xref: /openbmc/linux/fs/nfs/file.c (revision 9cfc5c90)
1 /*
2  *  linux/fs/nfs/file.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  Changes Copyright (C) 1994 by Florian La Roche
7  *   - Do not copy data too often around in the kernel.
8  *   - In nfs_file_read the return value of kmalloc wasn't checked.
9  *   - Put in a better version of read look-ahead buffering. Original idea
10  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11  *
12  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13  *
14  *  Total rewrite of read side for new NFS buffer cache.. Linus.
15  *
16  *  nfs regular file handling functions
17  */
18 
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
31 
32 #include <asm/uaccess.h>
33 
34 #include "delegation.h"
35 #include "internal.h"
36 #include "iostat.h"
37 #include "fscache.h"
38 #include "pnfs.h"
39 
40 #include "nfstrace.h"
41 
42 #define NFSDBG_FACILITY		NFSDBG_FILE
43 
44 static const struct vm_operations_struct nfs_file_vm_ops;
45 
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode)	(0)
49 #endif
50 
51 int nfs_check_flags(int flags)
52 {
53 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 		return -EINVAL;
55 
56 	return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59 
60 /*
61  * Open file
62  */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 	int res;
67 
68 	dprintk("NFS: open file(%pD2)\n", filp);
69 
70 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 	res = nfs_check_flags(filp->f_flags);
72 	if (res)
73 		return res;
74 
75 	res = nfs_open(inode, filp);
76 	return res;
77 }
78 
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 	dprintk("NFS: release(%pD2)\n", filp);
83 
84 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 	nfs_file_clear_open_context(filp);
86 	return 0;
87 }
88 EXPORT_SYMBOL_GPL(nfs_file_release);
89 
90 /**
91  * nfs_revalidate_size - Revalidate the file size
92  * @inode - pointer to inode struct
93  * @file - pointer to struct file
94  *
95  * Revalidates the file length. This is basically a wrapper around
96  * nfs_revalidate_inode() that takes into account the fact that we may
97  * have cached writes (in which case we don't care about the server's
98  * idea of what the file length is), or O_DIRECT (in which case we
99  * shouldn't trust the cache).
100  */
101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102 {
103 	struct nfs_server *server = NFS_SERVER(inode);
104 	struct nfs_inode *nfsi = NFS_I(inode);
105 
106 	if (nfs_have_delegated_attributes(inode))
107 		goto out_noreval;
108 
109 	if (filp->f_flags & O_DIRECT)
110 		goto force_reval;
111 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
112 		goto force_reval;
113 	if (nfs_attribute_timeout(inode))
114 		goto force_reval;
115 out_noreval:
116 	return 0;
117 force_reval:
118 	return __nfs_revalidate_inode(server, inode);
119 }
120 
121 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
122 {
123 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
124 			filp, offset, whence);
125 
126 	/*
127 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
128 	 * the cached file length
129 	 */
130 	if (whence != SEEK_SET && whence != SEEK_CUR) {
131 		struct inode *inode = filp->f_mapping->host;
132 
133 		int retval = nfs_revalidate_file_size(inode, filp);
134 		if (retval < 0)
135 			return (loff_t)retval;
136 	}
137 
138 	return generic_file_llseek(filp, offset, whence);
139 }
140 EXPORT_SYMBOL_GPL(nfs_file_llseek);
141 
142 /*
143  * Flush all dirty pages, and check for write errors.
