xref: /openbmc/linux/fs/nfs/file.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/file.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  Changes Copyright (C) 1994 by Florian La Roche
8  *   - Do not copy data too often around in the kernel.
9  *   - In nfs_file_read the return value of kmalloc wasn't checked.
10  *   - Put in a better version of read look-ahead buffering. Original idea
11  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
12  *
13  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
14  *
15  *  Total rewrite of read side for new NFS buffer cache.. Linus.
16  *
17  *  nfs regular file handling functions
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/stat.h>
26 #include <linux/nfs_fs.h>
27 #include <linux/nfs_mount.h>
28 #include <linux/mm.h>
29 #include <linux/pagemap.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
32 
33 #include <linux/uaccess.h>
34 
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39 #include "pnfs.h"
40 
41 #include "nfstrace.h"
42 
43 #define NFSDBG_FACILITY		NFSDBG_FILE
44 
45 static const struct vm_operations_struct nfs_file_vm_ops;
46 
47 /* Hack for future NFS swap support */
48 #ifndef IS_SWAPFILE
49 # define IS_SWAPFILE(inode)	(0)
50 #endif
51 
52 int nfs_check_flags(int flags)
53 {
54 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
55 		return -EINVAL;
56 
57 	return 0;
58 }
59 EXPORT_SYMBOL_GPL(nfs_check_flags);
60 
61 /*
62  * Open file
63  */
64 static int
65 nfs_file_open(struct inode *inode, struct file *filp)
66 {
67 	int res;
68 
69 	dprintk("NFS: open file(%pD2)\n", filp);
70 
71 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
72 	res = nfs_check_flags(filp->f_flags);
73 	if (res)
74 		return res;
75 
76 	res = nfs_open(inode, filp);
77 	return res;
78 }
79 
80 int
81 nfs_file_release(struct inode *inode, struct file *filp)
82 {
83 	dprintk("NFS: release(%pD2)\n", filp);
84 
85 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
86 	nfs_file_clear_open_context(filp);
87 	return 0;
88 }
89 EXPORT_SYMBOL_GPL(nfs_file_release);
90 
91 /**
92  * nfs_revalidate_size - Revalidate the file size
93  * @inode: pointer to inode struct
94  * @filp: pointer to struct file
95  *
96  * Revalidates the file length. This is basically a wrapper around
97  * nfs_revalidate_inode() that takes into account the fact that we may
98  * have cached writes (in which case we don't care about the server's
99  * idea of what the file length is), or O_DIRECT (in which case we
100  * shouldn't trust the cache).
101  */
102 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
103 {
104 	struct nfs_server *server = NFS_SERVER(inode);
105 
106 	if (filp->f_flags & O_DIRECT)
107 		goto force_reval;
108 	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
109 		goto force_reval;
110 	return 0;
111 force_reval:
112 	return __nfs_revalidate_inode(server, inode);
113 }
114 
115 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
116 {
117 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118 			filp, offset, whence);
119 
120 	/*
121 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122 	 * the cached file length
123 	 */
124 	if (whence != SEEK_SET && whence != SEEK_CUR) {
125 		struct inode *inode = filp->f_mapping->host;
126 
127 		int retval = nfs_revalidate_file_size(inode, filp);
128 		if (retval < 0)
129 			return (loff_t)retval;
130 	}
131 
132 	return generic_file_llseek(filp, offset, whence);
133 }
134 EXPORT_SYMBOL_GPL(nfs_file_llseek);
135 
136 /*
137  * Flush all dirty pages, and check for write errors.
