1 /* 2 * linux/fs/nfs/file.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * Changes Copyright (C) 1994 by Florian La Roche 7 * - Do not copy data too often around in the kernel. 8 * - In nfs_file_read the return value of kmalloc wasn't checked. 9 * - Put in a better version of read look-ahead buffering. Original idea 10 * and implementation by Wai S Kok elekokws@ee.nus.sg. 11 * 12 * Expire cache on write to a file by Wai S Kok (Oct 1994). 13 * 14 * Total rewrite of read side for new NFS buffer cache.. Linus. 15 * 16 * nfs regular file handling functions 17 */ 18 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/fcntl.h> 24 #include <linux/stat.h> 25 #include <linux/nfs_fs.h> 26 #include <linux/nfs_mount.h> 27 #include <linux/mm.h> 28 #include <linux/pagemap.h> 29 #include <linux/aio.h> 30 #include <linux/gfp.h> 31 #include <linux/swap.h> 32 33 #include <asm/uaccess.h> 34 35 #include "delegation.h" 36 #include "internal.h" 37 #include "iostat.h" 38 #include "fscache.h" 39 40 #include "nfstrace.h" 41 42 #define NFSDBG_FACILITY NFSDBG_FILE 43 44 static const struct vm_operations_struct nfs_file_vm_ops; 45 46 /* Hack for future NFS swap support */ 47 #ifndef IS_SWAPFILE 48 # define IS_SWAPFILE(inode) (0) 49 #endif 50 51 int nfs_check_flags(int flags) 52 { 53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 54 return -EINVAL; 55 56 return 0; 57 } 58 EXPORT_SYMBOL_GPL(nfs_check_flags); 59 60 /* 61 * Open file 62 */ 63 static int 64 nfs_file_open(struct inode *inode, struct file *filp) 65 { 66 int res; 67 68 dprintk("NFS: open file(%pD2)\n", filp); 69 70 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 71 res = nfs_check_flags(filp->f_flags); 72 if (res) 73 return res; 74 75 res = nfs_open(inode, filp); 76 return res; 77 } 78 79 int 80 nfs_file_release(struct inode *inode, struct file *filp) 81 { 82 dprintk("NFS: release(%pD2)\n", filp); 83 84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 85 return nfs_release(inode, filp); 86 } 87 EXPORT_SYMBOL_GPL(nfs_file_release); 88 89 /** 90 * nfs_revalidate_size - Revalidate the file size 91 * @inode - pointer to inode struct 92 * @file - pointer to struct file 93 * 94 * Revalidates the file length. This is basically a wrapper around 95 * nfs_revalidate_inode() that takes into account the fact that we may 96 * have cached writes (in which case we don't care about the server's 97 * idea of what the file length is), or O_DIRECT (in which case we 98 * shouldn't trust the cache). 99 */ 100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 101 { 102 struct nfs_server *server = NFS_SERVER(inode); 103 struct nfs_inode *nfsi = NFS_I(inode); 104 105 if (nfs_have_delegated_attributes(inode)) 106 goto out_noreval; 107 108 if (filp->f_flags & O_DIRECT) 109 goto force_reval; 110 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 111 goto force_reval; 112 if (nfs_attribute_timeout(inode)) 113 goto force_reval; 114 out_noreval: 115 return 0; 116 force_reval: 117 return __nfs_revalidate_inode(server, inode); 118 } 119 120 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 121 { 122 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 123 filp, offset, whence); 124 125 /* 126 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 127 * the cached file length 128 */ 129 if (whence != SEEK_SET && whence != SEEK_CUR) { 130 struct inode *inode = filp->f_mapping->host; 131 132 int retval = nfs_revalidate_file_size(inode, filp); 133 if (retval < 0) 134 return (loff_t)retval; 135 } 136 137 return generic_file_llseek(filp, offset, whence); 138 } 139 EXPORT_SYMBOL_GPL(nfs_file_llseek); 140 141 /* 142 * Flush all dirty pages, and check for write errors. 143 */ 144 int 145 nfs_file_flush(struct file *file, fl_owner_t id) 146 { 147 struct inode *inode = file_inode(file); 148 149 dprintk("NFS: flush(%pD2)\n", file); 150 151 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 152 if ((file->f_mode & FMODE_WRITE) == 0) 153 return 0; 154 155 /* 156 * If we're holding a write delegation, then just start the i/o 157 * but don't wait for completion (or send a commit). 