1 /* 2 * linux/fs/nfs/file.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * Changes Copyright (C) 1994 by Florian La Roche 7 * - Do not copy data too often around in the kernel. 8 * - In nfs_file_read the return value of kmalloc wasn't checked. 9 * - Put in a better version of read look-ahead buffering. Original idea 10 * and implementation by Wai S Kok elekokws@ee.nus.sg. 11 * 12 * Expire cache on write to a file by Wai S Kok (Oct 1994). 13 * 14 * Total rewrite of read side for new NFS buffer cache.. Linus. 15 * 16 * nfs regular file handling functions 17 */ 18 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/fcntl.h> 24 #include <linux/stat.h> 25 #include <linux/nfs_fs.h> 26 #include <linux/nfs_mount.h> 27 #include <linux/mm.h> 28 #include <linux/pagemap.h> 29 #include <linux/aio.h> 30 #include <linux/gfp.h> 31 #include <linux/swap.h> 32 33 #include <asm/uaccess.h> 34 35 #include "delegation.h" 36 #include "internal.h" 37 #include "iostat.h" 38 #include "fscache.h" 39 40 #include "nfstrace.h" 41 42 #define NFSDBG_FACILITY NFSDBG_FILE 43 44 static const struct vm_operations_struct nfs_file_vm_ops; 45 46 /* Hack for future NFS swap support */ 47 #ifndef IS_SWAPFILE 48 # define IS_SWAPFILE(inode) (0) 49 #endif 50 51 int nfs_check_flags(int flags) 52 { 53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 54 return -EINVAL; 55 56 return 0; 57 } 58 EXPORT_SYMBOL_GPL(nfs_check_flags); 59 60 /* 61 * Open file 62 */ 63 static int 64 nfs_file_open(struct inode *inode, struct file *filp) 65 { 66 int res; 67 68 dprintk("NFS: open file(%pD2)\n", filp); 69 70 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 71 res = nfs_check_flags(filp->f_flags); 72 if (res) 73 return res; 74 75 res = nfs_open(inode, filp); 76 return res; 77 } 78 79 int 80 nfs_file_release(struct inode *inode, struct file *filp) 81 { 82 dprintk("NFS: release(%pD2)\n", filp); 83 84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 85 return nfs_release(inode, filp); 86 } 87 EXPORT_SYMBOL_GPL(nfs_file_release); 88 89 /** 90 * nfs_revalidate_size - Revalidate the file size 91 * @inode - pointer to inode struct 92 * @file - pointer to struct file 93 * 94 * Revalidates the file length. This is basically a wrapper around 95 * nfs_revalidate_inode() that takes into account the fact that we may 96 * have cached writes (in which case we don't care about the server's 97 * idea of what the file length is), or O_DIRECT (in which case we 98 * shouldn't trust the cache). 99 */ 100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 101 { 102 struct nfs_server *server = NFS_SERVER(inode); 103 struct nfs_inode *nfsi = NFS_I(inode); 104 105 if (nfs_have_delegated_attributes(inode)) 106 goto out_noreval; 107 108 if (filp->f_flags & O_DIRECT) 109 goto force_reval; 110 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 111 goto force_reval; 112 if (nfs_attribute_timeout(inode)) 113 goto force_reval; 114 out_noreval: 115 return 0; 116 force_reval: 117 return __nfs_revalidate_inode(server, inode); 118 } 119 120 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 121 { 122 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 123 filp, offset, whence); 124 125 /* 126 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 127 * the cached file length 128 */ 129 if (whence != SEEK_SET && whence != SEEK_CUR) { 130 struct inode *inode = filp->f_mapping->host; 131 132 int retval = nfs_revalidate_file_size(inode, filp); 133 if (retval < 0) 134 return (loff_t)retval; 135 } 136 137 return generic_file_llseek(filp, offset, whence); 138 } 139 EXPORT_SYMBOL_GPL(nfs_file_llseek); 140 141 /* 142 * Flush all dirty pages, and check for write errors. 