138  */
139 static int
140 nfs_file_flush(struct file *file, fl_owner_t id)
141 {
142 	struct inode	*inode = file_inode(file);
143 	errseq_t since;
144 
145 	dprintk("NFS: flush(%pD2)\n", file);
146 
147 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
148 	if ((file->f_mode & FMODE_WRITE) == 0)
149 		return 0;
150 
151 	/* Flush writes to the server and return any errors */
152 	since = filemap_sample_wb_err(file->f_mapping);
153 	nfs_wb_all(inode);
154 	return filemap_check_wb_err(file->f_mapping, since);
155 }
156 
157 ssize_t
158 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
159 {
160 	struct inode *inode = file_inode(iocb->ki_filp);
161 	ssize_t result;
162 
163 	if (iocb->ki_flags & IOCB_DIRECT)
164 		return nfs_file_direct_read(iocb, to);
165 
166 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
167 		iocb->ki_filp,
168 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
169 
170 	nfs_start_io_read(inode);
171 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
172 	if (!result) {
173 		result = generic_file_read_iter(iocb, to);
174 		if (result > 0)
175 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
176 	}
177 	nfs_end_io_read(inode);
178 	return result;
179 }
180 EXPORT_SYMBOL_GPL(nfs_file_read);
181 
182 int
183 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
184 {
185 	struct inode *inode = file_inode(file);
186 	int	status;
187 
188 	dprintk("NFS: mmap(%pD2)\n", file);
189 
190 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
191 	 *       so we call that before revalidating the mapping
192 	 */
193 	status = generic_file_mmap(file, vma);
194 	if (!status) {
195 		vma->vm_ops = &nfs_file_vm_ops;
196 		status = nfs_revalidate_mapping(inode, file->f_mapping);
197 	}
198 	return status;
199 }
200 EXPORT_SYMBOL_GPL(nfs_file_mmap);
201 
202 /*
203  * Flush any dirty pages for this process, and check for write errors.
204  * The return status from this call provides a reliable indication of
205  * whether any write errors occurred for this process.
206  */
207 static int
208 nfs_file_fsync_commit(struct file *file, int datasync)
209 {
210 	struct inode *inode = file_inode(file);
211 	int ret;
212 
213 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
214 
215 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
216 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
217 	if (ret < 0)
218 		return ret;
219 	return file_check_and_advance_wb_err(file);
220 }
221 
222 int
223 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
224 {
225 	struct nfs_open_context *ctx = nfs_file_open_context(file);
226 	struct inode *inode = file_inode(file);
227 	int ret;
228 
229 	trace_nfs_fsync_enter(inode);
230 
231 	for (;;) {
232 		ret = file_write_and_wait_range(file, start, end);
233 		if (ret != 0)
234 			break;
235 		ret = nfs_file_fsync_commit(file, datasync);
236 		if (ret != 0)
237 			break;
238 		ret = pnfs_sync_inode(inode, !!datasync);
239 		if (ret != 0)
240 			break;
241 		if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags))
242 			break;
243 		/*
244 		 * If nfs_file_fsync_commit detected a server reboot, then
245 		 * resend all dirty pages that might have been covered by
246 		 * the NFS_CONTEXT_RESEND_WRITES flag
247 		 */
248 		start = 0;
249 		end = LLONG_MAX;
250 	}
251 
252 	trace_nfs_fsync_exit(inode, ret);
253 	return ret;
254 }
255 EXPORT_SYMBOL_GPL(nfs_file_fsync);
256 
257 /*
258  * Decide whether a read/modify/write cycle may be more efficient
259  * then a modify/write/read cycle when writing to a page in the
260  * page cache.
261  *
262  * Some pNFS layout drivers can only read/write at a certain block
263  * granularity like all block devices and therefore we must perform
264  * read/modify/write whenever a page hasn't read yet and the data
265  * to be written there is not aligned to a block boundary and/or
266  * smaller than the block size.
267  *
268  * The modify/write/read cycle may occur if a page is read before
269  * being completely filled by the writer.  In this situation, the
270  * page must be completely written to stable storage on the server
271  * before it can be refilled by reading in the page from the server.
272  * This can lead to expensive, small, FILE_SYNC mode writes being
273  * done.
274  *
275  * It may be more efficient to read the page first if the file is
276  * open for reading in addition to writing, the page is not marked
277  * as Uptodate, it is not dirty or waiting to be committed,
278  * indicating that it was previously allocated and then modified,
279  * that there were valid bytes of data in that range of the file,
280  * and that the new data won't completely replace the old data in
281  * that range of the file.
282  */
283 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
284 {
285 	unsigned int pglen = nfs_page_length(page);
286 	unsigned int offset = pos & (PAGE_SIZE - 1);
287 	unsigned int end = offset + len;
288 
289 	return !pglen || (end >= pglen && !offset);
290 }
291 
292 static bool nfs_want_read_modify_write(struct file *file, struct page *page,
293 			loff_t pos, unsigned int len)
294 {
295 	/*
296 	 * Up-to-date pages, those with ongoing or full-page write
297 	 * don't need read/modify/write
298 	 */
299 	if (PageUptodate(page) || PagePrivate(page) ||
300 	    nfs_full_page_write(page, pos, len))
301 		return false;
302 
303 	if (pnfs_ld_read_whole_page(file->f_mapping->host))
304 		return true;
305 	/* Open for reading too? */
306 	if (file->f_mode & FMODE_READ)
307 		return true;
308 	return false;
309 }
310 
311 /*
312  * This does the "real" work of the write. We must allocate and lock the
313  * page to be sent back to the generic routine, which then copies the
314  * data from user space.
