xref: /openbmc/linux/fs/nfs/file.c (revision fb37409a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/file.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  Changes Copyright (C) 1994 by Florian La Roche
8  *   - Do not copy data too often around in the kernel.
9  *   - In nfs_file_read the return value of kmalloc wasn't checked.
10  *   - Put in a better version of read look-ahead buffering. Original idea
11  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
12  *
13  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
14  *
15  *  Total rewrite of read side for new NFS buffer cache.. Linus.
16  *
17  *  nfs regular file handling functions
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/stat.h>
26 #include <linux/nfs_fs.h>
27 #include <linux/nfs_mount.h>
28 #include <linux/mm.h>
29 #include <linux/pagemap.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
32 
33 #include <linux/uaccess.h>
34 
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39 #include "pnfs.h"
40 
41 #include "nfstrace.h"
42 
43 #define NFSDBG_FACILITY		NFSDBG_FILE
44 
45 static const struct vm_operations_struct nfs_file_vm_ops;
46 
47 /* Hack for future NFS swap support */
48 #ifndef IS_SWAPFILE
49 # define IS_SWAPFILE(inode)	(0)
50 #endif
51 
52 int nfs_check_flags(int flags)
53 {
54 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
55 		return -EINVAL;
56 
57 	return 0;
58 }
59 EXPORT_SYMBOL_GPL(nfs_check_flags);
60 
61 /*
62  * Open file
63  */
64 static int
65 nfs_file_open(struct inode *inode, struct file *filp)
66 {
67 	int res;
68 
69 	dprintk("NFS: open file(%pD2)\n", filp);
70 
71 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
72 	res = nfs_check_flags(filp->f_flags);
73 	if (res)
74 		return res;
75 
76 	res = nfs_open(inode, filp);
77 	return res;
78 }
79 
80 int
81 nfs_file_release(struct inode *inode, struct file *filp)
82 {
83 	dprintk("NFS: release(%pD2)\n", filp);
84 
85 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
86 	inode_dio_wait(inode);
87 	nfs_file_clear_open_context(filp);
88 	return 0;
89 }
90 EXPORT_SYMBOL_GPL(nfs_file_release);
91 
92 /**
93  * nfs_revalidate_size - Revalidate the file size
94  * @inode: pointer to inode struct
95  * @filp: pointer to struct file
96  *
97  * Revalidates the file length. This is basically a wrapper around
98  * nfs_revalidate_inode() that takes into account the fact that we may
99  * have cached writes (in which case we don't care about the server's
100  * idea of what the file length is), or O_DIRECT (in which case we
101  * shouldn't trust the cache).
102  */
103 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
104 {
105 	struct nfs_server *server = NFS_SERVER(inode);
106 
107 	if (filp->f_flags & O_DIRECT)
108 		goto force_reval;
109 	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
110 		goto force_reval;
111 	return 0;
112 force_reval:
113 	return __nfs_revalidate_inode(server, inode);
114 }
115 
116 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
117 {
118 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
119 			filp, offset, whence);
120 
121 	/*
122 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
123 	 * the cached file length
124 	 */
125 	if (whence != SEEK_SET && whence != SEEK_CUR) {
126 		struct inode *inode = filp->f_mapping->host;
127 
128 		int retval = nfs_revalidate_file_size(inode, filp);
129 		if (retval < 0)
130 			return (loff_t)retval;
131 	}
132 
133 	return generic_file_llseek(filp, offset, whence);
134 }
135 EXPORT_SYMBOL_GPL(nfs_file_llseek);
136 
137 /*
138  * Flush all dirty pages, and check for write errors.
