xref: /openbmc/linux/fs/nfs/file.c (revision e6c81cce)
1 /*
2  *  linux/fs/nfs/file.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  Changes Copyright (C) 1994 by Florian La Roche
7  *   - Do not copy data too often around in the kernel.
8  *   - In nfs_file_read the return value of kmalloc wasn't checked.
9  *   - Put in a better version of read look-ahead buffering. Original idea
10  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11  *
12  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13  *
14  *  Total rewrite of read side for new NFS buffer cache.. Linus.
15  *
16  *  nfs regular file handling functions
17  */
18 
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
31 
32 #include <asm/uaccess.h>
33 
34 #include "delegation.h"
35 #include "internal.h"
36 #include "iostat.h"
37 #include "fscache.h"
38 #include "pnfs.h"
39 
40 #include "nfstrace.h"
41 
42 #define NFSDBG_FACILITY		NFSDBG_FILE
43 
44 static const struct vm_operations_struct nfs_file_vm_ops;
45 
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode)	(0)
49 #endif
50 
51 int nfs_check_flags(int flags)
52 {
53 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 		return -EINVAL;
55 
56 	return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59 
60 /*
61  * Open file
62  */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 	int res;
67 
68 	dprintk("NFS: open file(%pD2)\n", filp);
69 
70 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 	res = nfs_check_flags(filp->f_flags);
72 	if (res)
73 		return res;
74 
75 	res = nfs_open(inode, filp);
76 	return res;
77 }
78 
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 	dprintk("NFS: release(%pD2)\n", filp);
83 
84 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 	return nfs_release(inode, filp);
86 }
87 EXPORT_SYMBOL_GPL(nfs_file_release);
88 
89 /**
90  * nfs_revalidate_size - Revalidate the file size
91  * @inode - pointer to inode struct
92  * @file - pointer to struct file
93  *
94  * Revalidates the file length. This is basically a wrapper around
95  * nfs_revalidate_inode() that takes into account the fact that we may
96  * have cached writes (in which case we don't care about the server's
97  * idea of what the file length is), or O_DIRECT (in which case we
98  * shouldn't trust the cache).
99  */
100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
101 {
102 	struct nfs_server *server = NFS_SERVER(inode);
103 	struct nfs_inode *nfsi = NFS_I(inode);
104 
105 	if (nfs_have_delegated_attributes(inode))
106 		goto out_noreval;
107 
108 	if (filp->f_flags & O_DIRECT)
109 		goto force_reval;
110 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
111 		goto force_reval;
112 	if (nfs_attribute_timeout(inode))
113 		goto force_reval;
114 out_noreval:
115 	return 0;
116 force_reval:
117 	return __nfs_revalidate_inode(server, inode);
118 }
119 
120 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
121 {
122 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
123 			filp, offset, whence);
124 
125 	/*
126 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
127 	 * the cached file length
128 	 */
129 	if (whence != SEEK_SET && whence != SEEK_CUR) {
130 		struct inode *inode = filp->f_mapping->host;
131 
132 		int retval = nfs_revalidate_file_size(inode, filp);
133 		if (retval < 0)
134 			return (loff_t)retval;
135 	}
136 
137 	return generic_file_llseek(filp, offset, whence);
138 }
139 EXPORT_SYMBOL_GPL(nfs_file_llseek);
140 
141 /*
142  * Flush all dirty pages, and check for write errors.
143  */
144 int
145 nfs_file_flush(struct file *file, fl_owner_t id)
146 {
147 	struct inode	*inode = file_inode(file);
148 
149 	dprintk("NFS: flush(%pD2)\n", file);
150 
151 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
152 	if ((file->f_mode & FMODE_WRITE) == 0)
153 		return 0;
154 
155 	/*
156 	 * If we're holding a write delegation, then just start the i/o
157 	 * but don't wait for completion (or send a commit).
