860 .rpc_cred = cred, 2861 }; 2862 u32 *p; 2863 int loop = 0; 2864 int status; 2865 2866 p = (u32*)sc_verifier.data; 2867 *p++ = htonl((u32)clp->cl_boot_time.tv_sec); 2868 *p = htonl((u32)clp->cl_boot_time.tv_nsec); 2869 2870 for(;;) { 2871 setclientid.sc_name_len = scnprintf(setclientid.sc_name, 2872 sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u", 2873 clp->cl_ipaddr, NIPQUAD(clp->cl_addr.s_addr), 2874 cred->cr_ops->cr_name, 2875 clp->cl_id_uniquifier); 2876 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid, 2877 sizeof(setclientid.sc_netid), "tcp"); 2878 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr, 2879 sizeof(setclientid.sc_uaddr), "%s.%d.%d", 2880 clp->cl_ipaddr, port >> 8, port & 255); 2881 2882 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); 2883 if (status != -NFS4ERR_CLID_INUSE) 2884 break; 2885 if (signalled()) 2886 break; 2887 if (loop++ & 1) 2888 ssleep(clp->cl_lease_time + 1); 2889 else 2890 if (++clp->cl_id_uniquifier == 0) 2891 break; 2892 } 2893 return status; 2894 } 2895 2896 int 2897 nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred) 2898 { 2899 struct nfs_fsinfo fsinfo; 2900 struct rpc_message msg = { 2901 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM], 2902 .rpc_argp = clp, 2903 .rpc_resp = &fsinfo, 2904 .rpc_cred = cred, 2905 }; 2906 unsigned long now; 2907 int status; 2908 2909 now = jiffies; 2910 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); 2911 if (status == 0) { 2912 spin_lock(&clp->cl_lock); 2913 clp->cl_lease_time = fsinfo.lease_time * HZ; 2914 clp->cl_last_renewal = now; 2915 clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state); 2916 spin_unlock(&clp->cl_lock); 2917 } 2918 return status; 2919 } 2920 2921 struct nfs4_delegreturndata { 2922 struct nfs4_delegreturnargs args; 2923 struct nfs4_delegreturnres res; 2924 struct nfs_fh fh; 2925 nfs4_stateid stateid; 2926 struct rpc_cred *cred; 2927 unsigned long timestamp; 2928 struct nfs_fattr fattr; 2929 int rpc_status; 2930 }; 2931 2932 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata) 2933 { 2934 struct nfs4_delegreturndata *data = calldata; 2935 struct rpc_message msg = { 2936 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN], 2937 .rpc_argp = &data->args, 2938 .rpc_resp = &data->res, 2939 .rpc_cred = data->cred, 2940 }; 2941 nfs_fattr_init(data->res.fattr); 2942 rpc_call_setup(task, &msg, 0); 2943 } 2944 2945 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata) 2946 { 2947 struct nfs4_delegreturndata *data = calldata; 2948 data->rpc_status = task->tk_status; 2949 if (data->rpc_status == 0) 2950 renew_lease(data->res.server, data->timestamp); 2951 } 2952 2953 static void nfs4_delegreturn_release(void *calldata) 2954 { 2955 struct nfs4_delegreturndata *data = calldata; 2956 2957 put_rpccred(data->cred); 2958 kfree(calldata); 2959 } 2960 2961 const static struct rpc_call_ops nfs4_delegreturn_ops = { 2962 .rpc_call_prepare = nfs4_delegreturn_prepare, 2963 .rpc_call_done = nfs4_delegreturn_done, 2964 .rpc_release = nfs4_delegreturn_release, 2965 }; 2966 2967 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid) 2968 { 2969 struct nfs4_delegreturndata *data; 2970 struct nfs_server *server = NFS_SERVER(inode); 2971 struct rpc_task *task; 2972 int status; 2973 2974 data = kmalloc(sizeof(*data), GFP_KERNEL); 2975 if (data == NULL) 2976 return -ENOMEM; 2977 data->args.fhandle = &data->fh; 2978 data->args.stateid = &data->stateid; 2979 data->args.bitmask = server->attr_bitmask; 2980 nfs_copy_fh(&data->fh, NFS_FH(inode)); 2981 memcpy(&data->stateid, stateid, sizeof(data->stateid)); 2982 data->res.fattr = &data->fattr; 2983 data->res.server = server; 2984 data->cred = get_rpccred(cred); 2985 data->timestamp = jiffies; 2986 data->rpc_status = 0; 2987 2988 task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data); 2989 if (IS_ERR(task)) { 2990 nfs4_delegreturn_release(data); 2991 return PTR_ERR(task); 2992 } 2993 status = nfs4_wait_for_completion_rpc_task(task); 2994 if (status == 0) { 2995 status = data->rpc_status; 2996 if (status == 0) 2997 nfs_post_op_update_inode(inode, &data->fattr); 2998 } 2999 rpc_release_task(task); 3000 return status; 3001 } 3002 3003 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid) 3004 { 3005 struct nfs_server *server = NFS_SERVER(inode); 3006 struct nfs4_exception exception = { }; 3007 int err; 3008 do { 3009 err = _nfs4_proc_delegreturn(inode, cred, stateid); 3010 switch (err) { 3011 case -NFS4ERR_STALE_STATEID: 3012 case -NFS4ERR_EXPIRED: 3013 nfs4_schedule_state_recovery(server->nfs4_state); 3014 case 0: 3015 return 0; 3016 } 3017 err = nfs4_handle_exception(server, err, &exception); 3018 } while (exception.retry); 3019 return err; 3020 } 3021 3022 #define NFS4_LOCK_MINTIMEOUT (1 * HZ) 3023 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ) 3024 3025 /* 3026 * sleep, with exponential backoff, and retry the LOCK operation. 3027 */ 3028 static unsigned long 3029 nfs4_set_lock_task_retry(unsigned long timeout) 3030 { 3031 schedule_timeout_interruptible(timeout); 3032 timeout <<= 1; 3033 if (timeout > NFS4_LOCK_MAXTIMEOUT) 3034 return NFS4_LOCK_MAXTIMEOUT; 3035 return timeout; 3036 } 3037 3038 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request) 3039 { 3040 struct inode *inode = state->inode; 3041 struct nfs_server *server = NFS_SERVER(inode); 3042 struct nfs4_client *clp = server->nfs4_state; 3043 struct nfs_lockt_args arg = { 3044 .fh = NFS_FH(inode), 3045 .fl = request, 3046 }; 3047 struct nfs_lockt_res res = { 3048 .denied = request, 3049 }; 3050 struct rpc_message msg = { 3051 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT], 3052 .rpc_argp = &arg, 3053 .rpc_resp = &res, 3054 .rpc_cred = state->owner->so_cred, 3055 }; 3056 struct nfs4_lock_state *lsp; 3057 int status; 3058 3059 down_read(&clp->cl_sem); 3060 arg.lock_owner.clientid = clp->cl_clientid; 3061 status = nfs4_set_lock_state(state, request); 3062 if (status != 0) 3063 goto out; 3064 lsp = request->fl_u.nfs4_fl.owner; 3065 arg.lock_owner.id = lsp->ls_id; 3066 status = rpc_call_sync(server->client, &msg, 0); 3067 switch (status) { 3068 case 0: 3069 request->fl_type = F_UNLCK; 3070 break; 3071 case -NFS4ERR_DENIED: 3072 status = 0; 3073 } 3074 out: 3075 up_read(&clp->cl_sem); 3076 return status; 3077 } 3078 3079 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request) 3080 { 3081 struct nfs4_exception exception = { }; 3082 int err; 3083 3084 do { 3085 err = nfs4_handle_exception(NFS_SERVER(state->inode), 3086 _nfs4_proc_getlk(state, cmd, request), 3087 &exception); 3088 } while (exception.retry); 3089 return err; 3090 } 3091 3092 static int do_vfs_lock(struct file *file, struct file_lock *fl) 3093 { 3094 int res = 0; 3095 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 3096 case