1 /* 2 * linux/fs/nfs/file.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * Changes Copyright (C) 1994 by Florian La Roche 7 * - Do not copy data too often around in the kernel. 8 * - In nfs_file_read the return value of kmalloc wasn't checked. 9 * - Put in a better version of read look-ahead buffering. Original idea 10 * and implementation by Wai S Kok elekokws@ee.nus.sg. 11 * 12 * Expire cache on write to a file by Wai S Kok (Oct 1994). 13 * 14 * Total rewrite of read side for new NFS buffer cache.. Linus. 15 * 16 * nfs regular file handling functions 17 */ 18 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/fcntl.h> 24 #include <linux/stat.h> 25 #include <linux/nfs_fs.h> 26 #include <linux/nfs_mount.h> 27 #include <linux/mm.h> 28 #include <linux/pagemap.h> 29 #include <linux/gfp.h> 30 #include <linux/swap.h> 31 32 #include <asm/uaccess.h> 33 34 #include "delegation.h" 35 #include "internal.h" 36 #include "iostat.h" 37 #include "fscache.h" 38 #include "pnfs.h" 39 40 #include "nfstrace.h" 41 42 #define NFSDBG_FACILITY NFSDBG_FILE 43 44 static const struct vm_operations_struct nfs_file_vm_ops; 45 46 /* Hack for future NFS swap support */ 47 #ifndef IS_SWAPFILE 48 # define IS_SWAPFILE(inode) (0) 49 #endif 50 51 int nfs_check_flags(int flags) 52 { 53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 54 return -EINVAL; 55 56 return 0; 57 } 58 EXPORT_SYMBOL_GPL(nfs_check_flags); 59 60 /* 61 * Open file 62 */ 63 static int 64 nfs_file_open(struct inode *inode, struct file *filp) 65 { 66 int res; 67 68 dprintk("NFS: open file(%pD2)\n", filp); 69 70 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 71 res = nfs_check_flags(filp->f_flags); 72 if (res) 73 return res; 74 75 res = nfs_open(inode, filp); 76 return res; 77 } 78 79 int 80 nfs_file_release(struct inode *inode, struct file *filp) 81 { 82 dprintk("NFS: release(%pD2)\n", filp); 83 84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 85 return nfs_release(inode, filp); 86 } 87 EXPORT_SYMBOL_GPL(nfs_file_release); 88 89 /** 90 * nfs_revalidate_size - Revalidate the file size 91 * @inode - pointer to inode struct 92 * @file - pointer to struct file 93 * 94 * Revalidates the file length. This is basically a wrapper around 95 * nfs_revalidate_inode() that takes into account the fact that we may 96 * have cached writes (in which case we don't care about the server's 97 * idea of what the file length is), or O_DIRECT (in which case we 98 * shouldn't trust the cache). 99 */ 100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 101 { 102 struct nfs_server *server = NFS_SERVER(inode); 103 struct nfs_inode *nfsi = NFS_I(inode); 104 105 if (nfs_have_delegated_attributes(inode)) 106 goto out_noreval; 107 108 if (filp->f_flags & O_DIRECT) 109 goto force_reval; 110 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 111 goto force_reval; 112 if (nfs_attribute_timeout(inode)) 113 goto force_reval; 114 out_noreval: 115 return 0; 116 force_reval: 117 return __nfs_revalidate_inode(server, inode); 118 } 119 120 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 121 { 122 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 123 filp, offset, whence); 124 125 /* 126 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 127 * the cached file length 128 */ 129 if (whence != SEEK_SET && whence != SEEK_CUR) { 130 struct inode *inode = filp->f_mapping->host; 131 132 int retval = nfs_revalidate_file_size(inode, filp); 133 if (retval < 0) 134 return (loff_t)retval; 135 } 136 137 return generic_file_llseek(filp, offset, whence); 138 } 139 EXPORT_SYMBOL_GPL(nfs_file_llseek); 140 141 /* 142 * Flush all dirty pages, and check for write errors. 