xref: /openbmc/linux/fs/nfs/nfs4proc.c (revision 87c2ce3b)
1 /*
2  *  fs/nfs/nfs4proc.c
3  *
4  *  Client-side procedure declarations for NFSv4.
5  *
6  *  Copyright (c) 2002 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Kendrick Smith <kmsmith@umich.edu>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 
55 #define NFSDBG_FACILITY		NFSDBG_PROC
56 
57 #define NFS4_POLL_RETRY_MIN	(1*HZ)
58 #define NFS4_POLL_RETRY_MAX	(15*HZ)
59 
60 struct nfs4_opendata;
61 static int _nfs4_proc_open(struct nfs4_opendata *data);
62 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
63 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
64 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
65 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
66 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp);
67 extern u32 *nfs4_decode_dirent(u32 *p, struct nfs_entry *entry, int plus);
68 extern struct rpc_procinfo nfs4_procedures[];
69 
70 /* Prevent leaks of NFSv4 errors into userland */
71 int nfs4_map_errors(int err)
72 {
73 	if (err < -1000) {
74 		dprintk("%s could not handle NFSv4 error %d\n",
75 				__FUNCTION__, -err);
76 		return -EIO;
77 	}
78 	return err;
79 }
80 
81 /*
82  * This is our standard bitmap for GETATTR requests.
83  */
84 const u32 nfs4_fattr_bitmap[2] = {
85 	FATTR4_WORD0_TYPE
86 	| FATTR4_WORD0_CHANGE
87 	| FATTR4_WORD0_SIZE
88 	| FATTR4_WORD0_FSID
89 	| FATTR4_WORD0_FILEID,
90 	FATTR4_WORD1_MODE
91 	| FATTR4_WORD1_NUMLINKS
92 	| FATTR4_WORD1_OWNER
93 	| FATTR4_WORD1_OWNER_GROUP
94 	| FATTR4_WORD1_RAWDEV
95 	| FATTR4_WORD1_SPACE_USED
96 	| FATTR4_WORD1_TIME_ACCESS
97 	| FATTR4_WORD1_TIME_METADATA
98 	| FATTR4_WORD1_TIME_MODIFY
99 };
100 
101 const u32 nfs4_statfs_bitmap[2] = {
102 	FATTR4_WORD0_FILES_AVAIL
103 	| FATTR4_WORD0_FILES_FREE
104 	| FATTR4_WORD0_FILES_TOTAL,
105 	FATTR4_WORD1_SPACE_AVAIL
106 	| FATTR4_WORD1_SPACE_FREE
107 	| FATTR4_WORD1_SPACE_TOTAL
108 };
109 
110 const u32 nfs4_pathconf_bitmap[2] = {
111 	FATTR4_WORD0_MAXLINK
112 	| FATTR4_WORD0_MAXNAME,
113 	0
114 };
115 
116 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
117 			| FATTR4_WORD0_MAXREAD
118 			| FATTR4_WORD0_MAXWRITE
119 			| FATTR4_WORD0_LEASE_TIME,
120 			0
121 };
122 
123 static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry,
124 		struct nfs4_readdir_arg *readdir)
125 {
126 	u32 *start, *p;
127 
128 	BUG_ON(readdir->count < 80);
129 	if (cookie > 2) {
130 		readdir->cookie = cookie;
131 		memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
132 		return;
133 	}
134 
135 	readdir->cookie = 0;
136 	memset(&readdir->verifier, 0, sizeof(readdir->verifier));
137 	if (cookie == 2)
138 		return;
139 
140 	/*
141 	 * NFSv4 servers do not return entries for '.' and '..'
142 	 * Therefore, we fake these entries here.  We let '.'
143 	 * have cookie 0 and '..' have cookie 1.  Note that
144 	 * when talking to the server, we always send cookie 0
145 	 * instead of 1 or 2.
146 	 */
147 	start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0);
148 
149 	if (cookie == 0) {
150 		*p++ = xdr_one;                                  /* next */
151 		*p++ = xdr_zero;                   /* cookie, first word */
152 		*p++ = xdr_one;                   /* cookie, second word */
153 		*p++ = xdr_one;                             /* entry len */
154 		memcpy(p, ".\0\0\0", 4);                        /* entry */
155 		p++;
156 		*p++ = xdr_one;                         /* bitmap length */
157 		*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
158 		*p++ = htonl(8);              /* attribute buffer length */
159 		p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
160 	}
161 
162 	*p++ = xdr_one;                                  /* next */
163 	*p++ = xdr_zero;                   /* cookie, first word */
164 	*p++ = xdr_two;                   /* cookie, second word */
165 	*p++ = xdr_two;                             /* entry len */
166 	memcpy(p, "..\0\0", 4);                         /* entry */
167 	p++;
168 	*p++ = xdr_one;                         /* bitmap length */
169 	*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
170 	*p++ = htonl(8);              /* attribute buffer length */
171 	p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
172 
173 	readdir->pgbase = (char *)p - (char *)start;
174 	readdir->count -= readdir->pgbase;
175 	kunmap_atomic(start, KM_USER0);
176 }
177 
178 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
179 {
180 	struct nfs4_client *clp = server->nfs4_state;
181 	spin_lock(&clp->cl_lock);
182 	if (time_before(clp->cl_last_renewal,timestamp))
183 		clp->cl_last_renewal = timestamp;
184 	spin_unlock(&clp->cl_lock);
185 }
186 
187 static void update_changeattr(struct inode *inode, struct nfs4_change_info *cinfo)
188 {
189 	struct nfs_inode *nfsi = NFS_I(inode);
190 
191 	spin_lock(&inode->i_lock);
192 	nfsi->cache_validity |= NFS_INO_INVALID_ATTR;
193 	if (cinfo->before == nfsi->change_attr && cinfo->atomic)
194 		nfsi->change_attr = cinfo->after;
195 	spin_unlock(&inode->i_lock);
196 }
197 
198 struct nfs4_opendata {
199 	atomic_t count;
200 	struct nfs_openargs o_arg;
201 	struct nfs_openres o_res;
202 	struct nfs_open_confirmargs c_arg;
203 	struct nfs_open_confirmres c_res;
204 	struct nfs_fattr f_attr;
205 	struct nfs_fattr dir_attr;
206 	struct dentry *dentry;
207 	struct dentry *dir;
208 	struct nfs4_state_owner *owner;
209 	struct iattr attrs;
210 	unsigned long timestamp;
211 	int rpc_status;
212 	int cancelled;
213 };
214 
215 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
216 		struct nfs4_state_owner *sp, int flags,
217 		const struct iattr *attrs)
218 {
219 	struct dentry *parent = dget_parent(dentry);
220 	struct inode *dir = parent->d_inode;
221 	struct nfs_server *server = NFS_SERVER(dir);
222 	struct nfs4_opendata *p;
223 
224 	p = kzalloc(sizeof(*p), GFP_KERNEL);
225 	if (p == NULL)
226 		goto err;
227 	p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
228 	if (p->o_arg.seqid == NULL)
229 		goto err_free;
230 	atomic_set(&p->count, 1);
231 	p->dentry = dget(dentry);
232 	p->dir = parent;
233 	p->owner = sp;
234 	atomic_inc(&sp->so_count);
235 	p->o_arg.fh = NFS_FH(dir);
236 	p->o_arg.open_flags = flags,
237 	p->o_arg.clientid = server->nfs4_state->cl_clientid;
238 	p->o_arg.id = sp->so_id;
239 	p->o_arg.name = &dentry->d_name;
240 	p->o_arg.server = server;
241 	p->o_arg.bitmask = server->attr_bitmask;
242 	p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
243 	p->o_res.f_attr = &p->f_attr;
244 	p->o_res.dir_attr = &p->dir_attr;
245 	p->o_res.server = server;
246 	nfs_fattr_init(&p->f_attr);
247 	nfs_fattr_init(&p->dir_attr);
248 	if (flags & O_EXCL) {
249 		u32 *s = (u32 *) p->o_arg.u.verifier.data;
250 		s[0] = jiffies;
251 		s[1] = current->pid;
252 	} else if (flags & O_CREAT) {
253 		p->o_arg.u.attrs = &p->attrs;
254 		memcpy(&p->attrs, attrs, sizeof(p->attrs));
255 	}
256 	p->c_arg.fh = &p->o_res.fh;
257 	p->c_arg.stateid = &p->o_res.stateid;
258 	p->c_arg.seqid = p->o_arg.seqid;
259 	return p;
260 err_free:
261 	kfree(p);
262 err:
263 	dput(parent);
264 	return NULL;
265 }
266 
267 static void nfs4_opendata_free(struct nfs4_opendata *p)
268 {
269 	if (p != NULL && atomic_dec_and_test(&p->count)) {
270 		nfs_free_seqid(p->o_arg.seqid);
271 		nfs4_put_state_owner(p->owner);
272 		dput(p->dir);
273 		dput(p->dentry);
274 		kfree(p);
275 	}
276 }
277 
278 /* Helper for asynchronous RPC calls */
279 static int nfs4_call_async(struct rpc_clnt *clnt,
280 		const struct rpc_call_ops *tk_ops, void *calldata)
281 {
282 	struct rpc_task *task;
283 
284 	if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
285 		return -ENOMEM;
286 	rpc_execute(task);
287 	return 0;
288 }
289 
290 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
291 {
292 	sigset_t oldset;
293 	int ret;
294 
295 	rpc_clnt_sigmask(task->tk_client, &oldset);
296 	ret = rpc_wait_for_completion_task(task);
297 	rpc_clnt_sigunmask(task->tk_client, &oldset);
298 	return ret;
299 }
300 
301 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
302 {
303 	switch (open_flags) {
304 		case FMODE_WRITE:
305 			state->n_wronly++;
306 			break;
307 		case FMODE_READ:
308 			state->n_rdonly++;
309 			break;
310 		case FMODE_READ|FMODE_WRITE:
311 			state->n_rdwr++;
312 	}
313 }
314 
315 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
316 {
317 	struct inode *inode = state->inode;
318 
319 	open_flags &= (FMODE_READ|FMODE_WRITE);
320 	/* Protect against nfs4_find_state_byowner() */
321 	spin_lock(&state->owner->so_lock);
322 	spin_lock(&inode->i_lock);
323 	memcpy(&state->stateid, stateid, sizeof(state->stateid));
324 	update_open_stateflags(state, open_flags);
325 	nfs4_state_set_mode_locked(state, state->state | open_flags);
326 	spin_unlock(&inode->i_lock);
327 	spin_unlock(&state->owner->so_lock);
328 }
329 
330 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
331 {
332 	struct inode *inode;
333 	struct nfs4_state *state = NULL;
334 
335 	if (!(data->f_attr.valid & NFS_ATTR_FATTR))
336 		goto out;
337 	inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
338 	if (inode == NULL)
339 		goto out;
340 	state = nfs4_get_open_state(inode, data->owner);
341 	if (state == NULL)
342 		goto put_inode;
343 	update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
344 put_inode:
345 	iput(inode);
346 out:
347 	return state;
348 }
349 
350 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
351 {
352 	struct nfs_inode *nfsi = NFS_I(state->inode);
353 	struct nfs_open_context *ctx;
354 
355 	spin_lock(&state->inode->i_lock);
356 	list_for_each_entry(ctx, &nfsi->open_files, list) {
357 		if (ctx->state != state)
358 			continue;
359 		get_nfs_open_context(ctx);
360 		spin_unlock(&state->inode->i_lock);
361 		return ctx;
362 	}
363 	spin_unlock(&state->inode->i_lock);
364 	return ERR_PTR(-ENOENT);
365 }
366 
367 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
368 {
369 	int ret;
370 
371 	opendata->o_arg.open_flags = openflags;
372 	ret = _nfs4_proc_open(opendata);
373 	if (ret != 0)
374 		return ret;
375 	memcpy(stateid->data, opendata->o_res.stateid.data,
376 			sizeof(stateid->data));
377 	return 0;
378 }
379 
380 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
381 {
382 	nfs4_stateid stateid;
383 	struct nfs4_state *newstate;
384 	int mode = 0;
385 	int delegation = 0;
386 	int ret;
387 
388 	/* memory barrier prior to reading state->n_* */
389 	smp_rmb();
390 	if (state->n_rdwr != 0) {
391 		ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
392 		if (ret != 0)
393 			return ret;
394 		mode |= FMODE_READ|FMODE_WRITE;
395 		if (opendata->o_res.delegation_type != 0)
396 			delegation = opendata->o_res.delegation_type;
397 		smp_rmb();
398 	}
399 	if (state->n_wronly != 0) {
400 		ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
401 		if (ret != 0)
402 			return ret;
403 		mode |= FMODE_WRITE;
404 		if (opendata->o_res.delegation_type != 0)
405 			delegation = opendata->o_res.delegation_type;
406 		smp_rmb();
407 	}
408 	if (state->n_rdonly != 0) {
409 		ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
410 		if (ret != 0)
411 			return ret;
412 		mode |= FMODE_READ;
413 	}
414 	clear_bit(NFS_DELEGATED_STATE, &state->flags);
415 	if (mode == 0)
416 		return 0;
417 	if (opendata->o_res.delegation_type == 0)
418 		opendata->o_res.delegation_type = delegation;
419 	opendata->o_arg.open_flags |= mode;
420 	newstate = nfs4_opendata_to_nfs4_state(opendata);
421 	if (newstate != NULL) {
422 		if (opendata->o_res.delegation_type != 0) {
423 			struct nfs_inode *nfsi = NFS_I(newstate->inode);
424 			int delegation_flags = 0;
425 			if (nfsi->delegation)
426 				delegation_flags = nfsi->delegation->flags;
427 			if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
428 				nfs_inode_set_delegation(newstate->inode,
429 						opendata->owner->so_cred,
430 						&opendata->o_res);
431 			else
432 				nfs_inode_reclaim_delegation(newstate->inode,
433 						opendata->owner->so_cred,
434 						&opendata->o_res);
435 		}
436 		nfs4_close_state(newstate, opendata->o_arg.open_flags);
437 	}
438 	if (newstate != state)
439 		return -ESTALE;
440 	return 0;
441 }
442 
443 /*
444  * OPEN_RECLAIM:
445  * 	reclaim state on the server after a reboot.
