1 /* 2 * linux/fs/nfs/inode.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs inode and superblock handling functions 7 * 8 * Modularised by Alan Cox <Alan.Cox@linux.org>, while hacking some 9 * experimental NFS changes. Modularisation taken straight from SYS5 fs. 10 * 11 * Change to nfs_read_super() to permit NFS mounts to multi-homed hosts. 12 * J.S.Peatfield@damtp.cam.ac.uk 13 * 14 */ 15 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/sched.h> 19 #include <linux/time.h> 20 #include <linux/kernel.h> 21 #include <linux/mm.h> 22 #include <linux/string.h> 23 #include <linux/stat.h> 24 #include <linux/errno.h> 25 #include <linux/unistd.h> 26 #include <linux/sunrpc/clnt.h> 27 #include <linux/sunrpc/stats.h> 28 #include <linux/sunrpc/metrics.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/nfs4_mount.h> 32 #include <linux/lockd/bind.h> 33 #include <linux/smp_lock.h> 34 #include <linux/seq_file.h> 35 #include <linux/mount.h> 36 #include <linux/nfs_idmap.h> 37 #include <linux/vfs.h> 38 #include <linux/inet.h> 39 #include <linux/nfs_xdr.h> 40 41 #include <asm/system.h> 42 #include <asm/uaccess.h> 43 44 #include "nfs4_fs.h" 45 #include "callback.h" 46 #include "delegation.h" 47 #include "iostat.h" 48 #include "internal.h" 49 50 #define NFSDBG_FACILITY NFSDBG_VFS 51 52 #define NFS_64_BIT_INODE_NUMBERS_ENABLED 1 53 54 /* Default is to see 64-bit inode numbers */ 55 static int enable_ino64 = NFS_64_BIT_INODE_NUMBERS_ENABLED; 56 57 static void nfs_invalidate_inode(struct inode *); 58 static int nfs_update_inode(struct inode *, struct nfs_fattr *); 59 60 static struct kmem_cache * nfs_inode_cachep; 61 62 static inline unsigned long 63 nfs_fattr_to_ino_t(struct nfs_fattr *fattr) 64 { 65 return nfs_fileid_to_ino_t(fattr->fileid); 66 } 67 68 /** 69 * nfs_compat_user_ino64 - returns the user-visible inode number 70 * @fileid: 64-bit fileid 71 * 72 * This function returns a 32-bit inode number if the boot parameter 73 * nfs.enable_ino64 is zero. 74 */ 75 u64 nfs_compat_user_ino64(u64 fileid) 76 { 77 int ino; 78 79 if (enable_ino64) 80 return fileid; 81 ino = fileid; 82 if (sizeof(ino) < sizeof(fileid)) 83 ino ^= fileid >> (sizeof(fileid)-sizeof(ino)) * 8; 84 return ino; 85 } 86 87 int nfs_write_inode(struct inode *inode, int sync) 88 { 89 int ret; 90 91 if (sync) { 92 ret = filemap_fdatawait(inode->i_mapping); 93 if (ret == 0) 94 ret = nfs_commit_inode(inode, FLUSH_SYNC); 95 } else 96 ret = nfs_commit_inode(inode, 0); 97 if (ret >= 0) 98 return 0; 99 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 100 return ret; 101 } 102 103 void nfs_clear_inode(struct inode *inode) 104 { 105 /* 106 * The following should never happen... 107 */ 108 BUG_ON(nfs_have_writebacks(inode)); 109 BUG_ON(!list_empty(&NFS_I(inode)->open_files)); 110 nfs_zap_acl_cache(inode); 111 nfs_access_zap_cache(inode); 112 } 113 114 /** 115 * nfs_sync_mapping - helper to flush all mmapped dirty data to disk 116 */ 117 int nfs_sync_mapping(struct address_space *mapping) 118 { 119 int ret; 120 121 if (mapping->nrpages == 0) 122 return 0; 123 unmap_mapping_range(mapping, 0, 0, 0); 124 ret = filemap_write_and_wait(mapping); 125 if (ret != 0) 126 goto out; 127 ret = nfs_wb_all(mapping->host); 128 out: 129 return ret; 130 } 131 132 /* 133 * Invalidate the local caches 134 */ 135 static void nfs_zap_caches_locked(struct inode *inode) 136 { 137 struct nfs_inode *nfsi = NFS_I(inode); 138 int mode = inode->i_mode; 139 140 nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE); 141 142 nfsi->attrtimeo = NFS_MINATTRTIMEO(inode); 143 nfsi->attrtimeo_timestamp = jiffies; 144 145 memset(NFS_COOKIEVERF(inode), 0, sizeof(NFS_COOKIEVERF(inode))); 146 if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) 147 nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL|NFS_INO_REVAL_PAGECACHE; 148 else 149 nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL|NFS_INO_REVAL_PAGECACHE; 150 } 151 152 void nfs_zap_caches(struct inode *inode) 153 { 154 spin_lock(&inode->i_lock); 155 nfs_zap_caches_locked(inode); 156 spin_unlock(&inode->i_lock); 157 } 158 159 void nfs_zap_mapping(struct inode *inode, struct address_space *mapping) 160 { 161 if (mapping->nrpages != 0) { 162 spin_lock(&inode->i_lock); 163 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 164 spin_unlock(&inode->i_lock); 165 } 166 } 167 168 void nfs_zap_acl_cache(struct inode *inode) 169 { 170 void (*clear_acl_cache)(struct inode *); 171 172 clear_acl_cache = NFS_PROTO(inode)->clear_acl_cache; 173 if (clear_acl_cache != NULL) 174 clear_acl_cache(inode); 175 spin_lock(&inode->i_lock); 176 NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_ACL; 177 spin_unlock(&inode->i_lock); 178 } 179 180 void nfs_invalidate_atime(struct inode *inode) 181 { 182 spin_lock(&inode->i_lock); 183 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME; 184 spin_unlock(&inode->i_lock); 185 } 186 187 /* 188 * Invalidate, but do not unhash, the inode. 