FL_POSIX: 3097 res = posix_lock_file_wait(file, fl); 3098 break; 3099 case FL_FLOCK: 3100 res = flock_lock_file_wait(file, fl); 3101 break; 3102 default: 3103 BUG(); 3104 } 3105 if (res < 0) 3106 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", 3107 __FUNCTION__); 3108 return res; 3109 } 3110 3111 struct nfs4_unlockdata { 3112 struct nfs_locku_args arg; 3113 struct nfs_locku_res res; 3114 struct nfs4_lock_state *lsp; 3115 struct nfs_open_context *ctx; 3116 struct file_lock fl; 3117 const struct nfs_server *server; 3118 unsigned long timestamp; 3119 }; 3120 3121 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl, 3122 struct nfs_open_context *ctx, 3123 struct nfs4_lock_state *lsp, 3124 struct nfs_seqid *seqid) 3125 { 3126 struct nfs4_unlockdata *p; 3127 struct inode *inode = lsp->ls_state->inode; 3128 3129 p = kmalloc(sizeof(*p), GFP_KERNEL); 3130 if (p == NULL) 3131 return NULL; 3132 p->arg.fh = NFS_FH(inode); 3133 p->arg.fl = &p->fl; 3134 p->arg.seqid = seqid; 3135 p->arg.stateid = &lsp->ls_stateid; 3136 p->lsp = lsp; 3137 atomic_inc(&lsp->ls_count); 3138 /* Ensure we don't close file until we're done freeing locks! */ 3139 p->ctx = get_nfs_open_context(ctx); 3140 memcpy(&p->fl, fl, sizeof(p->fl)); 3141 p->server = NFS_SERVER(inode); 3142 return p; 3143 } 3144 3145 static void nfs4_locku_release_calldata(void *data) 3146 { 3147 struct nfs4_unlockdata *calldata = data; 3148 nfs_free_seqid(calldata->arg.seqid); 3149 nfs4_put_lock_state(calldata->lsp); 3150 put_nfs_open_context(calldata->ctx); 3151 kfree(calldata); 3152 } 3153 3154 static void nfs4_locku_done(struct rpc_task *task, void *data) 3155 { 3156 struct nfs4_unlockdata *calldata = data; 3157 3158 if (RPC_ASSASSINATED(task)) 3159 return; 3160 nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid); 3161 switch (task->tk_status) { 3162 case 0: 3163 memcpy(calldata->lsp->ls_stateid.data, 3164 calldata->res.stateid.data, 3165 sizeof(calldata->lsp->ls_stateid.data)); 3166 renew_lease(calldata->server, calldata->timestamp); 3167 break; 3168 case -NFS4ERR_STALE_STATEID: 3169 case -NFS4ERR_EXPIRED: 3170 nfs4_schedule_state_recovery(calldata->server->nfs4_state); 3171 break; 3172 default: 3173 if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) { 3174 rpc_restart_call(task); 3175 } 3176 } 3177 } 3178 3179 static void nfs4_locku_prepare(struct rpc_task *task, void *data) 3180 { 3181 struct nfs4_unlockdata *calldata = data; 3182 struct rpc_message msg = { 3183 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU], 3184 .rpc_argp = &calldata->arg, 3185 .rpc_resp = &calldata->res, 3186 .rpc_cred = calldata->lsp->ls_state->owner->so_cred, 3187 }; 3188 3189 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0) 3190 return; 3191 if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) { 3192 /* Note: exit _without_ running nfs4_locku_done */ 3193 task->tk_action = NULL; 3194 return; 3195 } 3196 calldata->timestamp = jiffies; 3197 rpc_call_setup(task, &msg, 0); 3198 } 3199 3200 static const struct rpc_call_ops nfs4_locku_ops = { 3201 .rpc_call_prepare = nfs4_locku_prepare, 3202 .rpc_call_done = nfs4_locku_done, 3203 .rpc_release = nfs4_locku_release_calldata, 3204 }; 3205 3206 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl, 3207 struct nfs_open_context *ctx, 3208 struct nfs4_lock_state *lsp, 3209 struct nfs_seqid *seqid) 3210 { 3211 struct nfs4_unlockdata *data; 3212 