315  *
316  * If the writer ends up delaying the write, the writer needs to
317  * increment the page use counts until he is done with the page.
318  */
319 static int nfs_write_begin(struct file *file, struct address_space *mapping,
320 			loff_t pos, unsigned len, unsigned flags,
321 			struct page **pagep, void **fsdata)
322 {
323 	int ret;
324 	pgoff_t index = pos >> PAGE_SHIFT;
325 	struct page *page;
326 	int once_thru = 0;
327 
328 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
329 		file, mapping->host->i_ino, len, (long long) pos);
330 
331 start:
332 	page = grab_cache_page_write_begin(mapping, index, flags);
333 	if (!page)
334 		return -ENOMEM;
335 	*pagep = page;
336 
337 	ret = nfs_flush_incompatible(file, page);
338 	if (ret) {
339 		unlock_page(page);
340 		put_page(page);
341 	} else if (!once_thru &&
342 		   nfs_want_read_modify_write(file, page, pos, len)) {
343 		once_thru = 1;
344 		ret = nfs_readpage(file, page);
345 		put_page(page);
346 		if (!ret)
347 			goto start;
348 	}
349 	return ret;
350 }
351 
352 static int nfs_write_end(struct file *file, struct address_space *mapping,
353 			loff_t pos, unsigned len, unsigned copied,
354 			struct page *page, void *fsdata)
355 {
356 	unsigned offset = pos & (PAGE_SIZE - 1);
357 	struct nfs_open_context *ctx = nfs_file_open_context(file);
358 	int status;
359 
360 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
361 		file, mapping->host->i_ino, len, (long long) pos);
362 
363 	/*
364 	 * Zero any uninitialised parts of the page, and then mark the page
365 	 * as up to date if it turns out that we're extending the file.
366 	 */
367 	if (!PageUptodate(page)) {
368 		unsigned pglen = nfs_page_length(page);
369 		unsigned end = offset + copied;
370 
371 		if (pglen == 0) {
372 			zero_user_segments(page, 0, offset,
373 					end, PAGE_SIZE);
374 			SetPageUptodate(page);
375 		} else if (end >= pglen) {
376 			zero_user_segment(page, end, PAGE_SIZE);
377 			if (offset == 0)
378 				SetPageUptodate(page);
379 		} else
380 			zero_user_segment(page, pglen, PAGE_SIZE);
381 	}
382 
383 	status = nfs_updatepage(file, page, offset, copied);
384 
385 	unlock_page(page);
386 	put_page(page);
387 
388 	if (status < 0)
389 		return status;
390 	NFS_I(mapping->host)->write_io += copied;
391 
392 	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
393 		status = nfs_wb_all(mapping->host);
394 		if (status < 0)
395 			return status;
396 	}
397 
398 	return copied;
399 }
400 
401 /*
402  * Partially or wholly invalidate a page
403  * - Release the private state associated with a page if undergoing complete
404  *   page invalidation
405  * - Called if either PG_private or PG_fscache is set on the page
406  * - Caller holds page lock
407  */
408 static void nfs_invalidate_page(struct page *page, unsigned int offset,
409 				unsigned int length)
410 {
411 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
412 		 page, offset, length);
413 
414 	if (offset != 0 || length < PAGE_SIZE)
415 		return;
416 	/* Cancel any unstarted writes on this page */
417 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
418 
419 	nfs_fscache_invalidate_page(page, page->mapping->host);
420 }
421 
422 /*
423  * Attempt to release the private state associated with a page
424  * - Called if either PG_private or PG_fscache is set on the page
425  * - Caller holds page lock
426  * - Return true (may release page) or false (may not)
427  */
428 static int nfs_release_page(struct page *page, gfp_t gfp)
429 {
430 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
431 
432 	/* If PagePrivate() is set, then the page is not freeable */
433 	if (PagePrivate(page))
434 		return 0;
435 	return nfs_fscache_release_page(page, gfp);
436 }
437 
438 static void nfs_check_dirty_writeback(struct page *page,
439 				bool *dirty, bool *writeback)
440 {
441 	struct nfs_inode *nfsi;
442 	struct address_space *mapping = page_file_mapping(page);
443 
444 	if (!mapping || PageSwapCache(page))
445 		return;
446 
447 	/*
448 	 * Check if an unstable page is currently being committed and
449 	 * if so, have the VM treat it as if the page is under writeback
450 	 * so it will not block due to pages that will shortly be freeable.
