1 /* 2 * linux/fs/nfs/file.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * Changes Copyright (C) 1994 by Florian La Roche 7 * - Do not copy data too often around in the kernel. 8 * - In nfs_file_read the return value of kmalloc wasn't checked. 9 * - Put in a better version of read look-ahead buffering. Original idea 10 * and implementation by Wai S Kok elekokws@ee.nus.sg. 11 * 12 * Expire cache on write to a file by Wai S Kok (Oct 1994). 13 * 14 * Total rewrite of read side for new NFS buffer cache.. Linus. 15 * 16 * nfs regular file handling functions 17 */ 18 19 #include <linux/time.h> 20 #include <linux/kernel.h> 21 #include <linux/errno.h> 22 #include <linux/fcntl.h> 23 #include <linux/stat.h> 24 #include <linux/nfs_fs.h> 25 #include <linux/nfs_mount.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/pagemap.h> 29 #include <linux/aio.h> 30 31 #include <asm/uaccess.h> 32 #include <asm/system.h> 33 34 #include "delegation.h" 35 #include "internal.h" 36 #include "iostat.h" 37 #include "fscache.h" 38 39 #define NFSDBG_FACILITY NFSDBG_FILE 40 41 static int nfs_file_open(struct inode *, struct file *); 42 static int nfs_file_release(struct inode *, struct file *); 43 static loff_t nfs_file_llseek(struct file *file, loff_t offset, int origin); 44 static int nfs_file_mmap(struct file *, struct vm_area_struct *); 45 static ssize_t nfs_file_splice_read(struct file *filp, loff_t *ppos, 46 struct pipe_inode_info *pipe, 47 size_t count, unsigned int flags); 48 static ssize_t nfs_file_read(struct kiocb *, const struct iovec *iov, 49 unsigned long nr_segs, loff_t pos); 50 static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe, 51 struct file *filp, loff_t *ppos, 52 size_t count, unsigned int flags); 53 static ssize_t nfs_file_write(struct kiocb *, const struct iovec *iov, 54 unsigned long nr_segs, loff_t pos); 55 static int nfs_file_flush(struct file *, fl_owner_t id); 56 static int nfs_file_fsync(struct file *, struct dentry *dentry, int datasync); 57 static int nfs_check_flags(int flags); 58 static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl); 59 static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl); 60 static int nfs_setlease(struct file *file, long arg, struct file_lock **fl); 61 62 static const struct vm_operations_struct nfs_file_vm_ops; 63 64 const struct file_operations nfs_file_operations = { 65 .llseek = nfs_file_llseek, 66 .read = do_sync_read, 67 .write = do_sync_write, 68 .aio_read = nfs_file_read, 69 .aio_write = nfs_file_write, 70 .mmap = nfs_file_mmap, 71 .open = nfs_file_open, 72 .flush = nfs_file_flush, 73 .release = nfs_file_release, 74 .fsync = nfs_file_fsync, 75 .lock = nfs_lock, 76 .flock = nfs_flock, 77 .splice_read = nfs_file_splice_read, 78 .splice_write = nfs_file_splice_write, 79 .check_flags = nfs_check_flags, 80 .setlease = nfs_setlease, 81 }; 82 83 const struct inode_operations nfs_file_inode_operations = { 84 .permission = nfs_permission, 85 .getattr = nfs_getattr, 86 .setattr = nfs_setattr, 87 }; 88 89 #ifdef CONFIG_NFS_V3 90 const struct inode_operations nfs3_file_inode_operations = { 91 .permission = nfs_permission, 92 .getattr = nfs_getattr, 93 .setattr = nfs_setattr, 94 .listxattr = nfs3_listxattr, 95 .getxattr = nfs3_getxattr, 96 .setxattr = nfs3_setxattr, 97 .removexattr = nfs3_removexattr, 98 }; 99 #endif /* CONFIG_NFS_v3 */ 100 101 /* Hack for future NFS swap support */ 102 #ifndef IS_SWAPFILE 103 # define IS_SWAPFILE(inode) (0) 104 #endif 105 106 static int nfs_check_flags(int flags) 107 { 108 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 109 return -EINVAL; 110 111 return 0; 112 } 113 114 /* 115 * Open file 116 */ 117 static int 118 