143 */ 144 int 145 nfs_file_flush(struct file *file, fl_owner_t id) 146 { 147 struct inode *inode = file_inode(file); 148 149 dprintk("NFS: flush(%pD2)\n", file); 150 151 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 152 if ((file->f_mode & FMODE_WRITE) == 0) 153 return 0; 154 155 /* 156 * If we're holding a write delegation, then just start the i/o 157 * but don't wait for completion (or send a commit). 158 */ 159 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 160 return filemap_fdatawrite(file->f_mapping); 161 162 /* Flush writes to the server and return any errors */ 163 return vfs_fsync(file, 0); 164 } 165 EXPORT_SYMBOL_GPL(nfs_file_flush); 166 167 ssize_t 168 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 169 { 170 struct inode *inode = file_inode(iocb->ki_filp); 171 ssize_t result; 172 173 if (iocb->ki_filp->f_flags & O_DIRECT) 174 return nfs_file_direct_read(iocb, to, iocb->ki_pos, true); 175 176 dprintk("NFS: read(%pD2, %zu@%lu)\n", 177 iocb->ki_filp, 178 iov_iter_count(to), (unsigned long) iocb->ki_pos); 179 180 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 181 if (!result) { 182 result = generic_file_read_iter(iocb, to); 183 if (result > 0) 184 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 185 } 186 return result; 187 } 188 EXPORT_SYMBOL_GPL(nfs_file_read); 189 190 ssize_t 191 nfs_file_splice_read(struct file *filp, loff_t *ppos, 192 struct pipe_inode_info *pipe, size_t count, 193 unsigned int flags) 194 { 195 struct inode *inode = file_inode(filp); 196 ssize_t res; 197 198 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n", 199 filp, (unsigned long) count, (unsigned long long) *ppos); 200 201 res = nfs_revalidate_mapping(inode, filp->f_mapping); 202 if (!res) { 203 res = generic_file_splice_read(filp, ppos, pipe, count, flags); 204 if (res > 0) 205 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res); 206 } 207 return res; 208 } 209 EXPORT_SYMBOL_GPL(nfs_file_splice_read); 210 211 int 212 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 213 { 214 struct inode *inode = file_inode(file); 215 int status; 216 217 dprintk("NFS: mmap(%pD2)\n", file); 218 219 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 220 * so we call that before revalidating the mapping 221 */ 222 status = generic_file_mmap(file, vma); 223 if (!status) { 224 vma->vm_ops = &nfs_file_vm_ops; 225 status = nfs_revalidate_mapping(inode, file->f_mapping); 226 } 227 return status; 228 } 229 EXPORT_SYMBOL_GPL(nfs_file_mmap); 230 231 /* 232 * Flush any dirty pages for this process, and check for write errors. 233 * The return status from this call provides a reliable indication of 234 * whether any write errors occurred for this process. 235 * 236 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to 237 * disk, but it retrieves and clears ctx->error after synching, despite 238 * the two being set at the same time in nfs_context_set_write_error(). 239 * This is because the former is used to notify the _next_ call to 240 * nfs_file_write() that a write error occurred, and hence cause it to 241 * fall back to doing a synchronous write. 242 */ 243 int 244 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync) 245 { 246 struct nfs_open_context *ctx = nfs_file_open_context(file); 247 struct inode *inode = file_inode(file); 248 int have_error, do_resend, status; 249 int ret = 0; 250 251 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 252 253 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 254 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 255 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 256 status = nfs_commit_inode(inode, FLUSH_SYNC); 257 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 258 if (have_error) { 259 ret = xchg(&ctx->error, 0); 260 if (ret) 261 goto out; 262 } 263 if (status < 0) { 264 ret = status; 265 goto out; 266 } 267 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 268 if (do_resend) 