451 	 */
452 	nfsi = NFS_I(mapping->host);
453 	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
454 		*writeback = true;
455 		return;
456 	}
457 
458 	/*
459 	 * If PagePrivate() is set, then the page is not freeable and as the
460 	 * inode is not being committed, it's not going to be cleaned in the
461 	 * near future so treat it as dirty
462 	 */
463 	if (PagePrivate(page))
464 		*dirty = true;
465 }
466 
467 /*
468  * Attempt to clear the private state associated with a page when an error
469  * occurs that requires the cached contents of an inode to be written back or
470  * destroyed
471  * - Called if either PG_private or fscache is set on the page
472  * - Caller holds page lock
473  * - Return 0 if successful, -error otherwise
474  */
475 static int nfs_launder_page(struct page *page)
476 {
477 	struct inode *inode = page_file_mapping(page)->host;
478 	struct nfs_inode *nfsi = NFS_I(inode);
479 
480 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
481 		inode->i_ino, (long long)page_offset(page));
482 
483 	nfs_fscache_wait_on_page_write(nfsi, page);
484 	return nfs_wb_page(inode, page);
485 }
486 
487 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
488 						sector_t *span)
489 {
490 	unsigned long blocks;
491 	long long isize;
492 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
493 	struct inode *inode = file->f_mapping->host;
494 
495 	spin_lock(&inode->i_lock);
496 	blocks = inode->i_blocks;
497 	isize = inode->i_size;
498 	spin_unlock(&inode->i_lock);
499 	if (blocks*512 < isize) {
500 		pr_warn("swap activate: swapfile has holes\n");
501 		return -EINVAL;
502 	}
503 
504 	*span = sis->pages;
505 
506 	return rpc_clnt_swap_activate(clnt);
507 }
508 
509 static void nfs_swap_deactivate(struct file *file)
510 {
511 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
512 
513 	rpc_clnt_swap_deactivate(clnt);
514 }
515 
516 const struct address_space_operations nfs_file_aops = {
517 	.readpage = nfs_readpage,
518 	.readpages = nfs_readpages,
519 	.set_page_dirty = __set_page_dirty_nobuffers,
520 	.writepage = nfs_writepage,
521 	.writepages = nfs_writepages,
522 	.write_begin = nfs_write_begin,
523 	.write_end = nfs_write_end,
524 	.invalidatepage = nfs_invalidate_page,
525 	.releasepage = nfs_release_page,
526 	.direct_IO = nfs_direct_IO,
527 #ifdef CONFIG_MIGRATION
528 	.migratepage = nfs_migrate_page,
529 #endif
530 	.launder_page = nfs_launder_page,
531 	.is_dirty_writeback = nfs_check_dirty_writeback,
532 	.error_remove_page = generic_error_remove_page,
533 	.swap_activate = nfs_swap_activate,
534 	.swap_deactivate = nfs_swap_deactivate,
535 };
536 
537 /*
538  * Notification that a PTE pointing to an NFS page is about to be made
539  * writable, implying that someone is about to modify the page through a
540  * shared-writable mapping
541  */
542 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
543 {
544 	struct page *page = vmf->page;
545 	struct file *filp = vmf->vma->vm_file;
546 	struct inode *inode = file_inode(filp);
547 	unsigned pagelen;
548 	vm_fault_t ret = VM_FAULT_NOPAGE;
549 	struct address_space *mapping;
550 
551 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
552 		filp, filp->f_mapping->host->i_ino,
553 		(long long)page_offset(page));
554 
555 	sb_start_pagefault(inode->i_sb);
556 
557 	/* make sure the cache has finished storing the page */
558 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
559 
560 	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
561 			nfs_wait_bit_killable, TASK_KILLABLE);
562 
563 	lock_page(page);
564 	mapping = page_file_mapping(page);
565 	if (mapping != inode->i_mapping)
566 		goto out_unlock;
567 
568 	wait_on_page_writeback(page);
569 
570 	pagelen = nfs_page_length(page);
571 	if (pagelen == 0)
572 		goto out_unlock;
573 
574 	ret = VM_FAULT_LOCKED;
575 	if (nfs_flush_incompatible(filp, page) == 0 &&
576 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
