xref: /openbmc/linux/fs/nfs/nfs42xattr.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2019, 2020 Amazon.com, Inc. or its affiliates. All rights reserved.
5  *
6  * User extended attribute client side cache functions.
7  *
8  * Author: Frank van der Linden <fllinden@amazon.com>
9  */
10 #include <linux/errno.h>
11 #include <linux/nfs_fs.h>
12 #include <linux/hashtable.h>
13 #include <linux/refcount.h>
14 #include <uapi/linux/xattr.h>
15 
16 #include "nfs4_fs.h"
17 #include "internal.h"
18 
19 /*
20  * User extended attributes client side caching is implemented by having
21  * a cache structure attached to NFS inodes. This structure is allocated
22  * when needed, and freed when the cache is zapped.
23  *
24  * The cache structure contains as hash table of entries, and a pointer
25  * to a special-cased entry for the listxattr cache.
26  *
27  * Accessing and allocating / freeing the caches is done via reference
28  * counting. The cache entries use a similar refcounting scheme.
29  *
30  * This makes freeing a cache, both from the shrinker and from the
31  * zap cache path, easy. It also means that, in current use cases,
32  * the large majority of inodes will not waste any memory, as they
33  * will never have any user extended attributes assigned to them.
34  *
35  * Attribute entries are hashed in to a simple hash table. They are
36  * also part of an LRU.
37  *
38  * There are three shrinkers.
39  *
40  * Two shrinkers deal with the cache entries themselves: one for
41  * large entries (> PAGE_SIZE), and one for smaller entries. The
42  * shrinker for the larger entries works more aggressively than
43  * those for the smaller entries.
44  *
45  * The other shrinker frees the cache structures themselves.
46  */
47 
48 /*
49  * 64 buckets is a good default. There is likely no reasonable
50  * workload that uses more than even 64 user extended attributes.
51  * You can certainly add a lot more - but you get what you ask for
52  * in those circumstances.
53  */
54 #define NFS4_XATTR_HASH_SIZE	64
55 
56 #define NFSDBG_FACILITY	NFSDBG_XATTRCACHE
57 
58 struct nfs4_xattr_cache;
59 struct nfs4_xattr_entry;
60 
61 struct nfs4_xattr_bucket {
62 	spinlock_t lock;
63 	struct hlist_head hlist;
64 	struct nfs4_xattr_cache *cache;
65 	bool draining;
66 };
67 
68 struct nfs4_xattr_cache {
69 	struct kref ref;
70 	spinlock_t hash_lock;	/* protects hashtable and lru */
71 	struct nfs4_xattr_bucket buckets[NFS4_XATTR_HASH_SIZE];
72 	struct list_head lru;
73 	struct list_head dispose;
74 	atomic_long_t nent;
75 	spinlock_t listxattr_lock;
76 	struct inode *inode;
77 	struct nfs4_xattr_entry *listxattr;
78 };
79 
80 struct nfs4_xattr_entry {
81 	struct kref ref;
82 	struct hlist_node hnode;
83 	struct list_head lru;
84 	struct list_head dispose;
85 	char *xattr_name;
86 	void *xattr_value;
87 	size_t xattr_size;
88 	struct nfs4_xattr_bucket *bucket;
89 	uint32_t flags;
90 };
91 
92 #define	NFS4_XATTR_ENTRY_EXTVAL	0x0001
93 
94 /*
95  * LRU list of NFS inodes that have xattr caches.
96  */
97 static struct list_lru nfs4_xattr_cache_lru;
98 static struct list_lru nfs4_xattr_entry_lru;
99 static struct list_lru nfs4_xattr_large_entry_lru;
100 
101 static struct kmem_cache *nfs4_xattr_cache_cachep;
102 
103 /*
104  * Hashing helper functions.
105  */
106 static void
107 nfs4_xattr_hash_init(struct nfs4_xattr_cache *cache)
108 {
109 	unsigned int i;
110 
111 	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
112 		INIT_HLIST_HEAD(&cache->buckets[i].hlist);
113 		spin_lock_init(&cache->buckets[i].lock);
114 		cache->buckets[i].cache = cache;
115 		cache->buckets[i].draining = false;
116 	}
117 }
118 
119 /*
120  * Locking order:
121  * 1. inode i_lock or bucket lock
122  * 2. list_lru lock (taken by list_lru_* functions)
123  */
124 
125 /*
126  * Wrapper functions to add a cache entry to the right LRU.