nfs_file_open(struct inode *inode, struct file *filp) 119 { 120 int res; 121 122 dprintk("NFS: open file(%s/%s)\n", 123 filp->f_path.dentry->d_parent->d_name.name, 124 filp->f_path.dentry->d_name.name); 125 126 res = nfs_check_flags(filp->f_flags); 127 if (res) 128 return res; 129 130 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 131 res = nfs_open(inode, filp); 132 return res; 133 } 134 135 static int 136 nfs_file_release(struct inode *inode, struct file *filp) 137 { 138 struct dentry *dentry = filp->f_path.dentry; 139 140 dprintk("NFS: release(%s/%s)\n", 141 dentry->d_parent->d_name.name, 142 dentry->d_name.name); 143 144 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 145 return nfs_release(inode, filp); 146 } 147 148 /** 149 * nfs_revalidate_size - Revalidate the file size 150 * @inode - pointer to inode struct 151 * @file - pointer to struct file 152 * 153 * Revalidates the file length. This is basically a wrapper around 154 * nfs_revalidate_inode() that takes into account the fact that we may 155 * have cached writes (in which case we don't care about the server's 156 * idea of what the file length is), or O_DIRECT (in which case we 157 * shouldn't trust the cache). 158 */ 159 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 160 { 161 struct nfs_server *server = NFS_SERVER(inode); 162 struct nfs_inode *nfsi = NFS_I(inode); 163 164 if (server->flags & NFS_MOUNT_NOAC) 165 goto force_reval; 166 if (filp->f_flags & O_DIRECT) 167 goto force_reval; 168 if (nfsi->npages != 0) 169 return 0; 170 if (!(nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) && !nfs_attribute_timeout(inode)) 171 return 0; 172 force_reval: 173 return __nfs_revalidate_inode(server, inode); 174 } 175 176 static loff_t nfs_file_llseek(struct file *filp, loff_t offset, int origin) 177 { 178 loff_t loff; 179 180 dprintk("NFS: llseek file(%s/%s, %lld, %d)\n", 181 filp->f_path.dentry->d_parent->d_name.name, 182 filp->f_path.dentry->d_name.name, 183 offset, origin); 184 185 /* origin == SEEK_END => we must revalidate the cached file length */ 186 if (origin == SEEK_END) { 187 struct inode *inode = filp->f_mapping->host; 188 189 int retval = nfs_revalidate_file_size(inode, filp); 190 if (retval < 0) 191 return (loff_t)retval; 192 193 spin_lock(&inode->i_lock); 194 loff = generic_file_llseek_unlocked(filp, offset, origin); 195 spin_unlock(&inode->i_lock); 196 } else 197 loff = generic_file_llseek_unlocked(filp, offset, origin); 198 return loff; 199 } 200 201 /* 202 * Helper for nfs_file_flush() and nfs_file_fsync() 203 * 204 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to 205 * disk, but it retrieves and clears ctx->error after synching, despite 206 * the two being set at the same time in nfs_context_set_write_error(). 207 * This is because the former is used to notify the _next_ call to 208 * nfs_file_write() that a write error occured, and hence cause it to 209 * fall back to doing a synchronous write. 210 */ 211 static int nfs_do_fsync(struct nfs_open_context *ctx, struct inode *inode) 212 { 213 int have_error, status; 214 int ret = 0; 215 216 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 217 status = nfs_wb_all(inode); 218 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 219 if (have_error) 220 ret = xchg(&ctx->error, 0); 221 if (!ret) 222 ret = status; 223 return ret; 224 } 225 226 /* 227 * Flush all dirty pages, and check for write errors. 