269 ret = -EAGAIN; 270 out: 271 return ret; 272 } 273 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit); 274 275 static int 276 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 277 { 278 int ret; 279 struct inode *inode = file_inode(file); 280 281 trace_nfs_fsync_enter(inode); 282 283 do { 284 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 285 if (ret != 0) 286 break; 287 mutex_lock(&inode->i_mutex); 288 ret = nfs_file_fsync_commit(file, start, end, datasync); 289 mutex_unlock(&inode->i_mutex); 290 /* 291 * If nfs_file_fsync_commit detected a server reboot, then 292 * resend all dirty pages that might have been covered by 293 * the NFS_CONTEXT_RESEND_WRITES flag 294 */ 295 start = 0; 296 end = LLONG_MAX; 297 } while (ret == -EAGAIN); 298 299 trace_nfs_fsync_exit(inode, ret); 300 return ret; 301 } 302 303 /* 304 * Decide whether a read/modify/write cycle may be more efficient 305 * then a modify/write/read cycle when writing to a page in the 306 * page cache. 307 * 308 * The modify/write/read cycle may occur if a page is read before 309 * being completely filled by the writer. In this situation, the 310 * page must be completely written to stable storage on the server 311 * before it can be refilled by reading in the page from the server. 312 * This can lead to expensive, small, FILE_SYNC mode writes being 313 * done. 314 * 315 * It may be more efficient to read the page first if the file is 316 * open for reading in addition to writing, the page is not marked 317 * as Uptodate, it is not dirty or waiting to be committed, 318 * indicating that it was previously allocated and then modified, 319 * that there were valid bytes of data in that range of the file, 320 * and that the new data won't completely replace the old data in 321 * that range of the file. 322 */ 323 static int nfs_want_read_modify_write(struct file *file, struct page *page, 324 loff_t pos, unsigned len) 325 { 326 unsigned int pglen = nfs_page_length(page); 327 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1); 328 unsigned int end = offset + len; 329 330 if ((file->f_mode & FMODE_READ) && /* open for read? */ 331 !PageUptodate(page) && /* Uptodate? */ 332 !PagePrivate(page) && /* i/o request already? */ 333 pglen && /* valid bytes of file? */ 334 (end < pglen || offset)) /* replace all valid bytes? */ 335 return 1; 336 return 0; 337 } 338 339 /* 340 * This does the "real" work of the write. We must allocate and lock the 341 * page to be sent back to the generic routine, which then copies the 342 * data from user space. 343 * 344 * If the writer ends up delaying the write, the writer needs to 345 * increment the page use counts until he is done with the page. 346 */ 347 static int nfs_write_begin(struct file *file, struct address_space *mapping, 348 loff_t pos, unsigned len, unsigned flags, 349 struct page **pagep, void **fsdata) 350 { 351 int ret; 352 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 353 struct page *page; 354 int once_thru = 0; 355 356 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 357 file, mapping->host->i_ino, len, (long long) pos); 358 359 start: 360 /* 361 * Prevent starvation issues if someone is doing a consistency 362 * sync-to-disk 363 */ 364 ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING, 365 nfs_wait_bit_killable, TASK_KILLABLE); 366 if (ret) 367 return ret; 368 369 page = grab_cache_page_write_begin(mapping, index, flags); 370 if (!page) 371 return -ENOMEM; 372 *pagep = page; 373 374 ret = nfs_flush_incompatible(file, page); 375 if (ret) { 376 unlock_page(page); 377 page_cache_release(page); 378 } else if (!once_thru && 379 nfs_want_read_modify_write(file, page, pos, len)) { 380 once_thru = 1; 381 ret = nfs_readpage(file, page); 382 page_cache_release(page); 383 if (!ret) 384 goto