158 */ 159 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 160 return filemap_fdatawrite(file->f_mapping); 161 162 /* Flush writes to the server and return any errors */ 163 return vfs_fsync(file, 0); 164 } 165 EXPORT_SYMBOL_GPL(nfs_file_flush); 166 167 ssize_t 168 nfs_file_read(struct kiocb *iocb, const struct iovec *iov, 169 unsigned long nr_segs, loff_t pos) 170 { 171 struct inode *inode = file_inode(iocb->ki_filp); 172 ssize_t result; 173 174 if (iocb->ki_filp->f_flags & O_DIRECT) 175 return nfs_file_direct_read(iocb, iov, nr_segs, pos, true); 176 177 dprintk("NFS: read(%pD2, %lu@%lu)\n", 178 iocb->ki_filp, 179 (unsigned long) iov_length(iov, nr_segs), (unsigned long) pos); 180 181 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 182 if (!result) { 183 result = generic_file_aio_read(iocb, iov, nr_segs, pos); 184 if (result > 0) 185 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 186 } 187 return result; 188 } 189 EXPORT_SYMBOL_GPL(nfs_file_read); 190 191 ssize_t 192 nfs_file_splice_read(struct file *filp, loff_t *ppos, 193 struct pipe_inode_info *pipe, size_t count, 194 unsigned int flags) 195 { 196 struct inode *inode = file_inode(filp); 197 ssize_t res; 198 199 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n", 200 filp, (unsigned long) count, (unsigned long long) *ppos); 201 202 res = nfs_revalidate_mapping(inode, filp->f_mapping); 203 if (!res) { 204 res = generic_file_splice_read(filp, ppos, pipe, count, flags); 205 if (res > 0) 206 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res); 207 } 208 return res; 209 } 210 EXPORT_SYMBOL_GPL(nfs_file_splice_read); 211 212 int 213 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 214 { 215 struct inode *inode = file_inode(file); 216 int status; 217 218 dprintk("NFS: mmap(%pD2)\n", file); 219 220 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 221 * so we call that before revalidating the mapping 222 */ 223 status = generic_file_mmap(file, vma); 224 if (!status) { 225 vma->vm_ops = &nfs_file_vm_ops; 226 status = nfs_revalidate_mapping(inode, file->f_mapping); 227 } 228 return status; 229 } 230 EXPORT_SYMBOL_GPL(nfs_file_mmap); 231 232 /* 233 * Flush any dirty pages for this process, and check for write errors. 234 * The return status from this call provides a reliable indication of 235 * whether any write errors occurred for this process. 236 * 237 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to 238 * disk, but it retrieves and clears ctx->error after synching, despite 239 * the two being set at the same time in nfs_context_set_write_error(). 240 * This is because the former is used to notify the _next_ call to 241 * nfs_file_write() that a write error occurred, and hence cause it to 242 * fall back to doing a synchronous write. 243 */ 244 int 245 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync) 246 { 247 struct nfs_open_context *ctx = nfs_file_open_context(file); 248 struct inode *inode = file_inode(file); 249 int have_error, do_resend, status; 250 int ret = 0; 251 252 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 253 254 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 255 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 256 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 257 status = nfs_commit_inode(inode, FLUSH_SYNC); 258 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 259 if (have_error) { 260 ret = xchg(&ctx->error, 0); 261 if (ret) 262 goto out; 263 } 264 if (status < 0) { 265 ret = status; 266 goto out; 267 } 268 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 269 if (do_resend) 270 ret = -EAGAIN; 271 out: 272 return ret; 273 } 274 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit); 275 276 static int 277 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 278 { 279 int ret; 280 