127  */
128 static bool
129 nfs4_xattr_entry_lru_add(struct nfs4_xattr_entry *entry)
130 {
131 	struct list_lru *lru;
132 
133 	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
134 	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
135 
136 	return list_lru_add(lru, &entry->lru);
137 }
138 
139 static bool
140 nfs4_xattr_entry_lru_del(struct nfs4_xattr_entry *entry)
141 {
142 	struct list_lru *lru;
143 
144 	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
145 	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
146 
147 	return list_lru_del(lru, &entry->lru);
148 }
149 
150 /*
151  * This function allocates cache entries. They are the normal
152  * extended attribute name/value pairs, but may also be a listxattr
153  * cache. Those allocations use the same entry so that they can be
154  * treated as one by the memory shrinker.
155  *
156  * xattr cache entries are allocated together with names. If the
157  * value fits in to one page with the entry structure and the name,
158  * it will also be part of the same allocation (kmalloc). This is
159  * expected to be the vast majority of cases. Larger allocations
160  * have a value pointer that is allocated separately by kvmalloc.
161  *
162  * Parameters:
163  *
164  * @name:  Name of the extended attribute. NULL for listxattr cache
165  *         entry.
166  * @value: Value of attribute, or listxattr cache. NULL if the
167  *         value is to be copied from pages instead.
168  * @pages: Pages to copy the value from, if not NULL. Passed in to
169  *	   make it easier to copy the value after an RPC, even if
170  *	   the value will not be passed up to application (e.g.
171  *	   for a 'query' getxattr with NULL buffer).
172  * @len:   Length of the value. Can be 0 for zero-length attribues.
173  *         @value and @pages will be NULL if @len is 0.
174  */
175 static struct nfs4_xattr_entry *
176 nfs4_xattr_alloc_entry(const char *name, const void *value,
177 		       struct page **pages, size_t len)
178 {
179 	struct nfs4_xattr_entry *entry;
180 	void *valp;
181 	char *namep;
182 	size_t alloclen, slen;
183 	char *buf;
184 	uint32_t flags;
185 
186 	BUILD_BUG_ON(sizeof(struct nfs4_xattr_entry) +
187 	    XATTR_NAME_MAX + 1 > PAGE_SIZE);
188 
189 	alloclen = sizeof(struct nfs4_xattr_entry);
190 	if (name != NULL) {
191 		slen = strlen(name) + 1;
192 		alloclen += slen;
193 	} else
194 		slen = 0;
195 
196 	if (alloclen + len <= PAGE_SIZE) {
197 		alloclen += len;
198 		flags = 0;
199 	} else {
200 		flags = NFS4_XATTR_ENTRY_EXTVAL;
201 	}
202 
203 	buf = kmalloc(alloclen, GFP_KERNEL_ACCOUNT | GFP_NOFS);
204 	if (buf == NULL)
205 		return NULL;
206 	entry = (struct nfs4_xattr_entry *)buf;
207 
208 	if (name != NULL) {
209 		namep = buf + sizeof(struct nfs4_xattr_entry);
210 		memcpy(namep, name, slen);
211 	} else {
212 		namep = NULL;
213 	}
214 
215 
216 	if (flags & NFS4_XATTR_ENTRY_EXTVAL) {
217 		valp = kvmalloc(len, GFP_KERNEL_ACCOUNT | GFP_NOFS);
218 		if (valp == NULL) {
219 			kfree(buf);
220 			return NULL;
221 		}
222 	} else if (len != 0) {
223 		valp = buf + sizeof(struct nfs4_xattr_entry) + slen;
224 	} else
225 		valp = NULL;
226 
227 	if (valp != NULL) {
228 		if (value != NULL)
229 			memcpy(valp, value, len);
230 		else
231 			_copy_from_pages(valp, pages, 0, len);
232 	}
233 
234 	entry->flags = flags;
235 	entry->xattr_value = valp;
236 	kref_init(&entry->ref);
237 	entry->xattr_name = namep;
238 	entry->xattr_size = len;
239 	entry->bucket = NULL;
240 	INIT_LIST_HEAD(&entry->lru);
241 	INIT_LIST_HEAD(&entry->dispose);
242 	INIT_HLIST_NODE(&entry->hnode);
243 
244 	return entry;
245 }
246 
247 static void
248 nfs4_xattr_free_entry(struct nfs4_xattr_entry *entry)
249 {
250 	if (entry->flags & NFS4_XATTR_ENTRY_EXTVAL)