577 		goto out;
578 
579 	ret = VM_FAULT_SIGBUS;
580 out_unlock:
581 	unlock_page(page);
582 out:
583 	sb_end_pagefault(inode->i_sb);
584 	return ret;
585 }
586 
587 static const struct vm_operations_struct nfs_file_vm_ops = {
588 	.fault = filemap_fault,
589 	.map_pages = filemap_map_pages,
590 	.page_mkwrite = nfs_vm_page_mkwrite,
591 };
592 
593 static int nfs_need_check_write(struct file *filp, struct inode *inode,
594 				int error)
595 {
596 	struct nfs_open_context *ctx;
597 
598 	ctx = nfs_file_open_context(filp);
599 	if (nfs_error_is_fatal_on_server(error) ||
600 	    nfs_ctx_key_to_expire(ctx, inode))
601 		return 1;
602 	return 0;
603 }
604 
605 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
606 {
607 	struct file *file = iocb->ki_filp;
608 	struct inode *inode = file_inode(file);
609 	unsigned long written = 0;
610 	ssize_t result;
611 	errseq_t since;
612 	int error;
613 
614 	result = nfs_key_timeout_notify(file, inode);
615 	if (result)
616 		return result;
617 
618 	if (iocb->ki_flags & IOCB_DIRECT)
619 		return nfs_file_direct_write(iocb, from);
620 
621 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
622 		file, iov_iter_count(from), (long long) iocb->ki_pos);
623 
624 	if (IS_SWAPFILE(inode))
625 		goto out_swapfile;
626 	/*
627 	 * O_APPEND implies that we must revalidate the file length.
628 	 */
629 	if (iocb->ki_flags & IOCB_APPEND) {
630 		result = nfs_revalidate_file_size(inode, file);
631 		if (result)
632 			goto out;
633 	}
634 	if (iocb->ki_pos > i_size_read(inode))
635 		nfs_revalidate_mapping(inode, file->f_mapping);
636 
637 	since = filemap_sample_wb_err(file->f_mapping);
638 	nfs_start_io_write(inode);
639 	result = generic_write_checks(iocb, from);
640 	if (result > 0) {
641 		current->backing_dev_info = inode_to_bdi(inode);
642 		result = generic_perform_write(file, from, iocb->ki_pos);
643 		current->backing_dev_info = NULL;
644 	}
645 	nfs_end_io_write(inode);
646 	if (result <= 0)
647 		goto out;
648 
649 	written = result;
650 	iocb->ki_pos += written;
651 	result = generic_write_sync(iocb, written);
652 	if (result < 0)
653 		goto out;
654 
655 	/* Return error values */
656 	error = filemap_check_wb_err(file->f_mapping, since);
657 	if (nfs_need_check_write(file, inode, error)) {
658 		int err = nfs_wb_all(inode);
659 		if (err < 0)
660 			result = err;
661 	}
662 	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
663 out:
664 	return result;
665 
666 out_swapfile:
667 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
668 	return -ETXTBSY;
669 }
670 EXPORT_SYMBOL_GPL(nfs_file_write);
671 
672 static int
673 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
674 {
675 	struct inode *inode = filp->f_mapping->host;
676 	int status = 0;
677 	unsigned int saved_type = fl->fl_type;
678 
679 	/* Try local locking first */
680 	posix_test_lock(filp, fl);
681 	if (fl->fl_type != F_UNLCK) {
682 		/* found a conflict */
683 		goto out;
684 	}
685 	fl->fl_type = saved_type;
686 
687 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
688 		goto out_noconflict;
689 
690 	if (is_local)
691 		goto out_noconflict;
692 
693 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
694 out:
695 	return status;
696 out_noconflict:
697 	fl->fl_type = F_UNLCK;
698 	goto out;
699 }
700 
701 static int
702 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
703 {
704 	struct inode *inode = filp->f_mapping->host;
705 	struct nfs_lock_context *l_ctx;
706 	int status;
707 
708 	/*
709 	 * Flush all pending writes before doing anything
710 	 * with locks..
711 	 */
712 	nfs_wb_all(inode);
713 
714 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
715 	if (!IS_ERR(l_ctx)) {
716 		status = nfs_iocounter_wait(l_ctx);
717 		nfs_put_lock_context(l_ctx);
718 		/*  NOTE: special case
719 		 * 	If we're signalled while cleaning up locks on process exit, we
720 		 * 	still need to complete the unlock.