228 */ 229 static int 230 nfs_file_flush(struct file *file, fl_owner_t id) 231 { 232 struct nfs_open_context *ctx = nfs_file_open_context(file); 233 struct dentry *dentry = file->f_path.dentry; 234 struct inode *inode = dentry->d_inode; 235 236 dprintk("NFS: flush(%s/%s)\n", 237 dentry->d_parent->d_name.name, 238 dentry->d_name.name); 239 240 if ((file->f_mode & FMODE_WRITE) == 0) 241 return 0; 242 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 243 244 /* Flush writes to the server and return any errors */ 245 return nfs_do_fsync(ctx, inode); 246 } 247 248 static ssize_t 249 nfs_file_read(struct kiocb *iocb, const struct iovec *iov, 250 unsigned long nr_segs, loff_t pos) 251 { 252 struct dentry * dentry = iocb->ki_filp->f_path.dentry; 253 struct inode * inode = dentry->d_inode; 254 ssize_t result; 255 size_t count = iov_length(iov, nr_segs); 256 257 if (iocb->ki_filp->f_flags & O_DIRECT) 258 return nfs_file_direct_read(iocb, iov, nr_segs, pos); 259 260 dprintk("NFS: read(%s/%s, %lu@%lu)\n", 261 dentry->d_parent->d_name.name, dentry->d_name.name, 262 (unsigned long) count, (unsigned long) pos); 263 264 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 265 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, count); 266 if (!result) 267 result = generic_file_aio_read(iocb, iov, nr_segs, pos); 268 return result; 269 } 270 271 static ssize_t 272 nfs_file_splice_read(struct file *filp, loff_t *ppos, 273 struct pipe_inode_info *pipe, size_t count, 274 unsigned int flags) 275 { 276 struct dentry *dentry = filp->f_path.dentry; 277 struct inode *inode = dentry->d_inode; 278 ssize_t res; 279 280 dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n", 281 dentry->d_parent->d_name.name, dentry->d_name.name, 282 (unsigned long) count, (unsigned long long) *ppos); 283 284 res = nfs_revalidate_mapping(inode, filp->f_mapping); 285 if (!res) 286 res = generic_file_splice_read(filp, ppos, pipe, count, flags); 287 return res; 288 } 289 290 static int 291 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 292 { 293 struct dentry *dentry = file->f_path.dentry; 294 struct inode *inode = dentry->d_inode; 295 int status; 296 297 dprintk("NFS: mmap(%s/%s)\n", 298 dentry->d_parent->d_name.name, dentry->d_name.name); 299 300 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 301 * so we call that before revalidating the mapping 302 */ 303 status = generic_file_mmap(file, vma); 304 if (!status) { 305 vma->vm_ops = &nfs_file_vm_ops; 306 status = nfs_revalidate_mapping(inode, file->f_mapping); 307 } 308 return status; 309 } 310 311 /* 312 * Flush any dirty pages for this process, and check for write errors. 313 * The return status from this call provides a reliable indication of 314 * whether any write errors occurred for this process. 315 */ 316 static int 317 nfs_file_fsync(struct file *file, struct dentry *dentry, int datasync) 318 { 319 struct nfs_open_context *ctx = nfs_file_open_context(file); 320 struct inode *inode = dentry->d_inode; 321 322 dprintk("NFS: fsync file(%s/%s) datasync %d\n", 323 dentry->d_parent->d_name.name, dentry->d_name.name, 324 datasync); 325 326 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 327 return nfs_do_fsync(ctx, inode); 328 } 329 330 /* 331 * Decide whether a read/modify/write cycle may be more efficient 332 * then a modify/write/read cycle when writing to a page in the 333 * page cache. 334 * 335 * The modify/write/read cycle may occur if a page is read before 336 * being completely filled by the writer. In this situation, the 337 * page must be completely written to stable storage on the server 338 * before it can be refilled by reading in the page from the server. 