446  */
447 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
448 {
449 	struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
450 	struct nfs4_opendata *opendata;
451 	int delegation_type = 0;
452 	int status;
453 
454 	if (delegation != NULL) {
455 		if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
456 			memcpy(&state->stateid, &delegation->stateid,
457 					sizeof(state->stateid));
458 			set_bit(NFS_DELEGATED_STATE, &state->flags);
459 			return 0;
460 		}
461 		delegation_type = delegation->type;
462 	}
463 	opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
464 	if (opendata == NULL)
465 		return -ENOMEM;
466 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
467 	opendata->o_arg.fh = NFS_FH(state->inode);
468 	nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
469 	opendata->o_arg.u.delegation_type = delegation_type;
470 	status = nfs4_open_recover(opendata, state);
471 	nfs4_opendata_free(opendata);
472 	return status;
473 }
474 
475 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
476 {
477 	struct nfs_server *server = NFS_SERVER(state->inode);
478 	struct nfs4_exception exception = { };
479 	int err;
480 	do {
481 		err = _nfs4_do_open_reclaim(sp, state, dentry);
482 		if (err != -NFS4ERR_DELAY)
483 			break;
484 		nfs4_handle_exception(server, err, &exception);
485 	} while (exception.retry);
486 	return err;
487 }
488 
489 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
490 {
491 	struct nfs_open_context *ctx;
492 	int ret;
493 
494 	ctx = nfs4_state_find_open_context(state);
495 	if (IS_ERR(ctx))
496 		return PTR_ERR(ctx);
497 	ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
498 	put_nfs_open_context(ctx);
499 	return ret;
500 }
501 
502 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
503 {
504 	struct nfs4_state_owner  *sp  = state->owner;
505 	struct nfs4_opendata *opendata;
506 	int ret;
507 
508 	if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
509 		return 0;
510 	opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
511 	if (opendata == NULL)
512 		return -ENOMEM;
513 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
514 	memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
515 			sizeof(opendata->o_arg.u.delegation.data));
516 	ret = nfs4_open_recover(opendata, state);
517 	nfs4_opendata_free(opendata);
518 	return ret;
519 }
520 
521 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
522 {
523 	struct nfs4_exception exception = { };
524 	struct nfs_server *server = NFS_SERVER(dentry->d_inode);
525 	int err;
526 	do {
527 		err = _nfs4_open_delegation_recall(dentry, state);
528 		switch (err) {
529 			case 0:
530 				return err;
531 			case -NFS4ERR_STALE_CLIENTID:
532 			case -NFS4ERR_STALE_STATEID:
533 			case -NFS4ERR_EXPIRED:
534 				/* Don't recall a delegation if it was lost */
535 				nfs4_schedule_state_recovery(server->nfs4_state);
536 				return err;
537 		}
538 		err = nfs4_handle_exception(server, err, &exception);
539 	} while (exception.retry);
540 	return err;
541 }
542 
543 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
544 {
545 	struct nfs4_opendata *data = calldata;
546 	struct  rpc_message msg = {
547 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
548 		.rpc_argp = &data->c_arg,
549 		.rpc_resp = &data->c_res,
550 		.rpc_cred = data->owner->so_cred,
551 	};
552 	data->timestamp = jiffies;
553 	rpc_call_setup(task, &msg, 0);
554 }
555 
556 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
557 {
558 	struct nfs4_opendata *data = calldata;
559 
560 	data->rpc_status = task->tk_status;
561 	if (RPC_ASSASSINATED(task))
562 		return;
563 	if (data->rpc_status == 0) {
564 		memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
565 				sizeof(data->o_res.stateid.data));
566 		renew_lease(data->o_res.server, data->timestamp);
567 	}
568 	nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
569 	nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
570 }
571 
572 static void nfs4_open_confirm_release(void *calldata)
573 {
574 	struct nfs4_opendata *data = calldata;
575 	struct nfs4_state *state = NULL;
576 
577 	/* If this request hasn't been cancelled, do nothing */
578 	if (data->cancelled == 0)
579 		goto out_free;
580 	/* In case of error, no cleanup! */
581 	if (data->rpc_status != 0)
582 		goto out_free;
583 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
584 	state = nfs4_opendata_to_nfs4_state(data);
585 	if (state != NULL)
586 		nfs4_close_state(state, data->o_arg.open_flags);
587 out_free:
588 	nfs4_opendata_free(data);
589 }
590 
591 static const struct rpc_call_ops nfs4_open_confirm_ops = {
592 	.rpc_call_prepare = nfs4_open_confirm_prepare,
593 	.rpc_call_done = nfs4_open_confirm_done,
594 	.rpc_release = nfs4_open_confirm_release,
595 };
596 
597 /*
598  * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
599  */
600 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
601 {
602 	struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
603 	struct rpc_task *task;
604 	int status;
605 
606 	atomic_inc(&data->count);
607 	task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
608 	if (IS_ERR(task)) {
609 		nfs4_opendata_free(data);
610 		return PTR_ERR(task);
611 	}
612 	status = nfs4_wait_for_completion_rpc_task(task);
613 	if (status != 0) {
614 		data->cancelled = 1;
615 		smp_wmb();
616 	} else
617 		status = data->rpc_status;
618 	rpc_release_task(task);
619 	return status;
620 }
621 
622 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
623 {
624 	struct nfs4_opendata *data = calldata;
625 	struct nfs4_state_owner *sp = data->owner;
626 	struct rpc_message msg = {
627 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
628 		.rpc_argp = &data->o_arg,
629 		.rpc_resp = &data->o_res,
630 		.rpc_cred = sp->so_cred,
631 	};
632 
633 	if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
634 		return;
635 	/* Update sequence id. */
636 	data->o_arg.id = sp->so_id;
637 	data->o_arg.clientid = sp->so_client->cl_clientid;
638 	if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
639 		msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
640 	data->timestamp = jiffies;
641 	rpc_call_setup(task, &msg, 0);
642 }
643 
644 static void nfs4_open_done(struct rpc_task *task, void *calldata)
645 {
646 	struct nfs4_opendata *data = calldata;
647 
648 	data->rpc_status = task->tk_status;
649 	if (RPC_ASSASSINATED(task))
650 		return;
651 	if (task->tk_status == 0) {
652 		switch (data->o_res.f_attr->mode & S_IFMT) {
653 			case S_IFREG:
654 				break;
655 			case S_IFLNK:
656 				data->rpc_status = -ELOOP;
657 				break;
658 			case S_IFDIR:
659 				data->rpc_status = -EISDIR;
660 				break;
661 			default:
662 				data->rpc_status = -ENOTDIR;
663 		}
664 		renew_lease(data->o_res.server, data->timestamp);
665 	}
666 	nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
667 }
668 
669 static void nfs4_open_release(void *calldata)
670 {
671 	struct nfs4_opendata *data = calldata;
672 	struct nfs4_state *state = NULL;
673 
674 	/* If this request hasn't been cancelled, do nothing */
675 	if (data->cancelled == 0)
676 		goto out_free;
677 	/* In case of error, no cleanup! */
678 	if (data->rpc_status != 0)
679 		goto out_free;
680 	/* In case we need an open_confirm, no cleanup! */
681 	if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
682 		goto out_free;
683 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
684 	state = nfs4_opendata_to_nfs4_state(data);
685 	if (state != NULL)
686 		nfs4_close_state(state, data->o_arg.open_flags);
687 out_free:
688 	nfs4_opendata_free(data);
689 }
690 
691 static const struct rpc_call_ops nfs4_open_ops = {
692 	.rpc_call_prepare = nfs4_open_prepare,
693 	.rpc_call_done = nfs4_open_done,
694 	.rpc_release = nfs4_open_release,
695 };
696 
697 /*
698  * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
699  */
700 static int _nfs4_proc_open(struct nfs4_opendata *data)
701 {
702 	struct inode *dir = data->dir->d_inode;
703 	struct nfs_server *server = NFS_SERVER(dir);
704 	struct nfs_openargs *o_arg = &data->o_arg;
705 	struct nfs_openres *o_res = &data->o_res;
706 	struct rpc_task *task;
707 	int status;
708 
709 	atomic_inc(&data->count);
710 	task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
711 	if (IS_ERR(task)) {
712 		nfs4_opendata_free(data);
713 		return PTR_ERR(task);
714 	}
715 	status = nfs4_wait_for_completion_rpc_task(task);
716 	if (status != 0) {
717 		data->cancelled = 1;
718 		smp_wmb();
719 	} else
720 		status = data->rpc_status;
721 	rpc_release_task(task);
722 	if (status != 0)
723 		return status;
724 
725 	if (o_arg->open_flags & O_CREAT) {
726 		update_changeattr(dir, &o_res->cinfo);
727 		nfs_post_op_update_inode(dir, o_res->dir_attr);
728 	} else
729 		nfs_refresh_inode(dir, o_res->dir_attr);
730 	if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
731 		status = _nfs4_proc_open_confirm(data);
732 		if (status != 0)
733 			return status;
734 	}
735 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
736 	if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
737 		return server->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
738 	return 0;
739 }
740 
741 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
742 {
743 	struct nfs_access_entry cache;
744 	int mask = 0;
745 	int status;
746 
747 	if (openflags & FMODE_READ)
748 		mask |= MAY_READ;
749 	if (openflags & FMODE_WRITE)
750 		mask |= MAY_WRITE;
751 	status = nfs_access_get_cached(inode, cred, &cache);
752 	if (status == 0)
753 		goto out;
754 
755 	/* Be clever: ask server to check for all possible rights */
756 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
757 	cache.cred = cred;
758 	cache.jiffies = jiffies;
759 	status = _nfs4_proc_access(inode, &cache);
760 	if (status != 0)
761 		return status;
762 	nfs_access_add_cache(inode, &cache);
763 out:
764 	if ((cache.mask & mask) == mask)
765 		return 0;
766 	return -EACCES;
767 }
768 
769 int nfs4_recover_expired_lease(struct nfs_server *server)
770 {
771 	struct nfs4_client *clp = server->nfs4_state;
772 
773 	if (test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
774 		nfs4_schedule_state_recovery(clp);
775 	return nfs4_wait_clnt_recover(server->client, clp);
776 }
777 
778 /*
779  * OPEN_EXPIRED:
780  * 	reclaim state on the server after a network partition.
781  * 	Assumes caller holds the appropriate lock
782  */
783 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
784 {
785 	struct inode *inode = state->inode;
786 	struct nfs_delegation *delegation = NFS_I(inode)->delegation;
787 	struct nfs4_opendata *opendata;
788 	int openflags = state->state & (FMODE_READ|FMODE_WRITE);
789 	int ret;
790 
791 	if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
792 		ret = _nfs4_do_access(inode, sp->so_cred, openflags);
793 		if (ret < 0)
794 			return ret;
795 		memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
796 		set_bit(NFS_DELEGATED_STATE, &state->flags);
797 		return 0;
798 	}
799 	opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
800 	if (opendata == NULL)
801 		return -ENOMEM;
802 	ret = nfs4_open_recover(opendata, state);
803 	if (ret == -ESTALE) {
804 		/* Invalidate the state owner so we don't ever use it again */
805 		nfs4_drop_state_owner(sp);
806 		d_drop(dentry);
807 	}
808 	nfs4_opendata_free(opendata);
809 	return ret;
810 }
811 
812 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
813 {
814 	struct nfs_server *server = NFS_SERVER(dentry->d_inode);
815 	struct nfs4_exception exception = { };
816 	int err;
817 
818 	do {
819 		err = _nfs4_open_expired(sp, state, dentry);
820 		if (err == -NFS4ERR_DELAY)
821 			nfs4_handle_exception(server, err, &exception);
822 	} while (exception.retry);
823 	return err;
824 }
825 
826 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
827 {
828 	struct nfs_open_context *ctx;
829 	int ret;
830 
831 	ctx = nfs4_state_find_open_context(state);
832 	if (IS_ERR(ctx))
833 		return PTR_ERR(ctx);
834 	ret = nfs4_do_open_expired(sp, state, ctx->dentry);
835 	put_nfs_open_context(ctx);
836 	return ret;
837 }
838 
839 /*
840  * Returns a referenced nfs4_state if there is an open delegation on the file
841  */
842 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
843 {
844 	struct nfs_delegation *delegation;
845 	struct nfs_server *server = NFS_SERVER(inode);
846 	struct nfs4_client *clp = server->nfs4_state;
847 	struct nfs_inode *nfsi = NFS_I(inode);
848 	struct nfs4_state_owner *sp = NULL;
849 	struct nfs4_state *state = NULL;
850 	int open_flags = flags & (FMODE_READ|FMODE_WRITE);
851 	int err;
852 
853 	err = -ENOMEM;
854 	if (!(sp = nfs4_get_state_owner(server, cred))) {
855 		dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
856 		return err;
857 	}
858 	err = nfs4_recover_expired_lease(server);
859 	if (err != 0)
860 		goto out_put_state_owner;
861 	/* Protect against reboot recovery - NOTE ORDER! */
862 	down_read(&clp->cl_sem);
863 	/* Protect against delegation recall */
864 	down_read(&nfsi->rwsem);
865 	delegation = NFS_I(inode)->delegation;
866 	err = -ENOENT;
867 	if (delegation == NULL || (delegation->type & open_flags) != open_flags)
868 		goto out_err;
869 	err = -ENOMEM;
870 	state = nfs4_get_open_state(inode, sp);
871 	if (state == NULL)
872 		goto out_err;
873 
874 	err = -ENOENT;
875 	if ((state->state & open_flags) == open_flags) {
876 		spin_lock(&inode->i_lock);
877 		update_open_stateflags(state, open_flags);
878 		spin_unlock(&inode->i_lock);
879 		goto out_ok;
880 	} else if (state->state != 0)
881 		goto out_put_open_state;
882 
883 	lock_kernel();
884 	err = _nfs4_do_access(inode, cred, open_flags);
885 	unlock_kernel();
886 	if (err != 0)
887 		goto out_put_open_state;
888 	set_bit(NFS_DELEGATED_STATE, &state->flags);
889 	update_open_stateid(state, &delegation->stateid, open_flags);
890 out_ok:
891 	nfs4_put_state_owner(sp);
892 	up_read(&nfsi->rwsem);
893 	up_read(&clp->cl_sem);
894 	*res = state;
895 	return 0;
896 out_put_open_state:
897 	nfs4_put_open_state(state);
898 out_err:
899 	up_read(&nfsi->rwsem);
900 	up_read(&clp->cl_sem);
901 	if (err != -EACCES)
902 		nfs_inode_return_delegation(inode);
903 out_put_state_owner:
904 	nfs4_put_state_owner(sp);
905 	return err;
906 }
907 
908 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
909 {
910 	struct nfs4_exception exception = { };
911 	struct nfs4_state *res;
912 	int err;
913 
914 	do {
915 		err = _nfs4_open_delegated(inode, flags, cred, &res);
916 		if (err == 0)
917 			break;
918 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
919 					err, &exception));
920 	} while (exception.retry);
921 	return res;
922 }
923 
924 /*
925  * Returns a referenced nfs4_state
926  */
927 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
928 {
929 	struct nfs4_state_owner  *sp;
930 	struct nfs4_state     *state = NULL;
931 	struct nfs_server       *server = NFS_SERVER(dir);
932 	struct nfs4_client *clp = server->nfs4_state;
933 	struct nfs4_opendata *opendata;
934 	int                     status;
935 
936 	/* Protect against reboot recovery conflicts */
937 	status = -ENOMEM;
938 	if (!(sp = nfs4_get_state_owner(server, cred))) {
939 		dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
940 		goto out_err;
941 	}
942 	status = nfs4_recover_expired_lease(server);
943 	if (status != 0)
944 		goto err_put_state_owner;
945 	down_read(&clp->cl_sem);
946 	status = -ENOMEM;
947 	opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
948 	if (opendata == NULL)
949 		goto err_put_state_owner;
950 
951 	status = _nfs4_proc_open(opendata);
952 	if (status != 0)
953 		goto err_opendata_free;
954 
955 	status = -ENOMEM;
956 	state = nfs4_opendata_to_nfs4_state(opendata);
957 	if (state == NULL)
958 		goto err_opendata_free;
959 	if (opendata->o_res.delegation_type != 0)
960 		nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
961 	nfs4_opendata_free(opendata);
962 	nfs4_put_state_owner(sp);
963 	up_read(&clp->cl_sem);
964 	*res = state;
965 	return 0;
966 err_opendata_free:
967 	nfs4_opendata_free(opendata);
968 err_put_state_owner:
969 	nfs4_put_state_owner(sp);
970 out_err:
971 	/* Note: clp->cl_sem must be released before nfs4_put_open_state()! */
972 	up_read(&clp->cl_sem);
973 	*res = NULL;
974 	return status;
975 }
976 
977 
978 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
979 {
980 	struct nfs4_exception exception = { };
981 	struct nfs4_state *res;
982 	int status;
983 
984 	do {
985 		status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
986 		if (status == 0)
987 			break;
988 		/* NOTE: BAD_SEQID means the server and client disagree about the
989 		 * book-keeping w.r.t. state-changing operations
990 		 * (OPEN/CLOSE/LOCK/LOCKU...)