struct inode *inode = file_inode(file); 281 282 trace_nfs_fsync_enter(inode); 283 284 do { 285 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 286 if (ret != 0) 287 break; 288 mutex_lock(&inode->i_mutex); 289 ret = nfs_file_fsync_commit(file, start, end, datasync); 290 mutex_unlock(&inode->i_mutex); 291 /* 292 * If nfs_file_fsync_commit detected a server reboot, then 293 * resend all dirty pages that might have been covered by 294 * the NFS_CONTEXT_RESEND_WRITES flag 295 */ 296 start = 0; 297 end = LLONG_MAX; 298 } while (ret == -EAGAIN); 299 300 trace_nfs_fsync_exit(inode, ret); 301 return ret; 302 } 303 304 /* 305 * Decide whether a read/modify/write cycle may be more efficient 306 * then a modify/write/read cycle when writing to a page in the 307 * page cache. 308 * 309 * The modify/write/read cycle may occur if a page is read before 310 * being completely filled by the writer. In this situation, the 311 * page must be completely written to stable storage on the server 312 * before it can be refilled by reading in the page from the server. 313 * This can lead to expensive, small, FILE_SYNC mode writes being 314 * done. 315 * 316 * It may be more efficient to read the page first if the file is 317 * open for reading in addition to writing, the page is not marked 318 * as Uptodate, it is not dirty or waiting to be committed, 319 * indicating that it was previously allocated and then modified, 320 * that there were valid bytes of data in that range of the file, 321 * and that the new data won't completely replace the old data in 322 * that range of the file. 323 */ 324 static int nfs_want_read_modify_write(struct file *file, struct page *page, 325 loff_t pos, unsigned len) 326 { 327 unsigned int pglen = nfs_page_length(page); 328 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1); 329 unsigned int end = offset + len; 330 331 if ((file->f_mode & FMODE_READ) && /* open for read? */ 332 !PageUptodate(page) && /* Uptodate? */ 333 !PagePrivate(page) && /* i/o request already? */ 334 pglen && /* valid bytes of file? */ 335 (end < pglen || offset)) /* replace all valid bytes? */ 336 return 1; 337 return 0; 338 } 339 340 /* 341 * This does the "real" work of the write. We must allocate and lock the 342 * page to be sent back to the generic routine, which then copies the 343 * data from user space. 344 * 345 * If the writer ends up delaying the write, the writer needs to 346 * increment the page use counts until he is done with the page. 347 */ 348 static int nfs_write_begin(struct file *file, struct address_space *mapping, 349 loff_t pos, unsigned len, unsigned flags, 350 struct page **pagep, void **fsdata) 351 { 352 int ret; 353 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 354 struct page *page; 355 int once_thru = 0; 356 357 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 358 file, mapping->host->i_ino, len, (long long) pos); 359 360 start: 361 /* 362 * Prevent starvation issues if someone is doing a consistency 363 * sync-to-disk 364 */ 365 ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING, 366 nfs_wait_bit_killable, TASK_KILLABLE); 367 if (ret) 368 return ret; 369 370 page = grab_cache_page_write_begin(mapping, index, flags); 371 if (!page) 372 return -ENOMEM; 373 *pagep = page; 374 375 ret = nfs_flush_incompatible(file, page); 376 if (ret) { 377 unlock_page(page); 378 page_cache_release(page); 379 } else if (!once_thru && 380 nfs_want_read_modify_write(file, page, pos, len)) { 381 once_thru = 1; 382 ret = nfs_readpage(file, page); 383 page_cache_release(page); 384 if (!ret) 385 goto start; 386 } 387 return ret; 388 } 389 390 static int nfs_write_end(struct file *file, struct address_space *mapping, 391 loff_t pos, unsigned len, unsigned copied, 392 struct page *page, void *fsdata) 393 { 394 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 395 struct nfs_open_context *ctx = nfs_file_open_context(file); 396 int status; 397 398 