139  */
140 static int
141 nfs_file_flush(struct file *file, fl_owner_t id)
142 {
143 	struct inode	*inode = file_inode(file);
144 
145 	dprintk("NFS: flush(%pD2)\n", file);
146 
147 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
148 	if ((file->f_mode & FMODE_WRITE) == 0)
149 		return 0;
150 
151 	/* Flush writes to the server and return any errors */
152 	return nfs_wb_all(inode);
153 }
154 
155 ssize_t
156 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
157 {
158 	struct inode *inode = file_inode(iocb->ki_filp);
159 	ssize_t result;
160 
161 	if (iocb->ki_flags & IOCB_DIRECT)
162 		return nfs_file_direct_read(iocb, to);
163 
164 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
165 		iocb->ki_filp,
166 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
167 
168 	nfs_start_io_read(inode);
169 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
170 	if (!result) {
171 		result = generic_file_read_iter(iocb, to);
172 		if (result > 0)
173 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
174 	}
175 	nfs_end_io_read(inode);
176 	return result;
177 }
178 EXPORT_SYMBOL_GPL(nfs_file_read);
179 
180 int
181 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
182 {
183 	struct inode *inode = file_inode(file);
184 	int	status;
185 
186 	dprintk("NFS: mmap(%pD2)\n", file);
187 
188 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
189 	 *       so we call that before revalidating the mapping
190 	 */
191 	status = generic_file_mmap(file, vma);
192 	if (!status) {
193 		vma->vm_ops = &nfs_file_vm_ops;
194 		status = nfs_revalidate_mapping(inode, file->f_mapping);
195 	}
196 	return status;
197 }
198 EXPORT_SYMBOL_GPL(nfs_file_mmap);
199 
200 /*
201  * Flush any dirty pages for this process, and check for write errors.
202  * The return status from this call provides a reliable indication of
203  * whether any write errors occurred for this process.
204  */
205 static int
206 nfs_file_fsync_commit(struct file *file, int datasync)
207 {
208 	struct inode *inode = file_inode(file);
209 	int ret;
210 
211 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
212 
213 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
214 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
215 	if (ret < 0)
216 		return ret;
217 	return file_check_and_advance_wb_err(file);
218 }
219 
220 int
221 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
222 {
223 	struct nfs_open_context *ctx = nfs_file_open_context(file);
224 	struct inode *inode = file_inode(file);
225 	int ret;
226 
227 	trace_nfs_fsync_enter(inode);
228 
229 	for (;;) {
230 		ret = file_write_and_wait_range(file, start, end);
231 		if (ret != 0)
232 			break;
233 		ret = nfs_file_fsync_commit(file, datasync);
234 		if (ret != 0)
235 			break;
236 		ret = pnfs_sync_inode(inode, !!datasync);
237 		if (ret != 0)
238 			break;
239 		if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags))
240 			break;
241 		/*
242 		 * If nfs_file_fsync_commit detected a server reboot, then
243 		 * resend all dirty pages that might have been covered by
244 		 * the NFS_CONTEXT_RESEND_WRITES flag
245 		 */
246 		start = 0;
247 		end = LLONG_MAX;
248 	}
249 
250 	trace_nfs_fsync_exit(inode, ret);
251 	return ret;
252 }
253 EXPORT_SYMBOL_GPL(nfs_file_fsync);
254 
255 /*
256  * Decide whether a read/modify/write cycle may be more efficient
257  * then a modify/write/read cycle when writing to a page in the
258  * page cache.
259  *
260  * Some pNFS layout drivers can only read/write at a certain block
261  * granularity like all block devices and therefore we must perform
262  * read/modify/write whenever a page hasn't read yet and the data
263  * to be written there is not aligned to a block boundary and/or
264  * smaller than the block size.
265  *
266  * The modify/write/read cycle may occur if a page is read before
267  * being completely filled by the writer.  In this situation, the
268  * page must be completely written to stable storage on the server
269  * before it can be refilled by reading in the page from the server.
270  * This can lead to expensive, small, FILE_SYNC mode writes being
271  * done.
272  *
273  * It may be more efficient to read the page first if the file is
274  * open for reading in addition to writing, the page is not marked
275  * as Uptodate, it is not dirty or waiting to be committed,
276  * indicating that it was previously allocated and then modified,
277  * that there were valid bytes of data in that range of the file,
278  * and that the new data won't completely replace the old data in
279  * that range of the file.
280  */
281 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
282 {
283 	unsigned int pglen = nfs_page_length(page);
284 	unsigned int offset = pos & (PAGE_SIZE - 1);
285 	unsigned int end = offset + len;
286 
287 	return !pglen || (end >= pglen && !offset);
288 }
289 
290 static bool nfs_want_read_modify_write(struct file *file, struct page *page,
291 			loff_t pos, unsigned int len)
292 {
293 	/*
294 	 * Up-to-date pages, those with ongoing or full-page write
295 	 * don't need read/modify/write
296 	 */
297 	if (PageUptodate(page) || PagePrivate(page) ||
298 	    nfs_full_page_write(page, pos, len))
299 		return false;
300 
301 	if (pnfs_ld_read_whole_page(file->f_mapping->host))
302 		return true;
303 	/* Open for reading too? */
304 	if (file->f_mode & FMODE_READ)
305 		return true;
306 	return false;
307 }
308 
309 /*
310  * This does the "real" work of the write. We must allocate and lock the
311  * page to be sent back to the generic routine, which then copies the
312  * data from user space.