144  */
145 static int
146 nfs_file_flush(struct file *file, fl_owner_t id)
147 {
148 	struct inode	*inode = file_inode(file);
149 
150 	dprintk("NFS: flush(%pD2)\n", file);
151 
152 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
153 	if ((file->f_mode & FMODE_WRITE) == 0)
154 		return 0;
155 
156 	/* Flush writes to the server and return any errors */
157 	return vfs_fsync(file, 0);
158 }
159 
160 ssize_t
161 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
162 {
163 	struct inode *inode = file_inode(iocb->ki_filp);
164 	ssize_t result;
165 
166 	if (iocb->ki_flags & IOCB_DIRECT)
167 		return nfs_file_direct_read(iocb, to, iocb->ki_pos);
168 
169 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
170 		iocb->ki_filp,
171 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
172 
173 	result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping);
174 	if (!result) {
175 		result = generic_file_read_iter(iocb, to);
176 		if (result > 0)
177 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
178 	}
179 	return result;
180 }
181 EXPORT_SYMBOL_GPL(nfs_file_read);
182 
183 ssize_t
184 nfs_file_splice_read(struct file *filp, loff_t *ppos,
185 		     struct pipe_inode_info *pipe, size_t count,
186 		     unsigned int flags)
187 {
188 	struct inode *inode = file_inode(filp);
189 	ssize_t res;
190 
191 	dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
192 		filp, (unsigned long) count, (unsigned long long) *ppos);
193 
194 	res = nfs_revalidate_mapping_protected(inode, filp->f_mapping);
195 	if (!res) {
196 		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
197 		if (res > 0)
198 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
199 	}
200 	return res;
201 }
202 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
203 
204 int
205 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
206 {
207 	struct inode *inode = file_inode(file);
208 	int	status;
209 
210 	dprintk("NFS: mmap(%pD2)\n", file);
211 
212 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
213 	 *       so we call that before revalidating the mapping
214 	 */
215 	status = generic_file_mmap(file, vma);
216 	if (!status) {
217 		vma->vm_ops = &nfs_file_vm_ops;
218 		status = nfs_revalidate_mapping(inode, file->f_mapping);
219 	}
220 	return status;
221 }
222 EXPORT_SYMBOL_GPL(nfs_file_mmap);
223 
224 /*
225  * Flush any dirty pages for this process, and check for write errors.
226  * The return status from this call provides a reliable indication of
227  * whether any write errors occurred for this process.
228  *
229  * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
230  * disk, but it retrieves and clears ctx->error after synching, despite
231  * the two being set at the same time in nfs_context_set_write_error().
232  * This is because the former is used to notify the _next_ call to
233  * nfs_file_write() that a write error occurred, and hence cause it to
234  * fall back to doing a synchronous write.
235  */
236 int
237 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
238 {
239 	struct nfs_open_context *ctx = nfs_file_open_context(file);
240 	struct inode *inode = file_inode(file);
241 	int have_error, do_resend, status;
242 	int ret = 0;
243 
244 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
245 
246 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
247 	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
248 	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
249 	status = nfs_commit_inode(inode, FLUSH_SYNC);
250 	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
251 	if (have_error) {
252 		ret = xchg(&ctx->error, 0);
253 		if (ret)
254 			goto out;
255 	}
256 	if (status < 0) {
257 		ret = status;
258 		goto out;
259 	}
260 	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
261 	if (do_resend)
262 		ret = -EAGAIN;
263 out:
264 	return ret;
265 }
266 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
267 
268 static int
269 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
270 {
271 	int ret;
272 	struct inode *inode = file_inode(file);
273 
274 	trace_nfs_fsync_enter(inode);
275 
276 	nfs_inode_dio_wait(inode);
277 	do {
278 		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
279 		if (ret != 0)
280 			break;
281 		mutex_lock(&inode->i_mutex);
282 		ret = nfs_file_fsync_commit(file, start, end, datasync);
283 		mutex_unlock(&inode->i_mutex);
284 		/*
285 		 * If nfs_file_fsync_commit detected a server reboot, then
286 		 * resend all dirty pages that might have been covered by
287 		 * the NFS_CONTEXT_RESEND_WRITES flag
288 		 */
289 		start = 0;
290 		end = LLONG_MAX;
291 	} while (ret == -EAGAIN);
292 
293 	trace_nfs_fsync_exit(inode, ret);
294 	return ret;
295 }
296 
297 /*
298  * Decide whether a read/modify/write cycle may be more efficient
299  * then a modify/write/read cycle when writing to a page in the
300  * page cache.