991 		 * It is actually a sign of a bug on the client or on the server.
992 		 *
993 		 * If we receive a BAD_SEQID error in the particular case of
994 		 * doing an OPEN, we assume that nfs_increment_open_seqid() will
995 		 * have unhashed the old state_owner for us, and that we can
996 		 * therefore safely retry using a new one. We should still warn
997 		 * the user though...
998 		 */
999 		if (status == -NFS4ERR_BAD_SEQID) {
1000 			printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1001 			exception.retry = 1;
1002 			continue;
1003 		}
1004 		/*
1005 		 * BAD_STATEID on OPEN means that the server cancelled our
1006 		 * state before it received the OPEN_CONFIRM.
1007 		 * Recover by retrying the request as per the discussion
1008 		 * on Page 181 of RFC3530.
1009 		 */
1010 		if (status == -NFS4ERR_BAD_STATEID) {
1011 			exception.retry = 1;
1012 			continue;
1013 		}
1014 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1015 					status, &exception));
1016 	} while (exception.retry);
1017 	return res;
1018 }
1019 
1020 static int _nfs4_do_setattr(struct nfs_server *server, struct nfs_fattr *fattr,
1021                 struct nfs_fh *fhandle, struct iattr *sattr,
1022                 struct nfs4_state *state)
1023 {
1024         struct nfs_setattrargs  arg = {
1025                 .fh             = fhandle,
1026                 .iap            = sattr,
1027 		.server		= server,
1028 		.bitmask = server->attr_bitmask,
1029         };
1030         struct nfs_setattrres  res = {
1031 		.fattr		= fattr,
1032 		.server		= server,
1033         };
1034         struct rpc_message msg = {
1035                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1036                 .rpc_argp       = &arg,
1037                 .rpc_resp       = &res,
1038         };
1039 	unsigned long timestamp = jiffies;
1040 	int status;
1041 
1042 	nfs_fattr_init(fattr);
1043 
1044 	if (state != NULL) {
1045 		msg.rpc_cred = state->owner->so_cred;
1046 		nfs4_copy_stateid(&arg.stateid, state, current->files);
1047 	} else
1048 		memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1049 
1050 	status = rpc_call_sync(server->client, &msg, 0);
1051 	if (status == 0 && state != NULL)
1052 		renew_lease(server, timestamp);
1053 	return status;
1054 }
1055 
1056 static int nfs4_do_setattr(struct nfs_server *server, struct nfs_fattr *fattr,
1057                 struct nfs_fh *fhandle, struct iattr *sattr,
1058                 struct nfs4_state *state)
1059 {
1060 	struct nfs4_exception exception = { };
1061 	int err;
1062 	do {
1063 		err = nfs4_handle_exception(server,
1064 				_nfs4_do_setattr(server, fattr, fhandle, sattr,
1065 					state),
1066 				&exception);
1067 	} while (exception.retry);
1068 	return err;
1069 }
1070 
1071 struct nfs4_closedata {
1072 	struct inode *inode;
1073 	struct nfs4_state *state;
1074 	struct nfs_closeargs arg;
1075 	struct nfs_closeres res;
1076 	struct nfs_fattr fattr;
1077 	unsigned long timestamp;
1078 };
1079 
1080 static void nfs4_free_closedata(void *data)
1081 {
1082 	struct nfs4_closedata *calldata = data;
1083 	struct nfs4_state_owner *sp = calldata->state->owner;
1084 
1085 	nfs4_put_open_state(calldata->state);
1086 	nfs_free_seqid(calldata->arg.seqid);
1087 	nfs4_put_state_owner(sp);
1088 	kfree(calldata);
1089 }
1090 
1091 static void nfs4_close_done(struct rpc_task *task, void *data)
1092 {
1093 	struct nfs4_closedata *calldata = data;
1094 	struct nfs4_state *state = calldata->state;
1095 	struct nfs_server *server = NFS_SERVER(calldata->inode);
1096 
1097 	if (RPC_ASSASSINATED(task))
1098 		return;
1099         /* hmm. we are done with the inode, and in the process of freeing
1100 	 * the state_owner. we keep this around to process errors
1101 	 */
1102 	nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1103 	switch (task->tk_status) {
1104 		case 0:
1105 			memcpy(&state->stateid, &calldata->res.stateid,
1106 					sizeof(state->stateid));
1107 			renew_lease(server, calldata->timestamp);
1108 			break;
1109 		case -NFS4ERR_STALE_STATEID:
1110 		case -NFS4ERR_EXPIRED:
1111 			nfs4_schedule_state_recovery(server->nfs4_state);
1112 			break;
1113 		default:
1114 			if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1115 				rpc_restart_call(task);
1116 				return;
1117 			}
1118 	}
1119 	nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1120 }
1121 
1122 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1123 {
1124 	struct nfs4_closedata *calldata = data;
1125 	struct nfs4_state *state = calldata->state;
1126 	struct rpc_message msg = {
1127 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1128 		.rpc_argp = &calldata->arg,
1129 		.rpc_resp = &calldata->res,
1130 		.rpc_cred = state->owner->so_cred,
1131 	};
1132 	int mode = 0, old_mode;
1133 
1134 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1135 		return;
1136 	/* Recalculate the new open mode in case someone reopened the file
1137 	 * while we were waiting in line to be scheduled.
1138 	 */
1139 	spin_lock(&state->owner->so_lock);
1140 	spin_lock(&calldata->inode->i_lock);
1141 	mode = old_mode = state->state;
1142 	if (state->n_rdwr == 0) {
1143 		if (state->n_rdonly == 0)
1144 			mode &= ~FMODE_READ;
1145 		if (state->n_wronly == 0)
1146 			mode &= ~FMODE_WRITE;
1147 	}
1148 	nfs4_state_set_mode_locked(state, mode);
1149 	spin_unlock(&calldata->inode->i_lock);
1150 	spin_unlock(&state->owner->so_lock);
1151 	if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1152 		/* Note: exit _without_ calling nfs4_close_done */
1153 		task->tk_action = NULL;
1154 		return;
1155 	}
1156 	nfs_fattr_init(calldata->res.fattr);
1157 	if (mode != 0)
1158 		msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1159 	calldata->arg.open_flags = mode;
1160 	calldata->timestamp = jiffies;
1161 	rpc_call_setup(task, &msg, 0);
1162 }
1163 
1164 static const struct rpc_call_ops nfs4_close_ops = {
1165 	.rpc_call_prepare = nfs4_close_prepare,
1166 	.rpc_call_done = nfs4_close_done,
1167 	.rpc_release = nfs4_free_closedata,
1168 };
1169 
1170 /*
1171  * It is possible for data to be read/written from a mem-mapped file
1172  * after the sys_close call (which hits the vfs layer as a flush).
1173  * This means that we can't safely call nfsv4 close on a file until
1174  * the inode is cleared. This in turn means that we are not good
1175  * NFSv4 citizens - we do not indicate to the server to update the file's
1176  * share state even when we are done with one of the three share
1177  * stateid's in the inode.
1178  *
1179  * NOTE: Caller must be holding the sp->so_owner semaphore!
1180  */
1181 int nfs4_do_close(struct inode *inode, struct nfs4_state *state)
1182 {
1183 	struct nfs_server *server = NFS_SERVER(inode);
1184 	struct nfs4_closedata *calldata;
1185 	int status = -ENOMEM;
1186 
1187 	calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1188 	if (calldata == NULL)
1189 		goto out;
1190 	calldata->inode = inode;
1191 	calldata->state = state;
1192 	calldata->arg.fh = NFS_FH(inode);
1193 	calldata->arg.stateid = &state->stateid;
1194 	/* Serialization for the sequence id */
1195 	calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1196 	if (calldata->arg.seqid == NULL)
1197 		goto out_free_calldata;
1198 	calldata->arg.bitmask = server->attr_bitmask;
1199 	calldata->res.fattr = &calldata->fattr;
1200 	calldata->res.server = server;
1201 
1202 	status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1203 	if (status == 0)
1204 		goto out;
1205 
1206 	nfs_free_seqid(calldata->arg.seqid);
1207 out_free_calldata:
1208 	kfree(calldata);
1209 out:
1210 	return status;
1211 }
1212 
1213 static void nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1214 {
1215 	struct file *filp;
1216 
1217 	filp = lookup_instantiate_filp(nd, dentry, NULL);
1218 	if (!IS_ERR(filp)) {
1219 		struct nfs_open_context *ctx;
1220 		ctx = (struct nfs_open_context *)filp->private_data;
1221 		ctx->state = state;
1222 	} else
1223 		nfs4_close_state(state, nd->intent.open.flags);
1224 }
1225 
1226 struct dentry *
1227 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1228 {
1229 	struct iattr attr;
1230 	struct rpc_cred *cred;
1231 	struct nfs4_state *state;
1232 	struct dentry *res;
1233 
1234 	if (nd->flags & LOOKUP_CREATE) {
1235 		attr.ia_mode = nd->intent.open.create_mode;
1236 		attr.ia_valid = ATTR_MODE;
1237 		if (!IS_POSIXACL(dir))
1238 			attr.ia_mode &= ~current->fs->umask;
1239 	} else {
1240 		attr.ia_valid = 0;
1241 		BUG_ON(nd->intent.open.flags & O_CREAT);
1242 	}
1243 
1244 	cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1245 	if (IS_ERR(cred))
1246 		return (struct dentry *)cred;
1247 	state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1248 	put_rpccred(cred);
1249 	if (IS_ERR(state)) {
1250 		if (PTR_ERR(state) == -ENOENT)
1251 			d_add(dentry, NULL);
1252 		return (struct dentry *)state;
1253 	}
1254 	res = d_add_unique(dentry, igrab(state->inode));
1255 	if (res != NULL)
1256 		dentry = res;
1257 	nfs4_intent_set_file(nd, dentry, state);
1258 	return res;
1259 }
1260 
1261 int
1262 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1263 {
1264 	struct rpc_cred *cred;
1265 	struct nfs4_state *state;
1266 
1267 	cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1268 	if (IS_ERR(cred))
1269 		return PTR_ERR(cred);
1270 	state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1271 	if (IS_ERR(state))
1272 		state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1273 	put_rpccred(cred);
1274 	if (IS_ERR(state)) {
1275 		switch (PTR_ERR(state)) {
1276 			case -EPERM:
1277 			case -EACCES:
1278 			case -EDQUOT:
1279 			case -ENOSPC:
1280 			case -EROFS:
1281 				lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1282 				return 1;
1283 			case -ENOENT:
1284 				if (dentry->d_inode == NULL)
1285 					return 1;
1286 		}
1287 		goto out_drop;
1288 	}
1289 	if (state->inode == dentry->d_inode) {
1290 		nfs4_intent_set_file(nd, dentry, state);
1291 		return 1;
1292 	}
1293 	nfs4_close_state(state, openflags);
1294 out_drop:
1295 	d_drop(dentry);
1296 	return 0;
1297 }
1298 
1299 
1300 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1301 {
1302 	struct nfs4_server_caps_res res = {};
1303 	struct rpc_message msg = {
1304 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1305 		.rpc_argp = fhandle,
1306 		.rpc_resp = &res,
1307 	};
1308 	int status;
1309 
1310 	status = rpc_call_sync(server->client, &msg, 0);
1311 	if (status == 0) {
1312 		memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1313 		if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1314 			server->caps |= NFS_CAP_ACLS;
1315 		if (res.has_links != 0)
1316 			server->caps |= NFS_CAP_HARDLINKS;
1317 		if (res.has_symlinks != 0)
1318 			server->caps |= NFS_CAP_SYMLINKS;
1319 		server->acl_bitmask = res.acl_bitmask;
1320 	}
1321 	return status;
1322 }
1323 
1324 static int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1325 {
1326 	struct nfs4_exception exception = { };
1327 	int err;
1328 	do {
1329 		err = nfs4_handle_exception(server,
1330 				_nfs4_server_capabilities(server, fhandle),
1331 				&exception);
1332 	} while (exception.retry);
1333 	return err;
1334 }
1335 
1336 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1337 		struct nfs_fsinfo *info)
1338 {
1339 	struct nfs4_lookup_root_arg args = {
1340 		.bitmask = nfs4_fattr_bitmap,
1341 	};
1342 	struct nfs4_lookup_res res = {
1343 		.server = server,
1344 		.fattr = info->fattr,
1345 		.fh = fhandle,
1346 	};
1347 	struct rpc_message msg = {
1348 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1349 		.rpc_argp = &args,
1350 		.rpc_resp = &res,
1351 	};
1352 	nfs_fattr_init(info->fattr);
1353 	return rpc_call_sync(server->client, &msg, 0);
1354 }
1355 
1356 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1357 		struct nfs_fsinfo *info)
1358 {
1359 	struct nfs4_exception exception = { };
1360 	int err;
1361 	do {
1362 		err = nfs4_handle_exception(server,
1363 				_nfs4_lookup_root(server, fhandle, info),
1364 				&exception);
1365 	} while (exception.retry);
1366 	return err;
1367 }
1368 
1369 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1370 		struct nfs_fsinfo *info)
1371 {
1372 	struct nfs_fattr *	fattr = info->fattr;
1373 	unsigned char *		p;
1374 	struct qstr		q;
1375 	struct nfs4_lookup_arg args = {
1376 		.dir_fh = fhandle,
1377 		.name = &q,
1378 		.bitmask = nfs4_fattr_bitmap,
1379 	};
1380 	struct nfs4_lookup_res res = {
1381 		.server = server,
1382 		.fattr = fattr,
1383 		.fh = fhandle,
1384 	};
1385 	struct rpc_message msg = {
1386 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1387 		.rpc_argp = &args,
1388 		.rpc_resp = &res,
1389 	};
1390 	int status;
1391 
1392 	/*
1393 	 * Now we do a separate LOOKUP for each component of the mount path.
1394 	 * The LOOKUPs are done separately so that we can conveniently
1395 	 * catch an ERR_WRONGSEC if it occurs along the way...
