1 /* 2 * linux/fs/nfs/file.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * Changes Copyright (C) 1994 by Florian La Roche 7 * - Do not copy data too often around in the kernel. 8 * - In nfs_file_read the return value of kmalloc wasn't checked. 9 * - Put in a better version of read look-ahead buffering. Original idea 10 * and implementation by Wai S Kok elekokws@ee.nus.sg. 11 * 12 * Expire cache on write to a file by Wai S Kok (Oct 1994). 13 * 14 * Total rewrite of read side for new NFS buffer cache.. Linus. 15 * 16 * nfs regular file handling functions 17 */ 18 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/fcntl.h> 24 #include <linux/stat.h> 25 #include <linux/nfs_fs.h> 26 #include <linux/nfs_mount.h> 27 #include <linux/mm.h> 28 #include <linux/pagemap.h> 29 #include <linux/aio.h> 30 #include <linux/gfp.h> 31 #include <linux/swap.h> 32 33 #include <asm/uaccess.h> 34 35 #include "delegation.h" 36 #include "internal.h" 37 #include "iostat.h" 38 #include "fscache.h" 39 40 #include "nfstrace.h" 41 42 #define NFSDBG_FACILITY NFSDBG_FILE 43 44 static const struct vm_operations_struct nfs_file_vm_ops; 45 46 /* Hack for future NFS swap support */ 47 #ifndef IS_SWAPFILE 48 # define IS_SWAPFILE(inode) (0) 49 #endif 50 51 int nfs_check_flags(int flags) 52 { 53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 54 return -EINVAL; 55 56 return 0; 57 } 58 EXPORT_SYMBOL_GPL(nfs_check_flags); 59 60 /* 61 * Open file 62 */ 63 static int 64 nfs_file_open(struct inode *inode, struct file *filp) 65 { 66 int res; 67 68 dprintk("NFS: open file(%s/%s)\n", 69 filp->f_path.dentry->d_parent->d_name.name, 70 filp->f_path.dentry->d_name.name); 71 72 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 73 res = nfs_check_flags(filp->f_flags); 74 if (res) 75 return res; 76 77 res = nfs_open(inode, filp); 78 return res; 79 } 80 81 int 82 nfs_file_release(struct inode *inode, struct file *filp) 83 { 84 dprintk("NFS: release(%s/%s)\n", 85 filp->f_path.dentry->d_parent->d_name.name, 86 filp->f_path.dentry->d_name.name); 87 88 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 89 return nfs_release(inode, filp); 90 } 91 EXPORT_SYMBOL_GPL(nfs_file_release); 92 93 /** 94 * nfs_revalidate_size - Revalidate the file size 95 * @inode - pointer to inode struct 96 * @file - pointer to struct file 97 * 98 * Revalidates the file length. This is basically a wrapper around 99 * nfs_revalidate_inode() that takes into account the fact that we may 100 * have cached writes (in which case we don't care about the server's 101 * idea of what the file length is), or O_DIRECT (in which case we 102 * shouldn't trust the cache). 103 */ 104 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 105 { 106 struct nfs_server *server = NFS_SERVER(inode); 107 struct nfs_inode *nfsi = NFS_I(inode); 108 109 if (nfs_have_delegated_attributes(inode)) 110 goto out_noreval; 111 112 if (filp->f_flags & O_DIRECT) 113 goto force_reval; 114 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 115 goto force_reval; 116 if (nfs_attribute_timeout(inode)) 117 goto force_reval; 118 out_noreval: 119 return 0; 120 force_reval: 121 return __nfs_revalidate_inode(server, inode); 122 } 123 124 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 125 { 126 dprintk("NFS: llseek file(%s/%s, %lld, %d)\n", 127 filp->f_path.dentry->d_parent->d_name.name, 128 filp->f_path.dentry->d_name.name, 129 offset, whence); 130 131 /* 132 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 133 * the cached file length 134 */ 135 if (whence != SEEK_SET && whence != SEEK_CUR) { 136 struct inode *inode = filp->f_mapping->host; 137 138 int retval = nfs_revalidate_file_size(inode, filp); 139 if (retval < 0) 140 return (loff_t)retval; 141 } 142 143 return generic_file_llseek(filp, offset, whence); 144 } 145 EXPORT_SYMBOL_GPL(nfs_file_llseek); 146 147 /* 148 * Flush all dirty pages, and check for write errors. 