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 399 file, mapping->host->i_ino, len, (long long) pos); 400 401 /* 402 * Zero any uninitialised parts of the page, and then mark the page 403 * as up to date if it turns out that we're extending the file. 404 */ 405 if (!PageUptodate(page)) { 406 unsigned pglen = nfs_page_length(page); 407 unsigned end = offset + len; 408 409 if (pglen == 0) { 410 zero_user_segments(page, 0, offset, 411 end, PAGE_CACHE_SIZE); 412 SetPageUptodate(page); 413 } else if (end >= pglen) { 414 zero_user_segment(page, end, PAGE_CACHE_SIZE); 415 if (offset == 0) 416 SetPageUptodate(page); 417 } else 418 zero_user_segment(page, pglen, PAGE_CACHE_SIZE); 419 } 420 421 status = nfs_updatepage(file, page, offset, copied); 422 423 unlock_page(page); 424 page_cache_release(page); 425 426 if (status < 0) 427 return status; 428 NFS_I(mapping->host)->write_io += copied; 429 430 if (nfs_ctx_key_to_expire(ctx)) { 431 status = nfs_wb_all(mapping->host); 432 if (status < 0) 433 return status; 434 } 435 436 return copied; 437 } 438 439 /* 440 * Partially or wholly invalidate a page 441 * - Release the private state associated with a page if undergoing complete 442 * page invalidation 443 * - Called if either PG_private or PG_fscache is set on the page 444 * - Caller holds page lock 445 */ 446 static void nfs_invalidate_page(struct page *page, unsigned int offset, 447 unsigned int length) 448 { 449 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 450 page, offset, length); 451 452 if (offset != 0 || length < PAGE_CACHE_SIZE) 453 return; 454 /* Cancel any unstarted writes on this page */ 455 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 456 457 nfs_fscache_invalidate_page(page, page->mapping->host); 458 } 459 460 /* 461 * Attempt to release the private state associated with a page 462 * - Called if either PG_private or PG_fscache is set on the page 463 * - Caller holds page lock 464 * - Return true (may release page) or false (may not) 465 */ 466 static int nfs_release_page(struct page *page, gfp_t gfp) 467 { 468 struct address_space *mapping = page->mapping; 469 470 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 471 472 /* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not 473 * doing this memory reclaim for a fs-related allocation. 474 */ 475 if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL && 476 !(current->flags & PF_FSTRANS)) { 477 int how = FLUSH_SYNC; 478 479 /* Don't let kswapd deadlock waiting for OOM RPC calls */ 480 if (current_is_kswapd()) 481 how = 0; 482 nfs_commit_inode(mapping->host, how); 483 } 484 /* If PagePrivate() is set, then the page is not freeable */ 485 if (PagePrivate(page)) 486 return 0; 487 return nfs_fscache_release_page(page, gfp); 488 } 489 490 static void nfs_check_dirty_writeback(struct page *page, 491 bool *dirty, bool *writeback) 492 { 493 struct nfs_inode *nfsi; 494 struct address_space *mapping = page_file_mapping(page); 495 496 if (!mapping || PageSwapCache(page)) 497 return; 498 499 /* 500 * Check if an unstable page is currently being committed and 501 * if so, have the VM treat it as if the page is under writeback 502 * so it will not block due to pages that will shortly be freeable. 503 */ 504 nfsi = NFS_I(mapping->host); 505 if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) { 506 *writeback = true; 507 return; 508 } 509 510 /* 511 * If PagePrivate() is set, then the page is not freeable and as the 512 * inode is not being committed, it's not going to be cleaned in the 513 * near future so treat it as dirty 514 */ 515 if (PagePrivate(page)) 516 *dirty = true; 517 } 518 519 /* 520 * Attempt to clear the private state associated with a page when an error 521 * occurs that requires the cached contents of an inode to be written back or 522 * destroyed 523 * - Called if either PG_private or fscache is set on the page 524 * - Caller holds page lock 525 * - Return 0 if successful, -error otherwise 