313  *
314  * If the writer ends up delaying the write, the writer needs to
315  * increment the page use counts until he is done with the page.
316  */
317 static int nfs_write_begin(struct file *file, struct address_space *mapping,
318 			loff_t pos, unsigned len, unsigned flags,
319 			struct page **pagep, void **fsdata)
320 {
321 	int ret;
322 	pgoff_t index = pos >> PAGE_SHIFT;
323 	struct page *page;
324 	int once_thru = 0;
325 
326 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
327 		file, mapping->host->i_ino, len, (long long) pos);
328 
329 start:
330 	page = grab_cache_page_write_begin(mapping, index, flags);
331 	if (!page)
332 		return -ENOMEM;
333 	*pagep = page;
334 
335 	ret = nfs_flush_incompatible(file, page);
336 	if (ret) {
337 		unlock_page(page);
338 		put_page(page);
339 	} else if (!once_thru &&
340 		   nfs_want_read_modify_write(file, page, pos, len)) {
341 		once_thru = 1;
342 		ret = nfs_readpage(file, page);
343 		put_page(page);
344 		if (!ret)
345 			goto start;
346 	}
347 	return ret;
348 }
349 
350 static int nfs_write_end(struct file *file, struct address_space *mapping,
351 			loff_t pos, unsigned len, unsigned copied,
352 			struct page *page, void *fsdata)
353 {
354 	unsigned offset = pos & (PAGE_SIZE - 1);
355 	struct nfs_open_context *ctx = nfs_file_open_context(file);
356 	int status;
357 
358 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
359 		file, mapping->host->i_ino, len, (long long) pos);
360 
361 	/*
362 	 * Zero any uninitialised parts of the page, and then mark the page
363 	 * as up to date if it turns out that we're extending the file.
364 	 */
365 	if (!PageUptodate(page)) {
366 		unsigned pglen = nfs_page_length(page);
367 		unsigned end = offset + copied;
368 
369 		if (pglen == 0) {
370 			zero_user_segments(page, 0, offset,
371 					end, PAGE_SIZE);
372 			SetPageUptodate(page);
373 		} else if (end >= pglen) {
374 			zero_user_segment(page, end, PAGE_SIZE);
375 			if (offset == 0)
376 				SetPageUptodate(page);
377 		} else
378 			zero_user_segment(page, pglen, PAGE_SIZE);
379 	}
380 
381 	status = nfs_updatepage(file, page, offset, copied);
382 
383 	unlock_page(page);
384 	put_page(page);
385 
386 	if (status < 0)
387 		return status;
388 	NFS_I(mapping->host)->write_io += copied;
389 
390 	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
391 		status = nfs_wb_all(mapping->host);
392 		if (status < 0)
393 			return status;
394 	}
395 
396 	return copied;
397 }
398 
399 /*
400  * Partially or wholly invalidate a page
401  * - Release the private state associated with a page if undergoing complete
402  *   page invalidation
403  * - Called if either PG_private or PG_fscache is set on the page
404  * - Caller holds page lock
405  */
406 static void nfs_invalidate_page(struct page *page, unsigned int offset,
407 				unsigned int length)
408 {
409 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
410 		 page, offset, length);
411 
412 	if (offset != 0 || length < PAGE_SIZE)
413 		return;
414 	/* Cancel any unstarted writes on this page */
415 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
416 
417 	nfs_fscache_invalidate_page(page, page->mapping->host);
418 }
419 
420 /*
421  * Attempt to release the private state associated with a page
422  * - Called if either PG_private or PG_fscache is set on the page
423  * - Caller holds page lock
424  * - Return true (may release page) or false (may not)
425  */
426 static int nfs_release_page(struct page *page, gfp_t gfp)
427 {
428 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
429 
430 	/* If PagePrivate() is set, then the page is not freeable */
431 	if (PagePrivate(page))
432 		return 0;
433 	return nfs_fscache_release_page(page, gfp);
434 }
435 
436 static void nfs_check_dirty_writeback(struct page *page,
437 				bool *dirty, bool *writeback)
438 {
439 	struct nfs_inode *nfsi;
440 	struct address_space *mapping = page_file_mapping(page);
441 
442 	if (!mapping || PageSwapCache(page))
443 		return;
444 
445 	/*
446 	 * Check if an unstable page is currently being committed and
447 	 * if so, have the VM treat it as if the page is under writeback
448 	 * so it will not block due to pages that will shortly be freeable.