143 */ 144 int 145 nfs_file_flush(struct file *file, fl_owner_t id) 146 { 147 struct inode *inode = file_inode(file); 148 149 dprintk("NFS: flush(%pD2)\n", file); 150 151 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 152 if ((file->f_mode & FMODE_WRITE) == 0) 153 return 0; 154 155 /* 156 * If we're holding a write delegation, then just start the i/o 157 * but don't wait for completion (or send a commit). 158 */ 159 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 160 return filemap_fdatawrite(file->f_mapping); 161 162 /* Flush writes to the server and return any errors */ 163 return vfs_fsync(file, 0); 164 } 165 EXPORT_SYMBOL_GPL(nfs_file_flush); 166 167 ssize_t 168 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 169 { 170 struct inode *inode = file_inode(iocb->ki_filp); 171 ssize_t result; 172 173 if (iocb->ki_flags & IOCB_DIRECT) 174 return nfs_file_direct_read(iocb, to, iocb->ki_pos); 175 176 dprintk("NFS: read(%pD2, %zu@%lu)\n", 177 iocb->ki_filp, 178 iov_iter_count(to), (unsigned long) iocb->ki_pos); 179 180 result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping); 181 if (!result) { 182 result = generic_file_read_iter(iocb, to); 183 if (result > 0) 184 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 185 } 186 return result; 187 } 188 EXPORT_SYMBOL_GPL(nfs_file_read); 189 190 ssize_t 191 nfs_file_splice_read(struct file *filp, loff_t *ppos, 192 struct pipe_inode_info *pipe, size_t count, 193 unsigned int flags) 194 { 195 struct inode *inode = file_inode(filp); 196 ssize_t res; 197 198 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n", 199 filp, (unsigned long) count, (unsigned long long) *ppos); 200 201 res = nfs_revalidate_mapping_protected(inode, filp->f_mapping); 202 if (!res) { 203 res = generic_file_splice_read(filp, ppos, pipe, count, flags); 204 if (res > 0) 205 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res); 206 } 207 return res; 208 } 209 EXPORT_SYMBOL_GPL(nfs_file_splice_read); 210 211 int 212 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 213 { 214 struct inode *inode = file_inode(file); 215 int status; 216 217 dprintk("NFS: mmap(%pD2)\n", file); 218 219 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 220 * so we call that before revalidating the mapping 221 */ 222 status = generic_file_mmap(file, vma); 223 if (!status) { 224 vma->vm_ops = &nfs_file_vm_ops; 225 status = nfs_revalidate_mapping(inode, file->f_mapping); 226 } 227 return status; 228 } 229 EXPORT_SYMBOL_GPL(nfs_file_mmap); 230 231 /* 232 * Flush any dirty pages for this process, and check for write errors. 233 * The return status from this call provides a reliable indication of 234 * whether any write errors occurred for this process. 235 * 236 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to 237 * disk, but it retrieves and clears ctx->error after synching, despite 238 * the two being set at the same time in nfs_context_set_write_error(). 239 * This is because the former is used to notify the _next_ call to 240 * nfs_file_write() that a write error occurred, and hence cause it to 241 * fall back to doing a synchronous write. 242 */ 243 int 244 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync) 245 { 246 struct nfs_open_context *ctx = nfs_file_open_context(file); 247 struct inode *inode = file_inode(file); 248 int have_error, do_resend, status; 249 int ret = 0; 250 251 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 252 253 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 254 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 255 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 256 status = nfs_commit_inode(inode, FLUSH_SYNC); 257 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 258 if (have_error) { 259 ret = xchg(&ctx->error, 0); 260 if (ret) 261 goto out; 262 } 263 if (status < 0) { 264 ret = status; 265 goto out; 266 } 267 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 268 if (do_resend) 269 ret = -EAGAIN; 270 out: 271 return ret; 272 } 273 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit); 