1396 	 */
1397 	status = nfs4_lookup_root(server, fhandle, info);
1398 	if (status)
1399 		goto out;
1400 
1401 	p = server->mnt_path;
1402 	for (;;) {
1403 		struct nfs4_exception exception = { };
1404 
1405 		while (*p == '/')
1406 			p++;
1407 		if (!*p)
1408 			break;
1409 		q.name = p;
1410 		while (*p && (*p != '/'))
1411 			p++;
1412 		q.len = p - q.name;
1413 
1414 		do {
1415 			nfs_fattr_init(fattr);
1416 			status = nfs4_handle_exception(server,
1417 					rpc_call_sync(server->client, &msg, 0),
1418 					&exception);
1419 		} while (exception.retry);
1420 		if (status == 0)
1421 			continue;
1422 		if (status == -ENOENT) {
1423 			printk(KERN_NOTICE "NFS: mount path %s does not exist!\n", server->mnt_path);
1424 			printk(KERN_NOTICE "NFS: suggestion: try mounting '/' instead.\n");
1425 		}
1426 		break;
1427 	}
1428 	if (status == 0)
1429 		status = nfs4_server_capabilities(server, fhandle);
1430 	if (status == 0)
1431 		status = nfs4_do_fsinfo(server, fhandle, info);
1432 out:
1433 	return status;
1434 }
1435 
1436 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1437 {
1438 	struct nfs4_getattr_arg args = {
1439 		.fh = fhandle,
1440 		.bitmask = server->attr_bitmask,
1441 	};
1442 	struct nfs4_getattr_res res = {
1443 		.fattr = fattr,
1444 		.server = server,
1445 	};
1446 	struct rpc_message msg = {
1447 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1448 		.rpc_argp = &args,
1449 		.rpc_resp = &res,
1450 	};
1451 
1452 	nfs_fattr_init(fattr);
1453 	return rpc_call_sync(server->client, &msg, 0);
1454 }
1455 
1456 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1457 {
1458 	struct nfs4_exception exception = { };
1459 	int err;
1460 	do {
1461 		err = nfs4_handle_exception(server,
1462 				_nfs4_proc_getattr(server, fhandle, fattr),
1463 				&exception);
1464 	} while (exception.retry);
1465 	return err;
1466 }
1467 
1468 /*
1469  * The file is not closed if it is opened due to the a request to change
1470  * the size of the file. The open call will not be needed once the
1471  * VFS layer lookup-intents are implemented.
1472  *
1473  * Close is called when the inode is destroyed.
1474  * If we haven't opened the file for O_WRONLY, we
1475  * need to in the size_change case to obtain a stateid.
1476  *
1477  * Got race?
1478  * Because OPEN is always done by name in nfsv4, it is
1479  * possible that we opened a different file by the same
1480  * name.  We can recognize this race condition, but we
1481  * can't do anything about it besides returning an error.
1482  *
1483  * This will be fixed with VFS changes (lookup-intent).
1484  */
1485 static int
1486 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1487 		  struct iattr *sattr)
1488 {
1489 	struct rpc_cred *cred;
1490 	struct inode *inode = dentry->d_inode;
1491 	struct nfs_open_context *ctx;
1492 	struct nfs4_state *state = NULL;
1493 	int status;
1494 
1495 	nfs_fattr_init(fattr);
1496 
1497 	cred = rpcauth_lookupcred(NFS_SERVER(inode)->client->cl_auth, 0);
1498 	if (IS_ERR(cred))
1499 		return PTR_ERR(cred);
1500 
1501 	/* Search for an existing open(O_WRITE) file */
1502 	ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1503 	if (ctx != NULL)
1504 		state = ctx->state;
1505 
1506 	status = nfs4_do_setattr(NFS_SERVER(inode), fattr,
1507 			NFS_FH(inode), sattr, state);
1508 	if (status == 0)
1509 		nfs_setattr_update_inode(inode, sattr);
1510 	if (ctx != NULL)
1511 		put_nfs_open_context(ctx);
1512 	put_rpccred(cred);
1513 	return status;
1514 }
1515 
1516 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1517 		struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1518 {
1519 	int		       status;
1520 	struct nfs_server *server = NFS_SERVER(dir);
1521 	struct nfs4_lookup_arg args = {
1522 		.bitmask = server->attr_bitmask,
1523 		.dir_fh = NFS_FH(dir),
1524 		.name = name,
1525 	};
1526 	struct nfs4_lookup_res res = {
1527 		.server = server,
1528 		.fattr = fattr,
1529 		.fh = fhandle,
1530 	};
1531 	struct rpc_message msg = {
1532 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1533 		.rpc_argp = &args,
1534 		.rpc_resp = &res,
1535 	};
1536 
1537 	nfs_fattr_init(fattr);
1538 
1539 	dprintk("NFS call  lookup %s\n", name->name);
1540 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1541 	dprintk("NFS reply lookup: %d\n", status);
1542 	return status;
1543 }
1544 
1545 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1546 {
1547 	struct nfs4_exception exception = { };
1548 	int err;
1549 	do {
1550 		err = nfs4_handle_exception(NFS_SERVER(dir),
1551 				_nfs4_proc_lookup(dir, name, fhandle, fattr),
1552 				&exception);
1553 	} while (exception.retry);
1554 	return err;
1555 }
1556 
1557 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1558 {
1559 	struct nfs4_accessargs args = {
1560 		.fh = NFS_FH(inode),
1561 	};
1562 	struct nfs4_accessres res = { 0 };
1563 	struct rpc_message msg = {
1564 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1565 		.rpc_argp = &args,
1566 		.rpc_resp = &res,
1567 		.rpc_cred = entry->cred,
1568 	};
1569 	int mode = entry->mask;
1570 	int status;
1571 
1572 	/*
1573 	 * Determine which access bits we want to ask for...
1574 	 */
1575 	if (mode & MAY_READ)
1576 		args.access |= NFS4_ACCESS_READ;
1577 	if (S_ISDIR(inode->i_mode)) {
1578 		if (mode & MAY_WRITE)
1579 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1580 		if (mode & MAY_EXEC)
1581 			args.access |= NFS4_ACCESS_LOOKUP;
1582 	} else {
1583 		if (mode & MAY_WRITE)
1584 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1585 		if (mode & MAY_EXEC)
1586 			args.access |= NFS4_ACCESS_EXECUTE;
1587 	}
1588 	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1589 	if (!status) {
1590 		entry->mask = 0;
1591 		if (res.access & NFS4_ACCESS_READ)
1592 			entry->mask |= MAY_READ;
1593 		if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1594 			entry->mask |= MAY_WRITE;
1595 		if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1596 			entry->mask |= MAY_EXEC;
1597 	}
1598 	return status;
1599 }
1600 
1601 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1602 {
1603 	struct nfs4_exception exception = { };
1604 	int err;
1605 	do {
1606 		err = nfs4_handle_exception(NFS_SERVER(inode),
1607 				_nfs4_proc_access(inode, entry),
1608 				&exception);
1609 	} while (exception.retry);
1610 	return err;
1611 }
1612 
1613 /*
1614  * TODO: For the time being, we don't try to get any attributes
1615  * along with any of the zero-copy operations READ, READDIR,
1616  * READLINK, WRITE.
1617  *
1618  * In the case of the first three, we want to put the GETATTR
1619  * after the read-type operation -- this is because it is hard
1620  * to predict the length of a GETATTR response in v4, and thus
1621  * align the READ data correctly.  This means that the GETATTR
1622  * may end up partially falling into the page cache, and we should
1623  * shift it into the 'tail' of the xdr_buf before processing.
1624  * To do this efficiently, we need to know the total length
1625  * of data received, which doesn't seem to be available outside
1626  * of the RPC layer.
1627  *
1628  * In the case of WRITE, we also want to put the GETATTR after
1629  * the operation -- in this case because we want to make sure
1630  * we get the post-operation mtime and size.  This means that
1631  * we can't use xdr_encode_pages() as written: we need a variant
1632  * of it which would leave room in the 'tail' iovec.
1633  *
1634  * Both of these changes to the XDR layer would in fact be quite
1635  * minor, but I decided to leave them for a subsequent patch.
1636  */
1637 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1638 		unsigned int pgbase, unsigned int pglen)
1639 {
1640 	struct nfs4_readlink args = {
1641 		.fh       = NFS_FH(inode),
1642 		.pgbase	  = pgbase,
1643 		.pglen    = pglen,
1644 		.pages    = &page,
1645 	};
1646 	struct rpc_message msg = {
1647 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1648 		.rpc_argp = &args,
1649 		.rpc_resp = NULL,
1650 	};
1651 
1652 	return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1653 }
1654 
1655 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1656 		unsigned int pgbase, unsigned int pglen)
1657 {
1658 	struct nfs4_exception exception = { };
1659 	int err;
1660 	do {
1661 		err = nfs4_handle_exception(NFS_SERVER(inode),
1662 				_nfs4_proc_readlink(inode, page, pgbase, pglen),
1663 				&exception);
1664 	} while (exception.retry);
1665 	return err;
1666 }
1667 
1668 static int _nfs4_proc_read(struct nfs_read_data *rdata)
1669 {
1670 	int flags = rdata->flags;
1671 	struct inode *inode = rdata->inode;
1672 	struct nfs_fattr *fattr = rdata->res.fattr;
1673 	struct nfs_server *server = NFS_SERVER(inode);
1674 	struct rpc_message msg = {
1675 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_READ],
1676 		.rpc_argp	= &rdata->args,
1677 		.rpc_resp	= &rdata->res,
1678 		.rpc_cred	= rdata->cred,
1679 	};
1680 	unsigned long timestamp = jiffies;
1681 	int status;
1682 
1683 	dprintk("NFS call  read %d @ %Ld\n", rdata->args.count,
1684 			(long long) rdata->args.offset);
1685 
1686 	nfs_fattr_init(fattr);
1687 	status = rpc_call_sync(server->client, &msg, flags);
1688 	if (!status)
1689 		renew_lease(server, timestamp);
1690 	dprintk("NFS reply read: %d\n", status);
1691 	return status;
1692 }
1693 
1694 static int nfs4_proc_read(struct nfs_read_data *rdata)
1695 {
1696 	struct nfs4_exception exception = { };
1697 	int err;
1698 	do {
1699 		err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1700 				_nfs4_proc_read(rdata),
1701 				&exception);
1702 	} while (exception.retry);
1703 	return err;
1704 }
1705 
1706 static int _nfs4_proc_write(struct nfs_write_data *wdata)
1707 {
1708 	int rpcflags = wdata->flags;
1709 	struct inode *inode = wdata->inode;
1710 	struct nfs_fattr *fattr = wdata->res.fattr;
1711 	struct nfs_server *server = NFS_SERVER(inode);
1712 	struct rpc_message msg = {
1713 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_WRITE],
1714 		.rpc_argp	= &wdata->args,
1715 		.rpc_resp	= &wdata->res,
1716 		.rpc_cred	= wdata->cred,
1717 	};
1718 	int status;
1719 
1720 	dprintk("NFS call  write %d @ %Ld\n", wdata->args.count,
1721 			(long long) wdata->args.offset);
1722 
1723 	wdata->args.bitmask = server->attr_bitmask;
1724 	wdata->res.server = server;
1725 	wdata->timestamp = jiffies;
1726 	nfs_fattr_init(fattr);
1727 	status = rpc_call_sync(server->client, &msg, rpcflags);
1728 	dprintk("NFS reply write: %d\n", status);
1729 	if (status < 0)
1730 		return status;
1731 	renew_lease(server, wdata->timestamp);
1732 	nfs_post_op_update_inode(inode, fattr);
1733 	return wdata->res.count;
1734 }
1735 
1736 static int nfs4_proc_write(struct nfs_write_data *wdata)
1737 {
1738 	struct nfs4_exception exception = { };
1739 	int err;
1740 	do {
1741 		err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
1742 				_nfs4_proc_write(wdata),
1743 				&exception);
1744 	} while (exception.retry);
1745 	return err;
1746 }
1747 
1748 static int _nfs4_proc_commit(struct nfs_write_data *cdata)
1749 {
1750 	struct inode *inode = cdata->inode;
1751 	struct nfs_fattr *fattr = cdata->res.fattr;
1752 	struct nfs_server *server = NFS_SERVER(inode);
1753 	struct rpc_message msg = {
1754 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
1755 		.rpc_argp	= &cdata->args,
1756 		.rpc_resp	= &cdata->res,
1757 		.rpc_cred	= cdata->cred,
1758 	};
1759 	int status;
1760 
1761 	dprintk("NFS call  commit %d @ %Ld\n", cdata->args.count,
1762 			(long long) cdata->args.offset);
1763 
1764 	cdata->args.bitmask = server->attr_bitmask;
1765 	cdata->res.server = server;
1766 	cdata->timestamp = jiffies;
1767 	nfs_fattr_init(fattr);
1768 	status = rpc_call_sync(server->client, &msg, 0);
1769 	if (status >= 0)
1770 		renew_lease(server, cdata->timestamp);
1771 	dprintk("NFS reply commit: %d\n", status);
1772 	if (status >= 0)
1773 		nfs_post_op_update_inode(inode, fattr);
1774 	return status;
1775 }
1776 
1777 static int nfs4_proc_commit(struct nfs_write_data *cdata)
1778 {
1779 	struct nfs4_exception exception = { };
1780 	int err;
1781 	do {
1782 		err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
1783 				_nfs4_proc_commit(cdata),
1784 				&exception);
1785 	} while (exception.retry);
1786 	return err;
1787 }
1788 
1789 /*
1790  * Got race?
1791  * We will need to arrange for the VFS layer to provide an atomic open.
1792  * Until then, this create/open method is prone to inefficiency and race
1793  * conditions due to the lookup, create, and open VFS calls from sys_open()
1794  * placed on the wire.
1795  *
1796  * Given the above sorry state of affairs, I'm simply sending an OPEN.
1797  * The file will be opened again in the subsequent VFS open call
1798  * (nfs4_proc_file_open).
