xref: /openbmc/linux/fs/nfs/nfs42xattr.c (revision e802ca75)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2019, 2020 Amazon.com, Inc. or its affiliates. All rights reserved.
5  *
6  * User extended attribute client side cache functions.
7  *
8  * Author: Frank van der Linden <fllinden@amazon.com>
9  */
10 #include <linux/errno.h>
11 #include <linux/nfs_fs.h>
12 #include <linux/hashtable.h>
13 #include <linux/refcount.h>
14 #include <uapi/linux/xattr.h>
15 
16 #include "nfs4_fs.h"
17 #include "internal.h"
18 
19 /*
20  * User extended attributes client side caching is implemented by having
21  * a cache structure attached to NFS inodes. This structure is allocated
22  * when needed, and freed when the cache is zapped.
23  *
24  * The cache structure contains as hash table of entries, and a pointer
25  * to a special-cased entry for the listxattr cache.
26  *
27  * Accessing and allocating / freeing the caches is done via reference
28  * counting. The cache entries use a similar refcounting scheme.
29  *
30  * This makes freeing a cache, both from the shrinker and from the
31  * zap cache path, easy. It also means that, in current use cases,
32  * the large majority of inodes will not waste any memory, as they
33  * will never have any user extended attributes assigned to them.
34  *
35  * Attribute entries are hashed in to a simple hash table. They are
36  * also part of an LRU.
37  *
38  * There are three shrinkers.
39  *
40  * Two shrinkers deal with the cache entries themselves: one for
41  * large entries (> PAGE_SIZE), and one for smaller entries. The
42  * shrinker for the larger entries works more aggressively than
43  * those for the smaller entries.
44  *
45  * The other shrinker frees the cache structures themselves.
46  */
47 
48 /*
49  * 64 buckets is a good default. There is likely no reasonable
50  * workload that uses more than even 64 user extended attributes.
51  * You can certainly add a lot more - but you get what you ask for
52  * in those circumstances.
53  */
54 #define NFS4_XATTR_HASH_SIZE	64
55 
56 #define NFSDBG_FACILITY	NFSDBG_XATTRCACHE
57 
58 struct nfs4_xattr_cache;
59 struct nfs4_xattr_entry;
60 
61 struct nfs4_xattr_bucket {
62 	spinlock_t lock;
63 	struct hlist_head hlist;
64 	struct nfs4_xattr_cache *cache;
65 	bool draining;
66 };
67 
68 struct nfs4_xattr_cache {
69 	struct kref ref;
70 	struct nfs4_xattr_bucket buckets[NFS4_XATTR_HASH_SIZE];
71 	struct list_head lru;
72 	struct list_head dispose;
73 	atomic_long_t nent;
74 	spinlock_t listxattr_lock;
75 	struct inode *inode;
76 	struct nfs4_xattr_entry *listxattr;
77 };
78 
79 struct nfs4_xattr_entry {
80 	struct kref ref;
81 	struct hlist_node hnode;
82 	struct list_head lru;
83 	struct list_head dispose;
84 	char *xattr_name;
85 	void *xattr_value;
86 	size_t xattr_size;
87 	struct nfs4_xattr_bucket *bucket;
88 	uint32_t flags;
89 };
90 
91 #define	NFS4_XATTR_ENTRY_EXTVAL	0x0001
92 
93 /*
94  * LRU list of NFS inodes that have xattr caches.
95  */
96 static struct list_lru nfs4_xattr_cache_lru;
97 static struct list_lru nfs4_xattr_entry_lru;
98 static struct list_lru nfs4_xattr_large_entry_lru;
99 
100 static struct kmem_cache *nfs4_xattr_cache_cachep;
101 
102 /*
103  * Hashing helper functions.
104  */
105 static void
106 nfs4_xattr_hash_init(struct nfs4_xattr_cache *cache)
107 {
108 	unsigned int i;
109 
110 	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
111 		INIT_HLIST_HEAD(&cache->buckets[i].hlist);
112 		spin_lock_init(&cache->buckets[i].lock);
113 		cache->buckets[i].cache = cache;
114 		cache->buckets[i].draining = false;
115 	}
116 }
117 
118 /*
119  * Locking order:
120  * 1. inode i_lock or bucket lock
121  * 2. list_lru lock (taken by list_lru_* functions)
122  */
123 
124 /*
125  * Wrapper functions to add a cache entry to the right LRU.