189 * NB: must be called with inode->i_lock held! 190 */ 191 static void nfs_invalidate_inode(struct inode *inode) 192 { 193 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 194 nfs_zap_caches_locked(inode); 195 } 196 197 struct nfs_find_desc { 198 struct nfs_fh *fh; 199 struct nfs_fattr *fattr; 200 }; 201 202 /* 203 * In NFSv3 we can have 64bit inode numbers. In order to support 204 * this, and re-exported directories (also seen in NFSv2) 205 * we are forced to allow 2 different inodes to have the same 206 * i_ino. 207 */ 208 static int 209 nfs_find_actor(struct inode *inode, void *opaque) 210 { 211 struct nfs_find_desc *desc = (struct nfs_find_desc *)opaque; 212 struct nfs_fh *fh = desc->fh; 213 struct nfs_fattr *fattr = desc->fattr; 214 215 if (NFS_FILEID(inode) != fattr->fileid) 216 return 0; 217 if (nfs_compare_fh(NFS_FH(inode), fh)) 218 return 0; 219 if (is_bad_inode(inode) || NFS_STALE(inode)) 220 return 0; 221 return 1; 222 } 223 224 static int 225 nfs_init_locked(struct inode *inode, void *opaque) 226 { 227 struct nfs_find_desc *desc = (struct nfs_find_desc *)opaque; 228 struct nfs_fattr *fattr = desc->fattr; 229 230 set_nfs_fileid(inode, fattr->fileid); 231 nfs_copy_fh(NFS_FH(inode), desc->fh); 232 return 0; 233 } 234 235 /* Don't use READDIRPLUS on directories that we believe are too large */ 236 #define NFS_LIMIT_READDIRPLUS (8*PAGE_SIZE) 237 238 /* 239 * This is our front-end to iget that looks up inodes by file handle 240 * instead of inode number. 241 */ 242 struct inode * 243 nfs_fhget(struct super_block *sb, struct nfs_fh *fh, struct nfs_fattr *fattr) 244 { 245 struct nfs_find_desc desc = { 246 .fh = fh, 247 .fattr = fattr 248 }; 249 struct inode *inode = ERR_PTR(-ENOENT); 250 unsigned long hash; 251 252 if ((fattr->valid & NFS_ATTR_FATTR) == 0) 253 goto out_no_inode; 254 255 if (!fattr->nlink) { 256 printk("NFS: Buggy server - nlink == 0!\n"); 257 goto out_no_inode; 258 } 259 260 hash = nfs_fattr_to_ino_t(fattr); 261 262 inode = iget5_locked(sb, hash, nfs_find_actor, nfs_init_locked, &desc); 263 if (inode == NULL) { 264 inode = ERR_PTR(-ENOMEM); 265 goto out_no_inode; 266 } 267 268 if (inode->i_state & I_NEW) { 269 struct nfs_inode *nfsi = NFS_I(inode); 270 unsigned long now = jiffies; 271 272 /* We set i_ino for the few things that still rely on it, 273 * such as stat(2) */ 274 inode->i_ino = hash; 275 276 /* We can't support update_atime(), since the server will reset it */ 277 inode->i_flags |= S_NOATIME|S_NOCMTIME; 278 inode->i_mode = fattr->mode; 279 /* Why so? Because we want revalidate for devices/FIFOs, and 280 * that's precisely what we have in nfs_file_inode_operations. 281 */ 282 inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->file_inode_ops; 283 if (S_ISREG(inode->i_mode)) { 284 inode->i_fop = &nfs_file_operations; 285 inode->i_data.a_ops = &nfs_file_aops; 286 inode->i_data.backing_dev_info = &NFS_SB(sb)->backing_dev_info; 287 } else if (S_ISDIR(inode->i_mode)) { 288 inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->dir_inode_ops; 289 inode->i_fop = &nfs_dir_operations; 290 if (nfs_server_capable(inode, NFS_CAP_READDIRPLUS) 291 && fattr->size <= NFS_LIMIT_READDIRPLUS) 292 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 293 /* Deal with crossing mountpoints */ 294 if (!nfs_fsid_equal(&NFS_SB(sb)->fsid, &fattr->fsid)) { 295 if (fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) 296 inode->i_op = &nfs_referral_inode_operations; 297 else 298 inode->i_op = &nfs_mountpoint_inode_operations; 299 inode->i_fop = NULL; 300 set_bit(NFS_INO_MOUNTPOINT, &nfsi->flags); 301 } 302 } else if (S_ISLNK(inode->i_mode)) 303 inode->i_op = &nfs_symlink_inode_operations; 304 else 305 init_special_inode(inode, inode->i_mode, fattr->rdev); 306 307 nfsi->read_cache_jiffies = fattr->time_start; 308 nfsi->last_updated = now; 309 nfsi->cache_change_attribute = now; 310 inode->i_atime = fattr->atime; 311 inode->i_mtime = fattr->mtime; 312 inode->i_ctime = fattr->ctime; 313 if (fattr->valid & NFS_ATTR_FATTR_V4) 314 nfsi->change_attr = fattr->change_attr; 315 inode->i_size = nfs_size_to_loff_t(fattr->size); 316 inode->i_nlink = fattr->nlink; 317 inode->i_uid = fattr->uid; 318 inode->i_gid = fattr->gid; 319 if (fattr->valid & (NFS_ATTR_FATTR_V3 | NFS_ATTR_FATTR_V4)) { 320 /* 321 * report the blocks in 512byte units 322 */ 323 inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used); 324 } else { 325 inode->i_blocks = fattr->du.nfs2.blocks; 326 } 327 nfsi->attrtimeo = NFS_MINATTRTIMEO(inode); 328 nfsi->attrtimeo_timestamp = now; 329 memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf)); 330 nfsi->access_cache = RB_ROOT; 331 332 unlock_new_inode(inode); 333 } else 334 nfs_refresh_inode(inode, fattr); 335 dprintk("NFS: nfs_fhget(%s/%Ld ct=%d)\n", 336 inode->i_sb->s_id, 337 (long long)NFS_FILEID(inode), 338 atomic_read(&inode->i_count)); 339 340 out: 341 return inode; 342 343 out_no_inode: 344 dprintk("nfs_fhget: iget failed with error %ld\n", PTR_ERR(inode)); 345 goto out; 346 } 347 348 #define NFS_VALID_ATTRS (ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_SIZE|ATTR_ATIME|ATTR_ATIME_SET|ATTR_MTIME|ATTR_MTIME_SET|ATTR_FILE) 349 350 int 351 nfs_setattr(struct dentry *dentry, struct iattr *attr) 352 { 353 struct inode *inode = dentry->d_inode; 354 struct nfs_fattr fattr; 355 int error; 356 357 nfs_inc_stats(inode, NFSIOS_VFSSETATTR); 358 359 /* skip mode change if it's just for clearing setuid/setgid */ 360 if (attr->ia_valid & (ATTR_KILL_SUID | ATTR_KILL_SGID)) 361 attr->ia_valid &= ~ATTR_MODE; 362 363 if (attr->ia_valid & ATTR_SIZE) { 364 if (!S_ISREG(inode->i_mode) || attr->ia_size == i_size_read(inode)) 365 attr->ia_valid &= ~ATTR_SIZE; 366 } 367 368 /* Optimization: if the end result is no change, don't RPC */ 369 attr->ia_valid &= NFS_VALID_ATTRS; 370 if ((attr->ia_valid & ~ATTR_FILE) == 0) 371 return 0; 372 373 /* Write all dirty data */ 374 if (S_ISREG(inode->i_mode)) { 375 filemap_write_and_wait(inode->i_mapping); 376 nfs_wb_all(inode); 377 } 378 /* 379 * Return any delegations if we're going to change ACLs 380 */ 381 if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0) 382 nfs_inode_return_delegation(inode); 383 error = NFS_PROTO(inode)->setattr(dentry, &fattr, attr); 384 if (error == 0) 385 nfs_refresh_inode(inode, &fattr); 386 return error; 387 } 388 389 /** 390 * nfs_vmtruncate - unmap mappings "freed" by truncate() syscall 391 * @inode: inode of the file used 392 * @offset: file offset to start truncating 393 * 394 * This is a copy of the common vmtruncate, but with the locking 395 * corrected to take into account the fact that NFS requires 396 * inode->i_size to be updated under the inode->i_lock. 397 */ 398 static int nfs_vmtruncate(struct inode * inode, loff_t offset) 399 { 400 if (i_size_read(inode) < offset) { 401 unsigned long limit; 402 403 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 404 if (limit != RLIM_INFINITY && offset > limit) 405 goto out_sig; 406 if (offset > inode->i_sb->s_maxbytes) 407 goto out_big; 408 spin_lock(&inode->i_lock); 409 i_size_write(inode, offset); 410 spin_unlock(&inode->i_lock); 411 } else { 412 struct address_space *mapping = inode->i_mapping; 413 414 /* 415 * truncation of in-use swapfiles is disallowed - it would 416 * cause subsequent swapout to scribble on the now-freed 417 * blocks. 418 */ 419 if (IS_SWAPFILE(inode)) 420 return -ETXTBSY; 421 spin_lock(&inode->i_lock); 422 i_size_write(inode, offset); 423 spin_unlock(&inode->i_lock); 424 425 /* 426 * unmap_mapping_range is called twice, first simply for 427 * efficiency so that truncate_inode_pages does fewer 428 * single-page unmaps. However after this first call, and 429 * before truncate_inode_pages finishes, it is possible for 430 * private pages to be COWed, which remain after 431 * truncate_inode_pages finishes, hence the second 432 * unmap_mapping_range call must be made for correctness. 433 */ 434 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 435 truncate_inode_pages(mapping, offset); 436 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 437 } 438 return 0; 439 out_sig: 440 send_sig(SIGXFSZ, current, 0); 441 out_big: 442 return -EFBIG; 443 } 444 445 /** 446 * nfs_setattr_update_inode - Update inode metadata after a setattr call. 447 * @inode: pointer to struct inode 448 * @attr: pointer to struct iattr 449 * 450 * Note: we do this in the *proc.c in order to ensure that 451 * it works for things like exclusive creates too. 452 */ 453 void nfs_setattr_update_inode(struct inode *inode, struct iattr *attr) 454 { 455 if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0) { 456 if ((attr->ia_valid & ATTR_MODE) != 0) { 457 int mode = attr->ia_mode & S_IALLUGO; 458 mode |= inode->i_mode & ~S_IALLUGO; 459 inode->i_mode = mode; 460 } 461 if ((attr->ia_valid & ATTR_UID) != 0) 462 inode->i_uid = attr->ia_uid; 463 if ((attr->ia_valid & ATTR_GID) != 0) 464 inode->i_gid = attr->ia_gid; 465 spin_lock(&inode->i_lock); 466 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL; 467 spin_unlock(&inode->i_lock); 468 } 469 if ((attr->ia_valid & ATTR_SIZE) != 0) { 470 nfs_inc_stats(inode, NFSIOS_SETATTRTRUNC); 471 nfs_vmtruncate(inode, attr->ia_size); 472 } 473 } 474 475 static int nfs_wait_schedule(void *word) 476 { 477 if (signal_pending(current)) 478 return -ERESTARTSYS; 479 schedule(); 480 return 0; 481 } 482 483 /* 484 * Wait for the inode to get unlocked. 485 */ 486 static int nfs_wait_on_inode(struct inode *inode) 487 { 488 struct nfs_inode *nfsi = NFS_I(inode); 489 int error; 490 491 error = wait_on_bit_lock(&nfsi->flags, NFS_INO_REVALIDATING, 492 nfs_wait_schedule, TASK_KILLABLE); 493 494 return error; 495 } 496 497 static void nfs_wake_up_inode(struct inode *inode) 498 { 499 struct nfs_inode *nfsi = NFS_I(inode); 500 501 clear_bit(NFS_INO_REVALIDATING, &nfsi->flags); 502 smp_mb__after_clear_bit(); 503 wake_up_bit(&nfsi->flags, NFS_INO_REVALIDATING); 504 } 505 506 int nfs_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 507 { 508 struct inode *inode = dentry->d_inode; 509 int need_atime = NFS_I(inode)->cache_validity & NFS_INO_INVALID_ATIME; 510 int err; 511 512 /* 513 * Flush out writes to the server in order to update c/mtime. 514 * 515 * Hold the i_mutex to suspend application writes temporarily; 516 * this prevents long-running writing applications from blocking 517 * nfs_wb_nocommit. 518 */ 519 if (S_ISREG(inode->i_mode)) { 520 mutex_lock(&inode->i_mutex); 521 nfs_wb_nocommit(inode); 522 mutex_unlock(&inode->i_mutex); 523 } 524 525 /* 526 * We may force a getattr if the user cares about atime. 527 * 528 * Note that we only have to check the vfsmount flags here: 529 * - NFS always sets S_NOATIME by so checking it would give a 530 * bogus result 531 * - NFS never sets MS_NOATIME or MS_NODIRATIME so there is 532 * no point in checking those. 