526 */ 527 static int nfs_launder_page(struct page *page) 528 { 529 struct inode *inode = page_file_mapping(page)->host; 530 struct nfs_inode *nfsi = NFS_I(inode); 531 532 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 533 inode->i_ino, (long long)page_offset(page)); 534 535 nfs_fscache_wait_on_page_write(nfsi, page); 536 return nfs_wb_page(inode, page); 537 } 538 539 #ifdef CONFIG_NFS_SWAP 540 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 541 sector_t *span) 542 { 543 *span = sis->pages; 544 return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1); 545 } 546 547 static void nfs_swap_deactivate(struct file *file) 548 { 549 xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0); 550 } 551 #endif 552 553 const struct address_space_operations nfs_file_aops = { 554 .readpage = nfs_readpage, 555 .readpages = nfs_readpages, 556 .set_page_dirty = __set_page_dirty_nobuffers, 557 .writepage = nfs_writepage, 558 .writepages = nfs_writepages, 559 .write_begin = nfs_write_begin, 560 .write_end = nfs_write_end, 561 .invalidatepage = nfs_invalidate_page, 562 .releasepage = nfs_release_page, 563 .direct_IO = nfs_direct_IO, 564 .migratepage = nfs_migrate_page, 565 .launder_page = nfs_launder_page, 566 .is_dirty_writeback = nfs_check_dirty_writeback, 567 .error_remove_page = generic_error_remove_page, 568 #ifdef CONFIG_NFS_SWAP 569 .swap_activate = nfs_swap_activate, 570 .swap_deactivate = nfs_swap_deactivate, 571 #endif 572 }; 573 574 /* 575 * Notification that a PTE pointing to an NFS page is about to be made 576 * writable, implying that someone is about to modify the page through a 577 * shared-writable mapping 578 */ 579 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 580 { 581 struct page *page = vmf->page; 582 struct file *filp = vma->vm_file; 583 struct inode *inode = file_inode(filp); 584 unsigned pagelen; 585 int ret = VM_FAULT_NOPAGE; 586 struct address_space *mapping; 587 588 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 589 filp, filp->f_mapping->host->i_ino, 590 (long long)page_offset(page)); 591 592 /* make sure the cache has finished storing the page */ 593 nfs_fscache_wait_on_page_write(NFS_I(inode), page); 594 595 lock_page(page); 596 mapping = page_file_mapping(page); 597 if (mapping != inode->i_mapping) 598 goto out_unlock; 599 600 wait_on_page_writeback(page); 601 602 pagelen = nfs_page_length(page); 603 if (pagelen == 0) 604 goto out_unlock; 605 606 ret = VM_FAULT_LOCKED; 607 if (nfs_flush_incompatible(filp, page) == 0 && 608 nfs_updatepage(filp, page, 0, pagelen) == 0) 609 goto out; 610 611 ret = VM_FAULT_SIGBUS; 612 out_unlock: 613 unlock_page(page); 614 out: 615 return ret; 616 } 617 618 static const struct vm_operations_struct nfs_file_vm_ops = { 619 .fault = filemap_fault, 620 .map_pages = filemap_map_pages, 621 .page_mkwrite = nfs_vm_page_mkwrite, 622 .remap_pages = generic_file_remap_pages, 623 }; 624 625 static int nfs_need_sync_write(struct file *filp, struct inode *inode) 626 { 627 struct nfs_open_context *ctx; 628 629 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC)) 630 return 1; 631 ctx = nfs_file_open_context(filp); 632 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) || 633 nfs_ctx_key_to_expire(ctx)) 634 return 1; 635 return 0; 636 } 637 638 ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov, 639 unsigned long nr_segs, loff_t pos) 640 { 641 struct file *file = iocb->ki_filp; 642 struct inode *inode = file_inode(file); 643 unsigned long written = 0; 644 ssize_t result; 645 size_t count = iov_length(iov, nr_segs); 646 647 result = nfs_key_timeout_notify(file, inode); 648 if (result) 649 return result; 650 651 if (file->f_flags & O_DIRECT) 652 return nfs_file_direct_write(iocb, iov, nr_segs, pos, true); 653 654 dprintk("NFS: write(%pD2, %lu@%Ld)\n", 655 file, (unsigned long) count, (long long) pos); 656 657 result = -EBUSY; 658 if (IS_SWAPFILE(inode)) 659 goto out_swapfile; 660 /* 661 * O_APPEND implies that we must revalidate the file length. 