339 * This can lead to expensive, small, FILE_SYNC mode writes being 340 * done. 341 * 342 * It may be more efficient to read the page first if the file is 343 * open for reading in addition to writing, the page is not marked 344 * as Uptodate, it is not dirty or waiting to be committed, 345 * indicating that it was previously allocated and then modified, 346 * that there were valid bytes of data in that range of the file, 347 * and that the new data won't completely replace the old data in 348 * that range of the file. 349 */ 350 static int nfs_want_read_modify_write(struct file *file, struct page *page, 351 loff_t pos, unsigned len) 352 { 353 unsigned int pglen = nfs_page_length(page); 354 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1); 355 unsigned int end = offset + len; 356 357 if ((file->f_mode & FMODE_READ) && /* open for read? */ 358 !PageUptodate(page) && /* Uptodate? */ 359 !PagePrivate(page) && /* i/o request already? */ 360 pglen && /* valid bytes of file? */ 361 (end < pglen || offset)) /* replace all valid bytes? */ 362 return 1; 363 return 0; 364 } 365 366 /* 367 * This does the "real" work of the write. We must allocate and lock the 368 * page to be sent back to the generic routine, which then copies the 369 * data from user space. 370 * 371 * If the writer ends up delaying the write, the writer needs to 372 * increment the page use counts until he is done with the page. 373 */ 374 static int nfs_write_begin(struct file *file, struct address_space *mapping, 375 loff_t pos, unsigned len, unsigned flags, 376 struct page **pagep, void **fsdata) 377 { 378 int ret; 379 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 380 struct page *page; 381 int once_thru = 0; 382 383 dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n", 384 file->f_path.dentry->d_parent->d_name.name, 385 file->f_path.dentry->d_name.name, 386 mapping->host->i_ino, len, (long long) pos); 387 388 start: 389 /* 390 * Prevent starvation issues if someone is doing a consistency 391 * sync-to-disk 392 */ 393 ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING, 394 nfs_wait_bit_killable, TASK_KILLABLE); 395 if (ret) 396 return ret; 397 398 page = grab_cache_page_write_begin(mapping, index, flags); 399 if (!page) 400 return -ENOMEM; 401 *pagep = page; 402 403 ret = nfs_flush_incompatible(file, page); 404 if (ret) { 405 unlock_page(page); 406 page_cache_release(page); 407 } else if (!once_thru && 408 nfs_want_read_modify_write(file, page, pos, len)) { 409 once_thru = 1; 410 ret = nfs_readpage(file, page); 411 page_cache_release(page); 412 if (!ret) 413 goto start; 414 } 415 return ret; 416 } 417 418 static int nfs_write_end(struct file *file, struct address_space *mapping, 419 loff_t pos, unsigned len, unsigned copied, 420 struct page *page, void *fsdata) 421 { 422 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 423 int status; 424 425 dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n", 426 file->f_path.dentry->d_parent->d_name.name, 427 file->f_path.dentry->d_name.name, 428 mapping->host->i_ino, len, (long long) pos); 429 430 /* 431 * Zero any uninitialised parts of the page, and then mark the page 432 * as up to date if it turns out that we're extending the file. 433 */ 434 if (!PageUptodate(page)) { 435 unsigned pglen = nfs_page_length(page); 436 unsigned end = offset + len; 437 438 if (pglen == 0) { 439 zero_user_segments(page, 0, offset, 440 end, PAGE_CACHE_SIZE); 441 SetPageUptodate(page); 442 } else if (end >= pglen) { 443 zero_user_segment(page, end, PAGE_CACHE_SIZE); 444 if (offset == 0) 445 SetPageUptodate(page); 446 } else 447 zero_user_segment(page, pglen, PAGE_CACHE_SIZE); 448 } 449 450 status = nfs_updatepage(file, page, offset, copied); 451 452 unlock_page(page); 453 page_cache_release(page); 454 455 if (status < 0) 456 return status; 457 return copied; 458 } 459 460 /* 461 * Partially or wholly invalidate a page 462 * - Release the private