251 		kvfree(entry->xattr_value);
252 	kfree(entry);
253 }
254 
255 static void
256 nfs4_xattr_free_entry_cb(struct kref *kref)
257 {
258 	struct nfs4_xattr_entry *entry;
259 
260 	entry = container_of(kref, struct nfs4_xattr_entry, ref);
261 
262 	if (WARN_ON(!list_empty(&entry->lru)))
263 		return;
264 
265 	nfs4_xattr_free_entry(entry);
266 }
267 
268 static void
269 nfs4_xattr_free_cache_cb(struct kref *kref)
270 {
271 	struct nfs4_xattr_cache *cache;
272 	int i;
273 
274 	cache = container_of(kref, struct nfs4_xattr_cache, ref);
275 
276 	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
277 		if (WARN_ON(!hlist_empty(&cache->buckets[i].hlist)))
278 			return;
279 		cache->buckets[i].draining = false;
280 	}
281 
282 	cache->listxattr = NULL;
283 
284 	kmem_cache_free(nfs4_xattr_cache_cachep, cache);
285 
286 }
287 
288 static struct nfs4_xattr_cache *
289 nfs4_xattr_alloc_cache(void)
290 {
291 	struct nfs4_xattr_cache *cache;
292 
293 	cache = kmem_cache_alloc(nfs4_xattr_cache_cachep,
294 	    GFP_KERNEL_ACCOUNT | GFP_NOFS);
295 	if (cache == NULL)
296 		return NULL;
297 
298 	kref_init(&cache->ref);
299 	atomic_long_set(&cache->nent, 0);
300 
301 	return cache;
302 }
303 
304 /*
305  * Set the listxattr cache, which is a special-cased cache entry.
306  * The special value ERR_PTR(-ESTALE) is used to indicate that
307  * the cache is being drained - this prevents a new listxattr
308  * cache from being added to what is now a stale cache.
309  */
310 static int
311 nfs4_xattr_set_listcache(struct nfs4_xattr_cache *cache,
312 			 struct nfs4_xattr_entry *new)
313 {
314 	struct nfs4_xattr_entry *old;
315 	int ret = 1;
316 
317 	spin_lock(&cache->listxattr_lock);
318 
319 	old = cache->listxattr;
320 
321 	if (old == ERR_PTR(-ESTALE)) {
322 		ret = 0;
323 		goto out;
324 	}
325 
326 	cache->listxattr = new;
327 	if (new != NULL && new != ERR_PTR(-ESTALE))
328 		nfs4_xattr_entry_lru_add(new);
329 
330 	if (old != NULL) {
331 		nfs4_xattr_entry_lru_del(old);
332 		kref_put(&old->ref, nfs4_xattr_free_entry_cb);
333 	}
334 out:
335 	spin_unlock(&cache->listxattr_lock);
336 
337 	return ret;
338 }
339 
340 /*
341  * Unlink a cache from its parent inode, clearing out an invalid
342  * cache. Must be called with i_lock held.
343  */
344 static struct nfs4_xattr_cache *
345 nfs4_xattr_cache_unlink(struct inode *inode)
346 {
347 	struct nfs_inode *nfsi;
348 	struct nfs4_xattr_cache *oldcache;
349 
350 	nfsi = NFS_I(inode);
351 
352 	oldcache = nfsi->xattr_cache;
353 	if (oldcache != NULL) {
354 		list_lru_del(&nfs4_xattr_cache_lru, &oldcache->lru);
355 		oldcache->inode = NULL;
356 	}
357 	nfsi->xattr_cache = NULL;
358 	nfsi->cache_validity &= ~NFS_INO_INVALID_XATTR;
359 
360 	return oldcache;
361 
362 }
363 
364 /*
365  * Discard a cache. Called by get_cache() if there was an old,
366  * invalid cache. Can also be called from a shrinker callback.
367  *
368  * The cache is dead, it has already been unlinked from its inode,
369  * and no longer appears on the cache LRU list.
370  *
371  * Mark all buckets as draining, so that no new entries are added. This
372  * could still happen in the unlikely, but possible case that another
373  * thread had grabbed a reference before it was unlinked from the inode,
374  * and is still holding it for an add operation.
375  *
376  * Remove all entries from the LRU lists, so that there is no longer
377  * any way to 'find' this cache. Then, remove the entries from the hash
378  * table.
379  *
380  * At that point, the cache will remain empty and can be freed when the final
381  * reference drops, which is very likely the kref_put at the end of
382  * this function, or the one called immediately afterwards in the
383  * shrinker callback.