274 275 static int 276 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 277 { 278 int ret; 279 struct inode *inode = file_inode(file); 280 281 trace_nfs_fsync_enter(inode); 282 283 nfs_inode_dio_wait(inode); 284 do { 285 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 286 if (ret != 0) 287 break; 288 mutex_lock(&inode->i_mutex); 289 ret = nfs_file_fsync_commit(file, start, end, datasync); 290 mutex_unlock(&inode->i_mutex); 291 /* 292 * If nfs_file_fsync_commit detected a server reboot, then 293 * resend all dirty pages that might have been covered by 294 * the NFS_CONTEXT_RESEND_WRITES flag 295 */ 296 start = 0; 297 end = LLONG_MAX; 298 } while (ret == -EAGAIN); 299 300 trace_nfs_fsync_exit(inode, ret); 301 return ret; 302 } 303 304 /* 305 * Decide whether a read/modify/write cycle may be more efficient 306 * then a modify/write/read cycle when writing to a page in the 307 * page cache. 308 * 309 * The modify/write/read cycle may occur if a page is read before 310 * being completely filled by the writer. In this situation, the 311 * page must be completely written to stable storage on the server 312 * before it can be refilled by reading in the page from the server. 313 * This can lead to expensive, small, FILE_SYNC mode writes being 314 * done. 315 * 316 * It may be more efficient to read the page first if the file is 317 * open for reading in addition to writing, the page is not marked 318 * as Uptodate, it is not dirty or waiting to be committed, 319 * indicating that it was previously allocated and then modified, 320 * that there were valid bytes of data in that range of the file, 321 * and that the new data won't completely replace the old data in 322 * that range of the file. 323 */ 324 static int nfs_want_read_modify_write(struct file *file, struct page *page, 325 loff_t pos, unsigned len) 326 { 327 unsigned int pglen = nfs_page_length(page); 328 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1); 329 unsigned int end = offset + len; 330 331 if (pnfs_ld_read_whole_page(file->f_mapping->host)) { 332 if (!PageUptodate(page)) 333 return 1; 334 return 0; 335 } 336 337 if ((file->f_mode & FMODE_READ) && /* open for read? */ 338 !PageUptodate(page) && /* Uptodate? */ 339 !PagePrivate(page) && /* i/o request already? */ 340 pglen && /* valid bytes of file? */ 341 (end < pglen || offset)) /* replace all valid bytes? */ 342 return 1; 343 return 0; 344 } 345 346 /* 347 * This does the "real" work of the write. We must allocate and lock the 348 * page to be sent back to the generic routine, which then copies the 349 * data from user space. 350 * 351 * If the writer ends up delaying the write, the writer needs to 352 * increment the page use counts until he is done with the page. 353 */ 354 static int nfs_write_begin(struct file *file, struct address_space *mapping, 355 loff_t pos, unsigned len, unsigned flags, 356 struct page **pagep, void **fsdata) 357 { 358 int ret; 359 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 360 struct page *page; 361 int once_thru = 0; 362 363 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 364 file, mapping->host->i_ino, len, (long long) pos); 365 366 start: 367 /* 368 * Prevent starvation issues if someone is doing a consistency 369 * sync-to-disk 370 */ 371 ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING, 372 nfs_wait_bit_killable, TASK_KILLABLE); 373 if (ret) 374 return ret; 375 /* 376 * Wait for O_DIRECT to complete 377 */ 378 nfs_inode_dio_wait(mapping->host); 379 380 page = grab_cache_page_write_begin(mapping, index, flags); 381 if (!page) 382 return -ENOMEM; 383 *pagep = page; 384 385 ret = nfs_flush_incompatible(file, page); 386 if (ret) { 387 unlock_page(page); 388 page_cache_release(page); 389 } else if (!once_thru && 390 nfs_want_read_modify_write(file, page, pos, len)) { 391 once_thru = 1; 392 ret = nfs_readpage(file, page); 393 page_cache_release(page); 394 if (!ret) 395 goto start; 396 } 397 return ret; 398 } 399 400 static int nfs_write_end(struct file *file, struct address_space *mapping, 401 loff_t pos, unsigned len, unsigned copied, 402 struct page *page, void *fsdata) 403 { 404 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 405 struct nfs_open_context *ctx = nfs_file_open_context(file); 406 int status; 407 408 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 409 file, mapping->host->i_ino, len, (long long) pos); 410 411 /* 412 * Zero any uninitialised parts of the page, and then mark the page 413 * as up to date if it turns out that we're extending the file. 414 */ 415 if (!PageUptodate(page)) { 416 unsigned pglen = nfs_page_length(page); 417 unsigned end = offset + len; 418 419 if (pglen == 0) { 420 zero_user_segments(page, 0, offset, 421 end, PAGE_CACHE_SIZE); 422 SetPageUptodate(page); 423 } else if (end >= pglen) { 424 zero_user_segment(page, end, PAGE_CACHE_SIZE); 425 if (offset == 0) 426 SetPageUptodate(page); 427 } else 428 zero_user_segment(page, pglen, PAGE_CACHE_SIZE); 429 } 430 431 status = nfs_updatepage(file, page, offset, copied); 432 433 unlock_page(page); 434 page_cache_release(page); 435 436 if (status < 0) 437 return status; 438 NFS_I(mapping->host)->write_io += copied; 439 440 if (nfs_ctx_key_to_expire(ctx)) { 441 status = nfs_wb_all(mapping->host); 442 if (status < 0) 443 return status; 444 } 445 446 return copied; 447 } 448 449 /* 450 * Partially or wholly invalidate a page 451 * - Release the private state associated with a page if undergoing complete 452 * page invalidation 453 * - Called if either PG_private or PG_fscache is set on the page 454 * - Caller holds page lock 455 */ 456 static void nfs_invalidate_page(struct page *page, unsigned int offset, 457 unsigned int length) 458 { 459 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 460 page, offset, length); 461 462 if (offset != 0 || length < PAGE_CACHE_SIZE) 463 return; 464 /* Cancel any unstarted writes on this page */ 465 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 466 467 nfs_fscache_invalidate_page(page, page->mapping->host); 468 } 469 470 /* 471 * Attempt to release the private state associated with a page 472 * - Called if either PG_private or PG_fscache is set on the page 473 * - Caller holds page lock 474 * - Return true (may release page) or false (may not) 475 */ 476 static int nfs_release_page(struct page *page, gfp_t gfp) 477 { 478 struct address_space *mapping = page->mapping; 479 480 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 481 482 /* Always try to initiate a 'commit' if relevant, but only 483 * wait for it if __GFP_WAIT is set. Even then, only wait 1 484 * second and only if the 'bdi' is not congested. 485 * Waiting indefinitely can cause deadlocks when the NFS 486 * server is on this machine, when a new TCP connection is 487 * needed and in other rare cases. There is no particular 488 * need to wait extensively here. A short wait has the 489 * benefit that someone else can worry about the freezer. 490 */ 491 if (mapping) { 492 struct nfs_server *nfss = NFS_SERVER(mapping->host); 493 nfs_commit_inode(mapping->host, 0); 494 if ((gfp & __GFP_WAIT) && 495 !bdi_write_congested(&nfss->backing_dev_info)) { 496 wait_on_page_bit_killable_timeout(page, PG_private, 497 HZ); 498 if (PagePrivate(page)) 499 set_bdi_congested(&nfss->backing_dev_info, 500 BLK_RW_ASYNC); 501 } 502 } 503 /* If PagePrivate() is set, then the page is not freeable */ 504 if (PagePrivate(page)) 505 return 0; 506 return nfs_fscache_release_page(page, gfp); 507 } 508 509 static void nfs_check_dirty_writeback(struct page *page, 510 bool *dirty, bool *writeback) 511 { 512 struct nfs_inode *nfsi; 513 struct address_space *mapping = page_file_mapping(page); 514 515 if (!mapping || PageSwapCache(page)) 516 return; 517 518 /* 519 * Check if an unstable page is currently being committed and 520 * if so, have the VM treat it as if the page is under writeback 521 * so it will not block due to pages that will shortly be freeable. 