state associated with a page if undergoing complete 463 * page invalidation 464 * - Called if either PG_private or PG_fscache is set on the page 465 * - Caller holds page lock 466 */ 467 static void nfs_invalidate_page(struct page *page, unsigned long offset) 468 { 469 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %lu)\n", page, offset); 470 471 if (offset != 0) 472 return; 473 /* Cancel any unstarted writes on this page */ 474 nfs_wb_page_cancel(page->mapping->host, page); 475 476 nfs_fscache_invalidate_page(page, page->mapping->host); 477 } 478 479 /* 480 * Attempt to release the private state associated with a page 481 * - Called if either PG_private or PG_fscache is set on the page 482 * - Caller holds page lock 483 * - Return true (may release page) or false (may not) 484 */ 485 static int nfs_release_page(struct page *page, gfp_t gfp) 486 { 487 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 488 489 if (gfp & __GFP_WAIT) 490 nfs_wb_page(page->mapping->host, page); 491 /* If PagePrivate() is set, then the page is not freeable */ 492 if (PagePrivate(page)) 493 return 0; 494 return nfs_fscache_release_page(page, gfp); 495 } 496 497 /* 498 * Attempt to clear the private state associated with a page when an error 499 * occurs that requires the cached contents of an inode to be written back or 500 * destroyed 501 * - Called if either PG_private or fscache is set on the page 502 * - Caller holds page lock 503 * - Return 0 if successful, -error otherwise 504 */ 505 static int nfs_launder_page(struct page *page) 506 { 507 struct inode *inode = page->mapping->host; 508 struct nfs_inode *nfsi = NFS_I(inode); 509 510 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 511 inode->i_ino, (long long)page_offset(page)); 512 513 nfs_fscache_wait_on_page_write(nfsi, page); 514 return nfs_wb_page(inode, page); 515 } 516 517 const struct address_space_operations nfs_file_aops = { 518 .readpage = nfs_readpage, 519 .readpages = nfs_readpages, 520 .set_page_dirty = __set_page_dirty_nobuffers, 521 .writepage = nfs_writepage, 522 .writepages = nfs_writepages, 523 .write_begin = nfs_write_begin, 524 .write_end = nfs_write_end, 525 .invalidatepage = nfs_invalidate_page, 526 .releasepage = nfs_release_page, 527 .direct_IO = nfs_direct_IO, 528 .migratepage = nfs_migrate_page, 529 .launder_page = nfs_launder_page, 530 .error_remove_page = generic_error_remove_page, 531 }; 532 533 /* 534 * Notification that a PTE pointing to an NFS page is about to be made 535 * writable, implying that someone is about to modify the page through a 536 * shared-writable mapping 537 */ 538 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 539 { 540 struct page *page = vmf->page; 541 struct file *filp = vma->vm_file; 542 struct dentry *dentry = filp->f_path.dentry; 543 unsigned pagelen; 544 int ret = -EINVAL; 545 struct address_space *mapping; 546 547 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n", 548 dentry->d_parent->d_name.name, dentry->d_name.name, 549 filp->f_mapping->host->i_ino, 550 (long long)page_offset(page)); 551 552 /* make sure the cache has finished storing the page */ 553 nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page); 554 555 lock_page(page); 556 mapping = page->mapping; 557 if (mapping != dentry->d_inode->i_mapping) 558 goto out_unlock; 559 560 ret = 0; 561 pagelen = nfs_page_length(page); 562 if (pagelen == 0) 563 goto out_unlock; 564 565 ret = nfs_flush_incompatible(filp, page); 566 if (ret != 0) 567 goto out_unlock; 568 569 ret = nfs_updatepage(filp, page, 0, pagelen); 570 out_unlock: 571 if (!ret) 572 return VM_FAULT_LOCKED; 573 unlock_page(page); 574 return VM_FAULT_SIGBUS; 575 } 576 577 