384  */
385 static void
386 nfs4_xattr_discard_cache(struct nfs4_xattr_cache *cache)
387 {
388 	unsigned int i;
389 	struct nfs4_xattr_entry *entry;
390 	struct nfs4_xattr_bucket *bucket;
391 	struct hlist_node *n;
392 
393 	nfs4_xattr_set_listcache(cache, ERR_PTR(-ESTALE));
394 
395 	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
396 		bucket = &cache->buckets[i];
397 
398 		spin_lock(&bucket->lock);
399 		bucket->draining = true;
400 		hlist_for_each_entry_safe(entry, n, &bucket->hlist, hnode) {
401 			nfs4_xattr_entry_lru_del(entry);
402 			hlist_del_init(&entry->hnode);
403 			kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
404 		}
405 		spin_unlock(&bucket->lock);
406 	}
407 
408 	atomic_long_set(&cache->nent, 0);
409 
410 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
411 }
412 
413 /*
414  * Get a referenced copy of the cache structure. Avoid doing allocs
415  * while holding i_lock. Which means that we do some optimistic allocation,
416  * and might have to free the result in rare cases.
417  *
418  * This function only checks the NFS_INO_INVALID_XATTR cache validity bit
419  * and acts accordingly, replacing the cache when needed. For the read case
420  * (!add), this means that the caller must make sure that the cache
421  * is valid before caling this function. getxattr and listxattr call
422  * revalidate_inode to do this. The attribute cache timeout (for the
423  * non-delegated case) is expected to be dealt with in the revalidate
424  * call.
425  */
426 
427 static struct nfs4_xattr_cache *
428 nfs4_xattr_get_cache(struct inode *inode, int add)
429 {
430 	struct nfs_inode *nfsi;
431 	struct nfs4_xattr_cache *cache, *oldcache, *newcache;
432 
433 	nfsi = NFS_I(inode);
434 
435 	cache = oldcache = NULL;
436 
437 	spin_lock(&inode->i_lock);
438 
439 	if (nfsi->cache_validity & NFS_INO_INVALID_XATTR)
440 		oldcache = nfs4_xattr_cache_unlink(inode);
441 	else
442 		cache = nfsi->xattr_cache;
443 
444 	if (cache != NULL)
445 		kref_get(&cache->ref);
446 
447 	spin_unlock(&inode->i_lock);
448 
449 	if (add && cache == NULL) {
450 		newcache = NULL;
451 
452 		cache = nfs4_xattr_alloc_cache();
453 		if (cache == NULL)
454 			goto out;
455 
456 		spin_lock(&inode->i_lock);
457 		if (nfsi->cache_validity & NFS_INO_INVALID_XATTR) {
458 			/*
459 			 * The cache was invalidated again. Give up,
460 			 * since what we want to enter is now likely
461 			 * outdated anyway.
462 			 */
463 			spin_unlock(&inode->i_lock);
464 			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
465 			cache = NULL;
466 			goto out;
467 		}
468 
469 		/*
470 		 * Check if someone beat us to it.
471 		 */
472 		if (nfsi->xattr_cache != NULL) {
473 			newcache = nfsi->xattr_cache;
474 			kref_get(&newcache->ref);
475 		} else {
476 			kref_get(&cache->ref);
477 			nfsi->xattr_cache = cache;
478 			cache->inode = inode;
479 			list_lru_add(&nfs4_xattr_cache_lru, &cache->lru);
480 		}
481 
482 		spin_unlock(&inode->i_lock);
483 
484 		/*
485 		 * If there was a race, throw away the cache we just
486 		 * allocated, and use the new one allocated by someone
487 		 * else.
488 		 */
489 		if (newcache != NULL) {
490 			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
491 			cache = newcache;
492 		}
493 	}
494 
495 out:
496 	/*
497 	 * Discard the now orphaned old cache.