126  */
127 static bool
128 nfs4_xattr_entry_lru_add(struct nfs4_xattr_entry *entry)
129 {
130 	struct list_lru *lru;
131 
132 	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
133 	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
134 
135 	return list_lru_add(lru, &entry->lru);
136 }
137 
138 static bool
139 nfs4_xattr_entry_lru_del(struct nfs4_xattr_entry *entry)
140 {
141 	struct list_lru *lru;
142 
143 	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
144 	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
145 
146 	return list_lru_del(lru, &entry->lru);
147 }
148 
149 /*
150  * This function allocates cache entries. They are the normal
151  * extended attribute name/value pairs, but may also be a listxattr
152  * cache. Those allocations use the same entry so that they can be
153  * treated as one by the memory shrinker.
154  *
155  * xattr cache entries are allocated together with names. If the
156  * value fits in to one page with the entry structure and the name,
157  * it will also be part of the same allocation (kmalloc). This is
158  * expected to be the vast majority of cases. Larger allocations
159  * have a value pointer that is allocated separately by kvmalloc.
160  *
161  * Parameters:
162  *
163  * @name:  Name of the extended attribute. NULL for listxattr cache
164  *         entry.
165  * @value: Value of attribute, or listxattr cache. NULL if the
166  *         value is to be copied from pages instead.
167  * @pages: Pages to copy the value from, if not NULL. Passed in to
168  *	   make it easier to copy the value after an RPC, even if
169  *	   the value will not be passed up to application (e.g.
170  *	   for a 'query' getxattr with NULL buffer).
171  * @len:   Length of the value. Can be 0 for zero-length attributes.
172  *         @value and @pages will be NULL if @len is 0.
173  */
174 static struct nfs4_xattr_entry *
175 nfs4_xattr_alloc_entry(const char *name, const void *value,
176 		       struct page **pages, size_t len)
177 {
178 	struct nfs4_xattr_entry *entry;
179 	void *valp;
180 	char *namep;
181 	size_t alloclen, slen;
182 	char *buf;
183 	uint32_t flags;
184 
185 	BUILD_BUG_ON(sizeof(struct nfs4_xattr_entry) +
186 	    XATTR_NAME_MAX + 1 > PAGE_SIZE);
187 
188 	alloclen = sizeof(struct nfs4_xattr_entry);
189 	if (name != NULL) {
190 		slen = strlen(name) + 1;
191 		alloclen += slen;
192 	} else
193 		slen = 0;
194 
195 	if (alloclen + len <= PAGE_SIZE) {
196 		alloclen += len;
197 		flags = 0;
198 	} else {
199 		flags = NFS4_XATTR_ENTRY_EXTVAL;
200 	}
201 
202 	buf = kmalloc(alloclen, GFP_KERNEL);
203 	if (buf == NULL)
204 		return NULL;
205 	entry = (struct nfs4_xattr_entry *)buf;
206 
207 	if (name != NULL) {
208 		namep = buf + sizeof(struct nfs4_xattr_entry);
209 		memcpy(namep, name, slen);
210 	} else {
211 		namep = NULL;
212 	}
213 
214 
215 	if (flags & NFS4_XATTR_ENTRY_EXTVAL) {
216 		valp = kvmalloc(len, GFP_KERNEL);
217 		if (valp == NULL) {
218 			kfree(buf);
219 			return NULL;
220 		}
221 	} else if (len != 0) {
222 		valp = buf + sizeof(struct nfs4_xattr_entry) + slen;
223 	} else
224 		valp = NULL;
225 
226 	if (valp != NULL) {
227 		if (value != NULL)
228 			memcpy(valp, value, len);
229 		else
230 			_copy_from_pages(valp, pages, 0, len);
231 	}
232 
233 	entry->flags = flags;
234 	entry->xattr_value = valp;
235 	kref_init(&entry->ref);
236 	entry->xattr_name = namep;
237 	entry->xattr_size = len;
238 	entry->bucket = NULL;
239 	INIT_LIST_HEAD(&entry->lru);
240 	INIT_LIST_HEAD(&entry->dispose);
241 	INIT_HLIST_NODE(&entry->hnode);
242 
243 	return entry;
244 }
245 
246 static void
247 nfs4_xattr_free_entry(struct nfs4_xattr_entry *entry)
248 {
249 	if (entry->flags & NFS4_XATTR_ENTRY_EXTVAL)
250 		kvfree(entry->xattr_value);
251 	kfree(entry);
252 }
253 
254 static void
255 nfs4_xattr_free_entry_cb(struct kref *kref)
256 {
257 	struct nfs4_xattr_entry *entry;
258 
259 	entry = container_of(kref, struct nfs4_xattr_entry, ref);
260 
261 	if (WARN_ON(!list_empty(&entry->lru)))
262 		return;
263 
264 	nfs4_xattr_free_entry(entry);
265 }
266 
267 static void
268 nfs4_xattr_free_cache_cb(struct kref *kref)
269 {
270 	struct nfs4_xattr_cache *cache;
271 	int i;
272 
273 	cache = container_of(kref, struct nfs4_xattr_cache, ref);
274 
275 	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
276 		if (WARN_ON(!hlist_empty(&cache->buckets[i].hlist)))
277 			return;
278 		cache->buckets[i].draining = false;
279 	}
280 
281 	cache->listxattr = NULL;
282 
283 	kmem_cache_free(nfs4_xattr_cache_cachep, cache);
284 
285 }
286 
287 static struct nfs4_xattr_cache *
288 nfs4_xattr_alloc_cache(void)
289 {
290 	struct nfs4_xattr_cache *cache;
291 
292 	cache = kmem_cache_alloc(nfs4_xattr_cache_cachep, GFP_KERNEL);
293 	if (cache == NULL)
294 		return NULL;
295 
296 	kref_init(&cache->ref);
297 	atomic_long_set(&cache->nent, 0);
298 
299 	return cache;
300 }
301 
302 /*
303  * Set the listxattr cache, which is a special-cased cache entry.