149 */ 150 int 151 nfs_file_flush(struct file *file, fl_owner_t id) 152 { 153 struct dentry *dentry = file->f_path.dentry; 154 struct inode *inode = dentry->d_inode; 155 156 dprintk("NFS: flush(%s/%s)\n", 157 dentry->d_parent->d_name.name, 158 dentry->d_name.name); 159 160 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 161 if ((file->f_mode & FMODE_WRITE) == 0) 162 return 0; 163 164 /* 165 * If we're holding a write delegation, then just start the i/o 166 * but don't wait for completion (or send a commit). 167 */ 168 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 169 return filemap_fdatawrite(file->f_mapping); 170 171 /* Flush writes to the server and return any errors */ 172 return vfs_fsync(file, 0); 173 } 174 EXPORT_SYMBOL_GPL(nfs_file_flush); 175 176 ssize_t 177 nfs_file_read(struct kiocb *iocb, const struct iovec *iov, 178 unsigned long nr_segs, loff_t pos) 179 { 180 struct dentry * dentry = iocb->ki_filp->f_path.dentry; 181 struct inode * inode = dentry->d_inode; 182 ssize_t result; 183 184 if (iocb->ki_filp->f_flags & O_DIRECT) 185 return nfs_file_direct_read(iocb, iov, nr_segs, pos, true); 186 187 dprintk("NFS: read(%s/%s, %lu@%lu)\n", 188 dentry->d_parent->d_name.name, dentry->d_name.name, 189 (unsigned long) iov_length(iov, nr_segs), (unsigned long) pos); 190 191 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 192 if (!result) { 193 result = generic_file_aio_read(iocb, iov, nr_segs, pos); 194 if (result > 0) 195 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 196 } 197 return result; 198 } 199 EXPORT_SYMBOL_GPL(nfs_file_read); 200 201 ssize_t 202 nfs_file_splice_read(struct file *filp, loff_t *ppos, 203 struct pipe_inode_info *pipe, size_t count, 204 unsigned int flags) 205 { 206 struct dentry *dentry = filp->f_path.dentry; 207 struct inode *inode = dentry->d_inode; 208 ssize_t res; 209 210 dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n", 211 dentry->d_parent->d_name.name, dentry->d_name.name, 212 (unsigned long) count, (unsigned long long) *ppos); 213 214 res = nfs_revalidate_mapping(inode, filp->f_mapping); 215 if (!res) { 216 res = generic_file_splice_read(filp, ppos, pipe, count, flags); 217 if (res > 0) 218 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res); 219 } 220 return res; 221 } 222 EXPORT_SYMBOL_GPL(nfs_file_splice_read); 223 224 int 225 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 226 { 227 struct dentry *dentry = file->f_path.dentry; 228 struct inode *inode = dentry->d_inode; 229 int status; 230 231 dprintk("NFS: mmap(%s/%s)\n", 232 dentry->d_parent->d_name.name, dentry->d_name.name); 233 234 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 235 * so we call that before revalidating the mapping 236 */ 237 status = generic_file_mmap(file, vma); 238 if (!status) { 239 vma->vm_ops = &nfs_file_vm_ops; 240 status = nfs_revalidate_mapping(inode, file->f_mapping); 241 } 242 return status; 243 } 244 EXPORT_SYMBOL_GPL(nfs_file_mmap); 245 246 /* 247 * Flush any dirty pages for this process, and check for write errors. 248 * The return status from this call provides a reliable indication of 249 * whether any write errors occurred for this process. 250 * 251 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to 252 * disk, but it retrieves and clears ctx->error after synching, despite 253 * the two being set at the same time in nfs_context_set_write_error(). 254 * This is because the former is used to notify the _next_ call to 255 * nfs_file_write() that a write error occurred, and hence cause it to 256 * fall back to doing a synchronous write. 257 */ 258 int 259 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync) 260 { 261 struct dentry *dentry = file->f_path.dentry; 262 struct nfs_open_context *ctx = nfs_file_open_context(file); 263 struct inode *inode = dentry->d_inode; 264 int have_error, do_resend, status; 265 int ret = 0; 266 267 dprintk("NFS: fsync file(%s/%s) datasync %d\n", 268 dentry->d_parent->d_name.name, dentry->d_name.name, 269 datasync); 270 271 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 272 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 273 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 274 status = nfs_commit_inode(inode, FLUSH_SYNC); 275 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 276 if (have_error) { 277 ret = xchg(&ctx->error, 0); 278 if (ret) 279 goto out; 280 } 281 if (status < 