xref: /openbmc/linux/fs/nfs/inode.c (revision 93dc544c)
1 /*
2  *  linux/fs/nfs/inode.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs inode and superblock handling functions
7  *
8  *  Modularised by Alan Cox <Alan.Cox@linux.org>, while hacking some
9  *  experimental NFS changes. Modularisation taken straight from SYS5 fs.
10  *
11  *  Change to nfs_read_super() to permit NFS mounts to multi-homed hosts.
12  *  J.S.Peatfield@damtp.cam.ac.uk
13  *
14  */
15 
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/time.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/string.h>
23 #include <linux/stat.h>
24 #include <linux/errno.h>
25 #include <linux/unistd.h>
26 #include <linux/sunrpc/clnt.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/metrics.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/nfs4_mount.h>
32 #include <linux/lockd/bind.h>
33 #include <linux/smp_lock.h>
34 #include <linux/seq_file.h>
35 #include <linux/mount.h>
36 #include <linux/nfs_idmap.h>
37 #include <linux/vfs.h>
38 #include <linux/inet.h>
39 #include <linux/nfs_xdr.h>
40 
41 #include <asm/system.h>
42 #include <asm/uaccess.h>
43 
44 #include "nfs4_fs.h"
45 #include "callback.h"
46 #include "delegation.h"
47 #include "iostat.h"
48 #include "internal.h"
49 
50 #define NFSDBG_FACILITY		NFSDBG_VFS
51 
52 #define NFS_64_BIT_INODE_NUMBERS_ENABLED	1
53 
54 /* Default is to see 64-bit inode numbers */
55 static int enable_ino64 = NFS_64_BIT_INODE_NUMBERS_ENABLED;
56 
57 static void nfs_invalidate_inode(struct inode *);
58 static int nfs_update_inode(struct inode *, struct nfs_fattr *);
59 
60 static struct kmem_cache * nfs_inode_cachep;
61 
62 static inline unsigned long
63 nfs_fattr_to_ino_t(struct nfs_fattr *fattr)
64 {
65 	return nfs_fileid_to_ino_t(fattr->fileid);
66 }
67 
68 /**
69  * nfs_compat_user_ino64 - returns the user-visible inode number
70  * @fileid: 64-bit fileid
71  *
72  * This function returns a 32-bit inode number if the boot parameter
73  * nfs.enable_ino64 is zero.
74  */
75 u64 nfs_compat_user_ino64(u64 fileid)
76 {
77 	int ino;
78 
79 	if (enable_ino64)
80 		return fileid;
81 	ino = fileid;
82 	if (sizeof(ino) < sizeof(fileid))
83 		ino ^= fileid >> (sizeof(fileid)-sizeof(ino)) * 8;
84 	return ino;
85 }
86 
87 int nfs_write_inode(struct inode *inode, int sync)
88 {
89 	int ret;
90 
91 	if (sync) {
92 		ret = filemap_fdatawait(inode->i_mapping);
93 		if (ret == 0)
94 			ret = nfs_commit_inode(inode, FLUSH_SYNC);
95 	} else
96 		ret = nfs_commit_inode(inode, 0);
97 	if (ret >= 0)
98 		return 0;
99 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
100 	return ret;
101 }
102 
103 void nfs_clear_inode(struct inode *inode)
104 {
105 	/*
106 	 * The following should never happen...
107 	 */
108 	BUG_ON(nfs_have_writebacks(inode));
109 	BUG_ON(!list_empty(&NFS_I(inode)->open_files));
110 	nfs_zap_acl_cache(inode);
111 	nfs_access_zap_cache(inode);
112 }
113 
114 /**
115  * nfs_sync_mapping - helper to flush all mmapped dirty data to disk
116  */
117 int nfs_sync_mapping(struct address_space *mapping)
118 {
119 	int ret;
120 
121 	if (mapping->nrpages == 0)
122 		return 0;
123 	unmap_mapping_range(mapping, 0, 0, 0);
124 	ret = filemap_write_and_wait(mapping);
125 	if (ret != 0)
126 		goto out;
127 	ret = nfs_wb_all(mapping->host);
128 out:
129 	return ret;
130 }
131 
132 /*
133  * Invalidate the local caches
134  */
135 static void nfs_zap_caches_locked(struct inode *inode)
136 {
137 	struct nfs_inode *nfsi = NFS_I(inode);
138 	int mode = inode->i_mode;
139 
140 	nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE);
141 
142 	nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
143 	nfsi->attrtimeo_timestamp = jiffies;
144 
145 	memset(NFS_COOKIEVERF(inode), 0, sizeof(NFS_COOKIEVERF(inode)));
146 	if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))
147 		nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL|NFS_INO_REVAL_PAGECACHE;
148 	else
149 		nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL|NFS_INO_REVAL_PAGECACHE;
150 }
151 
152 void nfs_zap_caches(struct inode *inode)
153 {
154 	spin_lock(&inode->i_lock);
155 	nfs_zap_caches_locked(inode);
156 	spin_unlock(&inode->i_lock);
157 }
158 
159 void nfs_zap_mapping(struct inode *inode, struct address_space *mapping)
160 {
161 	if (mapping->nrpages != 0) {
162 		spin_lock(&inode->i_lock);
163 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
164 		spin_unlock(&inode->i_lock);
165 	}
166 }
167 
168 void nfs_zap_acl_cache(struct inode *inode)
169 {
170 	void (*clear_acl_cache)(struct inode *);
171 
172 	clear_acl_cache = NFS_PROTO(inode)->clear_acl_cache;
173 	if (clear_acl_cache != NULL)
174 		clear_acl_cache(inode);
175 	spin_lock(&inode->i_lock);
176 	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_ACL;
177 	spin_unlock(&inode->i_lock);
178 }
179 
180 void nfs_invalidate_atime(struct inode *inode)
181 {
182 	spin_lock(&inode->i_lock);
183 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
184 	spin_unlock(&inode->i_lock);
185 }
186 
187 /*
188  * Invalidate, but do not unhash, the inode.
189  * NB: must be called with inode->i_lock held!
190  */
191 static void nfs_invalidate_inode(struct inode *inode)
192 {
193 	set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
194 	nfs_zap_caches_locked(inode);
195 }
196 
197 struct nfs_find_desc {
198 	struct nfs_fh		*fh;
199 	struct nfs_fattr	*fattr;
200 };
201 
202 /*
203  * In NFSv3 we can have 64bit inode numbers. In order to support
204  * this, and re-exported directories (also seen in NFSv2)
205  * we are forced to allow 2 different inodes to have the same
206  * i_ino.