304  * The special value ERR_PTR(-ESTALE) is used to indicate that
305  * the cache is being drained - this prevents a new listxattr
306  * cache from being added to what is now a stale cache.
307  */
308 static int
309 nfs4_xattr_set_listcache(struct nfs4_xattr_cache *cache,
310 			 struct nfs4_xattr_entry *new)
311 {
312 	struct nfs4_xattr_entry *old;
313 	int ret = 1;
314 
315 	spin_lock(&cache->listxattr_lock);
316 
317 	old = cache->listxattr;
318 
319 	if (old == ERR_PTR(-ESTALE)) {
320 		ret = 0;
321 		goto out;
322 	}
323 
324 	cache->listxattr = new;
325 	if (new != NULL && new != ERR_PTR(-ESTALE))
326 		nfs4_xattr_entry_lru_add(new);
327 
328 	if (old != NULL) {
329 		nfs4_xattr_entry_lru_del(old);
330 		kref_put(&old->ref, nfs4_xattr_free_entry_cb);
331 	}
332 out:
333 	spin_unlock(&cache->listxattr_lock);
334 
335 	return ret;
336 }
337 
338 /*
339  * Unlink a cache from its parent inode, clearing out an invalid
340  * cache. Must be called with i_lock held.
341  */
342 static struct nfs4_xattr_cache *
343 nfs4_xattr_cache_unlink(struct inode *inode)
344 {
345 	struct nfs_inode *nfsi;
346 	struct nfs4_xattr_cache *oldcache;
347 
348 	nfsi = NFS_I(inode);
349 
350 	oldcache = nfsi->xattr_cache;
351 	if (oldcache != NULL) {
352 		list_lru_del(&nfs4_xattr_cache_lru, &oldcache->lru);
353 		oldcache->inode = NULL;
354 	}
355 	nfsi->xattr_cache = NULL;
356 	nfsi->cache_validity &= ~NFS_INO_INVALID_XATTR;
357 
358 	return oldcache;
359 
360 }
361 
362 /*
363  * Discard a cache. Called by get_cache() if there was an old,
364  * invalid cache. Can also be called from a shrinker callback.
365  *
366  * The cache is dead, it has already been unlinked from its inode,
367  * and no longer appears on the cache LRU list.
368  *
369  * Mark all buckets as draining, so that no new entries are added. This
370  * could still happen in the unlikely, but possible case that another
371  * thread had grabbed a reference before it was unlinked from the inode,
372  * and is still holding it for an add operation.
373  *
374  * Remove all entries from the LRU lists, so that there is no longer
375  * any way to 'find' this cache. Then, remove the entries from the hash
376  * table.
377  *
378  * At that point, the cache will remain empty and can be freed when the final
379  * reference drops, which is very likely the kref_put at the end of
380  * this function, or the one called immediately afterwards in the
381  * shrinker callback.