158 	 */
159 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
160 		return filemap_fdatawrite(file->f_mapping);
161 
162 	/* Flush writes to the server and return any errors */
163 	return vfs_fsync(file, 0);
164 }
165 EXPORT_SYMBOL_GPL(nfs_file_flush);
166 
167 ssize_t
168 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
169 {
170 	struct inode *inode = file_inode(iocb->ki_filp);
171 	ssize_t result;
172 
173 	if (iocb->ki_flags & IOCB_DIRECT)
174 		return nfs_file_direct_read(iocb, to, iocb->ki_pos);
175 
176 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
177 		iocb->ki_filp,
178 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
179 
180 	result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping);
181 	if (!result) {
182 		result = generic_file_read_iter(iocb, to);
183 		if (result > 0)
184 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
185 	}
186 	return result;
187 }
188 EXPORT_SYMBOL_GPL(nfs_file_read);
189 
190 ssize_t
191 nfs_file_splice_read(struct file *filp, loff_t *ppos,
192 		     struct pipe_inode_info *pipe, size_t count,
193 		     unsigned int flags)
194 {
195 	struct inode *inode = file_inode(filp);
196 	ssize_t res;
197 
198 	dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
199 		filp, (unsigned long) count, (unsigned long long) *ppos);
200 
201 	res = nfs_revalidate_mapping_protected(inode, filp->f_mapping);
202 	if (!res) {
203 		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
204 		if (res > 0)
205 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
206 	}
207 	return res;
208 }
209 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
210 
211 int
212 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
213 {
214 	struct inode *inode = file_inode(file);
215 	int	status;
216 
217 	dprintk("NFS: mmap(%pD2)\n", file);
218 
219 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
220 	 *       so we call that before revalidating the mapping
221 	 */
222 	status = generic_file_mmap(file, vma);
223 	if (!status) {
224 		vma->vm_ops = &nfs_file_vm_ops;
225 		status = nfs_revalidate_mapping(inode, file->f_mapping);
226 	}
227 	return status;
228 }
229 EXPORT_SYMBOL_GPL(nfs_file_mmap);
230 
231 /*
232  * Flush any dirty pages for this process, and check for write errors.
233  * The return status from this call provides a reliable indication of
234  * whether any write errors occurred for this process.
235  *
236  * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
237  * disk, but it retrieves and clears ctx->error after synching, despite
238  * the two being set at the same time in nfs_context_set_write_error().
239  * This is because the former is used to notify the _next_ call to
240  * nfs_file_write() that a write error occurred, and hence cause it to
241  * fall back to doing a synchronous write.
242  */
243 int
244 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
245 {
246 	struct nfs_open_context *ctx = nfs_file_open_context(file);
247 	struct inode *inode = file_inode(file);
248 	int have_error, do_resend, status;
249 	int ret = 0;
250 
251 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
252 
253 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
254 	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
255 	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
256 	status = nfs_commit_inode(inode, FLUSH_SYNC);
257 	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
258 	if (have_error) {
259 		ret = xchg(&ctx->error, 0);
260 		if (ret)
261 			goto out;
262 	}
263 	if (status < 0) {
264 		ret = status;
265 		goto out;
266 	}
267 	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
268 	if (do_resend)
269 		ret = -EAGAIN;
270 out:
271 	return ret;
272 }
273 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
274 
275 static int
276 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
277 {
278 	int ret;
279 	struct inode *inode = file_inode(file);
280 
281 	trace_nfs_fsync_enter(inode);
282 
283 	do {
284 		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
285 		if (ret != 0)
286 			break;
287 		mutex_lock(&inode->i_mutex);
288 		ret = nfs_file_fsync_commit(file, start, end, datasync);
289 		mutex_unlock(&inode->i_mutex);
290 		/*
291 		 * If nfs_file_fsync_commit detected a server reboot, then
292 		 * resend all dirty pages that might have been covered by
293 		 * the NFS_CONTEXT_RESEND_WRITES flag
294 		 */
295 		start = 0;
296 		end = LLONG_MAX;
297 	} while (ret == -EAGAIN);
298 
299 	trace_nfs_fsync_exit(inode, ret);
300 	return ret;
301 }
302 
303 /*
304  * Decide whether a read/modify/write cycle may be more efficient
305  * then a modify/write/read cycle when writing to a page in the
306  * page cache.