533 */ 534 if ((mnt->mnt_flags & MNT_NOATIME) || 535 ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 536 need_atime = 0; 537 538 if (need_atime) 539 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 540 else 541 err = nfs_revalidate_inode(NFS_SERVER(inode), inode); 542 if (!err) { 543 generic_fillattr(inode, stat); 544 stat->ino = nfs_compat_user_ino64(NFS_FILEID(inode)); 545 } 546 return err; 547 } 548 549 static struct nfs_open_context *alloc_nfs_open_context(struct vfsmount *mnt, struct dentry *dentry, struct rpc_cred *cred) 550 { 551 struct nfs_open_context *ctx; 552 553 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 554 if (ctx != NULL) { 555 ctx->path.dentry = dget(dentry); 556 ctx->path.mnt = mntget(mnt); 557 ctx->cred = get_rpccred(cred); 558 ctx->state = NULL; 559 ctx->lockowner = current->files; 560 ctx->flags = 0; 561 ctx->error = 0; 562 ctx->dir_cookie = 0; 563 atomic_set(&ctx->count, 1); 564 } 565 return ctx; 566 } 567 568 struct nfs_open_context *get_nfs_open_context(struct nfs_open_context *ctx) 569 { 570 if (ctx != NULL) 571 atomic_inc(&ctx->count); 572 return ctx; 573 } 574 575 static void __put_nfs_open_context(struct nfs_open_context *ctx, int wait) 576 { 577 struct inode *inode; 578 579 if (ctx == NULL) 580 return; 581 582 inode = ctx->path.dentry->d_inode; 583 if (!atomic_dec_and_lock(&ctx->count, &inode->i_lock)) 584 return; 585 list_del(&ctx->list); 586 spin_unlock(&inode->i_lock); 587 if (ctx->state != NULL) { 588 if (wait) 589 nfs4_close_sync(&ctx->path, ctx->state, ctx->mode); 590 else 591 nfs4_close_state(&ctx->path, ctx->state, ctx->mode); 592 } 593 if (ctx->cred != NULL) 594 put_rpccred(ctx->cred); 595 path_put(&ctx->path); 596 kfree(ctx); 597 } 598 599 void put_nfs_open_context(struct nfs_open_context *ctx) 600 { 601 __put_nfs_open_context(ctx, 0); 602 } 603 604 static void put_nfs_open_context_sync(struct nfs_open_context *ctx) 605 { 606 __put_nfs_open_context(ctx, 1); 607 } 608 609 /* 610 * Ensure that mmap has a recent RPC credential for use when writing out 611 * shared pages 612 */ 613 static void nfs_file_set_open_context(struct file *filp, struct nfs_open_context *ctx) 614 { 615 struct inode *inode = filp->f_path.dentry->d_inode; 616 struct nfs_inode *nfsi = NFS_I(inode); 617 618 filp->private_data = get_nfs_open_context(ctx); 619 spin_lock(&inode->i_lock); 620 list_add(&ctx->list, &nfsi->open_files); 621 spin_unlock(&inode->i_lock); 622 } 623 624 /* 625 * Given an inode, search for an open context with the desired characteristics 626 */ 627 struct nfs_open_context *nfs_find_open_context(struct inode *inode, struct rpc_cred *cred, int mode) 628 { 629 struct nfs_inode *nfsi = NFS_I(inode); 630 struct nfs_open_context *pos, *ctx = NULL; 631 632 spin_lock(&inode->i_lock); 633 list_for_each_entry(pos, &nfsi->open_files, list) { 634 if (cred != NULL && pos->cred != cred) 635 continue; 636 if ((pos->mode & mode) == mode) { 637 ctx = get_nfs_open_context(pos); 638 break; 639 } 640 } 641 spin_unlock(&inode->i_lock); 642 return ctx; 643 } 644 645 static void nfs_file_clear_open_context(struct file *filp) 646 { 647 struct inode *inode = filp->f_path.dentry->d_inode; 648 struct nfs_open_context *ctx = nfs_file_open_context(filp); 649 650 if (ctx) { 651 filp->private_data = NULL; 652 spin_lock(&inode->i_lock); 653 list_move_tail(&ctx->list, &NFS_I(inode)->open_files); 654 spin_unlock(&inode->i_lock); 655 put_nfs_open_context_sync(ctx); 656 } 657 } 658 659 /* 660 * These allocate and release file read/write context information. 661 */ 662 int nfs_open(struct inode *inode, struct file *filp) 663 { 664 struct nfs_open_context *ctx; 665 struct rpc_cred *cred; 666 667 cred = rpc_lookup_cred(); 668 if (IS_ERR(cred)) 669 return PTR_ERR(cred); 670 ctx = alloc_nfs_open_context(filp->f_path.mnt, filp->f_path.dentry, cred); 671 put_rpccred(cred); 672 if (ctx == NULL) 673 return -ENOMEM; 674 ctx->mode = filp->f_mode; 675 nfs_file_set_open_context(filp, ctx); 676 put_nfs_open_context(ctx); 677 return 0; 678 } 679 680 int nfs_release(struct inode *inode, struct file *filp) 681 { 682 nfs_file_clear_open_context(filp); 683 return 0; 684 } 685 686 /* 687 * This function is called whenever some part of NFS notices that 688 * the cached attributes have to be refreshed. 689 */ 690 int 691 __nfs_revalidate_inode(struct nfs_server *server, struct inode *inode) 692 { 693 int status = -ESTALE; 694 struct nfs_fattr fattr; 695 struct nfs_inode *nfsi = NFS_I(inode); 696 697 dfprintk(PAGECACHE, "NFS: revalidating (%s/%Ld)\n", 698 inode->i_sb->s_id, (long long)NFS_FILEID(inode)); 699 700 nfs_inc_stats(inode, NFSIOS_INODEREVALIDATE); 701 if (is_bad_inode(inode)) 702 goto out_nowait; 703 if (NFS_STALE(inode)) 704 goto out_nowait; 705 706 status = nfs_wait_on_inode(inode); 707 if (status < 0) 708 goto out; 709 710 status = -ESTALE; 711 if (NFS_STALE(inode)) 712 goto out; 713 714 status = NFS_PROTO(inode)->getattr(server, NFS_FH(inode), &fattr); 715 if (status != 0) { 716 dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Ld) getattr failed, error=%d\n", 717 inode->i_sb->s_id, 718 (long long)NFS_FILEID(inode), status); 719 if (status == -ESTALE) { 720 nfs_zap_caches(inode); 721 if (!S_ISDIR(inode->i_mode)) 722 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 723 } 724 goto out; 725 } 726 727 spin_lock(&inode->i_lock); 728 status = nfs_update_inode(inode, &fattr); 729 if (status) { 730 spin_unlock(&inode->i_lock); 731 dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Ld) refresh failed, error=%d\n", 732 inode->i_sb->s_id, 733 (long long)NFS_FILEID(inode), status); 734 goto out; 735 } 736 spin_unlock(&inode->i_lock); 737 738 if (nfsi->cache_validity & NFS_INO_INVALID_ACL) 739 nfs_zap_acl_cache(inode); 740 741 dfprintk(PAGECACHE, "NFS: (%s/%Ld) revalidation complete\n", 742 inode->i_sb->s_id, 743 (long long)NFS_FILEID(inode)); 744 745 out: 746 nfs_wake_up_inode(inode); 747 748 out_nowait: 749 return status; 750 } 751 752 int nfs_attribute_timeout(struct inode *inode) 753 { 754 struct nfs_inode *nfsi = NFS_I(inode); 755 756 if (nfs_have_delegation(inode, FMODE_READ)) 757 return 0; 758 /* 759 * Special case: if the attribute timeout is set to 0, then always 760 * treat the cache as having expired (unless holding 761 * a delegation). 762 */ 763 if (nfsi->attrtimeo == 0) 764 return 1; 765 return !time_in_range(jiffies, nfsi->read_cache_jiffies, nfsi->read_cache_jiffies + nfsi->attrtimeo); 766 } 767 768 /** 769 * nfs_revalidate_inode - Revalidate the inode attributes 770 * @server - pointer to nfs_server struct 771 * @inode - pointer to inode struct 772 * 773 * Updates inode attribute information by retrieving the data from the server. 774 */ 775 int nfs_revalidate_inode(struct nfs_server *server, struct inode *inode) 776 { 777 if (!(NFS_I(inode)->cache_validity & NFS_INO_INVALID_ATTR) 778 && !nfs_attribute_timeout(inode)) 779 return NFS_STALE(inode) ? -ESTALE : 0; 780 return __nfs_revalidate_inode(server, inode); 781 } 782 783 static int nfs_invalidate_mapping_nolock(struct inode *inode, struct address_space *mapping) 784 { 785 struct nfs_inode *nfsi = NFS_I(inode); 786 787 if (mapping->nrpages != 0) { 788 int ret = invalidate_inode_pages2(mapping); 789 if (ret < 0) 790 return ret; 791 } 792 spin_lock(&inode->i_lock); 793 nfsi->cache_validity &= ~NFS_INO_INVALID_DATA; 794 if (S_ISDIR(inode->i_mode)) 795 memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf)); 796 spin_unlock(&inode->i_lock); 797 nfs_inc_stats(inode, NFSIOS_DATAINVALIDATE); 798 dfprintk(PAGECACHE, "NFS: (%s/%Ld) data cache invalidated\n", 799 inode->i_sb->s_id, (long long)NFS_FILEID(inode)); 800 return 0; 801 } 802 803 static int nfs_invalidate_mapping(struct inode *inode, struct address_space *mapping) 804 { 805 int ret = 0; 806 807 mutex_lock(&inode->i_mutex); 808 if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_DATA) { 809 ret = nfs_sync_mapping(mapping); 810 if (ret == 0) 811 ret = nfs_invalidate_mapping_nolock(inode, mapping); 812 } 813 mutex_unlock(&inode->i_mutex); 814 return ret; 815 } 816 817 /** 818 * nfs_revalidate_mapping_nolock - Revalidate the pagecache 819 * @inode - pointer to host inode 820 * @mapping - pointer to mapping 821 */ 822 int nfs_revalidate_mapping_nolock(struct inode *inode, struct address_space *mapping) 823 { 824 struct nfs_inode *nfsi = NFS_I(inode); 825 int ret = 0; 826 827 if ((nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 828 || nfs_attribute_timeout(inode) || NFS_STALE(inode)) { 829 ret = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 830 if (ret < 0) 831 goto out; 832 } 833 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 834 ret = nfs_invalidate_mapping_nolock(inode, mapping); 835 out: 836 return ret; 837 } 838 839 /** 840 * nfs_revalidate_mapping - Revalidate the pagecache 841 * @inode - pointer to host inode 842 * @mapping - pointer to mapping 843 * 844 * This version of the function will take the inode->i_mutex and attempt to 845 * flush out all dirty data if it needs to invalidate the page cache. 846 */ 847 int nfs_revalidate_mapping(struct inode *inode, struct address_space *mapping) 848 { 849 struct nfs_inode *nfsi = NFS_I(inode); 850 int ret = 0; 851 852 if ((nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 853 || nfs_attribute_timeout(inode) || NFS_STALE(inode)) { 854 ret = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 855 if (ret < 0) 856 goto out; 857 } 858 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 859 ret = nfs_invalidate_mapping(inode, mapping); 860 out: 861 return ret; 862 } 863 864 static void nfs_wcc_update_inode(struct inode *inode, struct nfs_fattr *fattr) 865 { 866 struct nfs_inode *nfsi = NFS_I(inode); 867 868 if ((fattr->valid & NFS_ATTR_WCC_V4) != 0 && 869 nfsi->change_attr == fattr->pre_change_attr) { 870 nfsi->change_attr = fattr->change_attr; 871 if (S_ISDIR(inode->i_mode)) 872 nfsi->cache_validity |= NFS_INO_INVALID_DATA; 873 } 874 /* If we have atomic WCC data, we may update some attributes */ 875 if ((fattr->valid & NFS_ATTR_WCC) != 0) { 876 if (timespec_equal(&inode->i_ctime, &fattr->pre_ctime)) 877 memcpy(&inode->i_ctime, &fattr->ctime, sizeof(inode->i_ctime)); 878 if (timespec_equal(&inode->i_mtime, &fattr->pre_mtime)) { 879 memcpy(&inode->i_mtime, &fattr->mtime, sizeof(inode->i_mtime)); 880 if (S_ISDIR(inode->i_mode)) 881 nfsi->cache_validity |= NFS_INO_INVALID_DATA; 882 } 883 if (i_size_read(inode) == nfs_size_to_loff_t(fattr->pre_size) && 884 nfsi->npages == 0) 885 i_size_write(inode, nfs_size_to_loff_t(fattr->size)); 886 } 887 } 888 889 /** 890 * nfs_check_inode_attributes - verify consistency of the inode attribute cache 891 * @inode - pointer to inode 892 * @fattr - updated attributes 893 * 894 * Verifies the attribute cache. If we have just changed the attributes, 895 * so that fattr carries weak cache consistency data, then it may 896 * also update the ctime/mtime/change_attribute. 