449 	 */
450 	nfsi = NFS_I(mapping->host);
451 	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
452 		*writeback = true;
453 		return;
454 	}
455 
456 	/*
457 	 * If PagePrivate() is set, then the page is not freeable and as the
458 	 * inode is not being committed, it's not going to be cleaned in the
459 	 * near future so treat it as dirty
460 	 */
461 	if (PagePrivate(page))
462 		*dirty = true;
463 }
464 
465 /*
466  * Attempt to clear the private state associated with a page when an error
467  * occurs that requires the cached contents of an inode to be written back or
468  * destroyed
469  * - Called if either PG_private or fscache is set on the page
470  * - Caller holds page lock
471  * - Return 0 if successful, -error otherwise
472  */
473 static int nfs_launder_page(struct page *page)
474 {
475 	struct inode *inode = page_file_mapping(page)->host;
476 	struct nfs_inode *nfsi = NFS_I(inode);
477 
478 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
479 		inode->i_ino, (long long)page_offset(page));
480 
481 	nfs_fscache_wait_on_page_write(nfsi, page);
482 	return nfs_wb_page(inode, page);
483 }
484 
485 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
486 						sector_t *span)
487 {
488 	unsigned long blocks;
489 	long long isize;
490 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
491 	struct inode *inode = file->f_mapping->host;
492 
493 	spin_lock(&inode->i_lock);
494 	blocks = inode->i_blocks;
495 	isize = inode->i_size;
496 	spin_unlock(&inode->i_lock);
497 	if (blocks*512 < isize) {
498 		pr_warn("swap activate: swapfile has holes\n");
499 		return -EINVAL;
500 	}
501 
502 	*span = sis->pages;
503 
504 	return rpc_clnt_swap_activate(clnt);
505 }
506 
507 static void nfs_swap_deactivate(struct file *file)
508 {
509 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
510 
511 	rpc_clnt_swap_deactivate(clnt);
512 }
513 
514 const struct address_space_operations nfs_file_aops = {
515 	.readpage = nfs_readpage,
516 	.readpages = nfs_readpages,
517 	.set_page_dirty = __set_page_dirty_nobuffers,
518 	.writepage = nfs_writepage,
519 	.writepages = nfs_writepages,
520 	.write_begin = nfs_write_begin,
521 	.write_end = nfs_write_end,
522 	.invalidatepage = nfs_invalidate_page,
523 	.releasepage = nfs_release_page,
524 	.direct_IO = nfs_direct_IO,
525 #ifdef CONFIG_MIGRATION
526 	.migratepage = nfs_migrate_page,
527 #endif
528 	.launder_page = nfs_launder_page,
529 	.is_dirty_writeback = nfs_check_dirty_writeback,
530 	.error_remove_page = generic_error_remove_page,
531 	.swap_activate = nfs_swap_activate,
532 	.swap_deactivate = nfs_swap_deactivate,
533 };
534 
535 /*
536  * Notification that a PTE pointing to an NFS page is about to be made
537  * writable, implying that someone is about to modify the page through a
538  * shared-writable mapping
539  */
540 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
541 {
542 	struct page *page = vmf->page;
543 	struct file *filp = vmf->vma->vm_file;
544 	struct inode *inode = file_inode(filp);
545 	unsigned pagelen;
546 	vm_fault_t ret = VM_FAULT_NOPAGE;
547 	struct address_space *mapping;
548 
549 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
550 		filp, filp->f_mapping->host->i_ino,
551 		(long long)page_offset(page));
552 
553 	sb_start_pagefault(inode->i_sb);
554 
555 	/* make sure the cache has finished storing the page */
556 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
557 
558 	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
559 			nfs_wait_bit_killable, TASK_KILLABLE);
560 
561 	lock_page(page);
562 	mapping = page_file_mapping(page);
563 	if (mapping != inode->i_mapping)
564 		goto out_unlock;
565 
566 	wait_on_page_writeback(page);
567 
568 	pagelen = nfs_page_length(page);
569 	if (pagelen == 0)
570 		goto out_unlock;
571 