301  *
302  * The modify/write/read cycle may occur if a page is read before
303  * being completely filled by the writer.  In this situation, the
304  * page must be completely written to stable storage on the server
305  * before it can be refilled by reading in the page from the server.
306  * This can lead to expensive, small, FILE_SYNC mode writes being
307  * done.
308  *
309  * It may be more efficient to read the page first if the file is
310  * open for reading in addition to writing, the page is not marked
311  * as Uptodate, it is not dirty or waiting to be committed,
312  * indicating that it was previously allocated and then modified,
313  * that there were valid bytes of data in that range of the file,
314  * and that the new data won't completely replace the old data in
315  * that range of the file.
316  */
317 static int nfs_want_read_modify_write(struct file *file, struct page *page,
318 			loff_t pos, unsigned len)
319 {
320 	unsigned int pglen = nfs_page_length(page);
321 	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
322 	unsigned int end = offset + len;
323 
324 	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
325 		if (!PageUptodate(page))
326 			return 1;
327 		return 0;
328 	}
329 
330 	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
331 	    !PageUptodate(page) &&		/* Uptodate? */
332 	    !PagePrivate(page) &&		/* i/o request already? */
333 	    pglen &&				/* valid bytes of file? */
334 	    (end < pglen || offset))		/* replace all valid bytes? */
335 		return 1;
336 	return 0;
337 }
338 
339 /*
340  * This does the "real" work of the write. We must allocate and lock the
341  * page to be sent back to the generic routine, which then copies the
342  * data from user space.
343  *
344  * If the writer ends up delaying the write, the writer needs to
345  * increment the page use counts until he is done with the page.
346  */
347 static int nfs_write_begin(struct file *file, struct address_space *mapping,
348 			loff_t pos, unsigned len, unsigned flags,
349 			struct page **pagep, void **fsdata)
350 {
351 	int ret;
352 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
353 	struct page *page;
354 	int once_thru = 0;
355 
356 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
357 		file, mapping->host->i_ino, len, (long long) pos);
358 
359 start:
360 	/*
361 	 * Prevent starvation issues if someone is doing a consistency
362 	 * sync-to-disk
363 	 */
364 	ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
365 				 nfs_wait_bit_killable, TASK_KILLABLE);
366 	if (ret)
367 		return ret;
368 	/*
369 	 * Wait for O_DIRECT to complete
370 	 */
371 	nfs_inode_dio_wait(mapping->host);
372 
373 	page = grab_cache_page_write_begin(mapping, index, flags);
374 	if (!page)
375 		return -ENOMEM;
376 	*pagep = page;
377 
378 	ret = nfs_flush_incompatible(file, page);
379 	if (ret) {
380 		unlock_page(page);
381 		page_cache_release(page);
382 	} else if (!once_thru &&
383 		   nfs_want_read_modify_write(file, page, pos, len)) {
384 		once_thru = 1;
385 		ret = nfs_readpage(file, page);
386 		page_cache_release(page);
387 		if (!ret)
388 			goto start;
389 	}
390 	return ret;
391 }
392 
393 static int nfs_write_end(struct file *file, struct address_space *mapping,
394 			loff_t pos, unsigned len, unsigned copied,
395 			struct page *page, void *fsdata)
396 {
397 	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
398 	struct nfs_open_context *ctx = nfs_file_open_context(file);
399 	int status;
400 
401 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
402 		file, mapping->host->i_ino, len, (long long) pos);
403 
404 	/*
405 	 * Zero any uninitialised parts of the page, and then mark the page
406 	 * as up to date if it turns out that we're extending the file.