307  *
308  * The modify/write/read cycle may occur if a page is read before
309  * being completely filled by the writer.  In this situation, the
310  * page must be completely written to stable storage on the server
311  * before it can be refilled by reading in the page from the server.
312  * This can lead to expensive, small, FILE_SYNC mode writes being
313  * done.
314  *
315  * It may be more efficient to read the page first if the file is
316  * open for reading in addition to writing, the page is not marked
317  * as Uptodate, it is not dirty or waiting to be committed,
318  * indicating that it was previously allocated and then modified,
319  * that there were valid bytes of data in that range of the file,
320  * and that the new data won't completely replace the old data in
321  * that range of the file.
322  */
323 static int nfs_want_read_modify_write(struct file *file, struct page *page,
324 			loff_t pos, unsigned len)
325 {
326 	unsigned int pglen = nfs_page_length(page);
327 	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
328 	unsigned int end = offset + len;
329 
330 	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
331 		if (!PageUptodate(page))
332 			return 1;
333 		return 0;
334 	}
335 
336 	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
337 	    !PageUptodate(page) &&		/* Uptodate? */
338 	    !PagePrivate(page) &&		/* i/o request already? */
339 	    pglen &&				/* valid bytes of file? */
340 	    (end < pglen || offset))		/* replace all valid bytes? */
341 		return 1;
342 	return 0;
343 }
344 
345 /*
346  * This does the "real" work of the write. We must allocate and lock the
347  * page to be sent back to the generic routine, which then copies the
348  * data from user space.
349  *
350  * If the writer ends up delaying the write, the writer needs to
351  * increment the page use counts until he is done with the page.
352  */
353 static int nfs_write_begin(struct file *file, struct address_space *mapping,
354 			loff_t pos, unsigned len, unsigned flags,
355 			struct page **pagep, void **fsdata)
356 {
357 	int ret;
358 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
359 	struct page *page;
360 	int once_thru = 0;
361 
362 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
363 		file, mapping->host->i_ino, len, (long long) pos);
364 
365 start:
366 	/*
367 	 * Prevent starvation issues if someone is doing a consistency
368 	 * sync-to-disk
369 	 */
370 	ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
371 				 nfs_wait_bit_killable, TASK_KILLABLE);
372 	if (ret)
373 		return ret;
374 	/*
375 	 * Wait for O_DIRECT to complete
376 	 */
377 	nfs_inode_dio_wait(mapping->host);
378 
379 	page = grab_cache_page_write_begin(mapping, index, flags);
380 	if (!page)
381 		return -ENOMEM;
382 	*pagep = page;
383 
384 	ret = nfs_flush_incompatible(file, page);
385 	if (ret) {
386 		unlock_page(page);
387 		page_cache_release(page);
388 	} else if (!once_thru &&
389 		   nfs_want_read_modify_write(file, page, pos, len)) {
390 		once_thru = 1;
391 		ret = nfs_readpage(file, page);
392 		page_cache_release(page);
393 		if (!ret)
394 			goto start;
395 	}
396 	return ret;
397 }
398 
399 static int nfs_write_end(struct file *file, struct address_space *mapping,
400 			loff_t pos, unsigned len, unsigned copied,
401 			struct page *page, void *fsdata)
402 {
403 	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
404 	struct nfs_open_context *ctx = nfs_file_open_context(file);
405 	int status;
406 
407 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
408 		file, mapping->host->i_ino, len, (long long) pos);
409 
410 	/*
411 	 * Zero any uninitialised parts of the page, and then mark the page
412 	 * as up to date if it turns out that we're extending the file.