207  */
208 static int
209 nfs_find_actor(struct inode *inode, void *opaque)
210 {
211 	struct nfs_find_desc	*desc = (struct nfs_find_desc *)opaque;
212 	struct nfs_fh		*fh = desc->fh;
213 	struct nfs_fattr	*fattr = desc->fattr;
214 
215 	if (NFS_FILEID(inode) != fattr->fileid)
216 		return 0;
217 	if (nfs_compare_fh(NFS_FH(inode), fh))
218 		return 0;
219 	if (is_bad_inode(inode) || NFS_STALE(inode))
220 		return 0;
221 	return 1;
222 }
223 
224 static int
225 nfs_init_locked(struct inode *inode, void *opaque)
226 {
227 	struct nfs_find_desc	*desc = (struct nfs_find_desc *)opaque;
228 	struct nfs_fattr	*fattr = desc->fattr;
229 
230 	set_nfs_fileid(inode, fattr->fileid);
231 	nfs_copy_fh(NFS_FH(inode), desc->fh);
232 	return 0;
233 }
234 
235 /* Don't use READDIRPLUS on directories that we believe are too large */
236 #define NFS_LIMIT_READDIRPLUS (8*PAGE_SIZE)
237 
238 /*
239  * This is our front-end to iget that looks up inodes by file handle
240  * instead of inode number.
241  */
242 struct inode *
243 nfs_fhget(struct super_block *sb, struct nfs_fh *fh, struct nfs_fattr *fattr)
244 {
245 	struct nfs_find_desc desc = {
246 		.fh	= fh,
247 		.fattr	= fattr
248 	};
249 	struct inode *inode = ERR_PTR(-ENOENT);
250 	unsigned long hash;
251 
252 	if ((fattr->valid & NFS_ATTR_FATTR) == 0)
253 		goto out_no_inode;
254 
255 	if (!fattr->nlink) {
256 		printk("NFS: Buggy server - nlink == 0!\n");
257 		goto out_no_inode;
258 	}
259 
260 	hash = nfs_fattr_to_ino_t(fattr);
261 
262 	inode = iget5_locked(sb, hash, nfs_find_actor, nfs_init_locked, &desc);
263 	if (inode == NULL) {
264 		inode = ERR_PTR(-ENOMEM);
265 		goto out_no_inode;
266 	}
267 
268 	if (inode->i_state & I_NEW) {
269 		struct nfs_inode *nfsi = NFS_I(inode);
270 		unsigned long now = jiffies;
271 
272 		/* We set i_ino for the few things that still rely on it,
273 		 * such as stat(2) */
274 		inode->i_ino = hash;
275 
276 		/* We can't support update_atime(), since the server will reset it */
277 		inode->i_flags |= S_NOATIME|S_NOCMTIME;
278 		inode->i_mode = fattr->mode;
279 		/* Why so? Because we want revalidate for devices/FIFOs, and
280 		 * that's precisely what we have in nfs_file_inode_operations.
281 		 */
282 		inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->file_inode_ops;
283 		if (S_ISREG(inode->i_mode)) {
284 			inode->i_fop = &nfs_file_operations;
285 			inode->i_data.a_ops = &nfs_file_aops;
286 			inode->i_data.backing_dev_info = &NFS_SB(sb)->backing_dev_info;
287 		} else if (S_ISDIR(inode->i_mode)) {
288 			inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->dir_inode_ops;
289 			inode->i_fop = &nfs_dir_operations;
290 			if (nfs_server_capable(inode, NFS_CAP_READDIRPLUS)
291 			    && fattr->size <= NFS_LIMIT_READDIRPLUS)
292 				set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
293 			/* Deal with crossing mountpoints */
294 			if (!nfs_fsid_equal(&NFS_SB(sb)->fsid, &fattr->fsid)) {
295 				if (fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL)
296 					inode->i_op = &nfs_referral_inode_operations;
297 				else
298 					inode->i_op = &nfs_mountpoint_inode_operations;
299 				inode->i_fop = NULL;
300 				set_bit(NFS_INO_MOUNTPOINT, &nfsi->flags);
301 			}
302 		} else if (S_ISLNK(inode->i_mode))
303 			inode->i_op = &nfs_symlink_inode_operations;
304 		else
305 			init_special_inode(inode, inode->i_mode, fattr->rdev);
306 
307 		nfsi->read_cache_jiffies = fattr->time_start;
308 		nfsi->last_updated = now;
309 		nfsi->cache_change_attribute = now;
310 		inode->i_atime = fattr->atime;
311 		inode->i_mtime = fattr->mtime;
312 		inode->i_ctime = fattr->ctime;
313 		if (fattr->valid & NFS_ATTR_FATTR_V4)
314 			nfsi->change_attr = fattr->change_attr;
315 		inode->i_size = nfs_size_to_loff_t(fattr->size);
316 		inode->i_nlink = fattr->nlink;
317 		inode->i_uid = fattr->uid;
318 		inode->i_gid = fattr->gid;
319 		if (fattr->valid & (NFS_ATTR_FATTR_V3 | NFS_ATTR_FATTR_V4)) {
320 			/*
321 			 * report the blocks in 512byte units
322 			 */
323 			inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used);
324 		} else {
325 			inode->i_blocks = fattr->du.nfs2.blocks;
326 		}
327 		nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
328 		nfsi->attrtimeo_timestamp = now;
329 		memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf));
330 		nfsi->access_cache = RB_ROOT;
331 
332 		unlock_new_inode(inode);
333 	} else
334 		nfs_refresh_inode(inode, fattr);
335 	dprintk("NFS: nfs_fhget(%s/%Ld ct=%d)\n",
336 		inode->i_sb->s_id,
337 		(long long)NFS_FILEID(inode),
338 		atomic_read(&inode->i_count));
339 
340 out:
341 	return inode;
342 
343 out_no_inode:
344 	dprintk("nfs_fhget: iget failed with error %ld\n", PTR_ERR(inode));
345 	goto out;
346 }
347 
348 #define NFS_VALID_ATTRS (ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_SIZE|ATTR_ATIME|ATTR_ATIME_SET|ATTR_MTIME|ATTR_MTIME_SET|ATTR_FILE)
349 
350 int
351 nfs_setattr(struct dentry *dentry, struct iattr *attr)
352 {
353 	struct inode *inode = dentry->d_inode;
354 	struct nfs_fattr fattr;
355 	int error;
356 
357 	nfs_inc_stats(inode, NFSIOS_VFSSETATTR);
358 
359 	/* skip mode change if it's just for clearing setuid/setgid */
360 	if (attr->ia_valid & (ATTR_KILL_SUID | ATTR_KILL_SGID))
361 		attr->ia_valid &= ~ATTR_MODE;
362 
363 	if (attr->ia_valid & ATTR_SIZE) {
364 		if (!S_ISREG(inode->i_mode) || attr->ia_size == i_size_read(inode))
365 			attr->ia_valid &= ~ATTR_SIZE;
366 	}
367 
368 	/* Optimization: if the end result is no change, don't RPC */
369 	attr->ia_valid &= NFS_VALID_ATTRS;
370 	if ((attr->ia_valid & ~ATTR_FILE) == 0)
371 		return 0;
372 
373 	/* Write all dirty data */
374 	if (S_ISREG(inode->i_mode)) {
375 		filemap_write_and_wait(inode->i_mapping);
376 		nfs_wb_all(inode);
377 	}
378 	/*
379 	 * Return any delegations if we're going to change ACLs
380 	 */
381 	if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0)
382 		nfs_inode_return_delegation(inode);
383 	error = NFS_PROTO(inode)->setattr(dentry, &fattr, attr);
384 	if (error == 0)
385 		nfs_refresh_inode(inode, &fattr);
386 	return error;
387 }
388 
389 /**
390  * nfs_vmtruncate - unmap mappings "freed" by truncate() syscall
391  * @inode: inode of the file used
392  * @offset: file offset to start truncating
393  *
394  * This is a copy of the common vmtruncate, but with the locking
395  * corrected to take into account the fact that NFS requires
396  * inode->i_size to be updated under the inode->i_lock.