start; 385 } 386 return ret; 387 } 388 389 static int nfs_write_end(struct file *file, struct address_space *mapping, 390 loff_t pos, unsigned len, unsigned copied, 391 struct page *page, void *fsdata) 392 { 393 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 394 struct nfs_open_context *ctx = nfs_file_open_context(file); 395 int status; 396 397 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 398 file, mapping->host->i_ino, len, (long long) pos); 399 400 /* 401 * Zero any uninitialised parts of the page, and then mark the page 402 * as up to date if it turns out that we're extending the file. 403 */ 404 if (!PageUptodate(page)) { 405 unsigned pglen = nfs_page_length(page); 406 unsigned end = offset + len; 407 408 if (pglen == 0) { 409 zero_user_segments(page, 0, offset, 410 end, PAGE_CACHE_SIZE); 411 SetPageUptodate(page); 412 } else if (end >= pglen) { 413 zero_user_segment(page, end, PAGE_CACHE_SIZE); 414 if (offset == 0) 415 SetPageUptodate(page); 416 } else 417 zero_user_segment(page, pglen, PAGE_CACHE_SIZE); 418 } 419 420 status = nfs_updatepage(file, page, offset, copied); 421 422 unlock_page(page); 423 page_cache_release(page); 424 425 if (status < 0) 426 return status; 427 NFS_I(mapping->host)->write_io += copied; 428 429 if (nfs_ctx_key_to_expire(ctx)) { 430 status = nfs_wb_all(mapping->host); 431 if (status < 0) 432 return status; 433 } 434 435 return copied; 436 } 437 438 /* 439 * Partially or wholly invalidate a page 440 * - Release the private state associated with a page if undergoing complete 441 * page invalidation 442 * - Called if either PG_private or PG_fscache is set on the page 443 * - Caller holds page lock 444 */ 445 static void nfs_invalidate_page(struct page *page, unsigned int offset, 446 unsigned int length) 447 { 448 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 449 page, offset, length); 450 451 if (offset != 0 || length < PAGE_CACHE_SIZE) 452 return; 453 /* Cancel any unstarted writes on this page */ 454 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 455 456 nfs_fscache_invalidate_page(page, page->mapping->host); 457 } 458 459 /* 460 * Attempt to release the private state associated with a page 461 * - Called if either PG_private or PG_fscache is set on the page 462 * - Caller holds page lock 463 * - Return true (may release page) or false (may not) 464 */ 465 static int nfs_release_page(struct page *page, gfp_t gfp) 466 { 467 struct address_space *mapping = page->mapping; 468 469 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 470 471 /* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not 472 * doing this memory reclaim for a fs-related allocation. 473 */ 474 if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL && 475 !(current->flags & PF_FSTRANS)) { 476 int how = FLUSH_SYNC; 477 478 /* Don't let kswapd deadlock waiting for OOM RPC calls */ 479 if (current_is_kswapd()) 480 how = 0; 481 nfs_commit_inode(mapping->host, how); 482 } 483 /* If PagePrivate() is set, then the page is not freeable */ 484 if (PagePrivate(page)) 485 return 0; 486 return nfs_fscache_release_page(page, gfp); 487 } 488 489 static void nfs_check_dirty_writeback(struct page *page, 490 bool *dirty, bool *writeback) 491 { 492 struct nfs_inode *nfsi; 493 struct address_space *mapping = page_file_mapping(page); 494 495 if (!mapping || PageSwapCache(page)) 496 return; 497 498 /* 499 * Check if an unstable page is currently being committed and 500 * if so, have the VM treat it as if the page is under writeback 501 * so it will not block due to pages that will shortly be freeable. 