897 */ 898 static int nfs_check_inode_attributes(struct inode *inode, struct nfs_fattr *fattr) 899 { 900 struct nfs_inode *nfsi = NFS_I(inode); 901 loff_t cur_size, new_isize; 902 unsigned long invalid = 0; 903 904 905 /* Has the inode gone and changed behind our back? */ 906 if (nfsi->fileid != fattr->fileid 907 || (inode->i_mode & S_IFMT) != (fattr->mode & S_IFMT)) { 908 return -EIO; 909 } 910 911 /* Do atomic weak cache consistency updates */ 912 nfs_wcc_update_inode(inode, fattr); 913 914 if ((fattr->valid & NFS_ATTR_FATTR_V4) != 0 && 915 nfsi->change_attr != fattr->change_attr) 916 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE; 917 918 /* Verify a few of the more important attributes */ 919 if (!timespec_equal(&inode->i_mtime, &fattr->mtime)) 920 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE; 921 922 cur_size = i_size_read(inode); 923 new_isize = nfs_size_to_loff_t(fattr->size); 924 if (cur_size != new_isize && nfsi->npages == 0) 925 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE; 926 927 /* Have any file permissions changed? */ 928 if ((inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO) 929 || inode->i_uid != fattr->uid 930 || inode->i_gid != fattr->gid) 931 invalid |= NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL; 932 933 /* Has the link count changed? */ 934 if (inode->i_nlink != fattr->nlink) 935 invalid |= NFS_INO_INVALID_ATTR; 936 937 if (!timespec_equal(&inode->i_atime, &fattr->atime)) 938 invalid |= NFS_INO_INVALID_ATIME; 939 940 if (invalid != 0) 941 nfsi->cache_validity |= invalid; 942 else 943 nfsi->cache_validity &= ~(NFS_INO_INVALID_ATTR 944 | NFS_INO_INVALID_ATIME 945 | NFS_INO_REVAL_PAGECACHE); 946 947 nfsi->read_cache_jiffies = fattr->time_start; 948 return 0; 949 } 950 951 /** 952 * nfs_refresh_inode - try to update the inode attribute cache 953 * @inode - pointer to inode 954 * @fattr - updated attributes 955 * 956 * Check that an RPC call that returned attributes has not overlapped with 957 * other recent updates of the inode metadata, then decide whether it is 958 * safe to do a full update of the inode attributes, or whether just to 959 * call nfs_check_inode_attributes. 960 */ 961 int nfs_refresh_inode(struct inode *inode, struct nfs_fattr *fattr) 962 { 963 struct nfs_inode *nfsi = NFS_I(inode); 964 int status; 965 966 if ((fattr->valid & NFS_ATTR_FATTR) == 0) 967 return 0; 968 spin_lock(&inode->i_lock); 969 if (time_after(fattr->time_start, nfsi->last_updated)) 970 status = nfs_update_inode(inode, fattr); 971 else 972 status = nfs_check_inode_attributes(inode, fattr); 973 974 spin_unlock(&inode->i_lock); 975 return status; 976 } 977 978 /** 979 * nfs_post_op_update_inode - try to update the inode attribute cache 980 * @inode - pointer to inode 981 * @fattr - updated attributes 982 * 983 * After an operation that has changed the inode metadata, mark the 984 * attribute cache as being invalid, then try to update it. 985 * 986 * NB: if the server didn't return any post op attributes, this 987 * function will force the retrieval of attributes before the next 988 * NFS request. Thus it should be used only for operations that 989 * are expected to change one or more attributes, to avoid 990 * unnecessary NFS requests and trips through nfs_update_inode(). 991 */ 992 int nfs_post_op_update_inode(struct inode *inode, struct nfs_fattr *fattr) 993 { 994 struct nfs_inode *nfsi = NFS_I(inode); 995 996 spin_lock(&inode->i_lock); 997 nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE; 998 if (S_ISDIR(inode->i_mode)) 999 nfsi->cache_validity |= NFS_INO_INVALID_DATA; 1000 spin_unlock(&inode->i_lock); 1001 return nfs_refresh_inode(inode, fattr); 1002 } 1003 1004 /** 1005 * nfs_post_op_update_inode_force_wcc - try to update the inode attribute cache 1006 * @inode - pointer to inode 1007 * @fattr - updated attributes 1008 * 1009 * After an operation that has changed the inode metadata, mark the 1010 * attribute cache as being invalid, then try to update it. Fake up 1011 * weak cache consistency data, if none exist. 1012 * 1013 * This function is mainly designed to be used by the ->write_done() functions. 1014 */ 1015 int nfs_post_op_update_inode_force_wcc(struct inode *inode, struct nfs_fattr *fattr) 1016 { 1017 if ((fattr->valid & NFS_ATTR_FATTR_V4) != 0 && 1018 (fattr->valid & NFS_ATTR_WCC_V4) == 0) { 1019 fattr->pre_change_attr = NFS_I(inode)->change_attr; 1020 fattr->valid |= NFS_ATTR_WCC_V4; 1021 } 1022 if ((fattr->valid & NFS_ATTR_FATTR) != 0 && 1023 (fattr->valid & NFS_ATTR_WCC) == 0) { 1024 memcpy(&fattr->pre_ctime, &inode->i_ctime, sizeof(fattr->pre_ctime)); 1025 memcpy(&fattr->pre_mtime, &inode->i_mtime, sizeof(fattr->pre_mtime)); 1026 fattr->pre_size = i_size_read(inode); 1027 fattr->valid |= NFS_ATTR_WCC; 1028 } 1029 return nfs_post_op_update_inode(inode, fattr); 1030 } 1031 1032 /* 1033 * Many nfs protocol calls return the new file attributes after 1034 * an operation. Here we update the inode to reflect the state 1035 * of the server's inode. 1036 * 1037 * This is a bit tricky because we have to make sure all dirty pages 1038 * have been sent off to the server before calling invalidate_inode_pages. 