xref: /openbmc/linux/fs/nfs/file.c (revision cd5d5810)
1 /*
2  *  linux/fs/nfs/file.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  Changes Copyright (C) 1994 by Florian La Roche
7  *   - Do not copy data too often around in the kernel.
8  *   - In nfs_file_read the return value of kmalloc wasn't checked.
9  *   - Put in a better version of read look-ahead buffering. Original idea
10  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11  *
12  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13  *
14  *  Total rewrite of read side for new NFS buffer cache.. Linus.
15  *
16  *  nfs regular file handling functions
17  */
18 
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/aio.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
32 
33 #include <asm/uaccess.h>
34 
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39 
40 #include "nfstrace.h"
41 
42 #define NFSDBG_FACILITY		NFSDBG_FILE
43 
44 static const struct vm_operations_struct nfs_file_vm_ops;
45 
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode)	(0)
49 #endif
50 
51 int nfs_check_flags(int flags)
52 {
53 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 		return -EINVAL;
55 
56 	return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59 
60 /*
61  * Open file
62  */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 	int res;
67 
68 	dprintk("NFS: open file(%s/%s)\n",
69 			filp->f_path.dentry->d_parent->d_name.name,
70 			filp->f_path.dentry->d_name.name);
71 
72 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
73 	res = nfs_check_flags(filp->f_flags);
74 	if (res)
75 		return res;
76 
77 	res = nfs_open(inode, filp);
78 	return res;
79 }
80 
81 int
82 nfs_file_release(struct inode *inode, struct file *filp)
83 {
84 	dprintk("NFS: release(%s/%s)\n",
85 			filp->f_path.dentry->d_parent->d_name.name,
86 			filp->f_path.dentry->d_name.name);
87 
88 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
89 	return nfs_release(inode, filp);
90 }
91 EXPORT_SYMBOL_GPL(nfs_file_release);
92 
93 /**
94  * nfs_revalidate_size - Revalidate the file size
95  * @inode - pointer to inode struct
96  * @file - pointer to struct file
97  *
98  * Revalidates the file length. This is basically a wrapper around
99  * nfs_revalidate_inode() that takes into account the fact that we may
100  * have cached writes (in which case we don't care about the server's
101  * idea of what the file length is), or O_DIRECT (in which case we
102  * shouldn't trust the cache).
103  */
104 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
105 {
106 	struct nfs_server *server = NFS_SERVER(inode);
107 	struct nfs_inode *nfsi = NFS_I(inode);
108 
109 	if (nfs_have_delegated_attributes(inode))
110 		goto out_noreval;
111 
112 	if (filp->f_flags & O_DIRECT)
113 		goto force_reval;
114 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
115 		goto force_reval;
116 	if (nfs_attribute_timeout(inode))
117 		goto force_reval;
118 out_noreval:
119 	return 0;
120 force_reval:
121 	return __nfs_revalidate_inode(server, inode);
122 }
123 
124 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
125 {
126 	dprintk("NFS: llseek file(%s/%s, %lld, %d)\n",
127 			filp->f_path.dentry->d_parent->d_name.name,
128 			filp->f_path.dentry->d_name.name,
129 			offset, whence);
130 
131 	/*
132 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
133 	 * the cached file length
134 	 */
135 	if (whence != SEEK_SET && whence != SEEK_CUR) {
136 		struct inode *inode = filp->f_mapping->host;
137 
138 		int retval = nfs_revalidate_file_size(inode, filp);
139 		if (retval < 0)
140 			return (loff_t)retval;
141 	}
142 
143 	return generic_file_llseek(filp, offset, whence);
144 }
145 EXPORT_SYMBOL_GPL(nfs_file_llseek);
146 
147 /*
148  * Flush all dirty pages, and check for write errors.
149  */
150 int
151 nfs_file_flush(struct file *file, fl_owner_t id)
152 {
153 	struct dentry	*dentry = file->f_path.dentry;
154 	struct inode	*inode = dentry->d_inode;
155 
156 	dprintk("NFS: flush(%s/%s)\n",
157 			dentry->d_parent->d_name.name,
158 			dentry->d_name.name);
159 
160 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
161 	if ((file->f_mode & FMODE_WRITE) == 0)
162 		return 0;
163 
164 	/*
165 	 * If we're holding a write delegation, then just start the i/o
166 	 * but don't wait for completion (or send a commit).