498 	 */
499 	if (oldcache != NULL)
500 		nfs4_xattr_discard_cache(oldcache);
501 
502 	return cache;
503 }
504 
505 static inline struct nfs4_xattr_bucket *
506 nfs4_xattr_hash_bucket(struct nfs4_xattr_cache *cache, const char *name)
507 {
508 	return &cache->buckets[jhash(name, strlen(name), 0) &
509 	    (ARRAY_SIZE(cache->buckets) - 1)];
510 }
511 
512 static struct nfs4_xattr_entry *
513 nfs4_xattr_get_entry(struct nfs4_xattr_bucket *bucket, const char *name)
514 {
515 	struct nfs4_xattr_entry *entry;
516 
517 	entry = NULL;
518 
519 	hlist_for_each_entry(entry, &bucket->hlist, hnode) {
520 		if (!strcmp(entry->xattr_name, name))
521 			break;
522 	}
523 
524 	return entry;
525 }
526 
527 static int
528 nfs4_xattr_hash_add(struct nfs4_xattr_cache *cache,
529 		    struct nfs4_xattr_entry *entry)
530 {
531 	struct nfs4_xattr_bucket *bucket;
532 	struct nfs4_xattr_entry *oldentry = NULL;
533 	int ret = 1;
534 
535 	bucket = nfs4_xattr_hash_bucket(cache, entry->xattr_name);
536 	entry->bucket = bucket;
537 
538 	spin_lock(&bucket->lock);
539 
540 	if (bucket->draining) {
541 		ret = 0;
542 		goto out;
543 	}
544 
545 	oldentry = nfs4_xattr_get_entry(bucket, entry->xattr_name);
546 	if (oldentry != NULL) {
547 		hlist_del_init(&oldentry->hnode);
548 		nfs4_xattr_entry_lru_del(oldentry);
549 	} else {
550 		atomic_long_inc(&cache->nent);
551 	}
552 
553 	hlist_add_head(&entry->hnode, &bucket->hlist);
554 	nfs4_xattr_entry_lru_add(entry);
555 
556 out:
557 	spin_unlock(&bucket->lock);
558 
559 	if (oldentry != NULL)
560 		kref_put(&oldentry->ref, nfs4_xattr_free_entry_cb);
561 
562 	return ret;
563 }
564 
565 static void
566 nfs4_xattr_hash_remove(struct nfs4_xattr_cache *cache, const char *name)
567 {
568 	struct nfs4_xattr_bucket *bucket;
569 	struct nfs4_xattr_entry *entry;
570 
571 	bucket = nfs4_xattr_hash_bucket(cache, name);
572 
573 	spin_lock(&bucket->lock);
574 
575 	entry = nfs4_xattr_get_entry(bucket, name);
576 	if (entry != NULL) {
577 		hlist_del_init(&entry->hnode);
578 		nfs4_xattr_entry_lru_del(entry);
579 		atomic_long_dec(&cache->nent);
580 	}
581 
582 	spin_unlock(&bucket->lock);
583 
584 	if (entry != NULL)
585 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
586 }
587 
588 static struct nfs4_xattr_entry *
589 nfs4_xattr_hash_find(struct nfs4_xattr_cache *cache, const char *name)
590 {
591 	struct nfs4_xattr_bucket *bucket;
592 	struct nfs4_xattr_entry *entry;
593 
594 	bucket = nfs4_xattr_hash_bucket(cache, name);
595 
596 	spin_lock(&bucket->lock);
597 
598 	entry = nfs4_xattr_get_entry(bucket, name);
599 	if (entry != NULL)
600 		kref_get(&entry->ref);
601 
602 	spin_unlock(&bucket->lock);
603 
604 	return entry;
605 }
606 
607 /*
608  * Entry point to retrieve an entry from the cache.
609  */
610 ssize_t nfs4_xattr_cache_get(struct inode *inode, const char *name, char *buf,
611 			 ssize_t buflen)
612 {
613 	struct nfs4_xattr_cache *cache;
614 	struct nfs4_xattr_entry *entry;
615 	ssize_t ret;
616 
617 	cache = nfs4_xattr_get_cache(inode, 0);
618 	if (cache == NULL)
619 		return -ENOENT;
620 
621 	ret = 0;
622 	entry = nfs4_xattr_hash_find(cache, name);
623 
624 	if (entry != NULL) {
625 		dprintk("%s: cache hit '%s', len %lu\n", __func__,
626 		    entry->xattr_name, (unsigned long)entry->xattr_size);
627 		if (buflen == 0) {
628 			/* Length probe only */
629 			ret = entry->xattr_size;
630 		} else if (buflen < entry->xattr_size)
631 			ret = -ERANGE;
632 		else {
633 			memcpy(buf, entry->xattr_value, entry->xattr_size);
634 			ret = entry->xattr_size;
635 		}
636 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
637 	} else {
638 		dprintk("%s: cache miss '%s'\n", __func__, name);
639 		ret = -ENOENT;
640 	}
641 
642 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
643 
644 	return ret;
645 }
646 
647 /*
648  * Retrieve a cached list of xattrs from the cache.
649  */
650 ssize_t nfs4_xattr_cache_list(struct inode *inode, char *buf, ssize_t buflen)
651 {
652 	struct nfs4_xattr_cache *cache;
653 	struct nfs4_xattr_entry *entry;
654 	ssize_t ret;
655 
656 	cache = nfs4_xattr_get_cache(inode, 0);
657 	if (cache == NULL)
658 		return -ENOENT;
659 
660 	spin_lock(&cache->listxattr_lock);
661 
662 	entry = cache->listxattr;
663 
664 	if (entry != NULL && entry != ERR_PTR(-ESTALE)) {
665 		if (buflen == 0) {
666 			/* Length probe only */
667 			ret = entry->xattr_size;
668 		} else if (entry->xattr_size > buflen)
669 			ret = -ERANGE;
670 		else {
671 			memcpy(buf, entry->xattr_value, entry->xattr_size);
672 			ret = entry->xattr_size;
673 		}
674 	} else {
675 		ret = -ENOENT;
676 	}
677 
678 	spin_unlock(&cache->listxattr_lock);
679 
680 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
681 
682 	return ret;
683 }
684 
685 /*
686  * Add an xattr to the cache.