1799  *
1800  * The open for read will just hang around to be used by any process that
1801  * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1802  */
1803 
1804 static int
1805 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1806                  int flags, struct nameidata *nd)
1807 {
1808 	struct nfs4_state *state;
1809 	struct rpc_cred *cred;
1810 	int status = 0;
1811 
1812 	cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1813 	if (IS_ERR(cred)) {
1814 		status = PTR_ERR(cred);
1815 		goto out;
1816 	}
1817 	state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1818 	put_rpccred(cred);
1819 	if (IS_ERR(state)) {
1820 		status = PTR_ERR(state);
1821 		goto out;
1822 	}
1823 	d_instantiate(dentry, igrab(state->inode));
1824 	if (flags & O_EXCL) {
1825 		struct nfs_fattr fattr;
1826 		status = nfs4_do_setattr(NFS_SERVER(dir), &fattr,
1827 		                     NFS_FH(state->inode), sattr, state);
1828 		if (status == 0)
1829 			nfs_setattr_update_inode(state->inode, sattr);
1830 	}
1831 	if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1832 		nfs4_intent_set_file(nd, dentry, state);
1833 	else
1834 		nfs4_close_state(state, flags);
1835 out:
1836 	return status;
1837 }
1838 
1839 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1840 {
1841 	struct nfs_server *server = NFS_SERVER(dir);
1842 	struct nfs4_remove_arg args = {
1843 		.fh = NFS_FH(dir),
1844 		.name = name,
1845 		.bitmask = server->attr_bitmask,
1846 	};
1847 	struct nfs_fattr dir_attr;
1848 	struct nfs4_remove_res	res = {
1849 		.server = server,
1850 		.dir_attr = &dir_attr,
1851 	};
1852 	struct rpc_message msg = {
1853 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1854 		.rpc_argp	= &args,
1855 		.rpc_resp	= &res,
1856 	};
1857 	int			status;
1858 
1859 	nfs_fattr_init(res.dir_attr);
1860 	status = rpc_call_sync(server->client, &msg, 0);
1861 	if (status == 0) {
1862 		update_changeattr(dir, &res.cinfo);
1863 		nfs_post_op_update_inode(dir, res.dir_attr);
1864 	}
1865 	return status;
1866 }
1867 
1868 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1869 {
1870 	struct nfs4_exception exception = { };
1871 	int err;
1872 	do {
1873 		err = nfs4_handle_exception(NFS_SERVER(dir),
1874 				_nfs4_proc_remove(dir, name),
1875 				&exception);
1876 	} while (exception.retry);
1877 	return err;
1878 }
1879 
1880 struct unlink_desc {
1881 	struct nfs4_remove_arg	args;
1882 	struct nfs4_remove_res	res;
1883 	struct nfs_fattr dir_attr;
1884 };
1885 
1886 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1887 		struct qstr *name)
1888 {
1889 	struct nfs_server *server = NFS_SERVER(dir->d_inode);
1890 	struct unlink_desc *up;
1891 
1892 	up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
1893 	if (!up)
1894 		return -ENOMEM;
1895 
1896 	up->args.fh = NFS_FH(dir->d_inode);
1897 	up->args.name = name;
1898 	up->args.bitmask = server->attr_bitmask;
1899 	up->res.server = server;
1900 	up->res.dir_attr = &up->dir_attr;
1901 
1902 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1903 	msg->rpc_argp = &up->args;
1904 	msg->rpc_resp = &up->res;
1905 	return 0;
1906 }
1907 
1908 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1909 {
1910 	struct rpc_message *msg = &task->tk_msg;
1911 	struct unlink_desc *up;
1912 
1913 	if (msg->rpc_resp != NULL) {
1914 		up = container_of(msg->rpc_resp, struct unlink_desc, res);
1915 		update_changeattr(dir->d_inode, &up->res.cinfo);
1916 		nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1917 		kfree(up);
1918 		msg->rpc_resp = NULL;
1919 		msg->rpc_argp = NULL;
1920 	}
1921 	return 0;
1922 }
1923 
1924 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1925 		struct inode *new_dir, struct qstr *new_name)
1926 {
1927 	struct nfs_server *server = NFS_SERVER(old_dir);
1928 	struct nfs4_rename_arg arg = {
1929 		.old_dir = NFS_FH(old_dir),
1930 		.new_dir = NFS_FH(new_dir),
1931 		.old_name = old_name,
1932 		.new_name = new_name,
1933 		.bitmask = server->attr_bitmask,
1934 	};
1935 	struct nfs_fattr old_fattr, new_fattr;
1936 	struct nfs4_rename_res res = {
1937 		.server = server,
1938 		.old_fattr = &old_fattr,
1939 		.new_fattr = &new_fattr,
1940 	};
1941 	struct rpc_message msg = {
1942 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
1943 		.rpc_argp = &arg,
1944 		.rpc_resp = &res,
1945 	};
1946 	int			status;
1947 
1948 	nfs_fattr_init(res.old_fattr);
1949 	nfs_fattr_init(res.new_fattr);
1950 	status = rpc_call_sync(server->client, &msg, 0);
1951 
1952 	if (!status) {
1953 		update_changeattr(old_dir, &res.old_cinfo);
1954 		nfs_post_op_update_inode(old_dir, res.old_fattr);
1955 		update_changeattr(new_dir, &res.new_cinfo);
1956 		nfs_post_op_update_inode(new_dir, res.new_fattr);
1957 	}
1958 	return status;
1959 }
1960 
1961 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1962 		struct inode *new_dir, struct qstr *new_name)
1963 {
1964 	struct nfs4_exception exception = { };
1965 	int err;
1966 	do {
1967 		err = nfs4_handle_exception(NFS_SERVER(old_dir),
1968 				_nfs4_proc_rename(old_dir, old_name,
1969 					new_dir, new_name),
1970 				&exception);
1971 	} while (exception.retry);
1972 	return err;
1973 }
1974 
1975 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1976 {
1977 	struct nfs_server *server = NFS_SERVER(inode);
1978 	struct nfs4_link_arg arg = {
1979 		.fh     = NFS_FH(inode),
1980 		.dir_fh = NFS_FH(dir),
1981 		.name   = name,
1982 		.bitmask = server->attr_bitmask,
1983 	};
1984 	struct nfs_fattr fattr, dir_attr;
1985 	struct nfs4_link_res res = {
1986 		.server = server,
1987 		.fattr = &fattr,
1988 		.dir_attr = &dir_attr,
1989 	};
1990 	struct rpc_message msg = {
1991 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
1992 		.rpc_argp = &arg,
1993 		.rpc_resp = &res,
1994 	};
1995 	int			status;
1996 
1997 	nfs_fattr_init(res.fattr);
1998 	nfs_fattr_init(res.dir_attr);
1999 	status = rpc_call_sync(server->client, &msg, 0);
2000 	if (!status) {
2001 		update_changeattr(dir, &res.cinfo);
2002 		nfs_post_op_update_inode(dir, res.dir_attr);
2003 		nfs_refresh_inode(inode, res.fattr);
2004 	}
2005 
2006 	return status;
2007 }
2008 
2009 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2010 {
2011 	struct nfs4_exception exception = { };
2012 	int err;
2013 	do {
2014 		err = nfs4_handle_exception(NFS_SERVER(inode),
2015 				_nfs4_proc_link(inode, dir, name),
2016 				&exception);
2017 	} while (exception.retry);
2018 	return err;
2019 }
2020 
2021 static int _nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2022 		struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2023 		struct nfs_fattr *fattr)
2024 {
2025 	struct nfs_server *server = NFS_SERVER(dir);
2026 	struct nfs_fattr dir_fattr;
2027 	struct nfs4_create_arg arg = {
2028 		.dir_fh = NFS_FH(dir),
2029 		.server = server,
2030 		.name = name,
2031 		.attrs = sattr,
2032 		.ftype = NF4LNK,
2033 		.bitmask = server->attr_bitmask,
2034 	};
2035 	struct nfs4_create_res res = {
2036 		.server = server,
2037 		.fh = fhandle,
2038 		.fattr = fattr,
2039 		.dir_fattr = &dir_fattr,
2040 	};
2041 	struct rpc_message msg = {
2042 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2043 		.rpc_argp = &arg,
2044 		.rpc_resp = &res,
2045 	};
2046 	int			status;
2047 
2048 	if (path->len > NFS4_MAXPATHLEN)
2049 		return -ENAMETOOLONG;
2050 	arg.u.symlink = path;
2051 	nfs_fattr_init(fattr);
2052 	nfs_fattr_init(&dir_fattr);
2053 
2054 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2055 	if (!status)
2056 		update_changeattr(dir, &res.dir_cinfo);
2057 	nfs_post_op_update_inode(dir, res.dir_fattr);
2058 	return status;
2059 }
2060 
2061 static int nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2062 		struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2063 		struct nfs_fattr *fattr)
2064 {
2065 	struct nfs4_exception exception = { };
2066 	int err;
2067 	do {
2068 		err = nfs4_handle_exception(NFS_SERVER(dir),
2069 				_nfs4_proc_symlink(dir, name, path, sattr,
2070 					fhandle, fattr),
2071 				&exception);
2072 	} while (exception.retry);
2073 	return err;
2074 }
2075 
2076 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2077 		struct iattr *sattr)
2078 {
2079 	struct nfs_server *server = NFS_SERVER(dir);
2080 	struct nfs_fh fhandle;
2081 	struct nfs_fattr fattr, dir_fattr;
2082 	struct nfs4_create_arg arg = {
2083 		.dir_fh = NFS_FH(dir),
2084 		.server = server,
2085 		.name = &dentry->d_name,
2086 		.attrs = sattr,
2087 		.ftype = NF4DIR,
2088 		.bitmask = server->attr_bitmask,
2089 	};
2090 	struct nfs4_create_res res = {
2091 		.server = server,
2092 		.fh = &fhandle,
2093 		.fattr = &fattr,
2094 		.dir_fattr = &dir_fattr,
2095 	};
2096 	struct rpc_message msg = {
2097 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2098 		.rpc_argp = &arg,
2099 		.rpc_resp = &res,
2100 	};
2101 	int			status;
2102 
2103 	nfs_fattr_init(&fattr);
2104 	nfs_fattr_init(&dir_fattr);
2105 
2106 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2107 	if (!status) {
2108 		update_changeattr(dir, &res.dir_cinfo);
2109 		nfs_post_op_update_inode(dir, res.dir_fattr);
2110 		status = nfs_instantiate(dentry, &fhandle, &fattr);
2111 	}
2112 	return status;
2113 }
2114 
2115 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2116 		struct iattr *sattr)
2117 {
2118 	struct nfs4_exception exception = { };
2119 	int err;
2120 	do {
2121 		err = nfs4_handle_exception(NFS_SERVER(dir),
2122 				_nfs4_proc_mkdir(dir, dentry, sattr),
2123 				&exception);
2124 	} while (exception.retry);
2125 	return err;
2126 }
2127 
2128 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2129                   u64 cookie, struct page *page, unsigned int count, int plus)
2130 {
2131 	struct inode		*dir = dentry->d_inode;
2132 	struct nfs4_readdir_arg args = {
2133 		.fh = NFS_FH(dir),
2134 		.pages = &page,
2135 		.pgbase = 0,
2136 		.count = count,
2137 		.bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2138 	};
2139 	struct nfs4_readdir_res res;
2140 	struct rpc_message msg = {
2141 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2142 		.rpc_argp = &args,
2143 		.rpc_resp = &res,
2144 		.rpc_cred = cred,
2145 	};
2146 	int			status;
2147 
2148 	dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2149 			dentry->d_parent->d_name.name,
2150 			dentry->d_name.name,
2151 			(unsigned long long)cookie);
2152 	lock_kernel();
2153 	nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2154 	res.pgbase = args.pgbase;
2155 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2156 	if (status == 0)
2157 		memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2158 	unlock_kernel();
2159 	dprintk("%s: returns %d\n", __FUNCTION__, status);
2160 	return status;
2161 }
2162 
2163 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2164                   u64 cookie, struct page *page, unsigned int count, int plus)
2165 {
2166 	struct nfs4_exception exception = { };
2167 	int err;
2168 	do {
2169 		err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2170 				_nfs4_proc_readdir(dentry, cred, cookie,
2171 					page, count, plus),
2172 				&exception);
2173 	} while (exception.retry);
2174 	return err;
2175 }
2176 
2177 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2178 		struct iattr *sattr, dev_t rdev)
2179 {
2180 	struct nfs_server *server = NFS_SERVER(dir);
2181 	struct nfs_fh fh;
2182 	struct nfs_fattr fattr, dir_fattr;
2183 	struct nfs4_create_arg arg = {
2184 		.dir_fh = NFS_FH(dir),
2185 		.server = server,
2186 		.name = &dentry->d_name,
2187 		.attrs = sattr,
2188 		.bitmask = server->attr_bitmask,
2189 	};
2190 	struct nfs4_create_res res = {
2191 		.server = server,
2192 		.fh = &fh,
2193 		.fattr = &fattr,
2194 		.dir_fattr = &dir_fattr,
2195 	};
2196 	struct rpc_message msg = {
2197 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2198 		.rpc_argp = &arg,
2199 		.rpc_resp = &res,
2200 	};
2201 	int			status;
2202 	int                     mode = sattr->ia_mode;
2203 
2204 	nfs_fattr_init(&fattr);
2205 	nfs_fattr_init(&dir_fattr);
2206 
2207 	BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2208 	BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2209 	if (S_ISFIFO(mode))
2210 		arg.ftype = NF4FIFO;
2211 	else if (S_ISBLK(mode)) {
2212 		arg.ftype = NF4BLK;
2213 		arg.u.device.specdata1 = MAJOR(rdev);
2214 		arg.u.device.specdata2 = MINOR(rdev);
2215 	}
2216 	else if (S_ISCHR(mode)) {
2217 		arg.ftype = NF4CHR;
2218 		arg.u.device.specdata1 = MAJOR(rdev);
2219 		arg.u.device.specdata2 = MINOR(rdev);
2220 	}
2221 	else
2222 		arg.ftype = NF4SOCK;
2223 
2224 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2225 	if (status == 0) {
2226 		update_changeattr(dir, &res.dir_cinfo);
2227 		nfs_post_op_update_inode(dir, res.dir_fattr);
2228 		status = nfs_instantiate(dentry, &fh, &fattr);
2229 	}
2230 	return status;
2231 }
2232 
2233 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2234 		struct iattr *sattr, dev_t rdev)
2235 {
2236 	struct nfs4_exception exception = { };
2237 	int err;
2238 	do {
2239 		err = nfs4_handle_exception(NFS_SERVER(dir),
2240 				_nfs4_proc_mknod(dir, dentry, sattr, rdev),
2241 				&exception);
2242 	} while (exception.retry);
2243 	return err;
2244 }
2245 
2246 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2247 		 struct nfs_fsstat *fsstat)
2248 {
2249 	struct nfs4_statfs_arg args = {
2250 		.fh = fhandle,
2251 		.bitmask = server->attr_bitmask,
2252 	};
2253 	struct rpc_message msg = {
2254 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2255 		.rpc_argp = &args,
2256 		.rpc_resp = fsstat,
2257 	};
2258 
2259 	nfs_fattr_init(fsstat->fattr);
2260 	return rpc_call_sync(server->client, &msg, 0);
2261 }
2262 
2263 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2264 {
2265 	struct nfs4_exception exception = { };
2266 	int err;
2267 	do {
2268 		err = nfs4_handle_exception(server,
2269 				_nfs4_proc_statfs(server, fhandle, fsstat),
2270 				&exception);
2271 	} while (exception.retry);
2272 	return err;
2273 }
2274 
2275 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2276 		struct nfs_fsinfo *fsinfo)
2277 {
2278 	struct nfs4_fsinfo_arg args = {
2279 		.fh = fhandle,
2280 		.bitmask = server->attr_bitmask,
2281 	};
2282 	struct rpc_message msg = {
2283 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2284 		.rpc_argp = &args,
2285 		.rpc_resp = fsinfo,
2286 	};
2287 
2288 	return rpc_call_sync(server->client, &msg, 0);
2289 }
2290 
2291 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2292 {
2293 	struct nfs4_exception exception = { };
2294 	int err;
2295 
2296 	do {
2297 		err = nfs4_handle_exception(server,
2298 				_nfs4_do_fsinfo(server, fhandle, fsinfo),
2299 				&exception);
2300 	} while (exception.retry);
2301 	return err;
2302 }
2303 
2304 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2305 {
2306 	nfs_fattr_init(fsinfo->fattr);
2307 	return nfs4_do_fsinfo(server, fhandle, fsinfo);
2308 }
2309 