382  */
383 static void
384 nfs4_xattr_discard_cache(struct nfs4_xattr_cache *cache)
385 {
386 	unsigned int i;
387 	struct nfs4_xattr_entry *entry;
388 	struct nfs4_xattr_bucket *bucket;
389 	struct hlist_node *n;
390 
391 	nfs4_xattr_set_listcache(cache, ERR_PTR(-ESTALE));
392 
393 	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
394 		bucket = &cache->buckets[i];
395 
396 		spin_lock(&bucket->lock);
397 		bucket->draining = true;
398 		hlist_for_each_entry_safe(entry, n, &bucket->hlist, hnode) {
399 			nfs4_xattr_entry_lru_del(entry);
400 			hlist_del_init(&entry->hnode);
401 			kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
402 		}
403 		spin_unlock(&bucket->lock);
404 	}
405 
406 	atomic_long_set(&cache->nent, 0);
407 
408 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
409 }
410 
411 /*
412  * Get a referenced copy of the cache structure. Avoid doing allocs
413  * while holding i_lock. Which means that we do some optimistic allocation,
414  * and might have to free the result in rare cases.
415  *
416  * This function only checks the NFS_INO_INVALID_XATTR cache validity bit
417  * and acts accordingly, replacing the cache when needed. For the read case
418  * (!add), this means that the caller must make sure that the cache
419  * is valid before caling this function. getxattr and listxattr call
420  * revalidate_inode to do this. The attribute cache timeout (for the
421  * non-delegated case) is expected to be dealt with in the revalidate
422  * call.
423  */
424 
425 static struct nfs4_xattr_cache *
426 nfs4_xattr_get_cache(struct inode *inode, int add)
427 {
428 	struct nfs_inode *nfsi;
429 	struct nfs4_xattr_cache *cache, *oldcache, *newcache;
430 
431 	nfsi = NFS_I(inode);
432 
433 	cache = oldcache = NULL;
434 
435 	spin_lock(&inode->i_lock);
436 
437 	if (nfsi->cache_validity & NFS_INO_INVALID_XATTR)
438 		oldcache = nfs4_xattr_cache_unlink(inode);
439 	else
440 		cache = nfsi->xattr_cache;
441 
442 	if (cache != NULL)
443 		kref_get(&cache->ref);
444 
445 	spin_unlock(&inode->i_lock);
446 
447 	if (add && cache == NULL) {
448 		newcache = NULL;
449 
450 		cache = nfs4_xattr_alloc_cache();
451 		if (cache == NULL)
452 			goto out;
453 
454 		spin_lock(&inode->i_lock);
455 		if (nfsi->cache_validity & NFS_INO_INVALID_XATTR) {
456 			/*
457 			 * The cache was invalidated again. Give up,
458 			 * since what we want to enter is now likely
459 			 * outdated anyway.
460 			 */
461 			spin_unlock(&inode->i_lock);
462 			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
463 			cache = NULL;
464 			goto out;
465 		}
466 
467 		/*
468 		 * Check if someone beat us to it.
469 		 */
470 		if (nfsi->xattr_cache != NULL) {
471 			newcache = nfsi->xattr_cache;
472 			kref_get(&newcache->ref);
473 		} else {
474 			kref_get(&cache->ref);
475 			nfsi->xattr_cache = cache;
476 			cache->inode = inode;
477 			list_lru_add(&nfs4_xattr_cache_lru, &cache->lru);
478 		}
479 
480 		spin_unlock(&inode->i_lock);
481 
482 		/*
483 		 * If there was a race, throw away the cache we just
484 		 * allocated, and use the new one allocated by someone
485 		 * else.
486 		 */
487 		if (newcache != NULL) {
488 			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
489 			cache = newcache;
490 		}
491 	}
492 
493 out:
494 	/*
495 	 * Discard the now orphaned old cache.