413 	 */
414 	if (!PageUptodate(page)) {
415 		unsigned pglen = nfs_page_length(page);
416 		unsigned end = offset + len;
417 
418 		if (pglen == 0) {
419 			zero_user_segments(page, 0, offset,
420 					end, PAGE_CACHE_SIZE);
421 			SetPageUptodate(page);
422 		} else if (end >= pglen) {
423 			zero_user_segment(page, end, PAGE_CACHE_SIZE);
424 			if (offset == 0)
425 				SetPageUptodate(page);
426 		} else
427 			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
428 	}
429 
430 	status = nfs_updatepage(file, page, offset, copied);
431 
432 	unlock_page(page);
433 	page_cache_release(page);
434 
435 	if (status < 0)
436 		return status;
437 	NFS_I(mapping->host)->write_io += copied;
438 
439 	if (nfs_ctx_key_to_expire(ctx)) {
440 		status = nfs_wb_all(mapping->host);
441 		if (status < 0)
442 			return status;
443 	}
444 
445 	return copied;
446 }
447 
448 /*
449  * Partially or wholly invalidate a page
450  * - Release the private state associated with a page if undergoing complete
451  *   page invalidation
452  * - Called if either PG_private or PG_fscache is set on the page
453  * - Caller holds page lock
454  */
455 static void nfs_invalidate_page(struct page *page, unsigned int offset,
456 				unsigned int length)
457 {
458 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
459 		 page, offset, length);
460 
461 	if (offset != 0 || length < PAGE_CACHE_SIZE)
462 		return;
463 	/* Cancel any unstarted writes on this page */
464 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
465 
466 	nfs_fscache_invalidate_page(page, page->mapping->host);
467 }
468 
469 /*
470  * Attempt to release the private state associated with a page
471  * - Called if either PG_private or PG_fscache is set on the page
472  * - Caller holds page lock
473  * - Return true (may release page) or false (may not)
474  */
475 static int nfs_release_page(struct page *page, gfp_t gfp)
476 {
477 	struct address_space *mapping = page->mapping;
478 
479 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
480 
481 	/* Always try to initiate a 'commit' if relevant, but only
482 	 * wait for it if __GFP_WAIT is set.  Even then, only wait 1
483 	 * second and only if the 'bdi' is not congested.
484 	 * Waiting indefinitely can cause deadlocks when the NFS
485 	 * server is on this machine, when a new TCP connection is
486 	 * needed and in other rare cases.  There is no particular
487 	 * need to wait extensively here.  A short wait has the
488 	 * benefit that someone else can worry about the freezer.
489 	 */
490 	if (mapping) {
491 		struct nfs_server *nfss = NFS_SERVER(mapping->host);
492 		nfs_commit_inode(mapping->host, 0);
493 		if ((gfp & __GFP_WAIT) &&
494 		    !bdi_write_congested(&nfss->backing_dev_info)) {
495 			wait_on_page_bit_killable_timeout(page, PG_private,
496 							  HZ);
497 			if (PagePrivate(page))
498 				set_bdi_congested(&nfss->backing_dev_info,
499 						  BLK_RW_ASYNC);
500 		}
501 	}
502 	/* If PagePrivate() is set, then the page is not freeable */
503 	if (PagePrivate(page))
504 		return 0;
505 	return nfs_fscache_release_page(page, gfp);
506 }
507 
508 static void nfs_check_dirty_writeback(struct page *page,
509 				bool *dirty, bool *writeback)
510 {
511 	struct nfs_inode *nfsi;
512 	struct address_space *mapping = page_file_mapping(page);
513 
514 	if (!mapping || PageSwapCache(page))
515 		return;
516 
517 	/*
518 	 * Check if an unstable page is currently being committed and
519 	 * if so, have the VM treat it as if the page is under writeback
520 	 * so it will not block due to pages that will shortly be freeable.