167 	 */
168 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
169 		return filemap_fdatawrite(file->f_mapping);
170 
171 	/* Flush writes to the server and return any errors */
172 	return vfs_fsync(file, 0);
173 }
174 EXPORT_SYMBOL_GPL(nfs_file_flush);
175 
176 ssize_t
177 nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
178 		unsigned long nr_segs, loff_t pos)
179 {
180 	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
181 	struct inode * inode = dentry->d_inode;
182 	ssize_t result;
183 
184 	if (iocb->ki_filp->f_flags & O_DIRECT)
185 		return nfs_file_direct_read(iocb, iov, nr_segs, pos, true);
186 
187 	dprintk("NFS: read(%s/%s, %lu@%lu)\n",
188 		dentry->d_parent->d_name.name, dentry->d_name.name,
189 		(unsigned long) iov_length(iov, nr_segs), (unsigned long) pos);
190 
191 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
192 	if (!result) {
193 		result = generic_file_aio_read(iocb, iov, nr_segs, pos);
194 		if (result > 0)
195 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
196 	}
197 	return result;
198 }
199 EXPORT_SYMBOL_GPL(nfs_file_read);
200 
201 ssize_t
202 nfs_file_splice_read(struct file *filp, loff_t *ppos,
203 		     struct pipe_inode_info *pipe, size_t count,
204 		     unsigned int flags)
205 {
206 	struct dentry *dentry = filp->f_path.dentry;
207 	struct inode *inode = dentry->d_inode;
208 	ssize_t res;
209 
210 	dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n",
211 		dentry->d_parent->d_name.name, dentry->d_name.name,
212 		(unsigned long) count, (unsigned long long) *ppos);
213 
214 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
215 	if (!res) {
216 		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
217 		if (res > 0)
218 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
219 	}
220 	return res;
221 }
222 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
223 
224 int
225 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
226 {
227 	struct dentry *dentry = file->f_path.dentry;
228 	struct inode *inode = dentry->d_inode;
229 	int	status;
230 
231 	dprintk("NFS: mmap(%s/%s)\n",
232 		dentry->d_parent->d_name.name, dentry->d_name.name);
233 
234 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
235 	 *       so we call that before revalidating the mapping
236 	 */
237 	status = generic_file_mmap(file, vma);
238 	if (!status) {
239 		vma->vm_ops = &nfs_file_vm_ops;
240 		status = nfs_revalidate_mapping(inode, file->f_mapping);
241 	}
242 	return status;
243 }
244 EXPORT_SYMBOL_GPL(nfs_file_mmap);
245 
246 /*
247  * Flush any dirty pages for this process, and check for write errors.
248  * The return status from this call provides a reliable indication of
249  * whether any write errors occurred for this process.
250  *
251  * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
252  * disk, but it retrieves and clears ctx->error after synching, despite
253  * the two being set at the same time in nfs_context_set_write_error().
254  * This is because the former is used to notify the _next_ call to
255  * nfs_file_write() that a write error occurred, and hence cause it to
256  * fall back to doing a synchronous write.
257  */
258 int
259 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
260 {
261 	struct dentry *dentry = file->f_path.dentry;
262 	struct nfs_open_context *ctx = nfs_file_open_context(file);
263 	struct inode *inode = dentry->d_inode;
264 	int have_error, do_resend, status;
265 	int ret = 0;
266 
267 	dprintk("NFS: fsync file(%s/%s) datasync %d\n",
268 			dentry->d_parent->d_name.name, dentry->d_name.name,
269 			datasync);
270 
271 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
272 	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
273 	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
274 	status = nfs_commit_inode(inode, FLUSH_SYNC);
275 	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
276 	if (have_error) {
277 		ret = xchg(&ctx->error, 0);
278 		if (ret)
279 			goto out;
280 	}
281 	if (status < 0) {
282 		ret = status;
283 		goto out;
284 	}
285 	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
286 	if (do_resend)
287 		ret = -EAGAIN;
288 out:
289 	return ret;
290 }
291 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
292 
293 static int
294 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
295 {
296 	int ret;
297 	struct inode *inode = file_inode(file);
298 
299 	trace_nfs_fsync_enter(inode);
300 
301 	do {
302 		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
303 		if (ret != 0)
304 			break;
305 		mutex_lock(&inode->i_mutex);
306 		ret = nfs_file_fsync_commit(file, start, end, datasync);
307 		mutex_unlock(&inode->i_mutex);
308 		/*
309 		 * If nfs_file_fsync_commit detected a server reboot, then
310 		 * resend all dirty pages that might have been covered by
311 		 * the NFS_CONTEXT_RESEND_WRITES flag
312 		 */
313 		start = 0;
314 		end = LLONG_MAX;
315 	} while (ret == -EAGAIN);
316 
317 	trace_nfs_fsync_exit(inode, ret);
318 	return ret;
319 }
320 
321 /*
322  * Decide whether a read/modify/write cycle may be more efficient
323  * then a modify/write/read cycle when writing to a page in the
324  * page cache.