687  *
688  * This also invalidates the xattr list cache.
689  */
690 void nfs4_xattr_cache_add(struct inode *inode, const char *name,
691 			  const char *buf, struct page **pages, ssize_t buflen)
692 {
693 	struct nfs4_xattr_cache *cache;
694 	struct nfs4_xattr_entry *entry;
695 
696 	dprintk("%s: add '%s' len %lu\n", __func__,
697 	    name, (unsigned long)buflen);
698 
699 	cache = nfs4_xattr_get_cache(inode, 1);
700 	if (cache == NULL)
701 		return;
702 
703 	entry = nfs4_xattr_alloc_entry(name, buf, pages, buflen);
704 	if (entry == NULL)
705 		goto out;
706 
707 	(void)nfs4_xattr_set_listcache(cache, NULL);
708 
709 	if (!nfs4_xattr_hash_add(cache, entry))
710 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
711 
712 out:
713 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
714 }
715 
716 
717 /*
718  * Remove an xattr from the cache.
719  *
720  * This also invalidates the xattr list cache.
721  */
722 void nfs4_xattr_cache_remove(struct inode *inode, const char *name)
723 {
724 	struct nfs4_xattr_cache *cache;
725 
726 	dprintk("%s: remove '%s'\n", __func__, name);
727 
728 	cache = nfs4_xattr_get_cache(inode, 0);
729 	if (cache == NULL)
730 		return;
731 
732 	(void)nfs4_xattr_set_listcache(cache, NULL);
733 	nfs4_xattr_hash_remove(cache, name);
734 
735 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
736 }
737 
738 /*
739  * Cache listxattr output, replacing any possible old one.
740  */
741 void nfs4_xattr_cache_set_list(struct inode *inode, const char *buf,
742 			       ssize_t buflen)
743 {
744 	struct nfs4_xattr_cache *cache;
745 	struct nfs4_xattr_entry *entry;
746 
747 	cache = nfs4_xattr_get_cache(inode, 1);
748 	if (cache == NULL)
749 		return;
750 
751 	entry = nfs4_xattr_alloc_entry(NULL, buf, NULL, buflen);
752 	if (entry == NULL)
753 		goto out;
754 
755 	/*
756 	 * This is just there to be able to get to bucket->cache,
757 	 * which is obviously the same for all buckets, so just
758 	 * use bucket 0.
759 	 */
760 	entry->bucket = &cache->buckets[0];
761 
762 	if (!nfs4_xattr_set_listcache(cache, entry))
763 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
764 
765 out:
766 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
767 }
768 
769 /*
770  * Zap the entire cache. Called when an inode is evicted.
771  */
772 void nfs4_xattr_cache_zap(struct inode *inode)
773 {
774 	struct nfs4_xattr_cache *oldcache;
775 
776 	spin_lock(&inode->i_lock);
777 	oldcache = nfs4_xattr_cache_unlink(inode);
778 	spin_unlock(&inode->i_lock);
779 
780 	if (oldcache)
781 		nfs4_xattr_discard_cache(oldcache);
782 }
783 
784 /*
785  * The entry LRU is shrunk more aggressively than the cache LRU,
786  * by settings @seeks to 1.
787  *
788  * Cache structures are freed only when they've become empty, after
789  * pruning all but one entry.