1039 * To make sure no other process adds more write requests while we try 1040 * our best to flush them, we make them sleep during the attribute refresh. 1041 * 1042 * A very similar scenario holds for the dir cache. 1043 */ 1044 static int nfs_update_inode(struct inode *inode, struct nfs_fattr *fattr) 1045 { 1046 struct nfs_server *server; 1047 struct nfs_inode *nfsi = NFS_I(inode); 1048 loff_t cur_isize, new_isize; 1049 unsigned long invalid = 0; 1050 unsigned long now = jiffies; 1051 1052 dfprintk(VFS, "NFS: %s(%s/%ld ct=%d info=0x%x)\n", 1053 __func__, inode->i_sb->s_id, inode->i_ino, 1054 atomic_read(&inode->i_count), fattr->valid); 1055 1056 if (nfsi->fileid != fattr->fileid) 1057 goto out_fileid; 1058 1059 /* 1060 * Make sure the inode's type hasn't changed. 1061 */ 1062 if ((inode->i_mode & S_IFMT) != (fattr->mode & S_IFMT)) 1063 goto out_changed; 1064 1065 server = NFS_SERVER(inode); 1066 /* Update the fsid? */ 1067 if (S_ISDIR(inode->i_mode) && 1068 !nfs_fsid_equal(&server->fsid, &fattr->fsid) && 1069 !test_bit(NFS_INO_MOUNTPOINT, &nfsi->flags)) 1070 server->fsid = fattr->fsid; 1071 1072 /* 1073 * Update the read time so we don't revalidate too often. 1074 */ 1075 nfsi->read_cache_jiffies = fattr->time_start; 1076 1077 nfsi->cache_validity &= ~(NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ATIME 1078 | NFS_INO_REVAL_PAGECACHE); 1079 1080 /* Do atomic weak cache consistency updates */ 1081 nfs_wcc_update_inode(inode, fattr); 1082 1083 /* More cache consistency checks */ 1084 if (!(fattr->valid & NFS_ATTR_FATTR_V4)) { 1085 /* NFSv2/v3: Check if the mtime agrees */ 1086 if (!timespec_equal(&inode->i_mtime, &fattr->mtime)) { 1087 dprintk("NFS: mtime change on server for file %s/%ld\n", 1088 inode->i_sb->s_id, inode->i_ino); 1089 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA; 1090 if (S_ISDIR(inode->i_mode)) 1091 nfs_force_lookup_revalidate(inode); 1092 } 1093 /* If ctime has changed we should definitely clear access+acl caches */ 1094 if (!timespec_equal(&inode->i_ctime, &fattr->ctime)) 1095 invalid |= NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL; 1096 } else if (nfsi->change_attr != fattr->change_attr) { 1097 dprintk("NFS: change_attr change on server for file %s/%ld\n", 1098 inode->i_sb->s_id, inode->i_ino); 1099 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL; 1100 if (S_ISDIR(inode->i_mode)) 1101 nfs_force_lookup_revalidate(inode); 1102 } 1103 1104 /* Check if our cached file size is stale */ 1105 new_isize = nfs_size_to_loff_t(fattr->size); 1106 cur_isize = i_size_read(inode); 1107 if (new_isize != cur_isize) { 1108 /* Do we perhaps have any outstanding writes, or has 1109 * the file grown beyond our last write? */ 1110 if (nfsi->npages == 0 || new_isize > cur_isize) { 1111 i_size_write(inode, new_isize); 1112 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA; 1113 } 1114 dprintk("NFS: isize change on server for file %s/%ld\n", 1115 inode->i_sb->s_id, inode->i_ino); 1116 } 1117 1118 1119 memcpy(&inode->i_mtime, &fattr->mtime, sizeof(inode->i_mtime)); 1120 memcpy(&inode->i_ctime, &fattr->ctime, sizeof(inode->i_ctime)); 1121 memcpy(&inode->i_atime, &fattr->atime, sizeof(inode->i_atime)); 1122 nfsi->change_attr = fattr->change_attr; 1123 1124 if ((inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO) || 1125 inode->i_uid != fattr->uid || 1126 inode->i_gid != fattr->gid) 1127 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL; 1128 1129 inode->i_mode = fattr->mode; 1130 inode->i_nlink = fattr->nlink; 1131 inode->i_uid = fattr->uid; 1132 inode->i_gid = fattr->gid; 1133 1134 if (fattr->valid & (NFS_ATTR_FATTR_V3 | NFS_ATTR_FATTR_V4)) { 1135 /* 1136 * report the blocks in 512byte units 1137 */ 1138 inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used); 1139 } else { 1140 inode->i_blocks = fattr->du.nfs2.blocks; 1141 } 1142 1143 /* Update attrtimeo value if we're out of the unstable period */ 1144 if (invalid & NFS_INO_INVALID_ATTR) { 1145 nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE); 1146 nfsi->attrtimeo = NFS_MINATTRTIMEO(inode); 1147 nfsi->attrtimeo_timestamp = now; 1148 nfsi->last_updated = now; 1149 } else { 1150 if (!time_in_range(now, nfsi->attrtimeo_timestamp, nfsi->attrtimeo_timestamp + nfsi->attrtimeo)) { 1151 if ((nfsi->attrtimeo <<= 1) > NFS_MAXATTRTIMEO(inode)) 1152 nfsi->attrtimeo = NFS_MAXATTRTIMEO(inode); 1153 nfsi->attrtimeo_timestamp = now; 1154 } 1155 /* 1156 * Avoid jiffy wraparound issues with nfsi->last_updated 1157 */ 1158 if (!time_in_range(nfsi->last_updated, nfsi->read_cache_jiffies, now)) 1159 nfsi->last_updated = nfsi->read_cache_jiffies; 1160 } 1161 invalid &= ~NFS_INO_INVALID_ATTR; 1162 /* Don't invalidate the data if we were to blame */ 1163 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) 1164 || S_ISLNK(inode->i_mode))) 1165 invalid &= ~NFS_INO_INVALID_DATA; 1166 if (!nfs_have_delegation(inode, FMODE_READ) || 1167 (nfsi->cache_validity & NFS_INO_REVAL_FORCED)) 1168 nfsi->cache_validity |= invalid; 1169 nfsi->cache_validity &= ~NFS_INO_REVAL_FORCED; 1170 1171 return 0; 1172 out_changed: 1173 /* 1174 * Big trouble! The inode has become a different object. 