325  *
326  * The modify/write/read cycle may occur if a page is read before
327  * being completely filled by the writer.  In this situation, the
328  * page must be completely written to stable storage on the server
329  * before it can be refilled by reading in the page from the server.
330  * This can lead to expensive, small, FILE_SYNC mode writes being
331  * done.
332  *
333  * It may be more efficient to read the page first if the file is
334  * open for reading in addition to writing, the page is not marked
335  * as Uptodate, it is not dirty or waiting to be committed,
336  * indicating that it was previously allocated and then modified,
337  * that there were valid bytes of data in that range of the file,
338  * and that the new data won't completely replace the old data in
339  * that range of the file.
340  */
341 static int nfs_want_read_modify_write(struct file *file, struct page *page,
342 			loff_t pos, unsigned len)
343 {
344 	unsigned int pglen = nfs_page_length(page);
345 	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
346 	unsigned int end = offset + len;
347 
348 	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
349 	    !PageUptodate(page) &&		/* Uptodate? */
350 	    !PagePrivate(page) &&		/* i/o request already? */
351 	    pglen &&				/* valid bytes of file? */
352 	    (end < pglen || offset))		/* replace all valid bytes? */
353 		return 1;
354 	return 0;
355 }
356 
357 /*
358  * This does the "real" work of the write. We must allocate and lock the
359  * page to be sent back to the generic routine, which then copies the
360  * data from user space.
361  *
362  * If the writer ends up delaying the write, the writer needs to
363  * increment the page use counts until he is done with the page.
364  */
365 static int nfs_write_begin(struct file *file, struct address_space *mapping,
366 			loff_t pos, unsigned len, unsigned flags,
367 			struct page **pagep, void **fsdata)
368 {
369 	int ret;
370 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
371 	struct page *page;
372 	int once_thru = 0;
373 
374 	dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n",
375 		file->f_path.dentry->d_parent->d_name.name,
376 		file->f_path.dentry->d_name.name,
377 		mapping->host->i_ino, len, (long long) pos);
378 
379 start:
380 	/*
381 	 * Prevent starvation issues if someone is doing a consistency
382 	 * sync-to-disk
383 	 */
384 	ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
385 			nfs_wait_bit_killable, TASK_KILLABLE);
386 	if (ret)
387 		return ret;
388 
389 	page = grab_cache_page_write_begin(mapping, index, flags);
390 	if (!page)
391 		return -ENOMEM;
392 	*pagep = page;
393 
394 	ret = nfs_flush_incompatible(file, page);
395 	if (ret) {
396 		unlock_page(page);
397 		page_cache_release(page);
398 	} else if (!once_thru &&
399 		   nfs_want_read_modify_write(file, page, pos, len)) {
400 		once_thru = 1;
401 		ret = nfs_readpage(file, page);
402 		page_cache_release(page);
403 		if (!ret)
404 			goto start;
405 	}
406 	return ret;
407 }
408 
409 static int nfs_write_end(struct file *file, struct address_space *mapping,
410 			loff_t pos, unsigned len, unsigned copied,
411 			struct page *page, void *fsdata)
412 {
413 	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
414 	struct nfs_open_context *ctx = nfs_file_open_context(file);
415 	int status;
416 
417 	dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n",
418 		file->f_path.dentry->d_parent->d_name.name,
419 		file->f_path.dentry->d_name.name,
420 		mapping->host->i_ino, len, (long long) pos);
421 
422 	/*
423 	 * Zero any uninitialised parts of the page, and then mark the page
424 	 * as up to date if it turns out that we're extending the file.