496 	 */
497 	if (oldcache != NULL)
498 		nfs4_xattr_discard_cache(oldcache);
499 
500 	return cache;
501 }
502 
503 static inline struct nfs4_xattr_bucket *
504 nfs4_xattr_hash_bucket(struct nfs4_xattr_cache *cache, const char *name)
505 {
506 	return &cache->buckets[jhash(name, strlen(name), 0) &
507 	    (ARRAY_SIZE(cache->buckets) - 1)];
508 }
509 
510 static struct nfs4_xattr_entry *
511 nfs4_xattr_get_entry(struct nfs4_xattr_bucket *bucket, const char *name)
512 {
513 	struct nfs4_xattr_entry *entry;
514 
515 	entry = NULL;
516 
517 	hlist_for_each_entry(entry, &bucket->hlist, hnode) {
518 		if (!strcmp(entry->xattr_name, name))
519 			break;
520 	}
521 
522 	return entry;
523 }
524 
525 static int
526 nfs4_xattr_hash_add(struct nfs4_xattr_cache *cache,
527 		    struct nfs4_xattr_entry *entry)
528 {
529 	struct nfs4_xattr_bucket *bucket;
530 	struct nfs4_xattr_entry *oldentry = NULL;
531 	int ret = 1;
532 
533 	bucket = nfs4_xattr_hash_bucket(cache, entry->xattr_name);
534 	entry->bucket = bucket;
535 
536 	spin_lock(&bucket->lock);
537 
538 	if (bucket->draining) {
539 		ret = 0;
540 		goto out;
541 	}
542 
543 	oldentry = nfs4_xattr_get_entry(bucket, entry->xattr_name);
544 	if (oldentry != NULL) {
545 		hlist_del_init(&oldentry->hnode);
546 		nfs4_xattr_entry_lru_del(oldentry);
547 	} else {
548 		atomic_long_inc(&cache->nent);
549 	}
550 
551 	hlist_add_head(&entry->hnode, &bucket->hlist);
552 	nfs4_xattr_entry_lru_add(entry);
553 
554 out:
555 	spin_unlock(&bucket->lock);
556 
557 	if (oldentry != NULL)
558 		kref_put(&oldentry->ref, nfs4_xattr_free_entry_cb);
559 
560 	return ret;
561 }
562 
563 static void
564 nfs4_xattr_hash_remove(struct nfs4_xattr_cache *cache, const char *name)
565 {
566 	struct nfs4_xattr_bucket *bucket;
567 	struct nfs4_xattr_entry *entry;
568 
569 	bucket = nfs4_xattr_hash_bucket(cache, name);
570 
571 	spin_lock(&bucket->lock);
572 
573 	entry = nfs4_xattr_get_entry(bucket, name);
574 	if (entry != NULL) {
575 		hlist_del_init(&entry->hnode);
576 		nfs4_xattr_entry_lru_del(entry);
577 		atomic_long_dec(&cache->nent);
578 	}
579 
580 	spin_unlock(&bucket->lock);
581 
582 	if (entry != NULL)
583 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
584 }
585 
586 static struct nfs4_xattr_entry *
587 nfs4_xattr_hash_find(struct nfs4_xattr_cache *cache, const char *name)
588 {
589 	struct nfs4_xattr_bucket *bucket;
590 	struct nfs4_xattr_entry *entry;
591 
592 	bucket = nfs4_xattr_hash_bucket(cache, name);
593 
594 	spin_lock(&bucket->lock);
595 
596 	entry = nfs4_xattr_get_entry(bucket, name);
597 	if (entry != NULL)
598 		kref_get(&entry->ref);
599 
600 	spin_unlock(&bucket->lock);
601 
602 	return entry;
603 }
604 
605 /*
606  * Entry point to retrieve an entry from the cache.
607  */
608 ssize_t nfs4_xattr_cache_get(struct inode *inode, const char *name, char *buf,
609 			 ssize_t buflen)
610 {
611 	struct nfs4_xattr_cache *cache;
612 	struct nfs4_xattr_entry *entry;
613 	ssize_t ret;
614 
615 	cache = nfs4_xattr_get_cache(inode, 0);
616 	if (cache == NULL)
617 		return -ENOENT;
618 
619 	ret = 0;
620 	entry = nfs4_xattr_hash_find(cache, name);
621 
622 	if (entry != NULL) {
623 		dprintk("%s: cache hit '%s', len %lu\n", __func__,
624 		    entry->xattr_name, (unsigned long)entry->xattr_size);
625 		if (buflen == 0) {
626 			/* Length probe only */
627 			ret = entry->xattr_size;
628 		} else if (buflen < entry->xattr_size)
629 			ret = -ERANGE;
630 		else {
631 			memcpy(buf, entry->xattr_value, entry->xattr_size);
632 			ret = entry->xattr_size;
633 		}
634 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
635 	} else {
636 		dprintk("%s: cache miss '%s'\n", __func__, name);
637 		ret = -ENOENT;
638 	}
639 
640 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
641 
642 	return ret;
643 }
644 
645 /*
646  * Retrieve a cached list of xattrs from the cache.
647  */
648 ssize_t nfs4_xattr_cache_list(struct inode *inode, char *buf, ssize_t buflen)
649 {
650 	struct nfs4_xattr_cache *cache;
651 	struct nfs4_xattr_entry *entry;
652 	ssize_t ret;
653 
654 	cache = nfs4_xattr_get_cache(inode, 0);
655 	if (cache == NULL)
656 		return -ENOENT;
657 
658 	spin_lock(&cache->listxattr_lock);
659 
660 	entry = cache->listxattr;
661 
662 	if (entry != NULL && entry != ERR_PTR(-ESTALE)) {
663 		if (buflen == 0) {
664 			/* Length probe only */
665 			ret = entry->xattr_size;
666 		} else if (entry->xattr_size > buflen)
667 			ret = -ERANGE;
668 		else {
669 			memcpy(buf, entry->xattr_value, entry->xattr_size);
670 			ret = entry->xattr_size;
671 		}
672 	} else {
673 		ret = -ENOENT;
674 	}
675 
676 	spin_unlock(&cache->listxattr_lock);
677 
678 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
679 
680 	return ret;
681 }
682 
683 /*
684  * Add an xattr to the cache.