2310 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2311 		struct nfs_pathconf *pathconf)
2312 {
2313 	struct nfs4_pathconf_arg args = {
2314 		.fh = fhandle,
2315 		.bitmask = server->attr_bitmask,
2316 	};
2317 	struct rpc_message msg = {
2318 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2319 		.rpc_argp = &args,
2320 		.rpc_resp = pathconf,
2321 	};
2322 
2323 	/* None of the pathconf attributes are mandatory to implement */
2324 	if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2325 		memset(pathconf, 0, sizeof(*pathconf));
2326 		return 0;
2327 	}
2328 
2329 	nfs_fattr_init(pathconf->fattr);
2330 	return rpc_call_sync(server->client, &msg, 0);
2331 }
2332 
2333 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2334 		struct nfs_pathconf *pathconf)
2335 {
2336 	struct nfs4_exception exception = { };
2337 	int err;
2338 
2339 	do {
2340 		err = nfs4_handle_exception(server,
2341 				_nfs4_proc_pathconf(server, fhandle, pathconf),
2342 				&exception);
2343 	} while (exception.retry);
2344 	return err;
2345 }
2346 
2347 static void nfs4_read_done(struct rpc_task *task, void *calldata)
2348 {
2349 	struct nfs_read_data *data = calldata;
2350 	struct inode *inode = data->inode;
2351 
2352 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2353 		rpc_restart_call(task);
2354 		return;
2355 	}
2356 	if (task->tk_status > 0)
2357 		renew_lease(NFS_SERVER(inode), data->timestamp);
2358 	/* Call back common NFS readpage processing */
2359 	nfs_readpage_result(task, calldata);
2360 }
2361 
2362 static const struct rpc_call_ops nfs4_read_ops = {
2363 	.rpc_call_done = nfs4_read_done,
2364 	.rpc_release = nfs_readdata_release,
2365 };
2366 
2367 static void
2368 nfs4_proc_read_setup(struct nfs_read_data *data)
2369 {
2370 	struct rpc_task	*task = &data->task;
2371 	struct rpc_message msg = {
2372 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2373 		.rpc_argp = &data->args,
2374 		.rpc_resp = &data->res,
2375 		.rpc_cred = data->cred,
2376 	};
2377 	struct inode *inode = data->inode;
2378 	int flags;
2379 
2380 	data->timestamp   = jiffies;
2381 
2382 	/* N.B. Do we need to test? Never called for swapfile inode */
2383 	flags = RPC_TASK_ASYNC | (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
2384 
2385 	/* Finalize the task. */
2386 	rpc_init_task(task, NFS_CLIENT(inode), flags, &nfs4_read_ops, data);
2387 	rpc_call_setup(task, &msg, 0);
2388 }
2389 
2390 static void nfs4_write_done(struct rpc_task *task, void *calldata)
2391 {
2392 	struct nfs_write_data *data = calldata;
2393 	struct inode *inode = data->inode;
2394 
2395 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2396 		rpc_restart_call(task);
2397 		return;
2398 	}
2399 	if (task->tk_status >= 0) {
2400 		renew_lease(NFS_SERVER(inode), data->timestamp);
2401 		nfs_post_op_update_inode(inode, data->res.fattr);
2402 	}
2403 	/* Call back common NFS writeback processing */
2404 	nfs_writeback_done(task, calldata);
2405 }
2406 
2407 static const struct rpc_call_ops nfs4_write_ops = {
2408 	.rpc_call_done = nfs4_write_done,
2409 	.rpc_release = nfs_writedata_release,
2410 };
2411 
2412 static void
2413 nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2414 {
2415 	struct rpc_task	*task = &data->task;
2416 	struct rpc_message msg = {
2417 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2418 		.rpc_argp = &data->args,
2419 		.rpc_resp = &data->res,
2420 		.rpc_cred = data->cred,
2421 	};
2422 	struct inode *inode = data->inode;
2423 	struct nfs_server *server = NFS_SERVER(inode);
2424 	int stable;
2425 	int flags;
2426 
2427 	if (how & FLUSH_STABLE) {
2428 		if (!NFS_I(inode)->ncommit)
2429 			stable = NFS_FILE_SYNC;
2430 		else
2431 			stable = NFS_DATA_SYNC;
2432 	} else
2433 		stable = NFS_UNSTABLE;
2434 	data->args.stable = stable;
2435 	data->args.bitmask = server->attr_bitmask;
2436 	data->res.server = server;
2437 
2438 	data->timestamp   = jiffies;
2439 
2440 	/* Set the initial flags for the task.  */
2441 	flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
2442 
2443 	/* Finalize the task. */
2444 	rpc_init_task(task, NFS_CLIENT(inode), flags, &nfs4_write_ops, data);
2445 	rpc_call_setup(task, &msg, 0);
2446 }
2447 
2448 static void nfs4_commit_done(struct rpc_task *task, void *calldata)
2449 {
2450 	struct nfs_write_data *data = calldata;
2451 	struct inode *inode = data->inode;
2452 
2453 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2454 		rpc_restart_call(task);
2455 		return;
2456 	}
2457 	if (task->tk_status >= 0)
2458 		nfs_post_op_update_inode(inode, data->res.fattr);
2459 	/* Call back common NFS writeback processing */
2460 	nfs_commit_done(task, calldata);
2461 }
2462 
2463 static const struct rpc_call_ops nfs4_commit_ops = {
2464 	.rpc_call_done = nfs4_commit_done,
2465 	.rpc_release = nfs_commit_release,
2466 };
2467 
2468 static void
2469 nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2470 {
2471 	struct rpc_task	*task = &data->task;
2472 	struct rpc_message msg = {
2473 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2474 		.rpc_argp = &data->args,
2475 		.rpc_resp = &data->res,
2476 		.rpc_cred = data->cred,
2477 	};
2478 	struct inode *inode = data->inode;
2479 	struct nfs_server *server = NFS_SERVER(inode);
2480 	int flags;
2481 
2482 	data->args.bitmask = server->attr_bitmask;
2483 	data->res.server = server;
2484 
2485 	/* Set the initial flags for the task.  */
2486 	flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
2487 
2488 	/* Finalize the task. */
2489 	rpc_init_task(task, NFS_CLIENT(inode), flags, &nfs4_commit_ops, data);
2490 	rpc_call_setup(task, &msg, 0);
2491 }
2492 
2493 /*
2494  * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2495  * standalone procedure for queueing an asynchronous RENEW.
2496  */
2497 static void nfs4_renew_done(struct rpc_task *task, void *data)
2498 {
2499 	struct nfs4_client *clp = (struct nfs4_client *)task->tk_msg.rpc_argp;
2500 	unsigned long timestamp = (unsigned long)data;
2501 
2502 	if (task->tk_status < 0) {
2503 		switch (task->tk_status) {
2504 			case -NFS4ERR_STALE_CLIENTID:
2505 			case -NFS4ERR_EXPIRED:
2506 			case -NFS4ERR_CB_PATH_DOWN:
2507 				nfs4_schedule_state_recovery(clp);
2508 		}
2509 		return;
2510 	}
2511 	spin_lock(&clp->cl_lock);
2512 	if (time_before(clp->cl_last_renewal,timestamp))
2513 		clp->cl_last_renewal = timestamp;
2514 	spin_unlock(&clp->cl_lock);
2515 }
2516 
2517 static const struct rpc_call_ops nfs4_renew_ops = {
2518 	.rpc_call_done = nfs4_renew_done,
2519 };
2520 
2521 int nfs4_proc_async_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2522 {
2523 	struct rpc_message msg = {
2524 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2525 		.rpc_argp	= clp,
2526 		.rpc_cred	= cred,
2527 	};
2528 
2529 	return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2530 			&nfs4_renew_ops, (void *)jiffies);
2531 }
2532 
2533 int nfs4_proc_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2534 {
2535 	struct rpc_message msg = {
2536 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2537 		.rpc_argp	= clp,
2538 		.rpc_cred	= cred,
2539 	};
2540 	unsigned long now = jiffies;
2541 	int status;
2542 
2543 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2544 	if (status < 0)
2545 		return status;
2546 	spin_lock(&clp->cl_lock);
2547 	if (time_before(clp->cl_last_renewal,now))
2548 		clp->cl_last_renewal = now;
2549 	spin_unlock(&clp->cl_lock);
2550 	return 0;
2551 }
2552 
2553 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2554 {
2555 	return (server->caps & NFS_CAP_ACLS)
2556 		&& (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2557 		&& (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2558 }
2559 
2560 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2561  * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2562  * the stack.
2563  */
2564 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2565 
2566 static void buf_to_pages(const void *buf, size_t buflen,
2567 		struct page **pages, unsigned int *pgbase)
2568 {
2569 	const void *p = buf;
2570 
2571 	*pgbase = offset_in_page(buf);
2572 	p -= *pgbase;
2573 	while (p < buf + buflen) {
2574 		*(pages++) = virt_to_page(p);
2575 		p += PAGE_CACHE_SIZE;
2576 	}
2577 }
2578 
2579 struct nfs4_cached_acl {
2580 	int cached;
2581 	size_t len;
2582 	char data[0];
2583 };
2584 
2585 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2586 {
2587 	struct nfs_inode *nfsi = NFS_I(inode);
2588 
2589 	spin_lock(&inode->i_lock);
2590 	kfree(nfsi->nfs4_acl);
2591 	nfsi->nfs4_acl = acl;
2592 	spin_unlock(&inode->i_lock);
2593 }
2594 
2595 static void nfs4_zap_acl_attr(struct inode *inode)
2596 {
2597 	nfs4_set_cached_acl(inode, NULL);
2598 }
2599 
2600 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2601 {
2602 	struct nfs_inode *nfsi = NFS_I(inode);
2603 	struct nfs4_cached_acl *acl;
2604 	int ret = -ENOENT;
2605 
2606 	spin_lock(&inode->i_lock);
2607 	acl = nfsi->nfs4_acl;
2608 	if (acl == NULL)
2609 		goto out;
2610 	if (buf == NULL) /* user is just asking for length */
2611 		goto out_len;
2612 	if (acl->cached == 0)
2613 		goto out;
2614 	ret = -ERANGE; /* see getxattr(2) man page */
2615 	if (acl->len > buflen)
2616 		goto out;
2617 	memcpy(buf, acl->data, acl->len);
2618 out_len:
2619 	ret = acl->len;
2620 out:
2621 	spin_unlock(&inode->i_lock);
2622 	return ret;
2623 }
2624 
2625 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2626 {
2627 	struct nfs4_cached_acl *acl;
2628 
2629 	if (buf && acl_len <= PAGE_SIZE) {
2630 		acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2631 		if (acl == NULL)
2632 			goto out;
2633 		acl->cached = 1;
2634 		memcpy(acl->data, buf, acl_len);
2635 	} else {
2636 		acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2637 		if (acl == NULL)
2638 			goto out;
2639 		acl->cached = 0;
2640 	}
2641 	acl->len = acl_len;
2642 out:
2643 	nfs4_set_cached_acl(inode, acl);
2644 }
2645 
2646 static inline ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2647 {
2648 	struct page *pages[NFS4ACL_MAXPAGES];
2649 	struct nfs_getaclargs args = {
2650 		.fh = NFS_FH(inode),
2651 		.acl_pages = pages,
2652 		.acl_len = buflen,
2653 	};
2654 	size_t resp_len = buflen;
2655 	void *resp_buf;
2656 	struct rpc_message msg = {
2657 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2658 		.rpc_argp = &args,
2659 		.rpc_resp = &resp_len,
2660 	};
2661 	struct page *localpage = NULL;
2662 	int ret;
2663 
2664 	if (buflen < PAGE_SIZE) {
2665 		/* As long as we're doing a round trip to the server anyway,
2666 		 * let's be prepared for a page of acl data. */
2667 		localpage = alloc_page(GFP_KERNEL);
2668 		resp_buf = page_address(localpage);
2669 		if (localpage == NULL)
2670 			return -ENOMEM;
2671 		args.acl_pages[0] = localpage;
2672 		args.acl_pgbase = 0;
2673 		resp_len = args.acl_len = PAGE_SIZE;
2674 	} else {
2675 		resp_buf = buf;
2676 		buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2677 	}
2678 	ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2679 	if (ret)
2680 		goto out_free;
2681 	if (resp_len > args.acl_len)
2682 		nfs4_write_cached_acl(inode, NULL, resp_len);
2683 	else
2684 		nfs4_write_cached_acl(inode, resp_buf, resp_len);
2685 	if (buf) {
2686 		ret = -ERANGE;
2687 		if (resp_len > buflen)
2688 			goto out_free;
2689 		if (localpage)
2690 			memcpy(buf, resp_buf, resp_len);
2691 	}
2692 	ret = resp_len;
2693 out_free:
2694 	if (localpage)
2695 		__free_page(localpage);
2696 	return ret;
2697 }
2698 
2699 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2700 {
2701 	struct nfs_server *server = NFS_SERVER(inode);
2702 	int ret;
2703 
2704 	if (!nfs4_server_supports_acls(server))
2705 		return -EOPNOTSUPP;
2706 	ret = nfs_revalidate_inode(server, inode);
2707 	if (ret < 0)
2708 		return ret;
2709 	ret = nfs4_read_cached_acl(inode, buf, buflen);
2710 	if (ret != -ENOENT)
2711 		return ret;
2712 	return nfs4_get_acl_uncached(inode, buf, buflen);
2713 }
2714 
2715 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2716 {
2717 	struct nfs_server *server = NFS_SERVER(inode);
2718 	struct page *pages[NFS4ACL_MAXPAGES];
2719 	struct nfs_setaclargs arg = {
2720 		.fh		= NFS_FH(inode),
2721 		.acl_pages	= pages,
2722 		.acl_len	= buflen,
2723 	};
2724 	struct rpc_message msg = {
2725 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2726 		.rpc_argp	= &arg,
2727 		.rpc_resp	= NULL,
2728 	};
2729 	int ret;
2730 
2731 	if (!nfs4_server_supports_acls(server))
2732 		return -EOPNOTSUPP;
2733 	nfs_inode_return_delegation(inode);
2734 	buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2735 	ret = rpc_call_sync(NFS_SERVER(inode)->client, &msg, 0);
2736 	if (ret == 0)
2737 		nfs4_write_cached_acl(inode, buf, buflen);
2738 	return ret;
2739 }
2740 
2741 static int
2742 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2743 {
2744 	struct nfs4_client *clp = server->nfs4_state;
2745 
2746 	if (!clp || task->tk_status >= 0)
2747 		return 0;
2748 	switch(task->tk_status) {
2749 		case -NFS4ERR_STALE_CLIENTID:
2750 		case -NFS4ERR_STALE_STATEID:
2751 		case -NFS4ERR_EXPIRED:
2752 			rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2753 			nfs4_schedule_state_recovery(clp);
2754 			if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2755 				rpc_wake_up_task(task);
2756 			task->tk_status = 0;
2757 			return -EAGAIN;
2758 		case -NFS4ERR_GRACE:
2759 		case -NFS4ERR_DELAY:
2760 			rpc_delay(task, NFS4_POLL_RETRY_MAX);
2761 			task->tk_status = 0;
2762 			return -EAGAIN;
2763 		case -NFS4ERR_OLD_STATEID:
2764 			task->tk_status = 0;
2765 			return -EAGAIN;
2766 	}
2767 	task->tk_status = nfs4_map_errors(task->tk_status);
2768 	return 0;
2769 }
2770 
2771 static int nfs4_wait_bit_interruptible(void *word)
2772 {
2773 	if (signal_pending(current))
2774 		return -ERESTARTSYS;
2775 	schedule();
2776 	return 0;
2777 }
2778 
2779 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp)
2780 {
2781 	sigset_t oldset;
2782 	int res;
2783 
2784 	might_sleep();
2785 
2786 	rpc_clnt_sigmask(clnt, &oldset);
2787 	res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2788 			nfs4_wait_bit_interruptible,
2789 			TASK_INTERRUPTIBLE);
2790 	rpc_clnt_sigunmask(clnt, &oldset);
2791 	return res;
2792 }
2793 
2794 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2795 {
2796 	sigset_t oldset;
2797 	int res = 0;
2798 
2799 	might_sleep();
2800 
2801 	if (*timeout <= 0)
2802 		*timeout = NFS4_POLL_RETRY_MIN;
2803 	if (*timeout > NFS4_POLL_RETRY_MAX)
2804 		*timeout = NFS4_POLL_RETRY_MAX;
2805 	rpc_clnt_sigmask(clnt, &oldset);
2806 	if (clnt->cl_intr) {
2807 		schedule_timeout_interruptible(*timeout);
2808 		if (signalled())
2809 			res = -ERESTARTSYS;
2810 	} else
2811 		schedule_timeout_uninterruptible(*timeout);
2812 	rpc_clnt_sigunmask(clnt, &oldset);
2813 	*timeout <<= 1;
2814 	return res;
2815 }
2816 
2817 /* This is the error handling routine for processes that are allowed
2818  * to sleep.