397  */
398 static int nfs_vmtruncate(struct inode * inode, loff_t offset)
399 {
400 	if (i_size_read(inode) < offset) {
401 		unsigned long limit;
402 
403 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
404 		if (limit != RLIM_INFINITY && offset > limit)
405 			goto out_sig;
406 		if (offset > inode->i_sb->s_maxbytes)
407 			goto out_big;
408 		spin_lock(&inode->i_lock);
409 		i_size_write(inode, offset);
410 		spin_unlock(&inode->i_lock);
411 	} else {
412 		struct address_space *mapping = inode->i_mapping;
413 
414 		/*
415 		 * truncation of in-use swapfiles is disallowed - it would
416 		 * cause subsequent swapout to scribble on the now-freed
417 		 * blocks.
418 		 */
419 		if (IS_SWAPFILE(inode))
420 			return -ETXTBSY;
421 		spin_lock(&inode->i_lock);
422 		i_size_write(inode, offset);
423 		spin_unlock(&inode->i_lock);
424 
425 		/*
426 		 * unmap_mapping_range is called twice, first simply for
427 		 * efficiency so that truncate_inode_pages does fewer
428 		 * single-page unmaps.  However after this first call, and
429 		 * before truncate_inode_pages finishes, it is possible for
430 		 * private pages to be COWed, which remain after
431 		 * truncate_inode_pages finishes, hence the second
432 		 * unmap_mapping_range call must be made for correctness.
433 		 */
434 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
435 		truncate_inode_pages(mapping, offset);
436 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
437 	}
438 	return 0;
439 out_sig:
440 	send_sig(SIGXFSZ, current, 0);
441 out_big:
442 	return -EFBIG;
443 }
444 
445 /**
446  * nfs_setattr_update_inode - Update inode metadata after a setattr call.
447  * @inode: pointer to struct inode
448  * @attr: pointer to struct iattr
449  *
450  * Note: we do this in the *proc.c in order to ensure that
451  *       it works for things like exclusive creates too.
452  */
453 void nfs_setattr_update_inode(struct inode *inode, struct iattr *attr)
454 {
455 	if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0) {
456 		if ((attr->ia_valid & ATTR_MODE) != 0) {
457 			int mode = attr->ia_mode & S_IALLUGO;
458 			mode |= inode->i_mode & ~S_IALLUGO;
459 			inode->i_mode = mode;
460 		}
461 		if ((attr->ia_valid & ATTR_UID) != 0)
462 			inode->i_uid = attr->ia_uid;
463 		if ((attr->ia_valid & ATTR_GID) != 0)
464 			inode->i_gid = attr->ia_gid;
465 		spin_lock(&inode->i_lock);
466 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
467 		spin_unlock(&inode->i_lock);
468 	}
469 	if ((attr->ia_valid & ATTR_SIZE) != 0) {
470 		nfs_inc_stats(inode, NFSIOS_SETATTRTRUNC);
471 		nfs_vmtruncate(inode, attr->ia_size);
472 	}
473 }
474 
475 static int nfs_wait_schedule(void *word)
476 {
477 	if (signal_pending(current))
478 		return -ERESTARTSYS;
479 	schedule();
480 	return 0;
481 }
482 
483 /*
484  * Wait for the inode to get unlocked.
485  */
486 static int nfs_wait_on_inode(struct inode *inode)
487 {
488 	struct nfs_inode *nfsi = NFS_I(inode);
489 	int error;
490 
491 	error = wait_on_bit_lock(&nfsi->flags, NFS_INO_REVALIDATING,
492 					nfs_wait_schedule, TASK_KILLABLE);
493 
494 	return error;
495 }
496 
497 static void nfs_wake_up_inode(struct inode *inode)
498 {
499 	struct nfs_inode *nfsi = NFS_I(inode);
500 
501 	clear_bit(NFS_INO_REVALIDATING, &nfsi->flags);
502 	smp_mb__after_clear_bit();
503 	wake_up_bit(&nfsi->flags, NFS_INO_REVALIDATING);
504 }
505 
506 int nfs_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
507 {
508 	struct inode *inode = dentry->d_inode;
509 	int need_atime = NFS_I(inode)->cache_validity & NFS_INO_INVALID_ATIME;
510 	int err;
511 
512 	/*
513 	 * Flush out writes to the server in order to update c/mtime.
514 	 *
515 	 * Hold the i_mutex to suspend application writes temporarily;
516 	 * this prevents long-running writing applications from blocking
517 	 * nfs_wb_nocommit.
518 	 */
519 	if (S_ISREG(inode->i_mode)) {
520 		mutex_lock(&inode->i_mutex);
521 		nfs_wb_nocommit(inode);
522 		mutex_unlock(&inode->i_mutex);
523 	}
524 
525 	/*
526 	 * We may force a getattr if the user cares about atime.
527 	 *
528 	 * Note that we only have to check the vfsmount flags here:
529 	 *  - NFS always sets S_NOATIME by so checking it would give a
530 	 *    bogus result
531 	 *  - NFS never sets MS_NOATIME or MS_NODIRATIME so there is
532 	 *    no point in checking those.