685  *
686  * This also invalidates the xattr list cache.
687  */
688 void nfs4_xattr_cache_add(struct inode *inode, const char *name,
689 			  const char *buf, struct page **pages, ssize_t buflen)
690 {
691 	struct nfs4_xattr_cache *cache;
692 	struct nfs4_xattr_entry *entry;
693 
694 	dprintk("%s: add '%s' len %lu\n", __func__,
695 	    name, (unsigned long)buflen);
696 
697 	cache = nfs4_xattr_get_cache(inode, 1);
698 	if (cache == NULL)
699 		return;
700 
701 	entry = nfs4_xattr_alloc_entry(name, buf, pages, buflen);
702 	if (entry == NULL)
703 		goto out;
704 
705 	(void)nfs4_xattr_set_listcache(cache, NULL);
706 
707 	if (!nfs4_xattr_hash_add(cache, entry))
708 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
709 
710 out:
711 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
712 }
713 
714 
715 /*
716  * Remove an xattr from the cache.
717  *
718  * This also invalidates the xattr list cache.
719  */
720 void nfs4_xattr_cache_remove(struct inode *inode, const char *name)
721 {
722 	struct nfs4_xattr_cache *cache;
723 
724 	dprintk("%s: remove '%s'\n", __func__, name);
725 
726 	cache = nfs4_xattr_get_cache(inode, 0);
727 	if (cache == NULL)
728 		return;
729 
730 	(void)nfs4_xattr_set_listcache(cache, NULL);
731 	nfs4_xattr_hash_remove(cache, name);
732 
733 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
734 }
735 
736 /*
737  * Cache listxattr output, replacing any possible old one.
738  */
739 void nfs4_xattr_cache_set_list(struct inode *inode, const char *buf,
740 			       ssize_t buflen)
741 {
742 	struct nfs4_xattr_cache *cache;
743 	struct nfs4_xattr_entry *entry;
744 
745 	cache = nfs4_xattr_get_cache(inode, 1);
746 	if (cache == NULL)
747 		return;
748 
749 	entry = nfs4_xattr_alloc_entry(NULL, buf, NULL, buflen);
750 	if (entry == NULL)
751 		goto out;
752 
753 	/*
754 	 * This is just there to be able to get to bucket->cache,
755 	 * which is obviously the same for all buckets, so just
756 	 * use bucket 0.
757 	 */
758 	entry->bucket = &cache->buckets[0];
759 
760 	if (!nfs4_xattr_set_listcache(cache, entry))
761 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
762 
763 out:
764 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
765 }
766 
767 /*
768  * Zap the entire cache. Called when an inode is evicted.
769  */
770 void nfs4_xattr_cache_zap(struct inode *inode)
771 {
772 	struct nfs4_xattr_cache *oldcache;
773 
774 	spin_lock(&inode->i_lock);
775 	oldcache = nfs4_xattr_cache_unlink(inode);
776 	spin_unlock(&inode->i_lock);
777 
778 	if (oldcache)
779 		nfs4_xattr_discard_cache(oldcache);
780 }
781 
782 /*
783  * The entry LRU is shrunk more aggressively than the cache LRU,
784  * by settings @seeks to 1.
785  *
786  * Cache structures are freed only when they've become empty, after
787  * pruning all but one entry.