522 */ 523 nfsi = NFS_I(mapping->host); 524 if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) { 525 *writeback = true; 526 return; 527 } 528 529 /* 530 * If PagePrivate() is set, then the page is not freeable and as the 531 * inode is not being committed, it's not going to be cleaned in the 532 * near future so treat it as dirty 533 */ 534 if (PagePrivate(page)) 535 *dirty = true; 536 } 537 538 /* 539 * Attempt to clear the private state associated with a page when an error 540 * occurs that requires the cached contents of an inode to be written back or 541 * destroyed 542 * - Called if either PG_private or fscache is set on the page 543 * - Caller holds page lock 544 * - Return 0 if successful, -error otherwise 545 */ 546 static int nfs_launder_page(struct page *page) 547 { 548 struct inode *inode = page_file_mapping(page)->host; 549 struct nfs_inode *nfsi = NFS_I(inode); 550 551 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 552 inode->i_ino, (long long)page_offset(page)); 553 554 nfs_fscache_wait_on_page_write(nfsi, page); 555 return nfs_wb_page(inode, page); 556 } 557 558 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 559 sector_t *span) 560 { 561 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 562 563 *span = sis->pages; 564 565 return rpc_clnt_swap_activate(clnt); 566 } 567 568 static void nfs_swap_deactivate(struct file *file) 569 { 570 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 571 572 rpc_clnt_swap_deactivate(clnt); 573 } 574 575 const struct address_space_operations nfs_file_aops = { 576 .readpage = nfs_readpage, 577 .readpages = nfs_readpages, 578 .set_page_dirty = __set_page_dirty_nobuffers, 579 .writepage = nfs_writepage, 580 .writepages = nfs_writepages, 581 .write_begin = nfs_write_begin, 582 .write_end = nfs_write_end, 583 .invalidatepage = nfs_invalidate_page, 584 .releasepage = nfs_release_page, 585 .direct_IO = nfs_direct_IO, 586 .migratepage = nfs_migrate_page, 587 .launder_page = nfs_launder_page, 588 .is_dirty_writeback = nfs_check_dirty_writeback, 589 .error_remove_page = generic_error_remove_page, 590 .swap_activate = nfs_swap_activate, 591 .swap_deactivate = nfs_swap_deactivate, 592 }; 593 594 /* 595 * Notification that a PTE pointing to an NFS page is about to be made 596 * writable, implying that someone is about to modify the page through a 597 * shared-writable mapping 598 */ 599 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 600 { 601 struct page *page = vmf->page; 602 struct file *filp = vma->vm_file; 603 struct inode *inode = file_inode(filp); 604 unsigned pagelen; 605 int ret = VM_FAULT_NOPAGE; 606 struct address_space *mapping; 607 608 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 609 filp, filp->f_mapping->host->i_ino, 610 (long long)page_offset(page)); 611 612 /* make sure the cache has finished storing the page */ 613 nfs_fscache_wait_on_page_write(NFS_I(inode), page); 614 615 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, 616 nfs_wait_bit_killable, TASK_KILLABLE); 617 618 lock_page(page); 619 mapping = page_file_mapping(page); 620 if (mapping != inode->i_mapping) 621 goto out_unlock; 622 623 wait_on_page_writeback(page); 624 625 pagelen = nfs_page_length(page); 626 if (pagelen == 0) 627 goto out_unlock; 628 629 ret = VM_FAULT_LOCKED; 630 if (nfs_flush_incompatible(filp, page) == 0 && 631 nfs_updatepage(filp, page, 0, pagelen) == 0) 632 goto out; 633 634 ret = VM_FAULT_SIGBUS; 635 out_unlock: 636 unlock_page(page); 637 out: 638 return ret; 639 } 640 641 static const struct vm_operations_struct nfs_file_vm_ops = { 642 .fault = filemap_fault, 643 .map_pages = filemap_map_pages, 644 .page_mkwrite = nfs_vm_page_mkwrite, 645 }; 646 647 static int nfs_need_sync_write(struct file *filp, struct inode *inode) 648 { 649 struct nfs_open_context *ctx; 650 651 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC)) 652 return 1; 653 ctx = nfs_file_open_context(filp); 654 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) || 655 nfs_ctx_key_to_expire(ctx)) 656 return 1; 657 return 0; 658 } 659 660 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 661 { 662 struct file *file = iocb->ki_filp; 663 struct inode *inode = file_inode(file); 664 unsigned long written = 0; 665 ssize_t result; 666 size_t count = iov_iter_count(from); 667 668 result = nfs_key_timeout_notify(file, inode); 669 if (result) 670 return result; 671 672 if (iocb->ki_flags & IOCB_DIRECT) { 673 result = generic_write_checks(iocb, from); 674 if (result <= 0) 675 return result; 676 return nfs_file_direct_write(iocb, from); 677 } 678 679 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 680 file, count, (long long) iocb->ki_pos); 681 682 result = -EBUSY; 683 if (IS_SWAPFILE(inode)) 684 goto out_swapfile; 685 /* 686 * O_APPEND implies that we must revalidate the file length. 687 */ 688 if (iocb->ki_flags & IOCB_APPEND) { 689 result = nfs_revalidate_file_size(inode, file); 690 if (result) 691 goto out; 692 } 693 694 result = count; 695 if (!count) 696 goto out; 697 698 result = generic_file_write_iter(iocb, from); 699 if (result > 0) 700 written = result; 701 702 /* Return error values for O_DSYNC and IS_SYNC() */ 703 if (result >= 0 && nfs_need_sync_write(file, inode)) { 704 int err = vfs_fsync(file, 0); 705 if (err < 0) 706 result = err; 707 } 708 if (result > 0) 709 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 710 out: 711 return result; 712 713 out_swapfile: 714 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 715 goto out; 716 } 717 EXPORT_SYMBOL_GPL(nfs_file_write); 718 719 static int 720 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 721 { 722 struct inode *inode = filp->f_mapping->host; 723 int status = 0; 724 unsigned int saved_type = fl->fl_type; 725 726 /* Try local locking first */ 727 posix_test_lock(filp, fl); 728 if (fl->fl_type != F_UNLCK) { 729 /* found a conflict */ 730 goto out; 731 } 732 fl->fl_type = saved_type; 733 734 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 735 goto out_noconflict; 736 737 if (is_local) 738 goto out_noconflict; 739 740 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 741 out: 742 return status; 743 out_noconflict: 744 fl->fl_type = F_UNLCK; 745 goto out; 746 } 747 748 static int do_vfs_lock(struct file *file, struct file_lock *fl) 749 { 750 int res = 0; 751 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 752 case FL_POSIX: 753 res = posix_lock_file_wait(file, fl); 754 break; 755 case FL_FLOCK: 756 res = flock_lock_file_wait(file, fl); 757 break; 758 default: 759 BUG(); 760 } 761 return res; 762 } 763 764 static int 765 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 766 { 767 struct inode *inode = filp->f_mapping->host; 768 struct nfs_lock_context *l_ctx; 769 int status; 770 771 /* 772 * Flush all pending writes before doing anything 773 * with locks.. 774 */ 775 vfs_fsync(filp, 0); 776 777 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 778 if (!IS_ERR(l_ctx)) { 779 status = nfs_iocounter_wait(&l_ctx->io_count); 780 nfs_put_lock_context(l_ctx); 781 if (status < 0) 782 return status; 783 } 784 785 /* NOTE: special case 786 * If we're signalled while cleaning up locks on process exit, we 787 * still need to complete the unlock. 