790  */
791 
792 static unsigned long nfs4_xattr_cache_count(struct shrinker *shrink,
793 					    struct shrink_control *sc);
794 static unsigned long nfs4_xattr_entry_count(struct shrinker *shrink,
795 					    struct shrink_control *sc);
796 static unsigned long nfs4_xattr_cache_scan(struct shrinker *shrink,
797 					   struct shrink_control *sc);
798 static unsigned long nfs4_xattr_entry_scan(struct shrinker *shrink,
799 					   struct shrink_control *sc);
800 
801 static struct shrinker nfs4_xattr_cache_shrinker = {
802 	.count_objects	= nfs4_xattr_cache_count,
803 	.scan_objects	= nfs4_xattr_cache_scan,
804 	.seeks		= DEFAULT_SEEKS,
805 	.flags		= SHRINKER_MEMCG_AWARE,
806 };
807 
808 static struct shrinker nfs4_xattr_entry_shrinker = {
809 	.count_objects	= nfs4_xattr_entry_count,
810 	.scan_objects	= nfs4_xattr_entry_scan,
811 	.seeks		= DEFAULT_SEEKS,
812 	.batch		= 512,
813 	.flags		= SHRINKER_MEMCG_AWARE,
814 };
815 
816 static struct shrinker nfs4_xattr_large_entry_shrinker = {
817 	.count_objects	= nfs4_xattr_entry_count,
818 	.scan_objects	= nfs4_xattr_entry_scan,
819 	.seeks		= 1,
820 	.batch		= 512,
821 	.flags		= SHRINKER_MEMCG_AWARE,
822 };
823 
824 static enum lru_status
825 cache_lru_isolate(struct list_head *item,
826 	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
827 {
828 	struct list_head *dispose = arg;
829 	struct inode *inode;
830 	struct nfs4_xattr_cache *cache = container_of(item,
831 	    struct nfs4_xattr_cache, lru);
832 
833 	if (atomic_long_read(&cache->nent) > 1)
834 		return LRU_SKIP;
835 
836 	/*
837 	 * If a cache structure is on the LRU list, we know that
838 	 * its inode is valid. Try to lock it to break the link.
839 	 * Since we're inverting the lock order here, only try.
840 	 */
841 	inode = cache->inode;
842 
843 	if (!spin_trylock(&inode->i_lock))
844 		return LRU_SKIP;
845 
846 	kref_get(&cache->ref);
847 
848 	cache->inode = NULL;
849 	NFS_I(inode)->xattr_cache = NULL;
850 	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_XATTR;
851 	list_lru_isolate(lru, &cache->lru);
852 
853 	spin_unlock(&inode->i_lock);
854 
855 	list_add_tail(&cache->dispose, dispose);
856 	return LRU_REMOVED;
857 }
858 
859 static unsigned long
860 nfs4_xattr_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
861 {
862 	LIST_HEAD(dispose);
863 	unsigned long freed;
864 	struct nfs4_xattr_cache *cache;
865 
866 	freed = list_lru_shrink_walk(&nfs4_xattr_cache_lru, sc,
867 	    cache_lru_isolate, &dispose);
868 	while (!list_empty(&dispose)) {
869 		cache = list_first_entry(&dispose, struct nfs4_xattr_cache,
870 		    dispose);
871 		list_del_init(&cache->dispose);
872 		nfs4_xattr_discard_cache(cache);
873 		kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
874 	}
875 
876 	return freed;
877 }
878 
879 
880 static unsigned long
881 nfs4_xattr_cache_count(struct shrinker *shrink, struct shrink_control *sc)
882 {
883 	unsigned long count;
884 
885 	count = list_lru_count(&nfs4_xattr_cache_lru);
886 	return vfs_pressure_ratio(count);
887 }
888 
889 static enum lru_status
890 entry_lru_isolate(struct list_head *item,
891 	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
892 {
893 	struct list_head *dispose = arg;
894 	struct nfs4_xattr_bucket *bucket;
895 	struct nfs4_xattr_cache *cache;
896 	struct nfs4_xattr_entry *entry = container_of(item,
897 	    struct nfs4_xattr_entry, lru);
898 
899 	bucket = entry->bucket;
900 	cache = bucket->cache;
901 
902 	/*
903 	 * Unhook the entry from its parent (either a cache bucket
904 	 * or a cache structure if it's a listxattr buf), so that
905 	 * it's no longer found. Then add it to the isolate list,
906 	 * to be freed later.
907 	 *
908 	 * In both cases, we're reverting lock order, so use
909 	 * trylock and skip the entry if we can't get the lock.