788  */
789 
790 static unsigned long nfs4_xattr_cache_count(struct shrinker *shrink,
791 					    struct shrink_control *sc);
792 static unsigned long nfs4_xattr_entry_count(struct shrinker *shrink,
793 					    struct shrink_control *sc);
794 static unsigned long nfs4_xattr_cache_scan(struct shrinker *shrink,
795 					   struct shrink_control *sc);
796 static unsigned long nfs4_xattr_entry_scan(struct shrinker *shrink,
797 					   struct shrink_control *sc);
798 
799 static struct shrinker nfs4_xattr_cache_shrinker = {
800 	.count_objects	= nfs4_xattr_cache_count,
801 	.scan_objects	= nfs4_xattr_cache_scan,
802 	.seeks		= DEFAULT_SEEKS,
803 	.flags		= SHRINKER_MEMCG_AWARE,
804 };
805 
806 static struct shrinker nfs4_xattr_entry_shrinker = {
807 	.count_objects	= nfs4_xattr_entry_count,
808 	.scan_objects	= nfs4_xattr_entry_scan,
809 	.seeks		= DEFAULT_SEEKS,
810 	.batch		= 512,
811 	.flags		= SHRINKER_MEMCG_AWARE,
812 };
813 
814 static struct shrinker nfs4_xattr_large_entry_shrinker = {
815 	.count_objects	= nfs4_xattr_entry_count,
816 	.scan_objects	= nfs4_xattr_entry_scan,
817 	.seeks		= 1,
818 	.batch		= 512,
819 	.flags		= SHRINKER_MEMCG_AWARE,
820 };
821 
822 static enum lru_status
823 cache_lru_isolate(struct list_head *item,
824 	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
825 {
826 	struct list_head *dispose = arg;
827 	struct inode *inode;
828 	struct nfs4_xattr_cache *cache = container_of(item,
829 	    struct nfs4_xattr_cache, lru);
830 
831 	if (atomic_long_read(&cache->nent) > 1)
832 		return LRU_SKIP;
833 
834 	/*
835 	 * If a cache structure is on the LRU list, we know that
836 	 * its inode is valid. Try to lock it to break the link.
837 	 * Since we're inverting the lock order here, only try.
838 	 */
839 	inode = cache->inode;
840 
841 	if (!spin_trylock(&inode->i_lock))
842 		return LRU_SKIP;
843 
844 	kref_get(&cache->ref);
845 
846 	cache->inode = NULL;
847 	NFS_I(inode)->xattr_cache = NULL;
848 	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_XATTR;
849 	list_lru_isolate(lru, &cache->lru);
850 
851 	spin_unlock(&inode->i_lock);
852 
853 	list_add_tail(&cache->dispose, dispose);
854 	return LRU_REMOVED;
855 }
856 
857 static unsigned long
858 nfs4_xattr_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
859 {
860 	LIST_HEAD(dispose);
861 	unsigned long freed;
862 	struct nfs4_xattr_cache *cache;
863 
864 	freed = list_lru_shrink_walk(&nfs4_xattr_cache_lru, sc,
865 	    cache_lru_isolate, &dispose);
866 	while (!list_empty(&dispose)) {
867 		cache = list_first_entry(&dispose, struct nfs4_xattr_cache,
868 		    dispose);
869 		list_del_init(&cache->dispose);
870 		nfs4_xattr_discard_cache(cache);
871 		kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
872 	}
873 
874 	return freed;
875 }
876 
877 
878 static unsigned long
879 nfs4_xattr_cache_count(struct shrinker *shrink, struct shrink_control *sc)
880 {
881 	unsigned long count;
882 
883 	count = list_lru_shrink_count(&nfs4_xattr_cache_lru, sc);
884 	return vfs_pressure_ratio(count);
885 }
886 
887 static enum lru_status
888 entry_lru_isolate(struct list_head *item,
889 	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
890 {
891 	struct list_head *dispose = arg;
892 	struct nfs4_xattr_bucket *bucket;
893 	struct nfs4_xattr_cache *cache;
894 	struct nfs4_xattr_entry *entry = container_of(item,
895 	    struct nfs4_xattr_entry, lru);
896 
897 	bucket = entry->bucket;
898 	cache = bucket->cache;
899 
900 	/*
901 	 * Unhook the entry from its parent (either a cache bucket
902 	 * or a cache structure if it's a listxattr buf), so that
903 	 * it's no longer found. Then add it to the isolate list,
904 	 * to be freed later.
905 	 *
906 	 * In both cases, we're reverting lock order, so use
907 	 * trylock and skip the entry if we can't get the lock.
908 	 */
909 	if (entry->xattr_name != NULL) {
910 		/* Regular cache entry */
911 		if (!spin_trylock(&bucket->lock))
912 			return LRU_SKIP;
913 
914 		kref_get(&entry->ref);
915 
916 		hlist_del_init(&entry->hnode);
917 		atomic_long_dec(&cache->nent);
918 		list_lru_isolate(lru, &entry->lru);
919 
920 		spin_unlock(&bucket->lock);
921 	} else {
922 		/* Listxattr cache entry */
923 		if (!spin_trylock(&cache->listxattr_lock))
924 			return LRU_SKIP;
925 
926 		kref_get(&entry->ref);
927 
928 		cache->listxattr = NULL;
929 		list_lru_isolate(lru, &entry->lru);
930 
931 		spin_unlock(&cache->listxattr_lock);
932 	}
933 
934 	list_add_tail(&entry->dispose, dispose);
935 	return LRU_REMOVED;
936 }
937 
938 static unsigned long
939 nfs4_xattr_entry_scan(struct shrinker *shrink, struct shrink_control *sc)
940 {
941 	LIST_HEAD(dispose);
942 	unsigned long freed;
943 	struct nfs4_xattr_entry *entry;
944 	struct list_lru *lru;
945 
946 	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
947 	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
948 
949 	freed = list_lru_shrink_walk(lru, sc, entry_lru_isolate, &dispose);
950 
951 	while (!list_empty(&dispose)) {
952 		entry = list_first_entry(&dispose, struct nfs4_xattr_entry,
953 		    dispose);
954 		list_del_init(&entry->dispose);
955 
956 		/*
957 		 * Drop two references: the one that we just grabbed
958 		 * in entry_lru_isolate, and the one that was set
959 		 * when the entry was first allocated.