407 	 */
408 	if (!PageUptodate(page)) {
409 		unsigned pglen = nfs_page_length(page);
410 		unsigned end = offset + len;
411 
412 		if (pglen == 0) {
413 			zero_user_segments(page, 0, offset,
414 					end, PAGE_CACHE_SIZE);
415 			SetPageUptodate(page);
416 		} else if (end >= pglen) {
417 			zero_user_segment(page, end, PAGE_CACHE_SIZE);
418 			if (offset == 0)
419 				SetPageUptodate(page);
420 		} else
421 			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
422 	}
423 
424 	status = nfs_updatepage(file, page, offset, copied);
425 
426 	unlock_page(page);
427 	page_cache_release(page);
428 
429 	if (status < 0)
430 		return status;
431 	NFS_I(mapping->host)->write_io += copied;
432 
433 	if (nfs_ctx_key_to_expire(ctx)) {
434 		status = nfs_wb_all(mapping->host);
435 		if (status < 0)
436 			return status;
437 	}
438 
439 	return copied;
440 }
441 
442 /*
443  * Partially or wholly invalidate a page
444  * - Release the private state associated with a page if undergoing complete
445  *   page invalidation
446  * - Called if either PG_private or PG_fscache is set on the page
447  * - Caller holds page lock
448  */
449 static void nfs_invalidate_page(struct page *page, unsigned int offset,
450 				unsigned int length)
451 {
452 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
453 		 page, offset, length);
454 
455 	if (offset != 0 || length < PAGE_CACHE_SIZE)
456 		return;
457 	/* Cancel any unstarted writes on this page */
458 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
459 
460 	nfs_fscache_invalidate_page(page, page->mapping->host);
461 }
462 
463 /*
464  * Attempt to release the private state associated with a page
465  * - Called if either PG_private or PG_fscache is set on the page
466  * - Caller holds page lock
467  * - Return true (may release page) or false (may not)
468  */
469 static int nfs_release_page(struct page *page, gfp_t gfp)
470 {
471 	struct address_space *mapping = page->mapping;
472 
473 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
474 
475 	/* Always try to initiate a 'commit' if relevant, but only
476 	 * wait for it if the caller allows blocking.  Even then,
477 	 * only wait 1 second and only if the 'bdi' is not congested.
478 	 * Waiting indefinitely can cause deadlocks when the NFS
479 	 * server is on this machine, when a new TCP connection is
480 	 * needed and in other rare cases.  There is no particular
481 	 * need to wait extensively here.  A short wait has the
482 	 * benefit that someone else can worry about the freezer.
483 	 */
484 	if (mapping) {
485 		struct nfs_server *nfss = NFS_SERVER(mapping->host);
486 		nfs_commit_inode(mapping->host, 0);
487 		if (gfpflags_allow_blocking(gfp) &&
488 		    !bdi_write_congested(&nfss->backing_dev_info)) {
489 			wait_on_page_bit_killable_timeout(page, PG_private,
490 							  HZ);
491 			if (PagePrivate(page))
492 				set_bdi_congested(&nfss->backing_dev_info,
493 						  BLK_RW_ASYNC);
494 		}
495 	}
496 	/* If PagePrivate() is set, then the page is not freeable */
497 	if (PagePrivate(page))
498 		return 0;
499 	return nfs_fscache_release_page(page, gfp);
500 }
501 
502 static void nfs_check_dirty_writeback(struct page *page,
503 				bool *dirty, bool *writeback)
504 {
505 	struct nfs_inode *nfsi;
506 	struct address_space *mapping = page_file_mapping(page);
507 
508 	if (!mapping || PageSwapCache(page))
509 		return;
510 
511 	/*
512 	 * Check if an unstable page is currently being committed and
513 	 * if so, have the VM treat it as if the page is under writeback
514 	 * so it will not block due to pages that will shortly be freeable.