662 */ 663 if (file->f_flags & O_APPEND) { 664 result = nfs_revalidate_file_size(inode, file); 665 if (result) 666 goto out; 667 } 668 669 result = count; 670 if (!count) 671 goto out; 672 673 result = generic_file_aio_write(iocb, iov, nr_segs, pos); 674 if (result > 0) 675 written = result; 676 677 /* Return error values for O_DSYNC and IS_SYNC() */ 678 if (result >= 0 && nfs_need_sync_write(file, inode)) { 679 int err = vfs_fsync(file, 0); 680 if (err < 0) 681 result = err; 682 } 683 if (result > 0) 684 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 685 out: 686 return result; 687 688 out_swapfile: 689 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 690 goto out; 691 } 692 EXPORT_SYMBOL_GPL(nfs_file_write); 693 694 ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe, 695 struct file *filp, loff_t *ppos, 696 size_t count, unsigned int flags) 697 { 698 struct inode *inode = file_inode(filp); 699 unsigned long written = 0; 700 ssize_t ret; 701 702 dprintk("NFS splice_write(%pD2, %lu@%llu)\n", 703 filp, (unsigned long) count, (unsigned long long) *ppos); 704 705 /* 706 * The combination of splice and an O_APPEND destination is disallowed. 707 */ 708 709 ret = generic_file_splice_write(pipe, filp, ppos, count, flags); 710 if (ret > 0) 711 written = ret; 712 713 if (ret >= 0 && nfs_need_sync_write(filp, inode)) { 714 int err = vfs_fsync(filp, 0); 715 if (err < 0) 716 ret = err; 717 } 718 if (ret > 0) 719 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 720 return ret; 721 } 722 EXPORT_SYMBOL_GPL(nfs_file_splice_write); 723 724 static int 725 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 726 { 727 struct inode *inode = filp->f_mapping->host; 728 int status = 0; 729 unsigned int saved_type = fl->fl_type; 730 731 /* Try local locking first */ 732 posix_test_lock(filp, fl); 733 if (fl->fl_type != F_UNLCK) { 734 /* found a conflict */ 735 goto out; 736 } 737 fl->fl_type = saved_type; 738 739 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 740 goto out_noconflict; 741 742 if (is_local) 743 goto out_noconflict; 744 745 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 746 out: 747 return status; 748 out_noconflict: 749 fl->fl_type = F_UNLCK; 750 goto out; 751 } 752 753 static int do_vfs_lock(struct file *file, struct file_lock *fl) 754 { 755 int res = 0; 756 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 757 case FL_POSIX: 758 res = posix_lock_file_wait(file, fl); 759 break; 760 case FL_FLOCK: 761 res = flock_lock_file_wait(file, fl); 762 break; 763 default: 764 BUG(); 765 } 766 return res; 767 } 768 769 static int 770 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 771 { 772 struct inode *inode = filp->f_mapping->host; 773 struct nfs_lock_context *l_ctx; 774 int status; 775 776 /* 777 * Flush all pending writes before doing anything 778 * with locks.. 779 */ 780 nfs_sync_mapping(filp->f_mapping); 781 782 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 783 if (!IS_ERR(l_ctx)) { 784 status = nfs_iocounter_wait(&l_ctx->io_count); 785 nfs_put_lock_context(l_ctx); 786 if (status < 0) 787 return status; 788 } 789 790 /* NOTE: special case 791 * If we're signalled while cleaning up locks on process exit, we 792 * still need to complete the unlock. 793 */ 794 /* 795 * Use local locking if mounted with "-onolock" or with appropriate 796 * "-olocal_lock=" 797 */ 798 if (!is_local) 799 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 800 else 801 status = do_vfs_lock(filp, fl); 802 return status; 803 } 804 805 static int 806 is_time_granular(struct timespec *ts) { 807 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000)); 808 } 809 810 static int 811 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 812 { 813 struct inode *inode = filp->f_mapping->host; 814 int status; 815 816 /* 817 * Flush all pending writes before doing anything 818 * with locks.. 