960 		 */
961 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
962 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
963 	}
964 
965 	return freed;
966 }
967 
968 static unsigned long
969 nfs4_xattr_entry_count(struct shrinker *shrink, struct shrink_control *sc)
970 {
971 	unsigned long count;
972 	struct list_lru *lru;
973 
974 	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
975 	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
976 
977 	count = list_lru_shrink_count(lru, sc);
978 	return vfs_pressure_ratio(count);
979 }
980 
981 
982 static void nfs4_xattr_cache_init_once(void *p)
983 {
984 	struct nfs4_xattr_cache *cache = (struct nfs4_xattr_cache *)p;
985 
986 	spin_lock_init(&cache->listxattr_lock);
987 	atomic_long_set(&cache->nent, 0);
988 	nfs4_xattr_hash_init(cache);
989 	cache->listxattr = NULL;
990 	INIT_LIST_HEAD(&cache->lru);
991 	INIT_LIST_HEAD(&cache->dispose);
992 }
993 
994 int __init nfs4_xattr_cache_init(void)
995 {
996 	int ret = 0;
997 
998 	nfs4_xattr_cache_cachep = kmem_cache_create("nfs4_xattr_cache_cache",
999 	    sizeof(struct nfs4_xattr_cache), 0,
1000 	    (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD),
1001 	    nfs4_xattr_cache_init_once);
1002 	if (nfs4_xattr_cache_cachep == NULL)
1003 		return -ENOMEM;
1004 
1005 	ret = list_lru_init_memcg(&nfs4_xattr_large_entry_lru,
1006 	    &nfs4_xattr_large_entry_shrinker);
1007 	if (ret)
1008 		goto out4;
1009 
1010 	ret = list_lru_init_memcg(&nfs4_xattr_entry_lru,
1011 	    &nfs4_xattr_entry_shrinker);
1012 	if (ret)
1013 		goto out3;
1014 
1015 	ret = list_lru_init_memcg(&nfs4_xattr_cache_lru,
1016 	    &nfs4_xattr_cache_shrinker);
1017 	if (ret)
1018 		goto out2;
1019 
1020 	ret = register_shrinker(&nfs4_xattr_cache_shrinker);
1021 	if (ret)
1022 		goto out1;
1023 
1024 	ret = register_shrinker(&nfs4_xattr_entry_shrinker);
1025 	if (ret)
1026 		goto out;
1027 
1028 	ret = register_shrinker(&nfs4_xattr_large_entry_shrinker);
1029 	if (!ret)
1030 		return 0;
1031 
1032 	unregister_shrinker(&nfs4_xattr_entry_shrinker);
1033 out:
1034 	unregister_shrinker(&nfs4_xattr_cache_shrinker);
1035 out1:
1036 	list_lru_destroy(&nfs4_xattr_cache_lru);
1037 out2:
1038 	list_lru_destroy(&nfs4_xattr_entry_lru);
1039 out3:
1040 	list_lru_destroy(&nfs4_xattr_large_entry_lru);
1041 out4:
1042 	kmem_cache_destroy(nfs4_xattr_cache_cachep);
1043 
1044 	return ret;
1045 }
1046 
1047 void nfs4_xattr_cache_exit(void)
1048 {
1049 	unregister_shrinker(&nfs4_xattr_large_entry_shrinker);
1050 	unregister_shrinker(&nfs4_xattr_entry_shrinker);
1051 	unregister_shrinker(&nfs4_xattr_cache_shrinker);
1052 	list_lru_destroy(&nfs4_xattr_large_entry_lru);
1053 	list_lru_destroy(&nfs4_xattr_entry_lru);
1054 	list_lru_destroy(&nfs4_xattr_cache_lru);
1055 	kmem_cache_destroy(nfs4_xattr_cache_cachep);
1056 }
1057