721 		 */
722 		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
723 			return status;
724 	}
725 
726 	/*
727 	 * Use local locking if mounted with "-onolock" or with appropriate
728 	 * "-olocal_lock="
729 	 */
730 	if (!is_local)
731 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
732 	else
733 		status = locks_lock_file_wait(filp, fl);
734 	return status;
735 }
736 
737 static int
738 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
739 {
740 	struct inode *inode = filp->f_mapping->host;
741 	int status;
742 
743 	/*
744 	 * Flush all pending writes before doing anything
745 	 * with locks..
746 	 */
747 	status = nfs_sync_mapping(filp->f_mapping);
748 	if (status != 0)
749 		goto out;
750 
751 	/*
752 	 * Use local locking if mounted with "-onolock" or with appropriate
753 	 * "-olocal_lock="
754 	 */
755 	if (!is_local)
756 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
757 	else
758 		status = locks_lock_file_wait(filp, fl);
759 	if (status < 0)
760 		goto out;
761 
762 	/*
763 	 * Invalidate cache to prevent missing any changes.  If
764 	 * the file is mapped, clear the page cache as well so
765 	 * those mappings will be loaded.
766 	 *
767 	 * This makes locking act as a cache coherency point.
768 	 */
769 	nfs_sync_mapping(filp->f_mapping);
770 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
771 		nfs_zap_caches(inode);
772 		if (mapping_mapped(filp->f_mapping))
773 			nfs_revalidate_mapping(inode, filp->f_mapping);
774 	}
775 out:
776 	return status;
777 }
778 
779 /*
780  * Lock a (portion of) a file
781  */
782 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
783 {
784 	struct inode *inode = filp->f_mapping->host;
785 	int ret = -ENOLCK;
786 	int is_local = 0;
787 
788 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
789 			filp, fl->fl_type, fl->fl_flags,
790 			(long long)fl->fl_start, (long long)fl->fl_end);
791 
792 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
793 
794 	/* No mandatory locks over NFS */
795 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
796 		goto out_err;
797 
798 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
799 		is_local = 1;
800 
801 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
802 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
803 		if (ret < 0)
804 			goto out_err;
805 	}
806 
807 	if (IS_GETLK(cmd))
808 		ret = do_getlk(filp, cmd, fl, is_local);
809 	else if (fl->fl_type == F_UNLCK)
810 		ret = do_unlk(filp, cmd, fl, is_local);
811 	else
812 		ret = do_setlk(filp, cmd, fl, is_local);
813 out_err:
814 	return ret;
815 }
816 EXPORT_SYMBOL_GPL(nfs_lock);
817 
818 /*
819  * Lock a (portion of) a file
820  */
821 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
822 {
823 	struct inode *inode = filp->f_mapping->host;
824 	int is_local = 0;
825 
826 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
827 			filp, fl->fl_type, fl->fl_flags);
828 
829 	if (!(fl->fl_flags & FL_FLOCK))
830 		return -ENOLCK;
831 
832 	/*
833 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
834 	 * any standard. In principle we might be able to support LOCK_MAND
835 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
836 	 * NFS code is not set up for it.
837 	 */
838 	if (fl->fl_type & LOCK_MAND)
839 		return -EINVAL;
840 
841 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
842 		is_local = 1;
843 
844 	/* We're simulating flock() locks using posix locks on the server */
845 	if (fl->fl_type == F_UNLCK)
846 		return do_unlk(filp, cmd, fl, is_local);
847 	return do_setlk(filp, cmd, fl, is_local);
848 }
849 EXPORT_SYMBOL_GPL(nfs_flock);
850 
851 const struct file_operations nfs_file_operations = {
852 	.llseek		= nfs_file_llseek,
853 	.read_iter	= nfs_file_read,
854 	.write_iter	= nfs_file_write,
855 	.mmap		= nfs_file_mmap,
856 	.open		= nfs_file_open,
857 	.flush		= nfs_file_flush,
858 	.release	= nfs_file_release,
859 	.fsync		= nfs_file_fsync,
860 	.lock		= nfs_lock,
861 	.flock		= nfs_flock,
862 	.splice_read	= generic_file_splice_read,
863 	.splice_write	= iter_file_splice_write,
864 	.check_flags	= nfs_check_flags,
865 	.setlease	= simple_nosetlease,
866 };
867 EXPORT_SYMBOL_GPL(nfs_file_operations);
868