0) { 282 ret = status; 283 goto out; 284 } 285 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 286 if (do_resend) 287 ret = -EAGAIN; 288 out: 289 return ret; 290 } 291 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit); 292 293 static int 294 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 295 { 296 int ret; 297 struct inode *inode = file_inode(file); 298 299 trace_nfs_fsync_enter(inode); 300 301 do { 302 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 303 if (ret != 0) 304 break; 305 mutex_lock(&inode->i_mutex); 306 ret = nfs_file_fsync_commit(file, start, end, datasync); 307 mutex_unlock(&inode->i_mutex); 308 /* 309 * If nfs_file_fsync_commit detected a server reboot, then 310 * resend all dirty pages that might have been covered by 311 * the NFS_CONTEXT_RESEND_WRITES flag 312 */ 313 start = 0; 314 end = LLONG_MAX; 315 } while (ret == -EAGAIN); 316 317 trace_nfs_fsync_exit(inode, ret); 318 return ret; 319 } 320 321 /* 322 * Decide whether a read/modify/write cycle may be more efficient 323 * then a modify/write/read cycle when writing to a page in the 324 * page cache. 325 * 326 * The modify/write/read cycle may occur if a page is read before 327 * being completely filled by the writer. In this situation, the 328 * page must be completely written to stable storage on the server 329 * before it can be refilled by reading in the page from the server. 330 * This can lead to expensive, small, FILE_SYNC mode writes being 331 * done. 332 * 333 * It may be more efficient to read the page first if the file is 334 * open for reading in addition to writing, the page is not marked 335 * as Uptodate, it is not dirty or waiting to be committed, 336 * indicating that it was previously allocated and then modified, 337 * that there were valid bytes of data in that range of the file, 338 * and that the new data won't completely replace the old data in 339 * that range of the file. 340 */ 341 static int nfs_want_read_modify_write(struct file *file, struct page *page, 342 loff_t pos, unsigned len) 343 { 344 unsigned int pglen = nfs_page_length(page); 345 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1); 346 unsigned int end = offset + len; 347 348 if ((file->f_mode & FMODE_READ) && /* open for read? */ 349 !PageUptodate(page) && /* Uptodate? */ 350 !PagePrivate(page) && /* i/o request already? */ 351 pglen && /* valid bytes of file? */ 352 (end < pglen || offset)) /* replace all valid bytes? */ 353 return 1; 354 return 0; 355 } 356 357 /* 358 * This does the "real" work of the write. We must allocate and lock the 359 * page to be sent back to the generic routine, which then copies the 360 * data from user space. 361 * 362 * If the writer ends up delaying the write, the writer needs to 363 * increment the page use counts until he is done with the page. 364 */ 365 static int nfs_write_begin(struct file *file, struct address_space *mapping, 366 loff_t pos, unsigned len, unsigned flags, 367 struct page **pagep, void **fsdata) 368 { 369 int ret; 370 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 371 struct page *page; 372 int once_thru = 0; 373 374 dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n", 375 file->f_path.dentry->d_parent->d_name.name, 376 file->f_path.dentry->d_name.name, 377 mapping->host->i_ino, len, (long long) pos); 378 379 start: 380 /* 381 * Prevent starvation issues if someone is doing a consistency 382 * sync-to-disk 383 */ 384 ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING, 385 nfs_wait_bit_killable, TASK_KILLABLE); 386 if (ret) 387 return ret; 388 389 page = grab_cache_page_write_begin(mapping, index, flags); 390 if (!page) 391 return -ENOMEM; 392 *pagep = page; 393 394 ret = nfs_flush_incompatible(file, page); 395 if (ret) { 396 unlock_page(page); 397 page_cache_release(page); 398 } else if (!once_thru && 399 nfs_want_read_modify_write(file, page, pos, len)) { 400 once_thru = 1; 401 ret = nfs_readpage(file, page); 402 page_cache_release(page); 403 if (!ret) 404 goto start; 405 } 406 return ret; 407 } 408 409 static int nfs_write_end(struct file *file, struct address_space *mapping, 410 loff_t pos, unsigned len, unsigned