2819  */
2820 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2821 {
2822 	struct nfs4_client *clp = server->nfs4_state;
2823 	int ret = errorcode;
2824 
2825 	exception->retry = 0;
2826 	switch(errorcode) {
2827 		case 0:
2828 			return 0;
2829 		case -NFS4ERR_STALE_CLIENTID:
2830 		case -NFS4ERR_STALE_STATEID:
2831 		case -NFS4ERR_EXPIRED:
2832 			nfs4_schedule_state_recovery(clp);
2833 			ret = nfs4_wait_clnt_recover(server->client, clp);
2834 			if (ret == 0)
2835 				exception->retry = 1;
2836 			break;
2837 		case -NFS4ERR_GRACE:
2838 		case -NFS4ERR_DELAY:
2839 			ret = nfs4_delay(server->client, &exception->timeout);
2840 			if (ret != 0)
2841 				break;
2842 		case -NFS4ERR_OLD_STATEID:
2843 			exception->retry = 1;
2844 	}
2845 	/* We failed to handle the error */
2846 	return nfs4_map_errors(ret);
2847 }
2848 
2849 int nfs4_proc_setclientid(struct nfs4_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2850 {
2851 	nfs4_verifier sc_verifier;
2852 	struct nfs4_setclientid setclientid = {
2853 		.sc_verifier = &sc_verifier,
2854 		.sc_prog = program,
2855 	};
2856 	struct rpc_message msg = {
2857 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2858 		.rpc_argp = &setclientid,
2859 		.rpc_resp = clp,
2860 		.rpc_cred = cred,
2861 	};
2862 	u32 *p;
2863 	int loop = 0;
2864 	int status;
2865 
2866 	p = (u32*)sc_verifier.data;
2867 	*p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2868 	*p = htonl((u32)clp->cl_boot_time.tv_nsec);
2869 
2870 	for(;;) {
2871 		setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2872 				sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2873 				clp->cl_ipaddr, NIPQUAD(clp->cl_addr.s_addr),
2874 				cred->cr_ops->cr_name,
2875 				clp->cl_id_uniquifier);
2876 		setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2877 				sizeof(setclientid.sc_netid), "tcp");
2878 		setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2879 				sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2880 				clp->cl_ipaddr, port >> 8, port & 255);
2881 
2882 		status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2883 		if (status != -NFS4ERR_CLID_INUSE)
2884 			break;
2885 		if (signalled())
2886 			break;
2887 		if (loop++ & 1)
2888 			ssleep(clp->cl_lease_time + 1);
2889 		else
2890 			if (++clp->cl_id_uniquifier == 0)
2891 				break;
2892 	}
2893 	return status;
2894 }
2895 
2896 int
2897 nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2898 {
2899 	struct nfs_fsinfo fsinfo;
2900 	struct rpc_message msg = {
2901 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2902 		.rpc_argp = clp,
2903 		.rpc_resp = &fsinfo,
2904 		.rpc_cred = cred,
2905 	};
2906 	unsigned long now;
2907 	int status;
2908 
2909 	now = jiffies;
2910 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2911 	if (status == 0) {
2912 		spin_lock(&clp->cl_lock);
2913 		clp->cl_lease_time = fsinfo.lease_time * HZ;
2914 		clp->cl_last_renewal = now;
2915 		clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2916 		spin_unlock(&clp->cl_lock);
2917 	}
2918 	return status;
2919 }
2920 
2921 struct nfs4_delegreturndata {
2922 	struct nfs4_delegreturnargs args;
2923 	struct nfs4_delegreturnres res;
2924 	struct nfs_fh fh;
2925 	nfs4_stateid stateid;
2926 	struct rpc_cred *cred;
2927 	unsigned long timestamp;
2928 	struct nfs_fattr fattr;
2929 	int rpc_status;
2930 };
2931 
2932 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
2933 {
2934 	struct nfs4_delegreturndata *data = calldata;
2935 	struct rpc_message msg = {
2936 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2937 		.rpc_argp = &data->args,
2938 		.rpc_resp = &data->res,
2939 		.rpc_cred = data->cred,
2940 	};
2941 	nfs_fattr_init(data->res.fattr);
2942 	rpc_call_setup(task, &msg, 0);
2943 }
2944 
2945 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
2946 {
2947 	struct nfs4_delegreturndata *data = calldata;
2948 	data->rpc_status = task->tk_status;
2949 	if (data->rpc_status == 0)
2950 		renew_lease(data->res.server, data->timestamp);
2951 }
2952 
2953 static void nfs4_delegreturn_release(void *calldata)
2954 {
2955 	struct nfs4_delegreturndata *data = calldata;
2956 
2957 	put_rpccred(data->cred);
2958 	kfree(calldata);
2959 }
2960 
2961 const static struct rpc_call_ops nfs4_delegreturn_ops = {
2962 	.rpc_call_prepare = nfs4_delegreturn_prepare,
2963 	.rpc_call_done = nfs4_delegreturn_done,
2964 	.rpc_release = nfs4_delegreturn_release,
2965 };
2966 
2967 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2968 {
2969 	struct nfs4_delegreturndata *data;
2970 	struct nfs_server *server = NFS_SERVER(inode);
2971 	struct rpc_task *task;
2972 	int status;
2973 
2974 	data = kmalloc(sizeof(*data), GFP_KERNEL);
2975 	if (data == NULL)
2976 		return -ENOMEM;
2977 	data->args.fhandle = &data->fh;
2978 	data->args.stateid = &data->stateid;
2979 	data->args.bitmask = server->attr_bitmask;
2980 	nfs_copy_fh(&data->fh, NFS_FH(inode));
2981 	memcpy(&data->stateid, stateid, sizeof(data->stateid));
2982 	data->res.fattr = &data->fattr;
2983 	data->res.server = server;
2984 	data->cred = get_rpccred(cred);
2985 	data->timestamp = jiffies;
2986 	data->rpc_status = 0;
2987 
2988 	task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
2989 	if (IS_ERR(task)) {
2990 		nfs4_delegreturn_release(data);
2991 		return PTR_ERR(task);
2992 	}
2993 	status = nfs4_wait_for_completion_rpc_task(task);
2994 	if (status == 0) {
2995 		status = data->rpc_status;
2996 		if (status == 0)
2997 			nfs_post_op_update_inode(inode, &data->fattr);
2998 	}
2999 	rpc_release_task(task);
3000 	return status;
3001 }
3002 
3003 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3004 {
3005 	struct nfs_server *server = NFS_SERVER(inode);
3006 	struct nfs4_exception exception = { };
3007 	int err;
3008 	do {
3009 		err = _nfs4_proc_delegreturn(inode, cred, stateid);
3010 		switch (err) {
3011 			case -NFS4ERR_STALE_STATEID:
3012 			case -NFS4ERR_EXPIRED:
3013 				nfs4_schedule_state_recovery(server->nfs4_state);
3014 			case 0:
3015 				return 0;
3016 		}
3017 		err = nfs4_handle_exception(server, err, &exception);
3018 	} while (exception.retry);
3019 	return err;
3020 }
3021 
3022 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3023 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3024 
3025 /*
3026  * sleep, with exponential backoff, and retry the LOCK operation.
3027  */
3028 static unsigned long
3029 nfs4_set_lock_task_retry(unsigned long timeout)
3030 {
3031 	schedule_timeout_interruptible(timeout);
3032 	timeout <<= 1;
3033 	if (timeout > NFS4_LOCK_MAXTIMEOUT)
3034 		return NFS4_LOCK_MAXTIMEOUT;
3035 	return timeout;
3036 }
3037 
3038 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3039 {
3040 	struct inode *inode = state->inode;
3041 	struct nfs_server *server = NFS_SERVER(inode);
3042 	struct nfs4_client *clp = server->nfs4_state;
3043 	struct nfs_lockt_args arg = {
3044 		.fh = NFS_FH(inode),
3045 		.fl = request,
3046 	};
3047 	struct nfs_lockt_res res = {
3048 		.denied = request,
3049 	};
3050 	struct rpc_message msg = {
3051 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3052 		.rpc_argp       = &arg,
3053 		.rpc_resp       = &res,
3054 		.rpc_cred	= state->owner->so_cred,
3055 	};
3056 	struct nfs4_lock_state *lsp;
3057 	int status;
3058 
3059 	down_read(&clp->cl_sem);
3060 	arg.lock_owner.clientid = clp->cl_clientid;
3061 	status = nfs4_set_lock_state(state, request);
3062 	if (status != 0)
3063 		goto out;
3064 	lsp = request->fl_u.nfs4_fl.owner;
3065 	arg.lock_owner.id = lsp->ls_id;
3066 	status = rpc_call_sync(server->client, &msg, 0);
3067 	switch (status) {
3068 		case 0:
3069 			request->fl_type = F_UNLCK;
3070 			break;
3071 		case -NFS4ERR_DENIED:
3072 			status = 0;
3073 	}
3074 out:
3075 	up_read(&clp->cl_sem);
3076 	return status;
3077 }
3078 
3079 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3080 {
3081 	struct nfs4_exception exception = { };
3082 	int err;
3083 
3084 	do {
3085 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3086 				_nfs4_proc_getlk(state, cmd, request),
3087 				&exception);
3088 	} while (exception.retry);
3089 	return err;
3090 }
3091 
3092 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3093 {
3094 	int res = 0;
3095 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3096 		case FL_POSIX:
3097 			res = posix_lock_file_wait(file, fl);
3098 			break;
3099 		case FL_FLOCK:
3100 			res = flock_lock_file_wait(file, fl);
3101 			break;
3102 		default:
3103 			BUG();
3104 	}
3105 	if (res < 0)
3106 		printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n",
3107 				__FUNCTION__);
3108 	return res;
3109 }
3110 
3111 struct nfs4_unlockdata {
3112 	struct nfs_locku_args arg;
3113 	struct nfs_locku_res res;
3114 	struct nfs4_lock_state *lsp;
3115 	struct nfs_open_context *ctx;
3116 	struct file_lock fl;
3117 	const struct nfs_server *server;
3118 	unsigned long timestamp;
3119 };
3120 
3121 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3122 		struct nfs_open_context *ctx,
3123 		struct nfs4_lock_state *lsp,
3124 		struct nfs_seqid *seqid)
3125 {
3126 	struct nfs4_unlockdata *p;
3127 	struct inode *inode = lsp->ls_state->inode;
3128 
3129 	p = kmalloc(sizeof(*p), GFP_KERNEL);
3130 	if (p == NULL)
3131 		return NULL;
3132 	p->arg.fh = NFS_FH(inode);
3133 	p->arg.fl = &p->fl;
3134 	p->arg.seqid = seqid;
3135 	p->arg.stateid = &lsp->ls_stateid;
3136 	p->lsp = lsp;
3137 	atomic_inc(&lsp->ls_count);
3138 	/* Ensure we don't close file until we're done freeing locks! */
3139 	p->ctx = get_nfs_open_context(ctx);
3140 	memcpy(&p->fl, fl, sizeof(p->fl));
3141 	p->server = NFS_SERVER(inode);
3142 	return p;
3143 }
3144 
3145 static void nfs4_locku_release_calldata(void *data)
3146 {
3147 	struct nfs4_unlockdata *calldata = data;
3148 	nfs_free_seqid(calldata->arg.seqid);
3149 	nfs4_put_lock_state(calldata->lsp);
3150 	put_nfs_open_context(calldata->ctx);
3151 	kfree(calldata);
3152 }
3153 
3154 static void nfs4_locku_done(struct rpc_task *task, void *data)
3155 {
3156 	struct nfs4_unlockdata *calldata = data;
3157 
3158 	if (RPC_ASSASSINATED(task))
3159 		return;
3160 	nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3161 	switch (task->tk_status) {
3162 		case 0:
3163 			memcpy(calldata->lsp->ls_stateid.data,
3164 					calldata->res.stateid.data,
3165 					sizeof(calldata->lsp->ls_stateid.data));
3166 			renew_lease(calldata->server, calldata->timestamp);
3167 			break;
3168 		case -NFS4ERR_STALE_STATEID:
3169 		case -NFS4ERR_EXPIRED:
3170 			nfs4_schedule_state_recovery(calldata->server->nfs4_state);
3171 			break;
3172 		default:
3173 			if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
3174 				rpc_restart_call(task);
3175 			}
3176 	}
3177 }
3178 
3179 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3180 {
3181 	struct nfs4_unlockdata *calldata = data;
3182 	struct rpc_message msg = {
3183 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3184 		.rpc_argp       = &calldata->arg,
3185 		.rpc_resp       = &calldata->res,
3186 		.rpc_cred	= calldata->lsp->ls_state->owner->so_cred,
3187 	};
3188 
3189 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3190 		return;
3191 	if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3192 		/* Note: exit _without_ running nfs4_locku_done */
3193 		task->tk_action = NULL;
3194 		return;
3195 	}
3196 	calldata->timestamp = jiffies;
3197 	rpc_call_setup(task, &msg, 0);
3198 }
3199 
3200 static const struct rpc_call_ops nfs4_locku_ops = {
3201 	.rpc_call_prepare = nfs4_locku_prepare,
3202 	.rpc_call_done = nfs4_locku_done,
3203 	.rpc_release = nfs4_locku_release_calldata,
3204 };
3205 
3206 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3207 		struct nfs_open_context *ctx,
3208 		struct nfs4_lock_state *lsp,
3209 		struct nfs_seqid *seqid)
3210 {
3211 	struct nfs4_unlockdata *data;
3212 	struct rpc_task *task;
3213 
3214 	data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3215 	if (data == NULL) {
3216 		nfs_free_seqid(seqid);
3217 		return ERR_PTR(-ENOMEM);
3218 	}
3219 
3220 	/* Unlock _before_ we do the RPC call */
3221 	do_vfs_lock(fl->fl_file, fl);
3222 	task = rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3223 	if (IS_ERR(task))
3224 		nfs4_locku_release_calldata(data);
3225 	return task;
3226 }
3227 
3228 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3229 {
3230 	struct nfs_seqid *seqid;
3231 	struct nfs4_lock_state *lsp;
3232 	struct rpc_task *task;
3233 	int status = 0;
3234 
3235 	/* Is this a delegated lock? */
3236 	if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3237 		goto out_unlock;
3238 	/* Is this open_owner holding any locks on the server? */
3239 	if (test_bit(LK_STATE_IN_USE, &state->flags) == 0)
3240 		goto out_unlock;
3241 
3242 	status = nfs4_set_lock_state(state, request);
3243 	if (status != 0)
3244 		goto out_unlock;
3245 	lsp = request->fl_u.nfs4_fl.owner;
3246 	status = -ENOMEM;