static const struct vm_operations_struct nfs_file_vm_ops = { 578 .fault = filemap_fault, 579 .page_mkwrite = nfs_vm_page_mkwrite, 580 }; 581 582 static int nfs_need_sync_write(struct file *filp, struct inode *inode) 583 { 584 struct nfs_open_context *ctx; 585 586 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC)) 587 return 1; 588 ctx = nfs_file_open_context(filp); 589 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) 590 return 1; 591 return 0; 592 } 593 594 static ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov, 595 unsigned long nr_segs, loff_t pos) 596 { 597 struct dentry * dentry = iocb->ki_filp->f_path.dentry; 598 struct inode * inode = dentry->d_inode; 599 ssize_t result; 600 size_t count = iov_length(iov, nr_segs); 601 602 if (iocb->ki_filp->f_flags & O_DIRECT) 603 return nfs_file_direct_write(iocb, iov, nr_segs, pos); 604 605 dprintk("NFS: write(%s/%s, %lu@%Ld)\n", 606 dentry->d_parent->d_name.name, dentry->d_name.name, 607 (unsigned long) count, (long long) pos); 608 609 result = -EBUSY; 610 if (IS_SWAPFILE(inode)) 611 goto out_swapfile; 612 /* 613 * O_APPEND implies that we must revalidate the file length. 614 */ 615 if (iocb->ki_filp->f_flags & O_APPEND) { 616 result = nfs_revalidate_file_size(inode, iocb->ki_filp); 617 if (result) 618 goto out; 619 } 620 621 result = count; 622 if (!count) 623 goto out; 624 625 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, count); 626 result = generic_file_aio_write(iocb, iov, nr_segs, pos); 627 /* Return error values for O_DSYNC and IS_SYNC() */ 628 if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) { 629 int err = nfs_do_fsync(nfs_file_open_context(iocb->ki_filp), inode); 630 if (err < 0) 631 result = err; 632 } 633 out: 634 return result; 635 636 out_swapfile: 637 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 638 goto out; 639 } 640 641 static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe, 642 struct file *filp, loff_t *ppos, 643 size_t count, unsigned int flags) 644 { 645 struct dentry *dentry = filp->f_path.dentry; 646 struct inode *inode = dentry->d_inode; 647 ssize_t ret; 648 649 dprintk("NFS splice_write(%s/%s, %lu@%llu)\n", 650 dentry->d_parent->d_name.name, dentry->d_name.name, 651 (unsigned long) count, (unsigned long long) *ppos); 652 653 /* 654 * The combination of splice and an O_APPEND destination is disallowed. 655 */ 656 657 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, count); 658 659 ret = generic_file_splice_write(pipe, filp, ppos, count, flags); 660 if (ret >= 0 && nfs_need_sync_write(filp, inode)) { 661 int err = nfs_do_fsync(nfs_file_open_context(filp), inode); 662 if (err < 0) 663 ret = err; 664 } 665 return ret; 666 } 667 668 static int do_getlk(struct file *filp, int cmd, struct file_lock *fl) 669 { 670 struct inode *inode = filp->f_mapping->host; 671 int status = 0; 672 673 /* Try local locking first */ 674 posix_test_lock(filp, fl); 675 if (fl->fl_type != F_UNLCK) { 676 /* found a conflict */ 677 goto out; 678 } 679 680 if (nfs_have_delegation(inode, FMODE_READ)) 681 goto out_noconflict; 682 683 if (NFS_SERVER(inode)->flags & NFS_MOUNT_NONLM) 684 goto out_noconflict; 685 686 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 687 out: 688 return status; 689 out_noconflict: 690 fl->fl_type = F_UNLCK; 691 goto out; 692 } 693 694 static int do_vfs_lock(struct file *file, struct file_lock *fl) 695 { 696 int res = 0; 697 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 698 case FL_POSIX: 699 res = posix_lock_file_wait(file, fl); 700 break; 701 case FL_FLOCK: 702 res = flock_lock_file_wait(file, fl); 703 break; 704 default: 705 BUG(); 706 } 707 if (res < 0) 708 dprintk(KERN_WARNING "%s: VFS is out of sync with lock manager" 709 " - error %d!