copied, 411 struct page *page, void *fsdata) 412 { 413 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 414 struct nfs_open_context *ctx = nfs_file_open_context(file); 415 int status; 416 417 dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n", 418 file->f_path.dentry->d_parent->d_name.name, 419 file->f_path.dentry->d_name.name, 420 mapping->host->i_ino, len, (long long) pos); 421 422 /* 423 * Zero any uninitialised parts of the page, and then mark the page 424 * as up to date if it turns out that we're extending the file. 425 */ 426 if (!PageUptodate(page)) { 427 unsigned pglen = nfs_page_length(page); 428 unsigned end = offset + len; 429 430 if (pglen == 0) { 431 zero_user_segments(page, 0, offset, 432 end, PAGE_CACHE_SIZE); 433 SetPageUptodate(page); 434 } else if (end >= pglen) { 435 zero_user_segment(page, end, PAGE_CACHE_SIZE); 436 if (offset == 0) 437 SetPageUptodate(page); 438 } else 439 zero_user_segment(page, pglen, PAGE_CACHE_SIZE); 440 } 441 442 status = nfs_updatepage(file, page, offset, copied); 443 444 unlock_page(page); 445 page_cache_release(page); 446 447 if (status < 0) 448 return status; 449 NFS_I(mapping->host)->write_io += copied; 450 451 if (nfs_ctx_key_to_expire(ctx)) { 452 status = nfs_wb_all(mapping->host); 453 if (status < 0) 454 return status; 455 } 456 457 return copied; 458 } 459 460 /* 461 * Partially or wholly invalidate a page 462 * - Release the private state associated with a page if undergoing complete 463 * page invalidation 464 * - Called if either PG_private or PG_fscache is set on the page 465 * - Caller holds page lock 466 */ 467 static void nfs_invalidate_page(struct page *page, unsigned int offset, 468 unsigned int length) 469 { 470 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 471 page, offset, length); 472 473 if (offset != 0 || length < PAGE_CACHE_SIZE) 474 return; 475 /* Cancel any unstarted writes on this page */ 476 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 477 478 nfs_fscache_invalidate_page(page, page->mapping->host); 479 } 480 481 /* 482 * Attempt to release the private state associated with a page 483 * - Called if either PG_private or PG_fscache is set on the page 484 * - Caller holds page lock 485 * - Return true (may release page) or false (may not) 486 */ 487 static int nfs_release_page(struct page *page, gfp_t gfp) 488 { 489 struct address_space *mapping = page->mapping; 490 491 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 492 493 /* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not 494 * doing this memory reclaim for a fs-related allocation. 495 */ 496 if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL && 497 !(current->flags & PF_FSTRANS)) { 498 int how = FLUSH_SYNC; 499 500 /* Don't let kswapd deadlock waiting for OOM RPC calls */ 501 if (current_is_kswapd()) 502 how = 0; 503 nfs_commit_inode(mapping->host, how); 504 } 505 /* If PagePrivate() is set, then the page is not freeable */ 506 if (PagePrivate(page)) 507 return 0; 508 return nfs_fscache_release_page(page, gfp); 509 } 510 511 static void nfs_check_dirty_writeback(struct page *page, 512 bool *dirty, bool *writeback) 513 { 514 struct nfs_inode *nfsi; 515 struct address_space *mapping = page_file_mapping(page); 516 517 if (!mapping || PageSwapCache(page)) 518 return; 519 520 /* 521 * Check if an unstable page is currently being committed and 522 * if so, have the VM treat it as if the page is under writeback 523 * so it will not block due to pages that will shortly be freeable. 524 */ 525 nfsi = NFS_I(mapping->host); 526 if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) { 527 *writeback = true; 528 return; 529 } 530 531 /* 532 * If PagePrivate() is set, then the page is not freeable and as the 533 * inode is not being committed, it's not going to be cleaned in the 534 * near future so treat it as dirty 535 */ 536 if (PagePrivate(page)) 537 *dirty = true; 538 } 539 540 /* 541 * Attempt to clear the private state associated with a page when an error 542 * occurs that requires the cached contents of an inode to be written back or 543 * destroyed 544 * - Called if either PG_private or fscache is