533 	 */
534  	if ((mnt->mnt_flags & MNT_NOATIME) ||
535  	    ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
536 		need_atime = 0;
537 
538 	if (need_atime)
539 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
540 	else
541 		err = nfs_revalidate_inode(NFS_SERVER(inode), inode);
542 	if (!err) {
543 		generic_fillattr(inode, stat);
544 		stat->ino = nfs_compat_user_ino64(NFS_FILEID(inode));
545 	}
546 	return err;
547 }
548 
549 static struct nfs_open_context *alloc_nfs_open_context(struct vfsmount *mnt, struct dentry *dentry, struct rpc_cred *cred)
550 {
551 	struct nfs_open_context *ctx;
552 
553 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
554 	if (ctx != NULL) {
555 		ctx->path.dentry = dget(dentry);
556 		ctx->path.mnt = mntget(mnt);
557 		ctx->cred = get_rpccred(cred);
558 		ctx->state = NULL;
559 		ctx->lockowner = current->files;
560 		ctx->flags = 0;
561 		ctx->error = 0;
562 		ctx->dir_cookie = 0;
563 		atomic_set(&ctx->count, 1);
564 	}
565 	return ctx;
566 }
567 
568 struct nfs_open_context *get_nfs_open_context(struct nfs_open_context *ctx)
569 {
570 	if (ctx != NULL)
571 		atomic_inc(&ctx->count);
572 	return ctx;
573 }
574 
575 static void __put_nfs_open_context(struct nfs_open_context *ctx, int wait)
576 {
577 	struct inode *inode;
578 
579 	if (ctx == NULL)
580 		return;
581 
582 	inode = ctx->path.dentry->d_inode;
583 	if (!atomic_dec_and_lock(&ctx->count, &inode->i_lock))
584 		return;
585 	list_del(&ctx->list);
586 	spin_unlock(&inode->i_lock);
587 	if (ctx->state != NULL) {
588 		if (wait)
589 			nfs4_close_sync(&ctx->path, ctx->state, ctx->mode);
590 		else
591 			nfs4_close_state(&ctx->path, ctx->state, ctx->mode);
592 	}
593 	if (ctx->cred != NULL)
594 		put_rpccred(ctx->cred);
595 	path_put(&ctx->path);
596 	kfree(ctx);
597 }
598 
599 void put_nfs_open_context(struct nfs_open_context *ctx)
600 {
601 	__put_nfs_open_context(ctx, 0);
602 }
603 
604 static void put_nfs_open_context_sync(struct nfs_open_context *ctx)
605 {
606 	__put_nfs_open_context(ctx, 1);
607 }
608 
609 /*
610  * Ensure that mmap has a recent RPC credential for use when writing out
611  * shared pages
612  */
613 static void nfs_file_set_open_context(struct file *filp, struct nfs_open_context *ctx)
614 {
615 	struct inode *inode = filp->f_path.dentry->d_inode;
616 	struct nfs_inode *nfsi = NFS_I(inode);
617 
618 	filp->private_data = get_nfs_open_context(ctx);
619 	spin_lock(&inode->i_lock);
620 	list_add(&ctx->list, &nfsi->open_files);
621 	spin_unlock(&inode->i_lock);
622 }
623 
624 /*
625  * Given an inode, search for an open context with the desired characteristics
626  */
627 struct nfs_open_context *nfs_find_open_context(struct inode *inode, struct rpc_cred *cred, int mode)
628 {
629 	struct nfs_inode *nfsi = NFS_I(inode);
630 	struct nfs_open_context *pos, *ctx = NULL;
631 
632 	spin_lock(&inode->i_lock);
633 	list_for_each_entry(pos, &nfsi->open_files, list) {
634 		if (cred != NULL && pos->cred != cred)
635 			continue;
636 		if ((pos->mode & mode) == mode) {
637 			ctx = get_nfs_open_context(pos);
638 			break;
639 		}
640 	}
641 	spin_unlock(&inode->i_lock);
642 	return ctx;
643 }
644 
645 static void nfs_file_clear_open_context(struct file *filp)
646 {
647 	struct inode *inode = filp->f_path.dentry->d_inode;
648 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
649 
650 	if (ctx) {
651 		filp->private_data = NULL;
652 		spin_lock(&inode->i_lock);
653 		list_move_tail(&ctx->list, &NFS_I(inode)->open_files);
654 		spin_unlock(&inode->i_lock);
655 		put_nfs_open_context_sync(ctx);
656 	}
657 }
658 
659 /*
660  * These allocate and release file read/write context information.
661  */
662 int nfs_open(struct inode *inode, struct file *filp)
663 {
664 	struct nfs_open_context *ctx;
665 	struct rpc_cred *cred;
666 
667 	cred = rpc_lookup_cred();
668 	if (IS_ERR(cred))
669 		return PTR_ERR(cred);
670 	ctx = alloc_nfs_open_context(filp->f_path.mnt, filp->f_path.dentry, cred);
671 	put_rpccred(cred);
672 	if (ctx == NULL)
673 		return -ENOMEM;
674 	ctx->mode = filp->f_mode;
675 	nfs_file_set_open_context(filp, ctx);
676 	put_nfs_open_context(ctx);
677 	return 0;
678 }
679 
680 int nfs_release(struct inode *inode, struct file *filp)
681 {
682 	nfs_file_clear_open_context(filp);
683 	return 0;
684 }
685 
686 /*
687  * This function is called whenever some part of NFS notices that
688  * the cached attributes have to be refreshed.
689  */
690 int
691 __nfs_revalidate_inode(struct nfs_server *server, struct inode *inode)
692 {
693 	int		 status = -ESTALE;
694 	struct nfs_fattr fattr;
695 	struct nfs_inode *nfsi = NFS_I(inode);
696 
697 	dfprintk(PAGECACHE, "NFS: revalidating (%s/%Ld)\n",
698 		inode->i_sb->s_id, (long long)NFS_FILEID(inode));
699 
700 	nfs_inc_stats(inode, NFSIOS_INODEREVALIDATE);
701 	if (is_bad_inode(inode))
702  		goto out_nowait;
703 	if (NFS_STALE(inode))
704  		goto out_nowait;
705 
706 	status = nfs_wait_on_inode(inode);
707 	if (status < 0)
708 		goto out;
709 
710 	status = -ESTALE;
711 	if (NFS_STALE(inode))
712 		goto out;
713 
714 	status = NFS_PROTO(inode)->getattr(server, NFS_FH(inode), &fattr);
715 	if (status != 0) {
716 		dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Ld) getattr failed, error=%d\n",
717 			 inode->i_sb->s_id,
718 			 (long long)NFS_FILEID(inode), status);
719 		if (status == -ESTALE) {
720 			nfs_zap_caches(inode);
721 			if (!S_ISDIR(inode->i_mode))
722 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
723 		}
724 		goto out;
725 	}
726 
727 	spin_lock(&inode->i_lock);
728 	status = nfs_update_inode(inode, &fattr);
729 	if (status) {
730 		spin_unlock(&inode->i_lock);
731 		dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Ld) refresh failed, error=%d\n",
732 			 inode->i_sb->s_id,
733 			 (long long)NFS_FILEID(inode), status);
734 		goto out;
735 	}
736 	spin_unlock(&inode->i_lock);
737 
738 	if (nfsi->cache_validity & NFS_INO_INVALID_ACL)
739 		nfs_zap_acl_cache(inode);
740 
741 	dfprintk(PAGECACHE, "NFS: (%s/%Ld) revalidation complete\n",
742 		inode->i_sb->s_id,
743 		(long long)NFS_FILEID(inode));
744 
745  out:
746 	nfs_wake_up_inode(inode);
747 
748  out_nowait:
749 	return status;
750 }
751 
752 int nfs_attribute_timeout(struct inode *inode)
753 {
754 	struct nfs_inode *nfsi = NFS_I(inode);
755 
756 	if (nfs_have_delegation(inode, FMODE_READ))
757 		return 0;
758 	/*
759 	 * Special case: if the attribute timeout is set to 0, then always
760 	 * 		 treat the cache as having expired (unless holding
761 	 * 		 a delegation).