910 	 */
911 	if (entry->xattr_name != NULL) {
912 		/* Regular cache entry */
913 		if (!spin_trylock(&bucket->lock))
914 			return LRU_SKIP;
915 
916 		kref_get(&entry->ref);
917 
918 		hlist_del_init(&entry->hnode);
919 		atomic_long_dec(&cache->nent);
920 		list_lru_isolate(lru, &entry->lru);
921 
922 		spin_unlock(&bucket->lock);
923 	} else {
924 		/* Listxattr cache entry */
925 		if (!spin_trylock(&cache->listxattr_lock))
926 			return LRU_SKIP;
927 
928 		kref_get(&entry->ref);
929 
930 		cache->listxattr = NULL;
931 		list_lru_isolate(lru, &entry->lru);
932 
933 		spin_unlock(&cache->listxattr_lock);
934 	}
935 
936 	list_add_tail(&entry->dispose, dispose);
937 	return LRU_REMOVED;
938 }
939 
940 static unsigned long
941 nfs4_xattr_entry_scan(struct shrinker *shrink, struct shrink_control *sc)
942 {
943 	LIST_HEAD(dispose);
944 	unsigned long freed;
945 	struct nfs4_xattr_entry *entry;
946 	struct list_lru *lru;
947 
948 	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
949 	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
950 
951 	freed = list_lru_shrink_walk(lru, sc, entry_lru_isolate, &dispose);
952 
953 	while (!list_empty(&dispose)) {
954 		entry = list_first_entry(&dispose, struct nfs4_xattr_entry,
955 		    dispose);
956 		list_del_init(&entry->dispose);
957 
958 		/*
959 		 * Drop two references: the one that we just grabbed
960 		 * in entry_lru_isolate, and the one that was set
961 		 * when the entry was first allocated.
962 		 */
963 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
964 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
965 	}
966 
967 	return freed;
968 }
969 
970 static unsigned long
971 nfs4_xattr_entry_count(struct shrinker *shrink, struct shrink_control *sc)
972 {
973 	unsigned long count;
974 	struct list_lru *lru;
975 
976 	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
977 	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
978 
979 	count = list_lru_count(lru);
980 	return vfs_pressure_ratio(count);
981 }
982 
983 
984 static void nfs4_xattr_cache_init_once(void *p)
985 {
986 	struct nfs4_xattr_cache *cache = (struct nfs4_xattr_cache *)p;
987 
988 	spin_lock_init(&cache->listxattr_lock);
989 	atomic_long_set(&cache->nent, 0);
990 	nfs4_xattr_hash_init(cache);
991 	cache->listxattr = NULL;
992 	INIT_LIST_HEAD(&cache->lru);
993 	INIT_LIST_HEAD(&cache->dispose);
994 }
995 
996 int __init nfs4_xattr_cache_init(void)
997 {
998 	int ret = 0;
999 
1000 	nfs4_xattr_cache_cachep = kmem_cache_create("nfs4_xattr_cache_cache",
1001 	    sizeof(struct nfs4_xattr_cache), 0,
1002 	    (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1003 	    nfs4_xattr_cache_init_once);
1004 	if (nfs4_xattr_cache_cachep == NULL)
1005 		return -ENOMEM;
1006 
1007 	ret = list_lru_init_memcg(&nfs4_xattr_large_entry_lru,
1008 	    &nfs4_xattr_large_entry_shrinker);
1009 	if (ret)
1010 		goto out4;
1011 
1012 	ret = list_lru_init_memcg(&nfs4_xattr_entry_lru,
1013 	    &nfs4_xattr_entry_shrinker);
1014 	if (ret)
1015 		goto out3;
1016 
1017 	ret = list_lru_init_memcg(&nfs4_xattr_cache_lru,
1018 	    &nfs4_xattr_cache_shrinker);
1019 	if (ret)
1020 		goto out2;
1021 
1022 	ret = register_shrinker(&nfs4_xattr_cache_shrinker);
1023 	if (ret)
1024 		goto out1;
1025 
1026 	ret = register_shrinker(&nfs4_xattr_entry_shrinker);
1027 	if (ret)
1028 		goto out;
1029 
1030 	ret = register_shrinker(&nfs4_xattr_large_entry_shrinker);
1031 	if (!ret)
1032 		return 0;
1033 
1034 	unregister_shrinker(&nfs4_xattr_entry_shrinker);
1035 out:
1036 	unregister_shrinker(&nfs4_xattr_cache_shrinker);
1037 out1:
1038 	list_lru_destroy(&nfs4_xattr_cache_lru);
1039 out2:
1040 	list_lru_destroy(&nfs4_xattr_entry_lru);
1041 out3:
1042 	list_lru_destroy(&nfs4_xattr_large_entry_lru);
1043 out4:
1044 	kmem_cache_destroy(nfs4_xattr_cache_cachep);
1045 
1046 	return ret;
1047 }
1048 
1049 void nfs4_xattr_cache_exit(void)
1050 {
1051 	unregister_shrinker(&nfs4_xattr_entry_shrinker);
1052 	unregister_shrinker(&nfs4_xattr_cache_shrinker);
1053 	list_lru_destroy(&nfs4_xattr_entry_lru);
1054 	list_lru_destroy(&nfs4_xattr_cache_lru);
1055 	kmem_cache_destroy(nfs4_xattr_cache_cachep);
1056 }
1057