set on the page 545 * - Caller holds page lock 546 * - Return 0 if successful, -error otherwise 547 */ 548 static int nfs_launder_page(struct page *page) 549 { 550 struct inode *inode = page_file_mapping(page)->host; 551 struct nfs_inode *nfsi = NFS_I(inode); 552 553 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 554 inode->i_ino, (long long)page_offset(page)); 555 556 nfs_fscache_wait_on_page_write(nfsi, page); 557 return nfs_wb_page(inode, page); 558 } 559 560 #ifdef CONFIG_NFS_SWAP 561 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 562 sector_t *span) 563 { 564 *span = sis->pages; 565 return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1); 566 } 567 568 static void nfs_swap_deactivate(struct file *file) 569 { 570 xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0); 571 } 572 #endif 573 574 const struct address_space_operations nfs_file_aops = { 575 .readpage = nfs_readpage, 576 .readpages = nfs_readpages, 577 .set_page_dirty = __set_page_dirty_nobuffers, 578 .writepage = nfs_writepage, 579 .writepages = nfs_writepages, 580 .write_begin = nfs_write_begin, 581 .write_end = nfs_write_end, 582 .invalidatepage = nfs_invalidate_page, 583 .releasepage = nfs_release_page, 584 .direct_IO = nfs_direct_IO, 585 .migratepage = nfs_migrate_page, 586 .launder_page = nfs_launder_page, 587 .is_dirty_writeback = nfs_check_dirty_writeback, 588 .error_remove_page = generic_error_remove_page, 589 #ifdef CONFIG_NFS_SWAP 590 .swap_activate = nfs_swap_activate, 591 .swap_deactivate = nfs_swap_deactivate, 592 #endif 593 }; 594 595 /* 596 * Notification that a PTE pointing to an NFS page is about to be made 597 * writable, implying that someone is about to modify the page through a 598 * shared-writable mapping 599 */ 600 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 601 { 602 struct page *page = vmf->page; 603 struct file *filp = vma->vm_file; 604 struct dentry *dentry = filp->f_path.dentry; 605 unsigned pagelen; 606 int ret = VM_FAULT_NOPAGE; 607 struct address_space *mapping; 608 609 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n", 610 dentry->d_parent->d_name.name, dentry->d_name.name, 611 filp->f_mapping->host->i_ino, 612 (long long)page_offset(page)); 613 614 /* make sure the cache has finished storing the page */ 615 nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page); 616 617 lock_page(page); 618 mapping = page_file_mapping(page); 619 if (mapping != dentry->d_inode->i_mapping) 620 goto out_unlock; 621 622 wait_on_page_writeback(page); 623 624 pagelen = nfs_page_length(page); 625 if (pagelen == 0) 626 goto out_unlock; 627 628 ret = VM_FAULT_LOCKED; 629 if (nfs_flush_incompatible(filp, page) == 0 && 630 nfs_updatepage(filp, page, 0, pagelen) == 0) 631 goto out; 632 633 ret = VM_FAULT_SIGBUS; 634 out_unlock: 635 unlock_page(page); 636 out: 637 return ret; 638 } 639 640 static const struct vm_operations_struct nfs_file_vm_ops = { 641 .fault = filemap_fault, 642 .page_mkwrite = nfs_vm_page_mkwrite, 643 .remap_pages = generic_file_remap_pages, 644 }; 645 646 static int nfs_need_sync_write(struct file *filp, struct inode *inode) 647 { 648 struct nfs_open_context *ctx; 649 650 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC)) 651 return 1; 652 ctx = nfs_file_open_context(filp); 653 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) || 654 nfs_ctx_key_to_expire(ctx)) 655 return 1; 656 return 0; 657 } 658 659 ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov, 660 unsigned long nr_segs, loff_t pos) 661 { 662 struct dentry * dentry = iocb->ki_filp->f_path.dentry; 663 struct inode * inode = dentry->d_inode; 664 unsigned long written = 0; 665 ssize_t result; 666 size_t count = iov_length(iov, nr_segs); 667 668 result = nfs_key_timeout_notify(iocb->ki_filp, inode); 669 if (result) 670 return result; 671 672 if (iocb->ki_filp->f_flags & O_DIRECT) 673 return nfs_file_direct_write(iocb, iov, nr_segs, pos, true); 674 675 dprintk("NFS: write(%s/%s, %lu@%Ld)\n", 676 dentry->d_parent->d_name.name, dentry->d_name.name, 677 (unsigned long) count, (long long) pos); 678 679 result = -EBUSY; 680 if (IS_SWAPFILE(inode)) 681 goto out_swapfile; 682 /* 683 * O_APPEND implies that we must revalidate the file length. 