819 */ 820 status = nfs_sync_mapping(filp->f_mapping); 821 if (status != 0) 822 goto out; 823 824 /* 825 * Use local locking if mounted with "-onolock" or with appropriate 826 * "-olocal_lock=" 827 */ 828 if (!is_local) 829 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 830 else 831 status = do_vfs_lock(filp, fl); 832 if (status < 0) 833 goto out; 834 835 /* 836 * Revalidate the cache if the server has time stamps granular 837 * enough to detect subsecond changes. Otherwise, clear the 838 * cache to prevent missing any changes. 839 * 840 * This makes locking act as a cache coherency point. 841 */ 842 nfs_sync_mapping(filp->f_mapping); 843 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 844 if (is_time_granular(&NFS_SERVER(inode)->time_delta)) 845 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 846 else 847 nfs_zap_caches(inode); 848 } 849 out: 850 return status; 851 } 852 853 /* 854 * Lock a (portion of) a file 855 */ 856 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 857 { 858 struct inode *inode = filp->f_mapping->host; 859 int ret = -ENOLCK; 860 int is_local = 0; 861 862 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 863 filp, fl->fl_type, fl->fl_flags, 864 (long long)fl->fl_start, (long long)fl->fl_end); 865 866 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 867 868 /* No mandatory locks over NFS */ 869 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 870 goto out_err; 871 872 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 873 is_local = 1; 874 875 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 876 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 877 if (ret < 0) 878 goto out_err; 879 } 880 881 if (IS_GETLK(cmd)) 882 ret = do_getlk(filp, cmd, fl, is_local); 883 else if (fl->fl_type == F_UNLCK) 884 ret = do_unlk(filp, cmd, fl, is_local); 885 else 886 ret = do_setlk(filp, cmd, fl, is_local); 887 out_err: 888 return ret; 889 } 890 EXPORT_SYMBOL_GPL(nfs_lock); 891 892 /* 893 * Lock a (portion of) a file 894 */ 895 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 896 { 897 struct inode *inode = filp->f_mapping->host; 898 int is_local = 0; 899 900 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 901 filp, fl->fl_type, fl->fl_flags); 902 903 if (!(fl->fl_flags & FL_FLOCK)) 904 return -ENOLCK; 905 906 /* 907 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 908 * any standard. In principle we might be able to support LOCK_MAND 909 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 910 * NFS code is not set up for it. 911 */ 912 if (fl->fl_type & LOCK_MAND) 913 return -EINVAL; 914 915 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 916 is_local = 1; 917 918 /* We're simulating flock() locks using posix locks on the server */ 919 fl->fl_owner = (fl_owner_t)filp; 920 fl->fl_start = 0; 921 fl->fl_end = OFFSET_MAX; 922 923 if (fl->fl_type == F_UNLCK) 924 return do_unlk(filp, cmd, fl, is_local); 925 return do_setlk(filp, cmd, fl, is_local); 926 } 927 EXPORT_SYMBOL_GPL(nfs_flock); 928 929 /* 930 * There is no protocol support for leases, so we have no way to implement 931 * them correctly in the face of opens by other clients. 932 */ 933 int nfs_setlease(struct file *file, long arg, struct file_lock **fl) 934 { 935 dprintk("NFS: setlease(%pD2, arg=%ld)\n", file, arg); 936 return -EINVAL; 937 } 938 EXPORT_SYMBOL_GPL(nfs_setlease); 939 940 const struct file_operations nfs_file_operations = { 941 .llseek = nfs_file_llseek, 942 .read = do_sync_read, 943 .write = do_sync_write, 944 .aio_read = nfs_file_read, 945 .aio_write = nfs_file_write, 946 .mmap = nfs_file_mmap, 947 .open = nfs_file_open, 948 .flush = nfs_file_flush, 949 .release = nfs_file_release, 950 .fsync = nfs_file_fsync, 951 .lock = nfs_lock, 952 .flock = nfs_flock, 953 .splice_read = nfs_file_splice_read, 954 .splice_write = nfs_file_splice_write, 955 .check_flags = nfs_check_flags, 956 .setlease = nfs_setlease, 957 }; 958 EXPORT_SYMBOL_GPL(nfs_file_operations); 959