425 	 */
426 	if (!PageUptodate(page)) {
427 		unsigned pglen = nfs_page_length(page);
428 		unsigned end = offset + len;
429 
430 		if (pglen == 0) {
431 			zero_user_segments(page, 0, offset,
432 					end, PAGE_CACHE_SIZE);
433 			SetPageUptodate(page);
434 		} else if (end >= pglen) {
435 			zero_user_segment(page, end, PAGE_CACHE_SIZE);
436 			if (offset == 0)
437 				SetPageUptodate(page);
438 		} else
439 			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
440 	}
441 
442 	status = nfs_updatepage(file, page, offset, copied);
443 
444 	unlock_page(page);
445 	page_cache_release(page);
446 
447 	if (status < 0)
448 		return status;
449 	NFS_I(mapping->host)->write_io += copied;
450 
451 	if (nfs_ctx_key_to_expire(ctx)) {
452 		status = nfs_wb_all(mapping->host);
453 		if (status < 0)
454 			return status;
455 	}
456 
457 	return copied;
458 }
459 
460 /*
461  * Partially or wholly invalidate a page
462  * - Release the private state associated with a page if undergoing complete
463  *   page invalidation
464  * - Called if either PG_private or PG_fscache is set on the page
465  * - Caller holds page lock
466  */
467 static void nfs_invalidate_page(struct page *page, unsigned int offset,
468 				unsigned int length)
469 {
470 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
471 		 page, offset, length);
472 
473 	if (offset != 0 || length < PAGE_CACHE_SIZE)
474 		return;
475 	/* Cancel any unstarted writes on this page */
476 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
477 
478 	nfs_fscache_invalidate_page(page, page->mapping->host);
479 }
480 
481 /*
482  * Attempt to release the private state associated with a page
483  * - Called if either PG_private or PG_fscache is set on the page
484  * - Caller holds page lock
485  * - Return true (may release page) or false (may not)
486  */
487 static int nfs_release_page(struct page *page, gfp_t gfp)
488 {
489 	struct address_space *mapping = page->mapping;
490 
491 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
492 
493 	/* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not
494 	 * doing this memory reclaim for a fs-related allocation.
495 	 */
496 	if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL &&
497 	    !(current->flags & PF_FSTRANS)) {
498 		int how = FLUSH_SYNC;
499 
500 		/* Don't let kswapd deadlock waiting for OOM RPC calls */
501 		if (current_is_kswapd())
502 			how = 0;
503 		nfs_commit_inode(mapping->host, how);
504 	}
505 	/* If PagePrivate() is set, then the page is not freeable */
506 	if (PagePrivate(page))
507 		return 0;
508 	return nfs_fscache_release_page(page, gfp);
509 }
510 
511 static void nfs_check_dirty_writeback(struct page *page,
512 				bool *dirty, bool *writeback)
513 {
514 	struct nfs_inode *nfsi;
515 	struct address_space *mapping = page_file_mapping(page);
516 
517 	if (!mapping || PageSwapCache(page))
518 		return;
519 
520 	/*
521 	 * Check if an unstable page is currently being committed and
522 	 * if so, have the VM treat it as if the page is under writeback
523 	 * so it will not block due to pages that will shortly be freeable.