515 	 */
516 	nfsi = NFS_I(mapping->host);
517 	if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
518 		*writeback = true;
519 		return;
520 	}
521 
522 	/*
523 	 * If PagePrivate() is set, then the page is not freeable and as the
524 	 * inode is not being committed, it's not going to be cleaned in the
525 	 * near future so treat it as dirty
526 	 */
527 	if (PagePrivate(page))
528 		*dirty = true;
529 }
530 
531 /*
532  * Attempt to clear the private state associated with a page when an error
533  * occurs that requires the cached contents of an inode to be written back or
534  * destroyed
535  * - Called if either PG_private or fscache is set on the page
536  * - Caller holds page lock
537  * - Return 0 if successful, -error otherwise
538  */
539 static int nfs_launder_page(struct page *page)
540 {
541 	struct inode *inode = page_file_mapping(page)->host;
542 	struct nfs_inode *nfsi = NFS_I(inode);
543 
544 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
545 		inode->i_ino, (long long)page_offset(page));
546 
547 	nfs_fscache_wait_on_page_write(nfsi, page);
548 	return nfs_wb_page(inode, page);
549 }
550 
551 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
552 						sector_t *span)
553 {
554 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
555 
556 	*span = sis->pages;
557 
558 	return rpc_clnt_swap_activate(clnt);
559 }
560 
561 static void nfs_swap_deactivate(struct file *file)
562 {
563 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
564 
565 	rpc_clnt_swap_deactivate(clnt);
566 }
567 
568 const struct address_space_operations nfs_file_aops = {
569 	.readpage = nfs_readpage,
570 	.readpages = nfs_readpages,
571 	.set_page_dirty = __set_page_dirty_nobuffers,
572 	.writepage = nfs_writepage,
573 	.writepages = nfs_writepages,
574 	.write_begin = nfs_write_begin,
575 	.write_end = nfs_write_end,
576 	.invalidatepage = nfs_invalidate_page,
577 	.releasepage = nfs_release_page,
578 	.direct_IO = nfs_direct_IO,
579 	.migratepage = nfs_migrate_page,
580 	.launder_page = nfs_launder_page,
581 	.is_dirty_writeback = nfs_check_dirty_writeback,
582 	.error_remove_page = generic_error_remove_page,
583 	.swap_activate = nfs_swap_activate,
584 	.swap_deactivate = nfs_swap_deactivate,
585 };
586 
587 /*
588  * Notification that a PTE pointing to an NFS page is about to be made
589  * writable, implying that someone is about to modify the page through a
590  * shared-writable mapping
591  */
592 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
593 {
594 	struct page *page = vmf->page;
595 	struct file *filp = vma->vm_file;
596 	struct inode *inode = file_inode(filp);
597 	unsigned pagelen;
598 	int ret = VM_FAULT_NOPAGE;
599 	struct address_space *mapping;
600 
601 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
602 		filp, filp->f_mapping->host->i_ino,
603 		(long long)page_offset(page));
604 
605 	/* make sure the cache has finished storing the page */
606 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
607 
608 	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
609 			nfs_wait_bit_killable, TASK_KILLABLE);
610 
611 	lock_page(page);
612 	mapping = page_file_mapping(page);
613 	if (mapping != inode->i_mapping)
614 		goto out_unlock;
615 
616 	wait_on_page_writeback(page);
617 
618 	pagelen = nfs_page_length(page);
619 	if (pagelen == 0)
620 		goto out_unlock;
621 
622 	ret = VM_FAULT_LOCKED;
623 	if (nfs_flush_incompatible(filp, page) == 0 &&
624 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
625 		goto out;
626 
627 	ret = VM_FAULT_SIGBUS;
628 out_unlock:
629 	unlock_page(page);
630 out:
631 	return ret;
632 }
633 
634 static const struct vm_operations_struct nfs_file_vm_ops = {
635 	.fault = filemap_fault,
636 	.map_pages = filemap_map_pages,
637 	.page_mkwrite = nfs_vm_page_mkwrite,
638 };
639 
640 static int nfs_need_check_write(struct file *filp, struct inode *inode)
641 {
642 	struct nfs_open_context *ctx;
643 
644 	ctx = nfs_file_open_context(filp);
645 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
646 	    nfs_ctx_key_to_expire(ctx))
647 		return 1;
648 	return 0;
649 }
650 
651 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
652 {
653 	struct file *file = iocb->ki_filp;
654 	struct inode *inode = file_inode(file);
655 	unsigned long written = 0;
656 	ssize_t result;
657 	size_t count = iov_iter_count(from);
658 
659 	result = nfs_key_timeout_notify(file, inode);
660 	if (result)
661 		return result;
662 
663 	if (iocb->ki_flags & IOCB_DIRECT) {
664 		result = generic_write_checks(iocb, from);
665 		if (result <= 0)
666 			return result;
667 		return nfs_file_direct_write(iocb, from);
668 	}
669 
670 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
671 		file, count, (long long) iocb->ki_pos);
672 
673 	result = -EBUSY;
674 	if (IS_SWAPFILE(inode))
675 		goto out_swapfile;
676 	/*
677 	 * O_APPEND implies that we must revalidate the file length.