3247 	seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3248 	if (seqid == NULL)
3249 		goto out_unlock;
3250 	task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3251 	status = PTR_ERR(task);
3252 	if (IS_ERR(task))
3253 		goto out_unlock;
3254 	status = nfs4_wait_for_completion_rpc_task(task);
3255 	rpc_release_task(task);
3256 	return status;
3257 out_unlock:
3258 	do_vfs_lock(request->fl_file, request);
3259 	return status;
3260 }
3261 
3262 struct nfs4_lockdata {
3263 	struct nfs_lock_args arg;
3264 	struct nfs_lock_res res;
3265 	struct nfs4_lock_state *lsp;
3266 	struct nfs_open_context *ctx;
3267 	struct file_lock fl;
3268 	unsigned long timestamp;
3269 	int rpc_status;
3270 	int cancelled;
3271 };
3272 
3273 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3274 		struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3275 {
3276 	struct nfs4_lockdata *p;
3277 	struct inode *inode = lsp->ls_state->inode;
3278 	struct nfs_server *server = NFS_SERVER(inode);
3279 
3280 	p = kzalloc(sizeof(*p), GFP_KERNEL);
3281 	if (p == NULL)
3282 		return NULL;
3283 
3284 	p->arg.fh = NFS_FH(inode);
3285 	p->arg.fl = &p->fl;
3286 	p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3287 	if (p->arg.lock_seqid == NULL)
3288 		goto out_free;
3289 	p->arg.lock_stateid = &lsp->ls_stateid;
3290 	p->arg.lock_owner.clientid = server->nfs4_state->cl_clientid;
3291 	p->arg.lock_owner.id = lsp->ls_id;
3292 	p->lsp = lsp;
3293 	atomic_inc(&lsp->ls_count);
3294 	p->ctx = get_nfs_open_context(ctx);
3295 	memcpy(&p->fl, fl, sizeof(p->fl));
3296 	return p;
3297 out_free:
3298 	kfree(p);
3299 	return NULL;
3300 }
3301 
3302 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3303 {
3304 	struct nfs4_lockdata *data = calldata;
3305 	struct nfs4_state *state = data->lsp->ls_state;
3306 	struct nfs4_state_owner *sp = state->owner;
3307 	struct rpc_message msg = {
3308 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3309 		.rpc_argp = &data->arg,
3310 		.rpc_resp = &data->res,
3311 		.rpc_cred = sp->so_cred,
3312 	};
3313 
3314 	if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3315 		return;
3316 	dprintk("%s: begin!\n", __FUNCTION__);
3317 	/* Do we need to do an open_to_lock_owner? */
3318 	if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3319 		data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3320 		if (data->arg.open_seqid == NULL) {
3321 			data->rpc_status = -ENOMEM;
3322 			task->tk_action = NULL;
3323 			goto out;
3324 		}
3325 		data->arg.open_stateid = &state->stateid;
3326 		data->arg.new_lock_owner = 1;
3327 	}
3328 	data->timestamp = jiffies;
3329 	rpc_call_setup(task, &msg, 0);
3330 out:
3331 	dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3332 }
3333 
3334 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3335 {
3336 	struct nfs4_lockdata *data = calldata;
3337 
3338 	dprintk("%s: begin!\n", __FUNCTION__);
3339 
3340 	data->rpc_status = task->tk_status;
3341 	if (RPC_ASSASSINATED(task))
3342 		goto out;
3343 	if (data->arg.new_lock_owner != 0) {
3344 		nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3345 		if (data->rpc_status == 0)
3346 			nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3347 		else
3348 			goto out;
3349 	}
3350 	if (data->rpc_status == 0) {
3351 		memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3352 					sizeof(data->lsp->ls_stateid.data));
3353 		data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3354 		renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3355 	}
3356 	nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3357 out:
3358 	dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3359 }
3360 
3361 static void nfs4_lock_release(void *calldata)
3362 {
3363 	struct nfs4_lockdata *data = calldata;
3364 
3365 	dprintk("%s: begin!\n", __FUNCTION__);
3366 	if (data->arg.open_seqid != NULL)
3367 		nfs_free_seqid(data->arg.open_seqid);
3368 	if (data->cancelled != 0) {
3369 		struct rpc_task *task;
3370 		task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3371 				data->arg.lock_seqid);
3372 		if (!IS_ERR(task))
3373 			rpc_release_task(task);
3374 		dprintk("%s: cancelling lock!\n", __FUNCTION__);
3375 	} else
3376 		nfs_free_seqid(data->arg.lock_seqid);
3377 	nfs4_put_lock_state(data->lsp);
3378 	put_nfs_open_context(data->ctx);
3379 	kfree(data);
3380 	dprintk("%s: done!\n", __FUNCTION__);
3381 }
3382 
3383 static const struct rpc_call_ops nfs4_lock_ops = {
3384 	.rpc_call_prepare = nfs4_lock_prepare,
3385 	.rpc_call_done = nfs4_lock_done,
3386 	.rpc_release = nfs4_lock_release,
3387 };
3388 
3389 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3390 {
3391 	struct nfs4_lockdata *data;
3392 	struct rpc_task *task;
3393 	int ret;
3394 
3395 	dprintk("%s: begin!\n", __FUNCTION__);
3396 	data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3397 			fl->fl_u.nfs4_fl.owner);
3398 	if (data == NULL)
3399 		return -ENOMEM;
3400 	if (IS_SETLKW(cmd))
3401 		data->arg.block = 1;
3402 	if (reclaim != 0)
3403 		data->arg.reclaim = 1;
3404 	task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3405 			&nfs4_lock_ops, data);
3406 	if (IS_ERR(task)) {
3407 		nfs4_lock_release(data);
3408 		return PTR_ERR(task);
3409 	}
3410 	ret = nfs4_wait_for_completion_rpc_task(task);
3411 	if (ret == 0) {
3412 		ret = data->rpc_status;
3413 		if (ret == -NFS4ERR_DENIED)
3414 			ret = -EAGAIN;
3415 	} else
3416 		data->cancelled = 1;
3417 	rpc_release_task(task);
3418 	dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3419 	return ret;
3420 }
3421 
3422 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3423 {
3424 	struct nfs_server *server = NFS_SERVER(state->inode);
3425 	struct nfs4_exception exception = { };
3426 	int err;
3427 
3428 	/* Cache the lock if possible... */
3429 	if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3430 		return 0;
3431 	do {
3432 		err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3433 		if (err != -NFS4ERR_DELAY)
3434 			break;
3435 		nfs4_handle_exception(server, err, &exception);
3436 	} while (exception.retry);
3437 	return err;
3438 }
3439 
3440 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3441 {
3442 	struct nfs_server *server = NFS_SERVER(state->inode);
3443 	struct nfs4_exception exception = { };
3444 	int err;
3445 
3446 	err = nfs4_set_lock_state(state, request);
3447 	if (err != 0)
3448 		return err;
3449 	do {
3450 		err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3451 		if (err != -NFS4ERR_DELAY)
3452 			break;
3453 		nfs4_handle_exception(server, err, &exception);
3454 	} while (exception.retry);
3455 	return err;
3456 }
3457 
3458 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3459 {
3460 	struct nfs4_client *clp = state->owner->so_client;
3461 	int status;
3462 
3463 	/* Is this a delegated open? */
3464 	if (NFS_I(state->inode)->delegation_state != 0) {
3465 		/* Yes: cache locks! */
3466 		status = do_vfs_lock(request->fl_file, request);
3467 		/* ...but avoid races with delegation recall... */
3468 		if (status < 0 || test_bit(NFS_DELEGATED_STATE, &state->flags))
3469 			return status;
3470 	}
3471 	down_read(&clp->cl_sem);
3472 	status = nfs4_set_lock_state(state, request);
3473 	if (status != 0)
3474 		goto out;
3475 	status = _nfs4_do_setlk(state, cmd, request, 0);
3476 	if (status != 0)
3477 		goto out;
3478 	/* Note: we always want to sleep here! */
3479 	request->fl_flags |= FL_SLEEP;
3480 	if (do_vfs_lock(request->fl_file, request) < 0)
3481 		printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3482 out:
3483 	up_read(&clp->cl_sem);
3484 	return status;
3485 }
3486 
3487 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3488 {
3489 	struct nfs4_exception exception = { };
3490 	int err;
3491 
3492 	do {
3493 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3494 				_nfs4_proc_setlk(state, cmd, request),
3495 				&exception);
3496 	} while (exception.retry);
3497 	return err;
3498 }
3499 
3500 static int
3501 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3502 {
3503 	struct nfs_open_context *ctx;
3504 	struct nfs4_state *state;
3505 	unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3506 	int status;
3507 
3508 	/* verify open state */
3509 	ctx = (struct nfs_open_context *)filp->private_data;
3510 	state = ctx->state;
3511 
3512 	if (request->fl_start < 0 || request->fl_end < 0)
3513 		return -EINVAL;
3514 
3515 	if (IS_GETLK(cmd))
3516 		return nfs4_proc_getlk(state, F_GETLK, request);
3517 
3518 	if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3519 		return -EINVAL;
3520 
3521 	if (request->fl_type == F_UNLCK)
3522 		return nfs4_proc_unlck(state, cmd, request);
3523 
3524 	do {
3525 		status = nfs4_proc_setlk(state, cmd, request);
3526 		if ((status != -EAGAIN) || IS_SETLK(cmd))
3527 			break;
3528 		timeout = nfs4_set_lock_task_retry(timeout);
3529 		status = -ERESTARTSYS;
3530 		if (signalled())
3531 			break;
3532 	} while(status < 0);
3533 	return status;
3534 }
3535 
3536 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3537 {
3538 	struct nfs_server *server = NFS_SERVER(state->inode);
3539 	struct nfs4_exception exception = { };
3540 	int err;
3541 
3542 	err = nfs4_set_lock_state(state, fl);
3543 	if (err != 0)
3544 		goto out;
3545 	do {
3546 		err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3547 		if (err != -NFS4ERR_DELAY)
3548 			break;
3549 		err = nfs4_handle_exception(server, err, &exception);
3550 	} while (exception.retry);
3551 out:
3552 	return err;
3553 }
3554 
3555 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3556 
3557 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3558 		size_t buflen, int flags)
3559 {
3560 	struct inode *inode = dentry->d_inode;
3561 
3562 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3563 		return -EOPNOTSUPP;
3564 
3565 	if (!S_ISREG(inode->i_mode) &&
3566 	    (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3567 		return -EPERM;
3568 
3569 	return nfs4_proc_set_acl(inode, buf, buflen);
3570 }
3571 
3572 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3573  * and that's what we'll do for e.g. user attributes that haven't been set.
3574  * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3575  * attributes in kernel-managed attribute namespaces. */
3576 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3577 		size_t buflen)
3578 {
3579 	struct inode *inode = dentry->d_inode;
3580 
3581 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3582 		return -EOPNOTSUPP;
3583 
3584 	return nfs4_proc_get_acl(inode, buf, buflen);
3585 }
3586 
3587 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3588 {
3589 	size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3590 
3591 	if (buf && buflen < len)
3592 		return -ERANGE;
3593 	if (buf)
3594 		memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3595 	return len;
3596 }
3597 
3598 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3599 	.recover_open	= nfs4_open_reclaim,
3600 	.recover_lock	= nfs4_lock_reclaim,
3601 };
3602 
3603 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3604 	.recover_open	= nfs4_open_expired,
3605 	.recover_lock	= nfs4_lock_expired,
3606 };
3607 
3608 static struct inode_operations nfs4_file_inode_operations = {
3609 	.permission	= nfs_permission,
3610 	.getattr	= nfs_getattr,
3611 	.setattr	= nfs_setattr,
3612 	.getxattr	= nfs4_getxattr,
3613 	.setxattr	= nfs4_setxattr,
3614 	.listxattr	= nfs4_listxattr,
3615 };
3616 
3617 struct nfs_rpc_ops	nfs_v4_clientops = {
3618 	.version	= 4,			/* protocol version */
3619 	.dentry_ops	= &nfs4_dentry_operations,
3620 	.dir_inode_ops	= &nfs4_dir_inode_operations,
3621 	.file_inode_ops	= &nfs4_file_inode_operations,
3622 	.getroot	= nfs4_proc_get_root,
3623 	.getattr	= nfs4_proc_getattr,
3624 	.setattr	= nfs4_proc_setattr,
3625 	.lookup		= nfs4_proc_lookup,
3626 	.access		= nfs4_proc_access,
3627 	.readlink	= nfs4_proc_readlink,
3628 	.read		= nfs4_proc_read,
3629 	.write		= nfs4_proc_write,
3630 	.commit		= nfs4_proc_commit,
3631 	.create		= nfs4_proc_create,
3632 	.remove		= nfs4_proc_remove,
3633 	.unlink_setup	= nfs4_proc_unlink_setup,
3634 	.unlink_done	= nfs4_proc_unlink_done,
3635 	.rename		= nfs4_proc_rename,
3636 	.link		= nfs4_proc_link,
3637 	.symlink	= nfs4_proc_symlink,
3638 	.mkdir		= nfs4_proc_mkdir,
3639 	.rmdir		= nfs4_proc_remove,
3640 	.readdir	= nfs4_proc_readdir,
3641 	.mknod		= nfs4_proc_mknod,
3642 	.statfs		= nfs4_proc_statfs,
3643 	.fsinfo		= nfs4_proc_fsinfo,
3644 	.pathconf	= nfs4_proc_pathconf,
3645 	.decode_dirent	= nfs4_decode_dirent,
3646 	.read_setup	= nfs4_proc_read_setup,
3647 	.write_setup	= nfs4_proc_write_setup,
3648 	.commit_setup	= nfs4_proc_commit_setup,
3649 	.file_open      = nfs_open,
3650 	.file_release   = nfs_release,
3651 	.lock		= nfs4_proc_lock,
3652 	.clear_acl_cache = nfs4_zap_acl_attr,
3653 };
3654 
3655 /*
3656  * Local variables:
3657  *  c-basic-offset: 8
3658  * End:
3659  */
3660