762 	 */
763 	if (nfsi->attrtimeo == 0)
764 		return 1;
765 	return !time_in_range(jiffies, nfsi->read_cache_jiffies, nfsi->read_cache_jiffies + nfsi->attrtimeo);
766 }
767 
768 /**
769  * nfs_revalidate_inode - Revalidate the inode attributes
770  * @server - pointer to nfs_server struct
771  * @inode - pointer to inode struct
772  *
773  * Updates inode attribute information by retrieving the data from the server.
774  */
775 int nfs_revalidate_inode(struct nfs_server *server, struct inode *inode)
776 {
777 	if (!(NFS_I(inode)->cache_validity & NFS_INO_INVALID_ATTR)
778 			&& !nfs_attribute_timeout(inode))
779 		return NFS_STALE(inode) ? -ESTALE : 0;
780 	return __nfs_revalidate_inode(server, inode);
781 }
782 
783 static int nfs_invalidate_mapping_nolock(struct inode *inode, struct address_space *mapping)
784 {
785 	struct nfs_inode *nfsi = NFS_I(inode);
786 
787 	if (mapping->nrpages != 0) {
788 		int ret = invalidate_inode_pages2(mapping);
789 		if (ret < 0)
790 			return ret;
791 	}
792 	spin_lock(&inode->i_lock);
793 	nfsi->cache_validity &= ~NFS_INO_INVALID_DATA;
794 	if (S_ISDIR(inode->i_mode))
795 		memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf));
796 	spin_unlock(&inode->i_lock);
797 	nfs_inc_stats(inode, NFSIOS_DATAINVALIDATE);
798 	dfprintk(PAGECACHE, "NFS: (%s/%Ld) data cache invalidated\n",
799 			inode->i_sb->s_id, (long long)NFS_FILEID(inode));
800 	return 0;
801 }
802 
803 static int nfs_invalidate_mapping(struct inode *inode, struct address_space *mapping)
804 {
805 	int ret = 0;
806 
807 	mutex_lock(&inode->i_mutex);
808 	if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_DATA) {
809 		ret = nfs_sync_mapping(mapping);
810 		if (ret == 0)
811 			ret = nfs_invalidate_mapping_nolock(inode, mapping);
812 	}
813 	mutex_unlock(&inode->i_mutex);
814 	return ret;
815 }
816 
817 /**
818  * nfs_revalidate_mapping_nolock - Revalidate the pagecache
819  * @inode - pointer to host inode
820  * @mapping - pointer to mapping
821  */
822 int nfs_revalidate_mapping_nolock(struct inode *inode, struct address_space *mapping)
823 {
824 	struct nfs_inode *nfsi = NFS_I(inode);
825 	int ret = 0;
826 
827 	if ((nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
828 			|| nfs_attribute_timeout(inode) || NFS_STALE(inode)) {
829 		ret = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
830 		if (ret < 0)
831 			goto out;
832 	}
833 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
834 		ret = nfs_invalidate_mapping_nolock(inode, mapping);
835 out:
836 	return ret;
837 }
838 
839 /**
840  * nfs_revalidate_mapping - Revalidate the pagecache
841  * @inode - pointer to host inode
842  * @mapping - pointer to mapping
843  *
844  * This version of the function will take the inode->i_mutex and attempt to
845  * flush out all dirty data if it needs to invalidate the page cache.
846  */
847 int nfs_revalidate_mapping(struct inode *inode, struct address_space *mapping)
848 {
849 	struct nfs_inode *nfsi = NFS_I(inode);
850 	int ret = 0;
851 
852 	if ((nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
853 			|| nfs_attribute_timeout(inode) || NFS_STALE(inode)) {
854 		ret = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
855 		if (ret < 0)
856 			goto out;
857 	}
858 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
859 		ret = nfs_invalidate_mapping(inode, mapping);
860 out:
861 	return ret;
862 }
863 
864 static void nfs_wcc_update_inode(struct inode *inode, struct nfs_fattr *fattr)
865 {
866 	struct nfs_inode *nfsi = NFS_I(inode);
867 
868 	if ((fattr->valid & NFS_ATTR_WCC_V4) != 0 &&
869 			nfsi->change_attr == fattr->pre_change_attr) {
870 		nfsi->change_attr = fattr->change_attr;
871 		if (S_ISDIR(inode->i_mode))
872 			nfsi->cache_validity |= NFS_INO_INVALID_DATA;
873 	}
874 	/* If we have atomic WCC data, we may update some attributes */
875 	if ((fattr->valid & NFS_ATTR_WCC) != 0) {
876 		if (timespec_equal(&inode->i_ctime, &fattr->pre_ctime))
877 			memcpy(&inode->i_ctime, &fattr->ctime, sizeof(inode->i_ctime));
878 		if (timespec_equal(&inode->i_mtime, &fattr->pre_mtime)) {
879 			memcpy(&inode->i_mtime, &fattr->mtime, sizeof(inode->i_mtime));
880 			if (S_ISDIR(inode->i_mode))
881 				nfsi->cache_validity |= NFS_INO_INVALID_DATA;
882 		}
883 		if (i_size_read(inode) == nfs_size_to_loff_t(fattr->pre_size) &&
884 		    nfsi->npages == 0)
885 			i_size_write(inode, nfs_size_to_loff_t(fattr->size));
886 	}
887 }
888 
889 /**
890  * nfs_check_inode_attributes - verify consistency of the inode attribute cache
891  * @inode - pointer to inode
892  * @fattr - updated attributes
893  *
894  * Verifies the attribute cache. If we have just changed the attributes,
895  * so that fattr carries weak cache consistency data, then it may
896  * also update the ctime/mtime/change_attribute.