524 	 */
525 	nfsi = NFS_I(mapping->host);
526 	if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
527 		*writeback = true;
528 		return;
529 	}
530 
531 	/*
532 	 * If PagePrivate() is set, then the page is not freeable and as the
533 	 * inode is not being committed, it's not going to be cleaned in the
534 	 * near future so treat it as dirty
535 	 */
536 	if (PagePrivate(page))
537 		*dirty = true;
538 }
539 
540 /*
541  * Attempt to clear the private state associated with a page when an error
542  * occurs that requires the cached contents of an inode to be written back or
543  * destroyed
544  * - Called if either PG_private or fscache is set on the page
545  * - Caller holds page lock
546  * - Return 0 if successful, -error otherwise
547  */
548 static int nfs_launder_page(struct page *page)
549 {
550 	struct inode *inode = page_file_mapping(page)->host;
551 	struct nfs_inode *nfsi = NFS_I(inode);
552 
553 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
554 		inode->i_ino, (long long)page_offset(page));
555 
556 	nfs_fscache_wait_on_page_write(nfsi, page);
557 	return nfs_wb_page(inode, page);
558 }
559 
560 #ifdef CONFIG_NFS_SWAP
561 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
562 						sector_t *span)
563 {
564 	*span = sis->pages;
565 	return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1);
566 }
567 
568 static void nfs_swap_deactivate(struct file *file)
569 {
570 	xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0);
571 }
572 #endif
573 
574 const struct address_space_operations nfs_file_aops = {
575 	.readpage = nfs_readpage,
576 	.readpages = nfs_readpages,
577 	.set_page_dirty = __set_page_dirty_nobuffers,
578 	.writepage = nfs_writepage,
579 	.writepages = nfs_writepages,
580 	.write_begin = nfs_write_begin,
581 	.write_end = nfs_write_end,
582 	.invalidatepage = nfs_invalidate_page,
583 	.releasepage = nfs_release_page,
584 	.direct_IO = nfs_direct_IO,
585 	.migratepage = nfs_migrate_page,
586 	.launder_page = nfs_launder_page,
587 	.is_dirty_writeback = nfs_check_dirty_writeback,
588 	.error_remove_page = generic_error_remove_page,
589 #ifdef CONFIG_NFS_SWAP
590 	.swap_activate = nfs_swap_activate,
591 	.swap_deactivate = nfs_swap_deactivate,
592 #endif
593 };
594 
595 /*
596  * Notification that a PTE pointing to an NFS page is about to be made
597  * writable, implying that someone is about to modify the page through a
598  * shared-writable mapping
599  */
600 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
601 {
602 	struct page *page = vmf->page;
603 	struct file *filp = vma->vm_file;
604 	struct dentry *dentry = filp->f_path.dentry;
605 	unsigned pagelen;
606 	int ret = VM_FAULT_NOPAGE;
607 	struct address_space *mapping;
608 
609 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n",
610 		dentry->d_parent->d_name.name, dentry->d_name.name,
611 		filp->f_mapping->host->i_ino,
612 		(long long)page_offset(page));
613 
614 	/* make sure the cache has finished storing the page */
615 	nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page);
616 
617 	lock_page(page);
618 	mapping = page_file_mapping(page);
619 	if (mapping != dentry->d_inode->i_mapping)
620 		goto out_unlock;
621 
622 	wait_on_page_writeback(page);
623 
624 	pagelen = nfs_page_length(page);
625 	if (pagelen == 0)
626 		goto out_unlock;
627 
628 	ret = VM_FAULT_LOCKED;
629 	if (nfs_flush_incompatible(filp, page) == 0 &&
630 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
631 		goto out;
632 
633 	ret = VM_FAULT_SIGBUS;
634 out_unlock:
635 	unlock_page(page);
636 out:
637 	return ret;
638 }
639 
640 static const struct vm_operations_struct nfs_file_vm_ops = {
641 	.fault = filemap_fault,
642 	.page_mkwrite = nfs_vm_page_mkwrite,
643 	.remap_pages = generic_file_remap_pages,
644 };
645 
646 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
647 {
648 	struct nfs_open_context *ctx;
649 
650 	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
651 		return 1;
652 	ctx = nfs_file_open_context(filp);
653 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
654 	    nfs_ctx_key_to_expire(ctx))
655 		return 1;
656 	return 0;
657 }
658 
659 ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
660 		       unsigned long nr_segs, loff_t pos)
661 {
662 	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
663 	struct inode * inode = dentry->d_inode;
664 	unsigned long written = 0;
665 	ssize_t result;
666 	size_t count = iov_length(iov, nr_segs);
667 
668 	result = nfs_key_timeout_notify(iocb->ki_filp, inode);
669 	if (result)
670 		return result;
671 
672 	if (iocb->ki_filp->f_flags & O_DIRECT)
673 		return nfs_file_direct_write(iocb, iov, nr_segs, pos, true);
674 
675 	dprintk("NFS: write(%s/%s, %lu@%Ld)\n",
676 		dentry->d_parent->d_name.name, dentry->d_name.name,
677 		(unsigned long) count, (long long) pos);
678 
679 	result = -EBUSY;
680 	if (IS_SWAPFILE(inode))
681 		goto out_swapfile;
682 	/*
683 	 * O_APPEND implies that we must revalidate the file length.