502 */ 503 nfsi = NFS_I(mapping->host); 504 if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) { 505 *writeback = true; 506 return; 507 } 508 509 /* 510 * If PagePrivate() is set, then the page is not freeable and as the 511 * inode is not being committed, it's not going to be cleaned in the 512 * near future so treat it as dirty 513 */ 514 if (PagePrivate(page)) 515 *dirty = true; 516 } 517 518 /* 519 * Attempt to clear the private state associated with a page when an error 520 * occurs that requires the cached contents of an inode to be written back or 521 * destroyed 522 * - Called if either PG_private or fscache is set on the page 523 * - Caller holds page lock 524 * - Return 0 if successful, -error otherwise 525 */ 526 static int nfs_launder_page(struct page *page) 527 { 528 struct inode *inode = page_file_mapping(page)->host; 529 struct nfs_inode *nfsi = NFS_I(inode); 530 531 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 532 inode->i_ino, (long long)page_offset(page)); 533 534 nfs_fscache_wait_on_page_write(nfsi, page); 535 return nfs_wb_page(inode, page); 536 } 537 538 #ifdef CONFIG_NFS_SWAP 539 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 540 sector_t *span) 541 { 542 *span = sis->pages; 543 return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1); 544 } 545 546 static void nfs_swap_deactivate(struct file *file) 547 { 548 xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0); 549 } 550 #endif 551 552 const struct address_space_operations nfs_file_aops = { 553 .readpage = nfs_readpage, 554 .readpages = nfs_readpages, 555 .set_page_dirty = __set_page_dirty_nobuffers, 556 .writepage = nfs_writepage, 557 .writepages = nfs_writepages, 558 .write_begin = nfs_write_begin, 559 .write_end = nfs_write_end, 560 .invalidatepage = nfs_invalidate_page, 561 .releasepage = nfs_release_page, 562 .direct_IO = nfs_direct_IO, 563 .migratepage = nfs_migrate_page, 564 .launder_page = nfs_launder_page, 565 .is_dirty_writeback = nfs_check_dirty_writeback, 566 .error_remove_page = generic_error_remove_page, 567 #ifdef CONFIG_NFS_SWAP 568 .swap_activate = nfs_swap_activate, 569 .swap_deactivate = nfs_swap_deactivate, 570 #endif 571 }; 572 573 /* 574 * Notification that a PTE pointing to an NFS page is about to be made 575 * writable, implying that someone is about to modify the page through a 576 * shared-writable mapping 577 */ 578 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 579 { 580 struct page *page = vmf->page; 581 struct file *filp = vma->vm_file; 582 struct inode *inode = file_inode(filp); 583 unsigned pagelen; 584 int ret = VM_FAULT_NOPAGE; 585 struct address_space *mapping; 586 587 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 588 filp, filp->f_mapping->host->i_ino, 589 (long long)page_offset(page)); 590 591 /* make sure the cache has finished storing the page */ 592 nfs_fscache_wait_on_page_write(NFS_I(inode), page); 593 594 lock_page(page); 595 mapping = page_file_mapping(page); 596 if (mapping != inode->i_mapping) 597 goto out_unlock; 598 599 wait_on_page_writeback(page); 600 601 pagelen = nfs_page_length(page); 602 if (pagelen == 0) 603 goto out_unlock; 604 605 ret = VM_FAULT_LOCKED; 606 if (nfs_flush_incompatible(filp, page) == 0 && 607 nfs_updatepage(filp, page, 0, pagelen) == 0) 608 goto out; 609 610 ret = VM_FAULT_SIGBUS; 611 out_unlock: 612 unlock_page(page); 613 out: 614 return ret; 615 } 616 617 static const struct vm_operations_struct nfs_file_vm_ops = { 618 .fault = filemap_fault, 619 .map_pages = filemap_map_pages, 620 .page_mkwrite = nfs_vm_page_mkwrite, 621 .remap_pages = generic_file_remap_pages, 622 }; 623 624 static int nfs_need_sync_write(struct file *filp, struct inode *inode) 625 { 626 struct nfs_open_context *ctx; 627 628 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC)) 629 return 1; 630 ctx = nfs_file_open_context(filp); 631 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) || 632 nfs_ctx_key_to_expire(ctx)) 633 return 1; 634 return 0; 635 } 636 637 