572 	ret = VM_FAULT_LOCKED;
573 	if (nfs_flush_incompatible(filp, page) == 0 &&
574 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
575 		goto out;
576 
577 	ret = VM_FAULT_SIGBUS;
578 out_unlock:
579 	unlock_page(page);
580 out:
581 	sb_end_pagefault(inode->i_sb);
582 	return ret;
583 }
584 
585 static const struct vm_operations_struct nfs_file_vm_ops = {
586 	.fault = filemap_fault,
587 	.map_pages = filemap_map_pages,
588 	.page_mkwrite = nfs_vm_page_mkwrite,
589 };
590 
591 static int nfs_need_check_write(struct file *filp, struct inode *inode)
592 {
593 	struct nfs_open_context *ctx;
594 
595 	ctx = nfs_file_open_context(filp);
596 	if (nfs_ctx_key_to_expire(ctx, inode))
597 		return 1;
598 	return 0;
599 }
600 
601 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
602 {
603 	struct file *file = iocb->ki_filp;
604 	struct inode *inode = file_inode(file);
605 	unsigned long written = 0;
606 	ssize_t result;
607 
608 	result = nfs_key_timeout_notify(file, inode);
609 	if (result)
610 		return result;
611 
612 	if (iocb->ki_flags & IOCB_DIRECT)
613 		return nfs_file_direct_write(iocb, from);
614 
615 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
616 		file, iov_iter_count(from), (long long) iocb->ki_pos);
617 
618 	if (IS_SWAPFILE(inode))
619 		goto out_swapfile;
620 	/*
621 	 * O_APPEND implies that we must revalidate the file length.
622 	 */
623 	if (iocb->ki_flags & IOCB_APPEND) {
624 		result = nfs_revalidate_file_size(inode, file);
625 		if (result)
626 			goto out;
627 	}
628 	if (iocb->ki_pos > i_size_read(inode))
629 		nfs_revalidate_mapping(inode, file->f_mapping);
630 
631 	nfs_start_io_write(inode);
632 	result = generic_write_checks(iocb, from);
633 	if (result > 0) {
634 		current->backing_dev_info = inode_to_bdi(inode);
635 		result = generic_perform_write(file, from, iocb->ki_pos);
636 		current->backing_dev_info = NULL;
637 	}
638 	nfs_end_io_write(inode);
639 	if (result <= 0)
640 		goto out;
641 
642 	written = result;
643 	iocb->ki_pos += written;
644 	result = generic_write_sync(iocb, written);
645 	if (result < 0)
646 		goto out;
647 
648 	/* Return error values */
649 	if (nfs_need_check_write(file, inode)) {
650 		int err = nfs_wb_all(inode);
651 		if (err < 0)
652 			result = err;
653 	}
654 	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
655 out:
656 	return result;
657 
658 out_swapfile:
659 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
660 	return -ETXTBSY;
661 }
662 EXPORT_SYMBOL_GPL(nfs_file_write);
663 
664 static int
665 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
666 {
667 	struct inode *inode = filp->f_mapping->host;
668 	int status = 0;
669 	unsigned int saved_type = fl->fl_type;
670 
671 	/* Try local locking first */
672 	posix_test_lock(filp, fl);
673 	if (fl->fl_type != F_UNLCK) {
674 		/* found a conflict */
675 		goto out;
676 	}
677 	fl->fl_type = saved_type;
678 
679 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
680 		goto out_noconflict;
681 
682 	if (is_local)
683 		goto out_noconflict;
684 
685 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
686 out:
687 	return status;
688 out_noconflict:
689 	fl->fl_type = F_UNLCK;
690 	goto out;
691 }
692 
693 static int
694 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
695 {
696 	struct inode *inode = filp->f_mapping->host;
697 	struct nfs_lock_context *l_ctx;
698 	int status;
699 
700 	/*
701 	 * Flush all pending writes before doing anything
702 	 * with locks..
703 	 */
704 	nfs_wb_all(inode);
705 
706 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
707 	if (!IS_ERR(l_ctx)) {
708 		status = nfs_iocounter_wait(l_ctx);
709 		nfs_put_lock_context(l_ctx);
710 		/*  NOTE: special case
711 		 * 	If we're signalled while cleaning up locks on process exit, we
712 		 * 	still need to complete the unlock.