521 	 */
522 	nfsi = NFS_I(mapping->host);
523 	if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
524 		*writeback = true;
525 		return;
526 	}
527 
528 	/*
529 	 * If PagePrivate() is set, then the page is not freeable and as the
530 	 * inode is not being committed, it's not going to be cleaned in the
531 	 * near future so treat it as dirty
532 	 */
533 	if (PagePrivate(page))
534 		*dirty = true;
535 }
536 
537 /*
538  * Attempt to clear the private state associated with a page when an error
539  * occurs that requires the cached contents of an inode to be written back or
540  * destroyed
541  * - Called if either PG_private or fscache is set on the page
542  * - Caller holds page lock
543  * - Return 0 if successful, -error otherwise
544  */
545 static int nfs_launder_page(struct page *page)
546 {
547 	struct inode *inode = page_file_mapping(page)->host;
548 	struct nfs_inode *nfsi = NFS_I(inode);
549 
550 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
551 		inode->i_ino, (long long)page_offset(page));
552 
553 	nfs_fscache_wait_on_page_write(nfsi, page);
554 	return nfs_wb_page(inode, page);
555 }
556 
557 #ifdef CONFIG_NFS_SWAP
558 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
559 						sector_t *span)
560 {
561 	int ret;
562 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
563 
564 	*span = sis->pages;
565 
566 	rcu_read_lock();
567 	ret = xs_swapper(rcu_dereference(clnt->cl_xprt), 1);
568 	rcu_read_unlock();
569 
570 	return ret;
571 }
572 
573 static void nfs_swap_deactivate(struct file *file)
574 {
575 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
576 
577 	rcu_read_lock();
578 	xs_swapper(rcu_dereference(clnt->cl_xprt), 0);
579 	rcu_read_unlock();
580 }
581 #endif
582 
583 const struct address_space_operations nfs_file_aops = {
584 	.readpage = nfs_readpage,
585 	.readpages = nfs_readpages,
586 	.set_page_dirty = __set_page_dirty_nobuffers,
587 	.writepage = nfs_writepage,
588 	.writepages = nfs_writepages,
589 	.write_begin = nfs_write_begin,
590 	.write_end = nfs_write_end,
591 	.invalidatepage = nfs_invalidate_page,
592 	.releasepage = nfs_release_page,
593 	.direct_IO = nfs_direct_IO,
594 	.migratepage = nfs_migrate_page,
595 	.launder_page = nfs_launder_page,
596 	.is_dirty_writeback = nfs_check_dirty_writeback,
597 	.error_remove_page = generic_error_remove_page,
598 #ifdef CONFIG_NFS_SWAP
599 	.swap_activate = nfs_swap_activate,
600 	.swap_deactivate = nfs_swap_deactivate,
601 #endif
602 };
603 
604 /*
605  * Notification that a PTE pointing to an NFS page is about to be made
606  * writable, implying that someone is about to modify the page through a
607  * shared-writable mapping
608  */
609 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
610 {
611 	struct page *page = vmf->page;
612 	struct file *filp = vma->vm_file;
613 	struct inode *inode = file_inode(filp);
614 	unsigned pagelen;
615 	int ret = VM_FAULT_NOPAGE;
616 	struct address_space *mapping;
617 
618 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
619 		filp, filp->f_mapping->host->i_ino,
620 		(long long)page_offset(page));
621 
622 	/* make sure the cache has finished storing the page */
623 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
624 
625 	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
626 			nfs_wait_bit_killable, TASK_KILLABLE);
627 
628 	lock_page(page);
629 	mapping = page_file_mapping(page);
630 	if (mapping != inode->i_mapping)
631 		goto out_unlock;
632 
633 	wait_on_page_writeback(page);
634 
635 	pagelen = nfs_page_length(page);
636 	if (pagelen == 0)
637 		goto out_unlock;
638 
639 	ret = VM_FAULT_LOCKED;
640 	if (nfs_flush_incompatible(filp, page) == 0 &&
641 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
642 		goto out;
643 
644 	ret = VM_FAULT_SIGBUS;
645 out_unlock:
646 	unlock_page(page);
647 out:
648 	return ret;
649 }
650 
651 static const struct vm_operations_struct nfs_file_vm_ops = {
652 	.fault = filemap_fault,
653 	.map_pages = filemap_map_pages,
654 	.page_mkwrite = nfs_vm_page_mkwrite,
655 };
656 
657 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
658 {
659 	struct nfs_open_context *ctx;
660 
661 	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
662 		return 1;
663 	ctx = nfs_file_open_context(filp);
664 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
665 	    nfs_ctx_key_to_expire(ctx))
666 		return 1;
667 	return 0;
668 }
669 
670 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
671 {
672 	struct file *file = iocb->ki_filp;
673 	struct inode *inode = file_inode(file);
674 	unsigned long written = 0;
675 	ssize_t result;
676 	size_t count = iov_iter_count(from);
677 
678 	result = nfs_key_timeout_notify(file, inode);
679 	if (result)
680 		return result;
681 
682 	if (iocb->ki_flags & IOCB_DIRECT) {
683 		result = generic_write_checks(iocb, from);
684 		if (result <= 0)
685 			return result;
686 		return nfs_file_direct_write(iocb, from);
687 	}
688 
689 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
690 		file, count, (long long) iocb->ki_pos);
691 
692 	result = -EBUSY;
693 	if (IS_SWAPFILE(inode))
694 		goto out_swapfile;
695 	/*
696 	 * O_APPEND implies that we must revalidate the file length.