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 638 { 639 struct file *file = iocb->ki_filp; 640 struct inode *inode = file_inode(file); 641 unsigned long written = 0; 642 ssize_t result; 643 size_t count = iov_iter_count(from); 644 loff_t pos = iocb->ki_pos; 645 646 result = nfs_key_timeout_notify(file, inode); 647 if (result) 648 return result; 649 650 if (file->f_flags & O_DIRECT) 651 return nfs_file_direct_write(iocb, from, pos, true); 652 653 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 654 file, count, (long long) pos); 655 656 result = -EBUSY; 657 if (IS_SWAPFILE(inode)) 658 goto out_swapfile; 659 /* 660 * O_APPEND implies that we must revalidate the file length. 661 */ 662 if (file->f_flags & O_APPEND) { 663 result = nfs_revalidate_file_size(inode, file); 664 if (result) 665 goto out; 666 } 667 668 result = count; 669 if (!count) 670 goto out; 671 672 result = generic_file_write_iter(iocb, from); 673 if (result > 0) 674 written = result; 675 676 /* Return error values for O_DSYNC and IS_SYNC() */ 677 if (result >= 0 && nfs_need_sync_write(file, inode)) { 678 int err = vfs_fsync(file, 0); 679 if (err < 0) 680 result = err; 681 } 682 if (result > 0) 683 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 684 out: 685 return result; 686 687 out_swapfile: 688 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 689 goto out; 690 } 691 EXPORT_SYMBOL_GPL(nfs_file_write); 692 693 static int 694 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 695 { 696 struct inode *inode = filp->f_mapping->host; 697 int status = 0; 698 unsigned int saved_type = fl->fl_type; 699 700 /* Try local locking first */ 701 posix_test_lock(filp, fl); 702 if (fl->fl_type != F_UNLCK) { 703 /* found a conflict */ 704 goto out; 705 } 706 fl->fl_type = saved_type; 707 708 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 709 goto out_noconflict; 710 711 if (is_local) 712 goto out_noconflict; 713 714 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 715 out: 716 return status; 717 out_noconflict: 718 fl->fl_type = F_UNLCK; 719 goto out; 720 } 721 722 static int do_vfs_lock(struct file *file, struct file_lock *fl) 723 { 724 int res = 0; 725 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 726 case FL_POSIX: 727 res = posix_lock_file_wait(file, fl); 728 break; 729 case FL_FLOCK: 730 res = flock_lock_file_wait(file, fl); 731 break; 732 default: 733 BUG(); 734 } 735 return res; 736 } 737 738 static int 739 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 740 { 741 struct inode *inode = filp->f_mapping->host; 742 struct nfs_lock_context *l_ctx; 743 int status; 744 745 /* 746 * Flush all pending writes before doing anything 747 * with locks.. 748 */ 749 nfs_sync_mapping(filp->f_mapping); 750 751 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 752 if (!IS_ERR(l_ctx)) { 753 status = nfs_iocounter_wait(&l_ctx->io_count); 754 nfs_put_lock_context(l_ctx); 755 if (status < 0) 756 return status; 757 } 758 759 /* NOTE: special case 760 * If we're signalled while cleaning up locks on process exit, we 761 * still need to complete the unlock. 762 */ 763 /* 764 * Use local locking if mounted with "-onolock" or with appropriate 765 * "-olocal_lock=" 766 */ 767 if (!is_local) 768 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 769 else 770 status = do_vfs_lock(filp, fl); 771 return status; 772 } 773 774 static int 775 is_time_granular(struct timespec *ts) { 776 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000)); 777 } 778 779 static int 780 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 781 { 782 struct inode *inode = filp->f_mapping->host; 783 int status; 784 785 /* 786 * Flush all pending writes before doing anything 787 * with locks.. 