struct rpc_task *task; 3213 3214 data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid); 3215 if (data == NULL) { 3216 nfs_free_seqid(seqid); 3217 return ERR_PTR(-ENOMEM); 3218 } 3219 3220 /* Unlock _before_ we do the RPC call */ 3221 do_vfs_lock(fl->fl_file, fl); 3222 task = rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data); 3223 if (IS_ERR(task)) 3224 nfs4_locku_release_calldata(data); 3225 return task; 3226 } 3227 3228 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request) 3229 { 3230 struct nfs_seqid *seqid; 3231 struct nfs4_lock_state *lsp; 3232 struct rpc_task *task; 3233 int status = 0; 3234 3235 /* Is this a delegated lock? */ 3236 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) 3237 goto out_unlock; 3238 /* Is this open_owner holding any locks on the server? */ 3239 if (test_bit(LK_STATE_IN_USE, &state->flags) == 0) 3240 goto out_unlock; 3241 3242 status = nfs4_set_lock_state(state, request); 3243 if (status != 0) 3244 goto out_unlock; 3245 lsp = request->fl_u.nfs4_fl.owner; 3246 status = -ENOMEM; 3247 seqid = nfs_alloc_seqid(&lsp->ls_seqid); 3248 if (seqid == NULL) 3249 goto out_unlock; 3250 task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid); 3251 status = PTR_ERR(task); 3252 if (IS_ERR(task)) 3253 goto out_unlock; 3254 status = nfs4_wait_for_completion_rpc_task(task); 3255 rpc_release_task(task); 3256 return status; 3257 out_unlock: 3258 do_vfs_lock(request->fl_file, request); 3259 return status; 3260 } 3261 3262 struct nfs4_lockdata { 3263 struct nfs_lock_args arg; 3264 struct nfs_lock_res res; 3265 struct nfs4_lock_state *lsp; 3266 struct nfs_open_context *ctx; 3267 struct file_lock fl; 3268 unsigned long timestamp; 3269 int rpc_status; 3270 int cancelled; 3271 }; 3272 3273 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl, 3274 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp) 3275 { 3276 struct nfs4_lockdata *p; 3277 struct inode *inode = lsp->ls_state->inode; 3278 struct nfs_server *server = NFS_SERVER(inode); 3279 3280 p = kzalloc(sizeof(*p), GFP_KERNEL); 3281 if (p == NULL) 3282 return NULL; 3283 3284 p->arg.fh = NFS_FH(inode); 3285 p->arg.fl = &p->fl; 3286 p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid); 3287 if (p->arg.lock_seqid == NULL) 3288 goto out_free; 3289 p->arg.lock_stateid = &lsp->ls_stateid; 3290 p->arg.lock_owner.clientid = server->nfs4_state->cl_clientid; 3291 p->arg.lock_owner.id = lsp->ls_id; 3292 p->lsp = lsp; 3293 atomic_inc(&lsp->ls_count); 3294 p->ctx = get_nfs_open_context(ctx); 3295 memcpy(&p->fl, fl, sizeof(p->fl)); 3296 return p; 3297 out_free: 3298 kfree(p); 3299 return NULL; 3300 } 3301 3302 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata) 3303 { 3304 struct nfs4_lockdata *data = calldata; 3305 struct nfs4_state *state = data->lsp->ls_state; 3306 struct nfs4_state_owner *sp = state->owner; 3307 struct rpc_message msg = { 3308 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK], 3309 .rpc_argp = &data->arg, 3310 .rpc_resp = &data->res, 3311 .rpc_cred = sp->so_cred, 3312 }; 3313 3314 if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0) 3315 return; 3316 dprintk("%s: begin!