897  */
898 static int nfs_check_inode_attributes(struct inode *inode, struct nfs_fattr *fattr)
899 {
900 	struct nfs_inode *nfsi = NFS_I(inode);
901 	loff_t cur_size, new_isize;
902 	unsigned long invalid = 0;
903 
904 
905 	/* Has the inode gone and changed behind our back? */
906 	if (nfsi->fileid != fattr->fileid
907 			|| (inode->i_mode & S_IFMT) != (fattr->mode & S_IFMT)) {
908 		return -EIO;
909 	}
910 
911 	/* Do atomic weak cache consistency updates */
912 	nfs_wcc_update_inode(inode, fattr);
913 
914 	if ((fattr->valid & NFS_ATTR_FATTR_V4) != 0 &&
915 			nfsi->change_attr != fattr->change_attr)
916 		invalid |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE;
917 
918 	/* Verify a few of the more important attributes */
919 	if (!timespec_equal(&inode->i_mtime, &fattr->mtime))
920 		invalid |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE;
921 
922 	cur_size = i_size_read(inode);
923  	new_isize = nfs_size_to_loff_t(fattr->size);
924 	if (cur_size != new_isize && nfsi->npages == 0)
925 		invalid |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE;
926 
927 	/* Have any file permissions changed? */
928 	if ((inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO)
929 			|| inode->i_uid != fattr->uid
930 			|| inode->i_gid != fattr->gid)
931 		invalid |= NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL;
932 
933 	/* Has the link count changed? */
934 	if (inode->i_nlink != fattr->nlink)
935 		invalid |= NFS_INO_INVALID_ATTR;
936 
937 	if (!timespec_equal(&inode->i_atime, &fattr->atime))
938 		invalid |= NFS_INO_INVALID_ATIME;
939 
940 	if (invalid != 0)
941 		nfsi->cache_validity |= invalid;
942 	else
943 		nfsi->cache_validity &= ~(NFS_INO_INVALID_ATTR
944 				| NFS_INO_INVALID_ATIME
945 				| NFS_INO_REVAL_PAGECACHE);
946 
947 	nfsi->read_cache_jiffies = fattr->time_start;
948 	return 0;
949 }
950 
951 /**
952  * nfs_refresh_inode - try to update the inode attribute cache
953  * @inode - pointer to inode
954  * @fattr - updated attributes
955  *
956  * Check that an RPC call that returned attributes has not overlapped with
957  * other recent updates of the inode metadata, then decide whether it is
958  * safe to do a full update of the inode attributes, or whether just to
959  * call nfs_check_inode_attributes.
960  */
961 int nfs_refresh_inode(struct inode *inode, struct nfs_fattr *fattr)
962 {
963 	struct nfs_inode *nfsi = NFS_I(inode);
964 	int status;
965 
966 	if ((fattr->valid & NFS_ATTR_FATTR) == 0)
967 		return 0;
968 	spin_lock(&inode->i_lock);
969 	if (time_after(fattr->time_start, nfsi->last_updated))
970 		status = nfs_update_inode(inode, fattr);
971 	else
972 		status = nfs_check_inode_attributes(inode, fattr);
973 
974 	spin_unlock(&inode->i_lock);
975 	return status;
976 }
977 
978 /**
979  * nfs_post_op_update_inode - try to update the inode attribute cache
980  * @inode - pointer to inode
981  * @fattr - updated attributes
982  *
983  * After an operation that has changed the inode metadata, mark the
984  * attribute cache as being invalid, then try to update it.
985  *
986  * NB: if the server didn't return any post op attributes, this
987  * function will force the retrieval of attributes before the next
988  * NFS request.  Thus it should be used only for operations that
989  * are expected to change one or more attributes, to avoid
990  * unnecessary NFS requests and trips through nfs_update_inode().
991  */
992 int nfs_post_op_update_inode(struct inode *inode, struct nfs_fattr *fattr)
993 {
994 	struct nfs_inode *nfsi = NFS_I(inode);
995 
996 	spin_lock(&inode->i_lock);
997 	nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE;
998 	if (S_ISDIR(inode->i_mode))
999 		nfsi->cache_validity |= NFS_INO_INVALID_DATA;
1000 	spin_unlock(&inode->i_lock);
1001 	return nfs_refresh_inode(inode, fattr);
1002 }
1003 
1004 /**
1005  * nfs_post_op_update_inode_force_wcc - try to update the inode attribute cache
1006  * @inode - pointer to inode
1007  * @fattr - updated attributes
1008  *
1009  * After an operation that has changed the inode metadata, mark the
1010  * attribute cache as being invalid, then try to update it. Fake up
1011  * weak cache consistency data, if none exist.
1012  *
1013  * This function is mainly designed to be used by the ->write_done() functions.
1014  */
1015 int nfs_post_op_update_inode_force_wcc(struct inode *inode, struct nfs_fattr *fattr)
1016 {
1017 	if ((fattr->valid & NFS_ATTR_FATTR_V4) != 0 &&
1018 			(fattr->valid & NFS_ATTR_WCC_V4) == 0) {
1019 		fattr->pre_change_attr = NFS_I(inode)->change_attr;
1020 		fattr->valid |= NFS_ATTR_WCC_V4;
1021 	}
1022 	if ((fattr->valid & NFS_ATTR_FATTR) != 0 &&
1023 			(fattr->valid & NFS_ATTR_WCC) == 0) {
1024 		memcpy(&fattr->pre_ctime, &inode->i_ctime, sizeof(fattr->pre_ctime));
1025 		memcpy(&fattr->pre_mtime, &inode->i_mtime, sizeof(fattr->pre_mtime));
1026 		fattr->pre_size = i_size_read(inode);
1027 		fattr->valid |= NFS_ATTR_WCC;
1028 	}
1029 	return nfs_post_op_update_inode(inode, fattr);
1030 }
1031 
1032 /*
1033  * Many nfs protocol calls return the new file attributes after
1034  * an operation.  Here we update the inode to reflect the state
1035  * of the server's inode.
1036  *
1037  * This is a bit tricky because we have to make sure all dirty pages
1038  * have been sent off to the server before calling invalidate_inode_pages.
1039  * To make sure no other process adds more write requests while we try
1040  * our best to flush them, we make them sleep during the attribute refresh.
1041  *
1042  * A very similar scenario holds for the dir cache.
1043  */
1044 static int nfs_update_inode(struct inode *inode, struct nfs_fattr *fattr)
1045 {
1046 	struct nfs_server *server;
1047 	struct nfs_inode *nfsi = NFS_I(inode);
1048 	loff_t cur_isize, new_isize;
1049 	unsigned long invalid = 0;
1050 	unsigned long now = jiffies;
1051 
1052 	dfprintk(VFS, "NFS: %s(%s/%ld ct=%d info=0x%x)\n",
1053 			__func__, inode->i_sb->s_id, inode->i_ino,
1054 			atomic_read(&inode->i_count), fattr->valid);
1055 
1056 	if (nfsi->fileid != fattr->fileid)
1057 		goto out_fileid;
1058 
1059 	/*
1060 	 * Make sure the inode's type hasn't changed.