713 		 */
714 		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
715 			return status;
716 	}
717 
718 	/*
719 	 * Use local locking if mounted with "-onolock" or with appropriate
720 	 * "-olocal_lock="
721 	 */
722 	if (!is_local)
723 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
724 	else
725 		status = locks_lock_file_wait(filp, fl);
726 	return status;
727 }
728 
729 static int
730 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
731 {
732 	struct inode *inode = filp->f_mapping->host;
733 	int status;
734 
735 	/*
736 	 * Flush all pending writes before doing anything
737 	 * with locks..
738 	 */
739 	status = nfs_sync_mapping(filp->f_mapping);
740 	if (status != 0)
741 		goto out;
742 
743 	/*
744 	 * Use local locking if mounted with "-onolock" or with appropriate
745 	 * "-olocal_lock="
746 	 */
747 	if (!is_local)
748 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
749 	else
750 		status = locks_lock_file_wait(filp, fl);
751 	if (status < 0)
752 		goto out;
753 
754 	/*
755 	 * Invalidate cache to prevent missing any changes.  If
756 	 * the file is mapped, clear the page cache as well so
757 	 * those mappings will be loaded.
758 	 *
759 	 * This makes locking act as a cache coherency point.
760 	 */
761 	nfs_sync_mapping(filp->f_mapping);
762 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
763 		nfs_zap_caches(inode);
764 		if (mapping_mapped(filp->f_mapping))
765 			nfs_revalidate_mapping(inode, filp->f_mapping);
766 	}
767 out:
768 	return status;
769 }
770 
771 /*
772  * Lock a (portion of) a file
773  */
774 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
775 {
776 	struct inode *inode = filp->f_mapping->host;
777 	int ret = -ENOLCK;
778 	int is_local = 0;
779 
780 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
781 			filp, fl->fl_type, fl->fl_flags,
782 			(long long)fl->fl_start, (long long)fl->fl_end);
783 
784 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
785 
786 	/* No mandatory locks over NFS */
787 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
788 		goto out_err;
789 
790 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
791 		is_local = 1;
792 
793 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
794 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
795 		if (ret < 0)
796 			goto out_err;
797 	}
798 
799 	if (IS_GETLK(cmd))
800 		ret = do_getlk(filp, cmd, fl, is_local);
801 	else if (fl->fl_type == F_UNLCK)
802 		ret = do_unlk(filp, cmd, fl, is_local);
803 	else
804 		ret = do_setlk(filp, cmd, fl, is_local);
805 out_err:
806 	return ret;
807 }
808 EXPORT_SYMBOL_GPL(nfs_lock);
809 
810 /*
811  * Lock a (portion of) a file
812  */
813 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
814 {
815 	struct inode *inode = filp->f_mapping->host;
816 	int is_local = 0;
817 
818 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
819 			filp, fl->fl_type, fl->fl_flags);
820 
821 	if (!(fl->fl_flags & FL_FLOCK))
822 		return -ENOLCK;
823 
824 	/*
825 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
826 	 * any standard. In principle we might be able to support LOCK_MAND
827 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
828 	 * NFS code is not set up for it.
829 	 */
830 	if (fl->fl_type & LOCK_MAND)
831 		return -EINVAL;
832 
833 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
834 		is_local = 1;
835 
836 	/* We're simulating flock() locks using posix locks on the server */
837 	if (fl->fl_type == F_UNLCK)
838 		return do_unlk(filp, cmd, fl, is_local);
839 	return do_setlk(filp, cmd, fl, is_local);
840 }
841 EXPORT_SYMBOL_GPL(nfs_flock);
842 
843 const struct file_operations nfs_file_operations = {
844 	.llseek		= nfs_file_llseek,
845 	.read_iter	= nfs_file_read,
846 	.write_iter	= nfs_file_write,
847 	.mmap		= nfs_file_mmap,
848 	.open		= nfs_file_open,
849 	.flush		= nfs_file_flush,
850 	.release	= nfs_file_release,
851 	.fsync		= nfs_file_fsync,
852 	.lock		= nfs_lock,
853 	.flock		= nfs_flock,
854 	.splice_read	= generic_file_splice_read,
855 	.splice_write	= iter_file_splice_write,
856 	.check_flags	= nfs_check_flags,
857 	.setlease	= simple_nosetlease,
858 };
859 EXPORT_SYMBOL_GPL(nfs_file_operations);
860