684 */ 685 if (iocb->ki_filp->f_flags & O_APPEND) { 686 result = nfs_revalidate_file_size(inode, iocb->ki_filp); 687 if (result) 688 goto out; 689 } 690 691 result = count; 692 if (!count) 693 goto out; 694 695 result = generic_file_aio_write(iocb, iov, nr_segs, pos); 696 if (result > 0) 697 written = result; 698 699 /* Return error values for O_DSYNC and IS_SYNC() */ 700 if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) { 701 int err = vfs_fsync(iocb->ki_filp, 0); 702 if (err < 0) 703 result = err; 704 } 705 if (result > 0) 706 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 707 out: 708 return result; 709 710 out_swapfile: 711 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 712 goto out; 713 } 714 EXPORT_SYMBOL_GPL(nfs_file_write); 715 716 ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe, 717 struct file *filp, loff_t *ppos, 718 size_t count, unsigned int flags) 719 { 720 struct dentry *dentry = filp->f_path.dentry; 721 struct inode *inode = dentry->d_inode; 722 unsigned long written = 0; 723 ssize_t ret; 724 725 dprintk("NFS splice_write(%s/%s, %lu@%llu)\n", 726 dentry->d_parent->d_name.name, dentry->d_name.name, 727 (unsigned long) count, (unsigned long long) *ppos); 728 729 /* 730 * The combination of splice and an O_APPEND destination is disallowed. 731 */ 732 733 ret = generic_file_splice_write(pipe, filp, ppos, count, flags); 734 if (ret > 0) 735 written = ret; 736 737 if (ret >= 0 && nfs_need_sync_write(filp, inode)) { 738 int err = vfs_fsync(filp, 0); 739 if (err < 0) 740 ret = err; 741 } 742 if (ret > 0) 743 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 744 return ret; 745 } 746 EXPORT_SYMBOL_GPL(nfs_file_splice_write); 747 748 static int 749 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 750 { 751 struct inode *inode = filp->f_mapping->host; 752 int status = 0; 753 unsigned int saved_type = fl->fl_type; 754 755 /* Try local locking first */ 756 posix_test_lock(filp, fl); 757 if (fl->fl_type != F_UNLCK) { 758 /* found a conflict */ 759 goto out; 760 } 761 fl->fl_type = saved_type; 762 763 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 764 goto out_noconflict; 765 766 if (is_local) 767 goto out_noconflict; 768 769 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 770 out: 771 return status; 772 out_noconflict: 773 fl->fl_type = F_UNLCK; 774 goto out; 775 } 776 777 static int do_vfs_lock(struct file *file, struct file_lock *fl) 778 { 779 int res = 0; 780 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 781 case FL_POSIX: 782 res = posix_lock_file_wait(file, fl); 783 break; 784 case FL_FLOCK: 785 res = flock_lock_file_wait(file, fl); 786 break; 787 default: 788 BUG(); 789 } 790 return res; 791 } 792 793 static int 794 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 795 { 796 struct inode *inode = filp->f_mapping->host; 797 struct nfs_lock_context *l_ctx; 798 int status; 799 800 /* 801 * Flush all pending writes before doing anything 802 * with locks.. 803 */ 804 nfs_sync_mapping(filp->f_mapping); 805 806 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 807 if (!IS_ERR(l_ctx)) { 808 status = nfs_iocounter_wait(&l_ctx->io_count); 809 nfs_put_lock_context(l_ctx); 810 if (status < 0) 811 return status; 812 } 813 814 /* NOTE: special case 815 * If we're signalled while cleaning up locks on process exit, we 816 * still need to complete the unlock. 817 */ 818 /* 819 * Use local locking if mounted with "-onolock" or with appropriate 820 * "-olocal_lock=" 821 */ 822 if (!is_local) 823 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 824 else 825 status = do_vfs_lock(filp, fl); 826 return status; 827 } 828 829 static int 830 is_time_granular(struct timespec *ts) { 831 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000)); 832 } 833 834 static int 835 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 836 { 837 struct inode *inode = filp->f_mapping->host; 838 int status; 839 840 /* 841 * Flush all pending writes before doing anything 842 * with locks.. 