697 	 */
698 	if (iocb->ki_flags & IOCB_APPEND) {
699 		result = nfs_revalidate_file_size(inode, file);
700 		if (result)
701 			goto out;
702 	}
703 
704 	result = count;
705 	if (!count)
706 		goto out;
707 
708 	result = generic_file_write_iter(iocb, from);
709 	if (result > 0)
710 		written = result;
711 
712 	/* Return error values for O_DSYNC and IS_SYNC() */
713 	if (result >= 0 && nfs_need_sync_write(file, inode)) {
714 		int err = vfs_fsync(file, 0);
715 		if (err < 0)
716 			result = err;
717 	}
718 	if (result > 0)
719 		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
720 out:
721 	return result;
722 
723 out_swapfile:
724 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
725 	goto out;
726 }
727 EXPORT_SYMBOL_GPL(nfs_file_write);
728 
729 static int
730 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
731 {
732 	struct inode *inode = filp->f_mapping->host;
733 	int status = 0;
734 	unsigned int saved_type = fl->fl_type;
735 
736 	/* Try local locking first */
737 	posix_test_lock(filp, fl);
738 	if (fl->fl_type != F_UNLCK) {
739 		/* found a conflict */
740 		goto out;
741 	}
742 	fl->fl_type = saved_type;
743 
744 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
745 		goto out_noconflict;
746 
747 	if (is_local)
748 		goto out_noconflict;
749 
750 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
751 out:
752 	return status;
753 out_noconflict:
754 	fl->fl_type = F_UNLCK;
755 	goto out;
756 }
757 
758 static int do_vfs_lock(struct file *file, struct file_lock *fl)
759 {
760 	int res = 0;
761 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
762 		case FL_POSIX:
763 			res = posix_lock_file_wait(file, fl);
764 			break;
765 		case FL_FLOCK:
766 			res = flock_lock_file_wait(file, fl);
767 			break;
768 		default:
769 			BUG();
770 	}
771 	return res;
772 }
773 
774 static int
775 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
776 {
777 	struct inode *inode = filp->f_mapping->host;
778 	struct nfs_lock_context *l_ctx;
779 	int status;
780 
781 	/*
782 	 * Flush all pending writes before doing anything
783 	 * with locks..
784 	 */
785 	nfs_sync_mapping(filp->f_mapping);
786 
787 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
788 	if (!IS_ERR(l_ctx)) {
789 		status = nfs_iocounter_wait(&l_ctx->io_count);
790 		nfs_put_lock_context(l_ctx);
791 		if (status < 0)
792 			return status;
793 	}
794 
795 	/* NOTE: special case
796 	 * 	If we're signalled while cleaning up locks on process exit, we
797 	 * 	still need to complete the unlock.
798 	 */
799 	/*
800 	 * Use local locking if mounted with "-onolock" or with appropriate
801 	 * "-olocal_lock="
802 	 */
803 	if (!is_local)
804 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
805 	else
806 		status = do_vfs_lock(filp, fl);
807 	return status;
808 }
809 
810 static int
811 is_time_granular(struct timespec *ts) {
812 	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
813 }
814 
815 static int
816 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
817 {
818 	struct inode *inode = filp->f_mapping->host;
819 	int status;
820 
821 	/*
822 	 * Flush all pending writes before doing anything
823 	 * with locks..