\n", 710 __func__, res); 711 return res; 712 } 713 714 static int do_unlk(struct file *filp, int cmd, struct file_lock *fl) 715 { 716 struct inode *inode = filp->f_mapping->host; 717 int status; 718 719 /* 720 * Flush all pending writes before doing anything 721 * with locks.. 722 */ 723 nfs_sync_mapping(filp->f_mapping); 724 725 /* NOTE: special case 726 * If we're signalled while cleaning up locks on process exit, we 727 * still need to complete the unlock. 728 */ 729 /* Use local locking if mounted with "-onolock" */ 730 if (!(NFS_SERVER(inode)->flags & NFS_MOUNT_NONLM)) 731 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 732 else 733 status = do_vfs_lock(filp, fl); 734 return status; 735 } 736 737 static int do_setlk(struct file *filp, int cmd, struct file_lock *fl) 738 { 739 struct inode *inode = filp->f_mapping->host; 740 int status; 741 742 /* 743 * Flush all pending writes before doing anything 744 * with locks.. 745 */ 746 status = nfs_sync_mapping(filp->f_mapping); 747 if (status != 0) 748 goto out; 749 750 /* Use local locking if mounted with "-onolock" */ 751 if (!(NFS_SERVER(inode)->flags & NFS_MOUNT_NONLM)) 752 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 753 else 754 status = do_vfs_lock(filp, fl); 755 if (status < 0) 756 goto out; 757 /* 758 * Make sure we clear the cache whenever we try to get the lock. 759 * This makes locking act as a cache coherency point. 760 */ 761 nfs_sync_mapping(filp->f_mapping); 762 if (!nfs_have_delegation(inode, FMODE_READ)) 763 nfs_zap_caches(inode); 764 out: 765 return status; 766 } 767 768 /* 769 * Lock a (portion of) a file 770 */ 771 static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 772 { 773 struct inode *inode = filp->f_mapping->host; 774 int ret = -ENOLCK; 775 776 dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n", 777 filp->f_path.dentry->d_parent->d_name.name, 778 filp->f_path.dentry->d_name.name, 779 fl->fl_type, fl->fl_flags, 780 (long long)fl->fl_start, (long long)fl->fl_end); 781 782 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 783 784 /* No mandatory locks over NFS */ 785 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 786 goto out_err; 787 788 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 789 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 790 if (ret < 0) 791 goto out_err; 792 } 793 794 if (IS_GETLK(cmd)) 795 ret = do_getlk(filp, cmd, fl); 796 else if (fl->fl_type == F_UNLCK) 797 ret = do_unlk(filp, cmd, fl); 798 else 799 ret = do_setlk(filp, cmd, fl); 800 out_err: 801 return ret; 802 } 803 804 /* 805 * Lock a (portion of) a file 806 */ 807 static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 808 { 809 dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n", 810 filp->f_path.dentry->d_parent->d_name.name, 811 filp->f_path.dentry->d_name.name, 812 fl->fl_type, fl->fl_flags); 813 814 if (!(fl->fl_flags & FL_FLOCK)) 815 return -ENOLCK; 816 817 /* We're simulating flock() locks using posix locks on the server */ 818 fl->fl_owner = (fl_owner_t)filp; 819 fl->fl_start = 0; 820 fl->fl_end = OFFSET_MAX; 821 822 if (fl->fl_type == F_UNLCK) 823 return do_unlk(filp, cmd, fl); 824 return do_setlk(filp, cmd, fl); 825 } 826 827 /* 828 * There is no protocol support for leases, so we have no way to implement 829 * them correctly in the face of opens by other clients. 830 */ 831 static int nfs_setlease(struct file *file, long arg, struct file_lock **fl) 832 { 833 dprintk("NFS: setlease(%s/%s, arg=%ld)\n", 834 file->f_path.dentry->d_parent->d_name.name, 835 file->f_path.dentry->d_name.name, arg); 836 837 return -EINVAL; 838 } 839