788 */ 789 /* 790 * Use local locking if mounted with "-onolock" or with appropriate 791 * "-olocal_lock=" 792 */ 793 if (!is_local) 794 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 795 else 796 status = do_vfs_lock(filp, fl); 797 return status; 798 } 799 800 static int 801 is_time_granular(struct timespec *ts) { 802 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000)); 803 } 804 805 static int 806 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 807 { 808 struct inode *inode = filp->f_mapping->host; 809 int status; 810 811 /* 812 * Flush all pending writes before doing anything 813 * with locks.. 814 */ 815 status = nfs_sync_mapping(filp->f_mapping); 816 if (status != 0) 817 goto out; 818 819 /* 820 * Use local locking if mounted with "-onolock" or with appropriate 821 * "-olocal_lock=" 822 */ 823 if (!is_local) 824 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 825 else 826 status = do_vfs_lock(filp, fl); 827 if (status < 0) 828 goto out; 829 830 /* 831 * Revalidate the cache if the server has time stamps granular 832 * enough to detect subsecond changes. Otherwise, clear the 833 * cache to prevent missing any changes. 834 * 835 * This makes locking act as a cache coherency point. 836 */ 837 nfs_sync_mapping(filp->f_mapping); 838 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 839 if (is_time_granular(&NFS_SERVER(inode)->time_delta)) 840 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 841 else 842 nfs_zap_caches(inode); 843 } 844 out: 845 return status; 846 } 847 848 /* 849 * Lock a (portion of) a file 850 */ 851 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 852 { 853 struct inode *inode = filp->f_mapping->host; 854 int ret = -ENOLCK; 855 int is_local = 0; 856 857 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 858 filp, fl->fl_type, fl->fl_flags, 859 (long long)fl->fl_start, (long long)fl->fl_end); 860 861 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 862 863 /* No mandatory locks over NFS */ 864 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 865 goto out_err; 866 867 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 868 is_local = 1; 869 870 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 871 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 872 if (ret < 0) 873 goto out_err; 874 } 875 876 if (IS_GETLK(cmd)) 877 ret = do_getlk(filp, cmd, fl, is_local); 878 else if (fl->fl_type == F_UNLCK) 879 ret = do_unlk(filp, cmd, fl, is_local); 880 else 881 ret = do_setlk(filp, cmd, fl, is_local); 882 out_err: 883 return ret; 884 } 885 EXPORT_SYMBOL_GPL(nfs_lock); 886 887 /* 888 * Lock a (portion of) a file 889 */ 890 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 891 { 892 struct inode *inode = filp->f_mapping->host; 893 int is_local = 0; 894 895 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 896 filp, fl->fl_type, fl->fl_flags); 897 898 if (!(fl->fl_flags & FL_FLOCK)) 899 return -ENOLCK; 900 901 /* 902 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 903 * any standard. In principle we might be able to support LOCK_MAND 904 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 905 * NFS code is not set up for it. 906 */ 907 if (fl->fl_type & LOCK_MAND) 908 return -EINVAL; 909 910 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 911 is_local = 1; 912 913 /* We're simulating flock() locks using posix locks on the server */ 914 if (fl->fl_type == F_UNLCK) 915 return do_unlk(filp, cmd, fl, is_local); 916 return do_setlk(filp, cmd, fl, is_local); 917 } 918 EXPORT_SYMBOL_GPL(nfs_flock); 919 920 const struct file_operations nfs_file_operations = { 921 .llseek = nfs_file_llseek, 922 .read_iter = nfs_file_read, 923 .write_iter = nfs_file_write, 924 .mmap = nfs_file_mmap, 925 .open = nfs_file_open, 926 .flush = nfs_file_flush, 927 .release = nfs_file_release, 928 .fsync = nfs_file_fsync, 929 .lock = nfs_lock, 930 .flock = nfs_flock, 931 .splice_read = nfs_file_splice_read, 932 .splice_write = iter_file_splice_write, 933 .check_flags = nfs_check_flags, 934 .setlease = simple_nosetlease, 935 }; 936 EXPORT_SYMBOL_GPL(nfs_file_operations); 937