788 */ 789 status = nfs_sync_mapping(filp->f_mapping); 790 if (status != 0) 791 goto out; 792 793 /* 794 * Use local locking if mounted with "-onolock" or with appropriate 795 * "-olocal_lock=" 796 */ 797 if (!is_local) 798 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 799 else 800 status = do_vfs_lock(filp, fl); 801 if (status < 0) 802 goto out; 803 804 /* 805 * Revalidate the cache if the server has time stamps granular 806 * enough to detect subsecond changes. Otherwise, clear the 807 * cache to prevent missing any changes. 808 * 809 * This makes locking act as a cache coherency point. 810 */ 811 nfs_sync_mapping(filp->f_mapping); 812 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 813 if (is_time_granular(&NFS_SERVER(inode)->time_delta)) 814 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 815 else 816 nfs_zap_caches(inode); 817 } 818 out: 819 return status; 820 } 821 822 /* 823 * Lock a (portion of) a file 824 */ 825 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 826 { 827 struct inode *inode = filp->f_mapping->host; 828 int ret = -ENOLCK; 829 int is_local = 0; 830 831 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 832 filp, fl->fl_type, fl->fl_flags, 833 (long long)fl->fl_start, (long long)fl->fl_end); 834 835 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 836 837 /* No mandatory locks over NFS */ 838 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 839 goto out_err; 840 841 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 842 is_local = 1; 843 844 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 845 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 846 if (ret < 0) 847 goto out_err; 848 } 849 850 if (IS_GETLK(cmd)) 851 ret = do_getlk(filp, cmd, fl, is_local); 852 else if (fl->fl_type == F_UNLCK) 853 ret = do_unlk(filp, cmd, fl, is_local); 854 else 855 ret = do_setlk(filp, cmd, fl, is_local); 856 out_err: 857 return ret; 858 } 859 EXPORT_SYMBOL_GPL(nfs_lock); 860 861 /* 862 * Lock a (portion of) a file 863 */ 864 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 865 { 866 struct inode *inode = filp->f_mapping->host; 867 int is_local = 0; 868 869 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 870 filp, fl->fl_type, fl->fl_flags); 871 872 if (!(fl->fl_flags & FL_FLOCK)) 873 return -ENOLCK; 874 875 /* 876 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 877 * any standard. In principle we might be able to support LOCK_MAND 878 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 879 * NFS code is not set up for it. 880 */ 881 if (fl->fl_type & LOCK_MAND) 882 return -EINVAL; 883 884 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 885 is_local = 1; 886 887 /* We're simulating flock() locks using posix locks on the server */ 888 if (fl->fl_type == F_UNLCK) 889 return do_unlk(filp, cmd, fl, is_local); 890 return do_setlk(filp, cmd, fl, is_local); 891 } 892 EXPORT_SYMBOL_GPL(nfs_flock); 893 894 /* 895 * There is no protocol support for leases, so we have no way to implement 896 * them correctly in the face of opens by other clients. 897 */ 898 int nfs_setlease(struct file *file, long arg, struct file_lock **fl) 899 { 900 dprintk("NFS: setlease(%pD2, arg=%ld)\n", file, arg); 901 return -EINVAL; 902 } 903 EXPORT_SYMBOL_GPL(nfs_setlease); 904 905 const struct file_operations nfs_file_operations = { 906 .llseek = nfs_file_llseek, 907 .read = new_sync_read, 908 .write = new_sync_write, 909 .read_iter = nfs_file_read, 910 .write_iter = nfs_file_write, 911 .mmap = nfs_file_mmap, 912 .open = nfs_file_open, 913 .flush = nfs_file_flush, 914 .release = nfs_file_release, 915 .fsync = nfs_file_fsync, 916 .lock = nfs_lock, 917 .flock = nfs_flock, 918 .splice_read = nfs_file_splice_read, 919 .splice_write = iter_file_splice_write, 920 .check_flags = nfs_check_flags, 921 .setlease = nfs_setlease, 922 }; 923 EXPORT_SYMBOL_GPL(nfs_file_operations); 924