1061 	 */
1062 	if ((inode->i_mode & S_IFMT) != (fattr->mode & S_IFMT))
1063 		goto out_changed;
1064 
1065 	server = NFS_SERVER(inode);
1066 	/* Update the fsid? */
1067 	if (S_ISDIR(inode->i_mode) &&
1068 			!nfs_fsid_equal(&server->fsid, &fattr->fsid) &&
1069 			!test_bit(NFS_INO_MOUNTPOINT, &nfsi->flags))
1070 		server->fsid = fattr->fsid;
1071 
1072 	/*
1073 	 * Update the read time so we don't revalidate too often.
1074 	 */
1075 	nfsi->read_cache_jiffies = fattr->time_start;
1076 
1077 	nfsi->cache_validity &= ~(NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ATIME
1078 			| NFS_INO_REVAL_PAGECACHE);
1079 
1080 	/* Do atomic weak cache consistency updates */
1081 	nfs_wcc_update_inode(inode, fattr);
1082 
1083 	/* More cache consistency checks */
1084 	if (!(fattr->valid & NFS_ATTR_FATTR_V4)) {
1085 		/* NFSv2/v3: Check if the mtime agrees */
1086 		if (!timespec_equal(&inode->i_mtime, &fattr->mtime)) {
1087 			dprintk("NFS: mtime change on server for file %s/%ld\n",
1088 					inode->i_sb->s_id, inode->i_ino);
1089 			invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA;
1090 			if (S_ISDIR(inode->i_mode))
1091 				nfs_force_lookup_revalidate(inode);
1092 		}
1093 		/* If ctime has changed we should definitely clear access+acl caches */
1094 		if (!timespec_equal(&inode->i_ctime, &fattr->ctime))
1095 			invalid |= NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
1096 	} else if (nfsi->change_attr != fattr->change_attr) {
1097 		dprintk("NFS: change_attr change on server for file %s/%ld\n",
1098 				inode->i_sb->s_id, inode->i_ino);
1099 		invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
1100 		if (S_ISDIR(inode->i_mode))
1101 			nfs_force_lookup_revalidate(inode);
1102 	}
1103 
1104 	/* Check if our cached file size is stale */
1105  	new_isize = nfs_size_to_loff_t(fattr->size);
1106 	cur_isize = i_size_read(inode);
1107 	if (new_isize != cur_isize) {
1108 		/* Do we perhaps have any outstanding writes, or has
1109 		 * the file grown beyond our last write? */
1110 		if (nfsi->npages == 0 || new_isize > cur_isize) {
1111 			i_size_write(inode, new_isize);
1112 			invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA;
1113 		}
1114 		dprintk("NFS: isize change on server for file %s/%ld\n",
1115 				inode->i_sb->s_id, inode->i_ino);
1116 	}
1117 
1118 
1119 	memcpy(&inode->i_mtime, &fattr->mtime, sizeof(inode->i_mtime));
1120 	memcpy(&inode->i_ctime, &fattr->ctime, sizeof(inode->i_ctime));
1121 	memcpy(&inode->i_atime, &fattr->atime, sizeof(inode->i_atime));
1122 	nfsi->change_attr = fattr->change_attr;
1123 
1124 	if ((inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO) ||
1125 	    inode->i_uid != fattr->uid ||
1126 	    inode->i_gid != fattr->gid)
1127 		invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
1128 
1129 	inode->i_mode = fattr->mode;
1130 	inode->i_nlink = fattr->nlink;
1131 	inode->i_uid = fattr->uid;
1132 	inode->i_gid = fattr->gid;
1133 
1134 	if (fattr->valid & (NFS_ATTR_FATTR_V3 | NFS_ATTR_FATTR_V4)) {
1135 		/*
1136 		 * report the blocks in 512byte units
1137 		 */
1138 		inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used);
1139  	} else {
1140  		inode->i_blocks = fattr->du.nfs2.blocks;
1141  	}
1142 
1143 	/* Update attrtimeo value if we're out of the unstable period */
1144 	if (invalid & NFS_INO_INVALID_ATTR) {
1145 		nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE);
1146 		nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
1147 		nfsi->attrtimeo_timestamp = now;
1148 		nfsi->last_updated = now;
1149 	} else {
1150 		if (!time_in_range(now, nfsi->attrtimeo_timestamp, nfsi->attrtimeo_timestamp + nfsi->attrtimeo)) {
1151 			if ((nfsi->attrtimeo <<= 1) > NFS_MAXATTRTIMEO(inode))
1152 				nfsi->attrtimeo = NFS_MAXATTRTIMEO(inode);
1153 			nfsi->attrtimeo_timestamp = now;
1154 		}
1155 		/*
1156 		 * Avoid jiffy wraparound issues with nfsi->last_updated
1157 		 */
1158 		if (!time_in_range(nfsi->last_updated, nfsi->read_cache_jiffies, now))
1159 			nfsi->last_updated = nfsi->read_cache_jiffies;
1160 	}
1161 	invalid &= ~NFS_INO_INVALID_ATTR;
1162 	/* Don't invalidate the data if we were to blame */
1163 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1164 				|| S_ISLNK(inode->i_mode)))
1165 		invalid &= ~NFS_INO_INVALID_DATA;
1166 	if (!nfs_have_delegation(inode, FMODE_READ) ||
1167 			(nfsi->cache_validity & NFS_INO_REVAL_FORCED))
1168 		nfsi->cache_validity |= invalid;
1169 	nfsi->cache_validity &= ~NFS_INO_REVAL_FORCED;
1170 
1171 	return 0;
1172  out_changed:
1173 	/*
1174 	 * Big trouble! The inode has become a different object.
1175 	 */
1176 	printk(KERN_DEBUG "%s: inode %ld mode changed, %07o to %07o\n",
1177 			__func__, inode->i_ino, inode->i_mode, fattr->mode);
1178  out_err:
1179 	/*
1180 	 * No need to worry about unhashing the dentry, as the
1181 	 * lookup validation will know that the inode is bad.
1182 	 * (But we fall through to invalidate the caches.)
1183 	 */
1184 	nfs_invalidate_inode(inode);
1185 	return -ESTALE;
1186 
1187  out_fileid:
1188 	printk(KERN_ERR "NFS: server %s error: fileid changed\n"
1189 		"fsid %s: expected fileid 0x%Lx, got 0x%Lx\n",
1190 		NFS_SERVER(inode)->nfs_client->cl_hostname, inode->i_sb->s_id,
1191 		(long long)nfsi->fileid, (long long)fattr->fileid);
1192 	goto out_err;
1193 }
1194 
1195 
1196 #ifdef CONFIG_NFS_V4
1197 
1198 /*
1199  * Clean out any remaining NFSv4 state that might be left over due
1200  * to open() calls that passed nfs_atomic_lookup, but failed to call
1201  * nfs_open().