684 	 */
685 	if (iocb->ki_filp->f_flags & O_APPEND) {
686 		result = nfs_revalidate_file_size(inode, iocb->ki_filp);
687 		if (result)
688 			goto out;
689 	}
690 
691 	result = count;
692 	if (!count)
693 		goto out;
694 
695 	result = generic_file_aio_write(iocb, iov, nr_segs, pos);
696 	if (result > 0)
697 		written = result;
698 
699 	/* Return error values for O_DSYNC and IS_SYNC() */
700 	if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) {
701 		int err = vfs_fsync(iocb->ki_filp, 0);
702 		if (err < 0)
703 			result = err;
704 	}
705 	if (result > 0)
706 		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
707 out:
708 	return result;
709 
710 out_swapfile:
711 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
712 	goto out;
713 }
714 EXPORT_SYMBOL_GPL(nfs_file_write);
715 
716 ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
717 			      struct file *filp, loff_t *ppos,
718 			      size_t count, unsigned int flags)
719 {
720 	struct dentry *dentry = filp->f_path.dentry;
721 	struct inode *inode = dentry->d_inode;
722 	unsigned long written = 0;
723 	ssize_t ret;
724 
725 	dprintk("NFS splice_write(%s/%s, %lu@%llu)\n",
726 		dentry->d_parent->d_name.name, dentry->d_name.name,
727 		(unsigned long) count, (unsigned long long) *ppos);
728 
729 	/*
730 	 * The combination of splice and an O_APPEND destination is disallowed.
731 	 */
732 
733 	ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
734 	if (ret > 0)
735 		written = ret;
736 
737 	if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
738 		int err = vfs_fsync(filp, 0);
739 		if (err < 0)
740 			ret = err;
741 	}
742 	if (ret > 0)
743 		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
744 	return ret;
745 }
746 EXPORT_SYMBOL_GPL(nfs_file_splice_write);
747 
748 static int
749 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
750 {
751 	struct inode *inode = filp->f_mapping->host;
752 	int status = 0;
753 	unsigned int saved_type = fl->fl_type;
754 
755 	/* Try local locking first */
756 	posix_test_lock(filp, fl);
757 	if (fl->fl_type != F_UNLCK) {
758 		/* found a conflict */
759 		goto out;
760 	}
761 	fl->fl_type = saved_type;
762 
763 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
764 		goto out_noconflict;
765 
766 	if (is_local)
767 		goto out_noconflict;
768 
769 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
770 out:
771 	return status;
772 out_noconflict:
773 	fl->fl_type = F_UNLCK;
774 	goto out;
775 }
776 
777 static int do_vfs_lock(struct file *file, struct file_lock *fl)
778 {
779 	int res = 0;
780 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
781 		case FL_POSIX:
782 			res = posix_lock_file_wait(file, fl);
783 			break;
784 		case FL_FLOCK:
785 			res = flock_lock_file_wait(file, fl);
786 			break;
787 		default:
788 			BUG();
789 	}
790 	return res;
791 }
792 
793 static int
794 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
795 {
796 	struct inode *inode = filp->f_mapping->host;
797 	struct nfs_lock_context *l_ctx;
798 	int status;
799 
800 	/*
801 	 * Flush all pending writes before doing anything
802 	 * with locks..
803 	 */
804 	nfs_sync_mapping(filp->f_mapping);
805 
806 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
807 	if (!IS_ERR(l_ctx)) {
808 		status = nfs_iocounter_wait(&l_ctx->io_count);
809 		nfs_put_lock_context(l_ctx);
810 		if (status < 0)
811 			return status;
812 	}
813 
814 	/* NOTE: special case
815 	 * 	If we're signalled while cleaning up locks on process exit, we
816 	 * 	still need to complete the unlock.
817 	 */
818 	/*
819 	 * Use local locking if mounted with "-onolock" or with appropriate
820 	 * "-olocal_lock="
821 	 */
822 	if (!is_local)
823 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
824 	else
825 		status = do_vfs_lock(filp, fl);
826 	return status;
827 }
828 
829 static int
830 is_time_granular(struct timespec *ts) {
831 	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
832 }
833 
834 static int
835 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
836 {
837 	struct inode *inode = filp->f_mapping->host;
838 	int status;
839 
840 	/*
841 	 * Flush all pending writes before doing anything
842 	 * with locks..
843 	 */
844 	status = nfs_sync_mapping(filp->f_mapping);
845 	if (status != 0)
846 		goto out;
847 
848 	/*
849 	 * Use local locking if mounted with "-onolock" or with appropriate
850 	 * "-olocal_lock="
851 	 */
852 	if (!is_local)
853 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
854 	else
855 		status = do_vfs_lock(filp, fl);
856 	if (status < 0)
857 		goto out;
858 
859 	/*
860 	 * Revalidate the cache if the server has time stamps granular
861 	 * enough to detect subsecond changes.  Otherwise, clear the
862 	 * cache to prevent missing any changes.