843 */ 844 status = nfs_sync_mapping(filp->f_mapping); 845 if (status != 0) 846 goto out; 847 848 /* 849 * Use local locking if mounted with "-onolock" or with appropriate 850 * "-olocal_lock=" 851 */ 852 if (!is_local) 853 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 854 else 855 status = do_vfs_lock(filp, fl); 856 if (status < 0) 857 goto out; 858 859 /* 860 * Revalidate the cache if the server has time stamps granular 861 * enough to detect subsecond changes. Otherwise, clear the 862 * cache to prevent missing any changes. 863 * 864 * This makes locking act as a cache coherency point. 865 */ 866 nfs_sync_mapping(filp->f_mapping); 867 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 868 if (is_time_granular(&NFS_SERVER(inode)->time_delta)) 869 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 870 else 871 nfs_zap_caches(inode); 872 } 873 out: 874 return status; 875 } 876 877 /* 878 * Lock a (portion of) a file 879 */ 880 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 881 { 882 struct inode *inode = filp->f_mapping->host; 883 int ret = -ENOLCK; 884 int is_local = 0; 885 886 dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n", 887 filp->f_path.dentry->d_parent->d_name.name, 888 filp->f_path.dentry->d_name.name, 889 fl->fl_type, fl->fl_flags, 890 (long long)fl->fl_start, (long long)fl->fl_end); 891 892 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 893 894 /* No mandatory locks over NFS */ 895 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 896 goto out_err; 897 898 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 899 is_local = 1; 900 901 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 902 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 903 if (ret < 0) 904 goto out_err; 905 } 906 907 if (IS_GETLK(cmd)) 908 ret = do_getlk(filp, cmd, fl, is_local); 909 else if (fl->fl_type == F_UNLCK) 910 ret = do_unlk(filp, cmd, fl, is_local); 911 else 912 ret = do_setlk(filp, cmd, fl, is_local); 913 out_err: 914 return ret; 915 } 916 EXPORT_SYMBOL_GPL(nfs_lock); 917 918 /* 919 * Lock a (portion of) a file 920 */ 921 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 922 { 923 struct inode *inode = filp->f_mapping->host; 924 int is_local = 0; 925 926 dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n", 927 filp->f_path.dentry->d_parent->d_name.name, 928 filp->f_path.dentry->d_name.name, 929 fl->fl_type, fl->fl_flags); 930 931 if (!(fl->fl_flags & FL_FLOCK)) 932 return -ENOLCK; 933 934 /* 935 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 936 * any standard. In principle we might be able to support LOCK_MAND 937 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 938 * NFS code is not set up for it. 939 */ 940 if (fl->fl_type & LOCK_MAND) 941 return -EINVAL; 942 943 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 944 is_local = 1; 945 946 /* We're simulating flock() locks using posix locks on the server */ 947 fl->fl_owner = (fl_owner_t)filp; 948 fl->fl_start = 0; 949 fl->fl_end = OFFSET_MAX; 950 951 if (fl->fl_type == F_UNLCK) 952 return do_unlk(filp, cmd, fl, is_local); 953 return do_setlk(filp, cmd, fl, is_local); 954 } 955 EXPORT_SYMBOL_GPL(nfs_flock); 956 957 /* 958 * There is no protocol support for leases, so we have no way to implement 959 * them correctly in the face of opens by other clients. 960 */ 961 int nfs_setlease(struct file *file, long arg, struct file_lock **fl) 962 { 963 dprintk("NFS: setlease(%s/%s, arg=%ld)\n", 964 file->f_path.dentry->d_parent->d_name.name, 965 file->f_path.dentry->d_name.name, arg); 966 return -EINVAL; 967 } 968 EXPORT_SYMBOL_GPL(nfs_setlease); 969 970 const struct file_operations nfs_file_operations = { 971 .llseek = nfs_file_llseek, 972 .read = do_sync_read, 973 .write = do_sync_write, 974 .aio_read = nfs_file_read, 975 .aio_write = nfs_file_write, 976 .mmap = nfs_file_mmap, 977 .open = nfs_file_open, 978 .flush = nfs_file_flush, 979 .release = nfs_file_release, 980 .fsync = nfs_file_fsync, 981 .lock = nfs_lock, 982 .flock = nfs_flock, 983 .splice_read = nfs_file_splice_read, 984 .splice_write = nfs_file_splice_write, 985 .check_flags = nfs_check_flags, 986 .setlease = nfs_setlease, 987 }; 988 EXPORT_SYMBOL_GPL(nfs_file_operations); 989