\n", __FUNCTION__); 3317 /* Do we need to do an open_to_lock_owner? */ 3318 if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) { 3319 data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid); 3320 if (data->arg.open_seqid == NULL) { 3321 data->rpc_status = -ENOMEM; 3322 task->tk_action = NULL; 3323 goto out; 3324 } 3325 data->arg.open_stateid = &state->stateid; 3326 data->arg.new_lock_owner = 1; 3327 } 3328 data->timestamp = jiffies; 3329 rpc_call_setup(task, &msg, 0); 3330 out: 3331 dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status); 3332 } 3333 3334 static void nfs4_lock_done(struct rpc_task *task, void *calldata) 3335 { 3336 struct nfs4_lockdata *data = calldata; 3337 3338 dprintk("%s: begin!\n", __FUNCTION__); 3339 3340 data->rpc_status = task->tk_status; 3341 if (RPC_ASSASSINATED(task)) 3342 goto out; 3343 if (data->arg.new_lock_owner != 0) { 3344 nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid); 3345 if (data->rpc_status == 0) 3346 nfs_confirm_seqid(&data->lsp->ls_seqid, 0); 3347 else 3348 goto out; 3349 } 3350 if (data->rpc_status == 0) { 3351 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data, 3352 sizeof(data->lsp->ls_stateid.data)); 3353 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED; 3354 renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp); 3355 } 3356 nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid); 3357 out: 3358 dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status); 3359 } 3360 3361 static void nfs4_lock_release(void *calldata) 3362 { 3363 struct nfs4_lockdata *data = calldata; 3364 3365 dprintk("%s: begin!\n", __FUNCTION__); 3366 if (data->arg.open_seqid != NULL) 3367 nfs_free_seqid(data->arg.open_seqid); 3368 if (data->cancelled != 0) { 3369 struct rpc_task *task; 3370 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp, 3371 data->arg.lock_seqid); 3372 if (!IS_ERR(task)) 3373 rpc_release_task(task); 3374 dprintk("%s: cancelling lock!\n", __FUNCTION__); 3375 } else 3376 nfs_free_seqid(data->arg.lock_seqid); 3377 nfs4_put_lock_state(data->lsp); 3378 put_nfs_open_context(data->ctx); 3379 kfree(data); 3380 dprintk("%s: done!\n", __FUNCTION__); 3381 } 3382 3383 static const struct rpc_call_ops nfs4_lock_ops = { 3384 .rpc_call_prepare = nfs4_lock_prepare, 3385 .rpc_call_done = nfs4_lock_done, 3386 .rpc_release = nfs4_lock_release, 3387 }; 3388 3389 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim) 3390 { 3391 struct nfs4_lockdata *data; 3392 struct rpc_task *task; 3393 int ret; 3394 3395 dprintk("%s: begin!\n", __FUNCTION__); 3396 data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data, 3397 fl->fl_u.nfs4_fl.owner); 3398 if (data == NULL) 3399 return -ENOMEM; 3400 if (IS_SETLKW(cmd)) 3401 data->arg.block = 1; 3402 if (reclaim != 0) 3403 data->arg.reclaim = 1; 3404 task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC, 3405 &nfs4_lock_ops, data); 3406 if (IS_ERR(task)) { 3407 nfs4_lock_release(data); 3408 return PTR_ERR(task); 3409 } 3410 ret = nfs4_wait_for_completion_rpc_task(task); 3411 if (ret == 0) { 3412 ret = data->rpc_status; 3413 if (ret == -NFS4ERR_DENIED) 3414 ret = -EAGAIN; 3415 } else 3416 data->cancelled = 1; 3417 rpc_release_task(task); 3418 dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret); 3419 return ret; 3420 } 3421 3422 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request) 3423 { 3424 struct nfs_server *server = NFS_SERVER(state->inode); 3425 struct nfs4_exception exception = { }; 3426 int err; 3427 3428 /* Cache the lock if possible... */ 3429 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) 3430 return 0; 3431 do { 3432 err = _nfs4_do_setlk(state, F_SETLK, request, 1); 3433 if (err != -NFS4ERR_DELAY) 3434 break; 3435 nfs4_handle_exception(server, err, &exception); 3436 } while (exception.retry); 3437 return err; 3438 } 3439 3440 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request) 3441 { 3442 struct nfs_server *server = NFS_SERVER(state->inode); 3443 struct nfs4_exception exception = { }; 3444 int err; 3445 3446 err = nfs4_set_lock_state(state, request); 3447 if (err != 0) 3448 return err; 3449 do { 3450 err = _nfs4_do_setlk(state, F_SETLK, request, 0); 3451 if (err != -NFS4ERR_DELAY) 3452 break; 3453 nfs4_handle_exception(server, err, &exception); 3454 } while (exception.retry); 3455 return err; 3456 } 3457 3458 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request) 3459 { 3460 struct nfs4_client *clp = state->owner->so_client; 3461 int status; 3462 3463 /* Is this a delegated open? */ 3464 if (NFS_I(state->inode)->delegation_state != 0) { 3465 /* Yes: cache locks! */ 3466 status = do_vfs_lock(request->fl_file, request); 3467 /* ...but avoid races with delegation recall... */ 3468 if (status < 0 || test_bit(NFS_DELEGATED_STATE, &state->flags)) 3469 return status; 3470 } 3471 down_read(&clp->cl_sem); 3472 status = nfs4_set_lock_state(state, request); 3473 if (status != 0) 3474 goto out; 3475 status = _nfs4_do_setlk(state, cmd, request, 0); 3476 if (status != 0) 3477 goto out; 3478 /* Note: we always want to sleep here! */ 3479 request->fl_flags |= FL_SLEEP; 3480 if (do_vfs_lock(request->fl_file, request) < 0) 3481 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__); 3482 out: 3483 up_read(&clp->cl_sem); 3484 return status; 3485 } 3486 3487 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request) 3488 { 3489 struct nfs4_exception exception = { }; 3490 int err; 3491 3492 do { 3493 err = nfs4_handle_exception(NFS_SERVER(state->inode), 3494 _nfs4_proc_setlk(state, cmd, request), 3495 &exception); 3496 } while (exception.retry); 3497 return err; 3498 } 3499 3500 static int 3501 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request) 3502 { 3503 struct nfs_open_context *ctx; 3504 struct nfs4_state *state; 3505 unsigned long timeout = NFS4_LOCK_MINTIMEOUT; 3506 int status; 3507 3508 /* verify open state */ 3509 ctx = (struct nfs_open_context *)filp->private_data; 3510 state = ctx->state; 3511 3512 if (request->fl_start < 0 || request->fl_end < 0) 3513 return -EINVAL; 3514 3515 if (IS_GETLK(cmd)) 3516 return nfs4_proc_getlk(state, F_GETLK, request); 3517 3518 if (!(IS_SETLK(cmd) || IS_SETLKW(cmd))) 3519 return -EINVAL; 3520 3521 if (request->fl_type == F_UNLCK) 3522 return nfs4_proc_unlck(state, cmd, request); 3523 3524 do { 3525 status = nfs4_proc_setlk(state, cmd, request); 3526 if ((status != -EAGAIN) || IS_SETLK(cmd)) 3527 break; 3528 timeout = nfs4_set_lock_task_retry(timeout); 3529 status = -ERESTARTSYS; 3530 if (signalled()) 3531 break; 3532 } while(status < 0); 3533 return status; 3534 } 3535 3536 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl) 3537 { 3538 struct nfs_server *server = NFS_SERVER(state->inode); 3539 struct nfs4_exception exception = { }; 3540 int err; 3541 3542 err = nfs4_set_lock_state(state, fl); 3543 if (err != 0) 3544 goto out; 3545 do { 3546 err = _nfs4_do_setlk(state, F_SETLK, fl, 0); 3547 if (err != -NFS4ERR_DELAY) 3548 break; 3549 err = nfs4_handle_exception(server, err, &exception); 3550 } while (exception.retry); 3551 out: 3552 return err; 3553 } 3554 3555 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl" 3556 3557 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf, 3558 size_t buflen, int flags) 3559 { 3560 struct inode *inode = dentry->d_inode; 3561 3562 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0) 3563 return -EOPNOTSUPP; 3564 3565 if (!S_ISREG(inode->i_mode) && 3566 (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX)) 3567 return -EPERM; 3568 3569 return nfs4_proc_set_acl(inode, buf, buflen); 3570 } 3571 3572 /* The getxattr man page suggests returning -ENODATA for unknown attributes, 3573 * and that's what we'll do for e.g. user attributes that haven't been set. 3574 * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported 3575 * attributes in kernel-managed attribute namespaces. */ 3576 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf, 3577 size_t buflen) 3578 { 3579 struct inode *inode = dentry->d_inode; 3580 3581 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0) 3582 return -EOPNOTSUPP; 3583 3584 return nfs4_proc_get_acl(inode, buf, buflen); 3585 } 3586 3587 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen) 3588 { 3589 size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1; 3590 3591 if (buf && buflen < len) 3592 return -ERANGE; 3593 if (buf) 3594 memcpy(buf, XATTR_NAME_NFSV4_ACL, len); 3595 return len; 3596 } 3597 3598 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = { 3599 .recover_open = nfs4_open_reclaim, 3600 .recover_lock = nfs4_lock_reclaim, 3601 }; 3602 3603 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = { 3604 .recover_open = nfs4_open_expired, 3605 .recover_lock = nfs4_lock_expired, 3606 }; 3607 3608 static struct inode_operations nfs4_file_inode_operations = { 3609 .permission = nfs_permission, 3610 .getattr = nfs_getattr, 3611 .setattr = nfs_setattr, 3612 .getxattr = nfs4_getxattr, 3613 .setxattr = nfs4_setxattr, 3614 .listxattr = nfs4_listxattr, 3615 }; 3616 3617 struct nfs_rpc_ops nfs_v4_clientops = { 3618 .version = 4, /* protocol version */ 3619 .dentry_ops = &nfs4_dentry_operations, 3620 .dir_inode_ops = &nfs4_dir_inode_operations, 3621 .file_inode_ops = &nfs4_file_inode_operations, 3622 .getroot = nfs4_proc_get_root, 3623 .getattr = nfs4_proc_getattr, 3624 .setattr = nfs4_proc_setattr, 3625 .lookup = nfs4_proc_lookup, 3626 .access = nfs4_proc_access, 3627 .readlink = nfs4_proc_readlink, 3628 .read = nfs4_proc_read, 3629 .write = nfs4_proc_write, 3630 .commit = nfs4_proc_commit, 3631 .create = nfs4_proc_create, 3632 .remove = nfs4_proc_remove, 3633 .unlink_setup = nfs4_proc_unlink_setup, 3634 .unlink_done = nfs4_proc_unlink_done, 3635 .rename = nfs4_proc_rename, 3636 .link = nfs4_proc_link, 3637 .symlink = nfs4_proc_symlink, 3638 .mkdir = nfs4_proc_mkdir, 3639 .rmdir = nfs4_proc_remove, 3640 .readdir = nfs4_proc_readdir, 3641 .mknod = nfs4_proc_mknod, 3642 .statfs = nfs4_proc_statfs, 3643 .fsinfo = nfs4_proc_fsinfo, 3644 .pathconf = nfs4_proc_pathconf, 3645 .decode_dirent = nfs4_decode_dirent, 3646 .read_setup = nfs4_proc_read_setup, 3647 .write_setup = nfs4_proc_write_setup, 3648 .commit_setup = nfs4_proc_commit_setup, 3649 .file_open = nfs_open, 3650 .file_release = nfs_release, 3651 .lock = nfs4_proc_lock, 3652 .clear_acl_cache = nfs4_zap_acl_attr, 3653 }; 3654 3655 /* 3656 * Local variables: 3657 * c-basic-offset: 8 3658 * End: 3659 */ 3660