863 	 *
864 	 * This makes locking act as a cache coherency point.
865 	 */
866 	nfs_sync_mapping(filp->f_mapping);
867 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
868 		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
869 			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
870 		else
871 			nfs_zap_caches(inode);
872 	}
873 out:
874 	return status;
875 }
876 
877 /*
878  * Lock a (portion of) a file
879  */
880 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
881 {
882 	struct inode *inode = filp->f_mapping->host;
883 	int ret = -ENOLCK;
884 	int is_local = 0;
885 
886 	dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n",
887 			filp->f_path.dentry->d_parent->d_name.name,
888 			filp->f_path.dentry->d_name.name,
889 			fl->fl_type, fl->fl_flags,
890 			(long long)fl->fl_start, (long long)fl->fl_end);
891 
892 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
893 
894 	/* No mandatory locks over NFS */
895 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
896 		goto out_err;
897 
898 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
899 		is_local = 1;
900 
901 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
902 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
903 		if (ret < 0)
904 			goto out_err;
905 	}
906 
907 	if (IS_GETLK(cmd))
908 		ret = do_getlk(filp, cmd, fl, is_local);
909 	else if (fl->fl_type == F_UNLCK)
910 		ret = do_unlk(filp, cmd, fl, is_local);
911 	else
912 		ret = do_setlk(filp, cmd, fl, is_local);
913 out_err:
914 	return ret;
915 }
916 EXPORT_SYMBOL_GPL(nfs_lock);
917 
918 /*
919  * Lock a (portion of) a file
920  */
921 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
922 {
923 	struct inode *inode = filp->f_mapping->host;
924 	int is_local = 0;
925 
926 	dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n",
927 			filp->f_path.dentry->d_parent->d_name.name,
928 			filp->f_path.dentry->d_name.name,
929 			fl->fl_type, fl->fl_flags);
930 
931 	if (!(fl->fl_flags & FL_FLOCK))
932 		return -ENOLCK;
933 
934 	/*
935 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
936 	 * any standard. In principle we might be able to support LOCK_MAND
937 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
938 	 * NFS code is not set up for it.
939 	 */
940 	if (fl->fl_type & LOCK_MAND)
941 		return -EINVAL;
942 
943 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
944 		is_local = 1;
945 
946 	/* We're simulating flock() locks using posix locks on the server */
947 	fl->fl_owner = (fl_owner_t)filp;
948 	fl->fl_start = 0;
949 	fl->fl_end = OFFSET_MAX;
950 
951 	if (fl->fl_type == F_UNLCK)
952 		return do_unlk(filp, cmd, fl, is_local);
953 	return do_setlk(filp, cmd, fl, is_local);
954 }
955 EXPORT_SYMBOL_GPL(nfs_flock);
956 
957 /*
958  * There is no protocol support for leases, so we have no way to implement
959  * them correctly in the face of opens by other clients.
960  */
961 int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
962 {
963 	dprintk("NFS: setlease(%s/%s, arg=%ld)\n",
964 			file->f_path.dentry->d_parent->d_name.name,
965 			file->f_path.dentry->d_name.name, arg);
966 	return -EINVAL;
967 }
968 EXPORT_SYMBOL_GPL(nfs_setlease);
969 
970 const struct file_operations nfs_file_operations = {
971 	.llseek		= nfs_file_llseek,
972 	.read		= do_sync_read,
973 	.write		= do_sync_write,
974 	.aio_read	= nfs_file_read,
975 	.aio_write	= nfs_file_write,
976 	.mmap		= nfs_file_mmap,
977 	.open		= nfs_file_open,
978 	.flush		= nfs_file_flush,
979 	.release	= nfs_file_release,
980 	.fsync		= nfs_file_fsync,
981 	.lock		= nfs_lock,
982 	.flock		= nfs_flock,
983 	.splice_read	= nfs_file_splice_read,
984 	.splice_write	= nfs_file_splice_write,
985 	.check_flags	= nfs_check_flags,
986 	.setlease	= nfs_setlease,
987 };
988 EXPORT_SYMBOL_GPL(nfs_file_operations);
989