1175 */ 1176 printk(KERN_DEBUG "%s: inode %ld mode changed, %07o to %07o\n", 1177 __func__, inode->i_ino, inode->i_mode, fattr->mode); 1178 out_err: 1179 /* 1180 * No need to worry about unhashing the dentry, as the 1181 * lookup validation will know that the inode is bad. 1182 * (But we fall through to invalidate the caches.) 1183 */ 1184 nfs_invalidate_inode(inode); 1185 return -ESTALE; 1186 1187 out_fileid: 1188 printk(KERN_ERR "NFS: server %s error: fileid changed\n" 1189 "fsid %s: expected fileid 0x%Lx, got 0x%Lx\n", 1190 NFS_SERVER(inode)->nfs_client->cl_hostname, inode->i_sb->s_id, 1191 (long long)nfsi->fileid, (long long)fattr->fileid); 1192 goto out_err; 1193 } 1194 1195 1196 #ifdef CONFIG_NFS_V4 1197 1198 /* 1199 * Clean out any remaining NFSv4 state that might be left over due 1200 * to open() calls that passed nfs_atomic_lookup, but failed to call 1201 * nfs_open(). 1202 */ 1203 void nfs4_clear_inode(struct inode *inode) 1204 { 1205 /* If we are holding a delegation, return it! */ 1206 nfs_inode_return_delegation_noreclaim(inode); 1207 /* First call standard NFS clear_inode() code */ 1208 nfs_clear_inode(inode); 1209 } 1210 #endif 1211 1212 struct inode *nfs_alloc_inode(struct super_block *sb) 1213 { 1214 struct nfs_inode *nfsi; 1215 nfsi = (struct nfs_inode *)kmem_cache_alloc(nfs_inode_cachep, GFP_KERNEL); 1216 if (!nfsi) 1217 return NULL; 1218 nfsi->flags = 0UL; 1219 nfsi->cache_validity = 0UL; 1220 #ifdef CONFIG_NFS_V3_ACL 1221 nfsi->acl_access = ERR_PTR(-EAGAIN); 1222 nfsi->acl_default = ERR_PTR(-EAGAIN); 1223 #endif 1224 #ifdef CONFIG_NFS_V4 1225 nfsi->nfs4_acl = NULL; 1226 #endif /* CONFIG_NFS_V4 */ 1227 return &nfsi->vfs_inode; 1228 } 1229 1230 void nfs_destroy_inode(struct inode *inode) 1231 { 1232 kmem_cache_free(nfs_inode_cachep, NFS_I(inode)); 1233 } 1234 1235 static inline void nfs4_init_once(struct nfs_inode *nfsi) 1236 { 1237 #ifdef CONFIG_NFS_V4 1238 INIT_LIST_HEAD(&nfsi->open_states); 1239 nfsi->delegation = NULL; 1240 nfsi->delegation_state = 0; 1241 init_rwsem(&nfsi->rwsem); 1242 #endif 1243 } 1244 1245 static void init_once(void *foo) 1246 { 1247 struct nfs_inode *nfsi = (struct nfs_inode *) foo; 1248 1249 inode_init_once(&nfsi->vfs_inode); 1250 INIT_LIST_HEAD(&nfsi->open_files); 1251 INIT_LIST_HEAD(&nfsi->access_cache_entry_lru); 1252 INIT_LIST_HEAD(&nfsi->access_cache_inode_lru); 1253 INIT_RADIX_TREE(&nfsi->nfs_page_tree, GFP_ATOMIC); 1254 nfsi->ncommit = 0; 1255 nfsi->npages = 0; 1256 atomic_set(&nfsi->silly_count, 1); 1257 INIT_HLIST_HEAD(&nfsi->silly_list); 1258 init_waitqueue_head(&nfsi->waitqueue); 1259 nfs4_init_once(nfsi); 1260 } 1261 1262 static int __init nfs_init_inodecache(void) 1263 { 1264 nfs_inode_cachep = kmem_cache_create("nfs_inode_cache", 1265 sizeof(struct nfs_inode), 1266 0, (SLAB_RECLAIM_ACCOUNT| 1267 SLAB_MEM_SPREAD), 1268 init_once); 1269 if (nfs_inode_cachep == NULL) 1270 return -ENOMEM; 1271 1272 return 0; 1273 } 1274 1275 static void nfs_destroy_inodecache(void) 1276 { 1277 kmem_cache_destroy(nfs_inode_cachep); 1278 } 1279 1280 struct workqueue_struct *nfsiod_workqueue; 1281 1282 /* 1283 * start up the nfsiod workqueue 1284 */ 1285 static int nfsiod_start(void) 1286 { 1287 struct workqueue_struct *wq; 1288 dprintk("RPC: creating workqueue nfsiod\n"); 1289 wq = create_singlethread_workqueue("nfsiod"); 1290 if (wq == NULL) 1291 return -ENOMEM; 1292 nfsiod_workqueue = wq; 1293 return 0; 1294 } 1295 1296 /* 1297 * Destroy the nfsiod workqueue 1298 */ 1299 static void nfsiod_stop(void) 1300 { 1301 struct workqueue_struct *wq; 1302 1303 wq = nfsiod_workqueue; 1304 if (wq == NULL) 1305 return; 1306 nfsiod_workqueue = NULL; 1307 destroy_workqueue(wq); 1308 } 1309 1310 /* 1311 * Initialize NFS 1312 */ 1313 static int __init init_nfs_fs(void) 1314 { 1315 int err; 1316 1317 err = nfsiod_start(); 1318 if (err) 1319 goto out6; 1320 1321 err = nfs_fs_proc_init(); 1322 if (err) 1323 goto out5; 1324 1325 err = nfs_init_nfspagecache(); 1326 if (err) 1327 goto out4; 1328 1329 err = nfs_init_inodecache(); 1330 if (err) 1331 goto out3; 1332 1333 err = nfs_init_readpagecache(); 1334 if (err) 1335 goto out2; 1336 1337 err = nfs_init_writepagecache(); 1338 if (err) 1339 goto out1; 1340 1341 err = nfs_init_directcache(); 1342 if (err) 1343 goto out0; 1344 1345 #ifdef CONFIG_PROC_FS 1346 rpc_proc_register(&nfs_rpcstat); 1347 #endif 1348 if ((err = register_nfs_fs()) != 0) 1349 goto out; 1350 return 0; 1351 out: 1352 #ifdef CONFIG_PROC_FS 1353 rpc_proc_unregister("nfs"); 1354 #endif 1355 nfs_destroy_directcache(); 1356 out0: 1357 nfs_destroy_writepagecache(); 1358 out1: 1359 nfs_destroy_readpagecache(); 1360 out2: 1361 nfs_destroy_inodecache(); 1362 out3: 1363 nfs_destroy_nfspagecache(); 1364 out4: 1365 nfs_fs_proc_exit(); 1366 out5: 1367 nfsiod_stop(); 1368 out6: 1369 return err; 1370 } 1371 1372 static void __exit exit_nfs_fs(void) 1373 { 1374 nfs_destroy_directcache(); 1375 nfs_destroy_writepagecache(); 1376 nfs_destroy_readpagecache(); 1377 nfs_destroy_inodecache(); 1378 nfs_destroy_nfspagecache(); 1379 #ifdef CONFIG_PROC_FS 1380 rpc_proc_unregister("nfs"); 1381 #endif 1382 unregister_nfs_fs(); 1383 nfs_fs_proc_exit(); 1384 nfsiod_stop(); 1385 } 1386 1387 /* Not quite true; I just maintain it */ 1388 MODULE_AUTHOR("Olaf Kirch <okir@monad.swb.de>"); 1389 MODULE_LICENSE("GPL"); 1390 module_param(enable_ino64, bool, 0644); 1391 1392 module_init(init_nfs_fs) 1393 module_exit(exit_nfs_fs) 1394