824 	 */
825 	status = nfs_sync_mapping(filp->f_mapping);
826 	if (status != 0)
827 		goto out;
828 
829 	/*
830 	 * Use local locking if mounted with "-onolock" or with appropriate
831 	 * "-olocal_lock="
832 	 */
833 	if (!is_local)
834 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
835 	else
836 		status = do_vfs_lock(filp, fl);
837 	if (status < 0)
838 		goto out;
839 
840 	/*
841 	 * Revalidate the cache if the server has time stamps granular
842 	 * enough to detect subsecond changes.  Otherwise, clear the
843 	 * cache to prevent missing any changes.
844 	 *
845 	 * This makes locking act as a cache coherency point.
846 	 */
847 	nfs_sync_mapping(filp->f_mapping);
848 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
849 		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
850 			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
851 		else
852 			nfs_zap_caches(inode);
853 	}
854 out:
855 	return status;
856 }
857 
858 /*
859  * Lock a (portion of) a file
860  */
861 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
862 {
863 	struct inode *inode = filp->f_mapping->host;
864 	int ret = -ENOLCK;
865 	int is_local = 0;
866 
867 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
868 			filp, fl->fl_type, fl->fl_flags,
869 			(long long)fl->fl_start, (long long)fl->fl_end);
870 
871 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
872 
873 	/* No mandatory locks over NFS */
874 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
875 		goto out_err;
876 
877 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
878 		is_local = 1;
879 
880 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
881 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
882 		if (ret < 0)
883 			goto out_err;
884 	}
885 
886 	if (IS_GETLK(cmd))
887 		ret = do_getlk(filp, cmd, fl, is_local);
888 	else if (fl->fl_type == F_UNLCK)
889 		ret = do_unlk(filp, cmd, fl, is_local);
890 	else
891 		ret = do_setlk(filp, cmd, fl, is_local);
892 out_err:
893 	return ret;
894 }
895 EXPORT_SYMBOL_GPL(nfs_lock);
896 
897 /*
898  * Lock a (portion of) a file
899  */
900 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
901 {
902 	struct inode *inode = filp->f_mapping->host;
903 	int is_local = 0;
904 
905 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
906 			filp, fl->fl_type, fl->fl_flags);
907 
908 	if (!(fl->fl_flags & FL_FLOCK))
909 		return -ENOLCK;
910 
911 	/*
912 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
913 	 * any standard. In principle we might be able to support LOCK_MAND
914 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
915 	 * NFS code is not set up for it.
916 	 */
917 	if (fl->fl_type & LOCK_MAND)
918 		return -EINVAL;
919 
920 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
921 		is_local = 1;
922 
923 	/* We're simulating flock() locks using posix locks on the server */
924 	if (fl->fl_type == F_UNLCK)
925 		return do_unlk(filp, cmd, fl, is_local);
926 	return do_setlk(filp, cmd, fl, is_local);
927 }
928 EXPORT_SYMBOL_GPL(nfs_flock);
929 
930 const struct file_operations nfs_file_operations = {
931 	.llseek		= nfs_file_llseek,
932 	.read_iter	= nfs_file_read,
933 	.write_iter	= nfs_file_write,
934 	.mmap		= nfs_file_mmap,
935 	.open		= nfs_file_open,
936 	.flush		= nfs_file_flush,
937 	.release	= nfs_file_release,
938 	.fsync		= nfs_file_fsync,
939 	.lock		= nfs_lock,
940 	.flock		= nfs_flock,
941 	.splice_read	= nfs_file_splice_read,
942 	.splice_write	= iter_file_splice_write,
943 	.check_flags	= nfs_check_flags,
944 	.setlease	= simple_nosetlease,
945 };
946 EXPORT_SYMBOL_GPL(nfs_file_operations);
947