1202  */
1203 void nfs4_clear_inode(struct inode *inode)
1204 {
1205 	/* If we are holding a delegation, return it! */
1206 	nfs_inode_return_delegation_noreclaim(inode);
1207 	/* First call standard NFS clear_inode() code */
1208 	nfs_clear_inode(inode);
1209 }
1210 #endif
1211 
1212 struct inode *nfs_alloc_inode(struct super_block *sb)
1213 {
1214 	struct nfs_inode *nfsi;
1215 	nfsi = (struct nfs_inode *)kmem_cache_alloc(nfs_inode_cachep, GFP_KERNEL);
1216 	if (!nfsi)
1217 		return NULL;
1218 	nfsi->flags = 0UL;
1219 	nfsi->cache_validity = 0UL;
1220 #ifdef CONFIG_NFS_V3_ACL
1221 	nfsi->acl_access = ERR_PTR(-EAGAIN);
1222 	nfsi->acl_default = ERR_PTR(-EAGAIN);
1223 #endif
1224 #ifdef CONFIG_NFS_V4
1225 	nfsi->nfs4_acl = NULL;
1226 #endif /* CONFIG_NFS_V4 */
1227 	return &nfsi->vfs_inode;
1228 }
1229 
1230 void nfs_destroy_inode(struct inode *inode)
1231 {
1232 	kmem_cache_free(nfs_inode_cachep, NFS_I(inode));
1233 }
1234 
1235 static inline void nfs4_init_once(struct nfs_inode *nfsi)
1236 {
1237 #ifdef CONFIG_NFS_V4
1238 	INIT_LIST_HEAD(&nfsi->open_states);
1239 	nfsi->delegation = NULL;
1240 	nfsi->delegation_state = 0;
1241 	init_rwsem(&nfsi->rwsem);
1242 #endif
1243 }
1244 
1245 static void init_once(void *foo)
1246 {
1247 	struct nfs_inode *nfsi = (struct nfs_inode *) foo;
1248 
1249 	inode_init_once(&nfsi->vfs_inode);
1250 	INIT_LIST_HEAD(&nfsi->open_files);
1251 	INIT_LIST_HEAD(&nfsi->access_cache_entry_lru);
1252 	INIT_LIST_HEAD(&nfsi->access_cache_inode_lru);
1253 	INIT_RADIX_TREE(&nfsi->nfs_page_tree, GFP_ATOMIC);
1254 	nfsi->ncommit = 0;
1255 	nfsi->npages = 0;
1256 	atomic_set(&nfsi->silly_count, 1);
1257 	INIT_HLIST_HEAD(&nfsi->silly_list);
1258 	init_waitqueue_head(&nfsi->waitqueue);
1259 	nfs4_init_once(nfsi);
1260 }
1261 
1262 static int __init nfs_init_inodecache(void)
1263 {
1264 	nfs_inode_cachep = kmem_cache_create("nfs_inode_cache",
1265 					     sizeof(struct nfs_inode),
1266 					     0, (SLAB_RECLAIM_ACCOUNT|
1267 						SLAB_MEM_SPREAD),
1268 					     init_once);
1269 	if (nfs_inode_cachep == NULL)
1270 		return -ENOMEM;
1271 
1272 	return 0;
1273 }
1274 
1275 static void nfs_destroy_inodecache(void)
1276 {
1277 	kmem_cache_destroy(nfs_inode_cachep);
1278 }
1279 
1280 struct workqueue_struct *nfsiod_workqueue;
1281 
1282 /*
1283  * start up the nfsiod workqueue
1284  */
1285 static int nfsiod_start(void)
1286 {
1287 	struct workqueue_struct *wq;
1288 	dprintk("RPC:       creating workqueue nfsiod\n");
1289 	wq = create_singlethread_workqueue("nfsiod");
1290 	if (wq == NULL)
1291 		return -ENOMEM;
1292 	nfsiod_workqueue = wq;
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Destroy the nfsiod workqueue
1298  */
1299 static void nfsiod_stop(void)
1300 {
1301 	struct workqueue_struct *wq;
1302 
1303 	wq = nfsiod_workqueue;
1304 	if (wq == NULL)
1305 		return;
1306 	nfsiod_workqueue = NULL;
1307 	destroy_workqueue(wq);
1308 }
1309 
1310 /*
1311  * Initialize NFS
1312  */
1313 static int __init init_nfs_fs(void)
1314 {
1315 	int err;
1316 
1317 	err = nfsiod_start();
1318 	if (err)
1319 		goto out6;
1320 
1321 	err = nfs_fs_proc_init();
1322 	if (err)
1323 		goto out5;
1324 
1325 	err = nfs_init_nfspagecache();
1326 	if (err)
1327 		goto out4;
1328 
1329 	err = nfs_init_inodecache();
1330 	if (err)
1331 		goto out3;
1332 
1333 	err = nfs_init_readpagecache();
1334 	if (err)
1335 		goto out2;
1336 
1337 	err = nfs_init_writepagecache();
1338 	if (err)
1339 		goto out1;
1340 
1341 	err = nfs_init_directcache();
1342 	if (err)
1343 		goto out0;
1344 
1345 #ifdef CONFIG_PROC_FS
1346 	rpc_proc_register(&nfs_rpcstat);
1347 #endif
1348 	if ((err = register_nfs_fs()) != 0)
1349 		goto out;
1350 	return 0;
1351 out:
1352 #ifdef CONFIG_PROC_FS
1353 	rpc_proc_unregister("nfs");
1354 #endif
1355 	nfs_destroy_directcache();
1356 out0:
1357 	nfs_destroy_writepagecache();
1358 out1:
1359 	nfs_destroy_readpagecache();
1360 out2:
1361 	nfs_destroy_inodecache();
1362 out3:
1363 	nfs_destroy_nfspagecache();
1364 out4:
1365 	nfs_fs_proc_exit();
1366 out5:
1367 	nfsiod_stop();
1368 out6:
1369 	return err;
1370 }
1371 
1372 static void __exit exit_nfs_fs(void)
1373 {
1374 	nfs_destroy_directcache();
1375 	nfs_destroy_writepagecache();
1376 	nfs_destroy_readpagecache();
1377 	nfs_destroy_inodecache();
1378 	nfs_destroy_nfspagecache();
1379 #ifdef CONFIG_PROC_FS
1380 	rpc_proc_unregister("nfs");
1381 #endif
1382 	unregister_nfs_fs();
1383 	nfs_fs_proc_exit();
1384 	nfsiod_stop();
1385 }
1386 
1387 /* Not quite true; I just maintain it */
1388 MODULE_AUTHOR("Olaf Kirch <okir@monad.swb.de>");
1389 MODULE_LICENSE("GPL");
1390 module_param(enable_ino64, bool, 0644);
1391 
1392 module_init(init_nfs_fs)
1393 module_exit(exit_nfs_fs)
1394