678 	 */
679 	if (iocb->ki_flags & IOCB_APPEND) {
680 		result = nfs_revalidate_file_size(inode, file);
681 		if (result)
682 			goto out;
683 	}
684 
685 	result = count;
686 	if (!count)
687 		goto out;
688 
689 	result = generic_file_write_iter(iocb, from);
690 	if (result > 0)
691 		written = result;
692 
693 	/* Return error values */
694 	if (result >= 0 && nfs_need_check_write(file, inode)) {
695 		int err = vfs_fsync(file, 0);
696 		if (err < 0)
697 			result = err;
698 	}
699 	if (result > 0)
700 		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
701 out:
702 	return result;
703 
704 out_swapfile:
705 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
706 	goto out;
707 }
708 EXPORT_SYMBOL_GPL(nfs_file_write);
709 
710 static int
711 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
712 {
713 	struct inode *inode = filp->f_mapping->host;
714 	int status = 0;
715 	unsigned int saved_type = fl->fl_type;
716 
717 	/* Try local locking first */
718 	posix_test_lock(filp, fl);
719 	if (fl->fl_type != F_UNLCK) {
720 		/* found a conflict */
721 		goto out;
722 	}
723 	fl->fl_type = saved_type;
724 
725 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
726 		goto out_noconflict;
727 
728 	if (is_local)
729 		goto out_noconflict;
730 
731 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
732 out:
733 	return status;
734 out_noconflict:
735 	fl->fl_type = F_UNLCK;
736 	goto out;
737 }
738 
739 static int do_vfs_lock(struct file *file, struct file_lock *fl)
740 {
741 	return locks_lock_file_wait(file, fl);
742 }
743 
744 static int
745 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
746 {
747 	struct inode *inode = filp->f_mapping->host;
748 	struct nfs_lock_context *l_ctx;
749 	int status;
750 
751 	/*
752 	 * Flush all pending writes before doing anything
753 	 * with locks..
754 	 */
755 	vfs_fsync(filp, 0);
756 
757 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
758 	if (!IS_ERR(l_ctx)) {
759 		status = nfs_iocounter_wait(&l_ctx->io_count);
760 		nfs_put_lock_context(l_ctx);
761 		if (status < 0)
762 			return status;
763 	}
764 
765 	/* NOTE: special case
766 	 * 	If we're signalled while cleaning up locks on process exit, we
767 	 * 	still need to complete the unlock.
768 	 */
769 	/*
770 	 * Use local locking if mounted with "-onolock" or with appropriate
771 	 * "-olocal_lock="
772 	 */
773 	if (!is_local)
774 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
775 	else
776 		status = do_vfs_lock(filp, fl);
777 	return status;
778 }
779 
780 static int
781 is_time_granular(struct timespec *ts) {
782 	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
783 }
784 
785 static int
786 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
787 {
788 	struct inode *inode = filp->f_mapping->host;
789 	int status;
790 
791 	/*
792 	 * Flush all pending writes before doing anything
793 	 * with locks..
794 	 */
795 	status = nfs_sync_mapping(filp->f_mapping);
796 	if (status != 0)
797 		goto out;
798 
799 	/*
800 	 * Use local locking if mounted with "-onolock" or with appropriate
801 	 * "-olocal_lock="
802 	 */
803 	if (!is_local)
804 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
805 	else
806 		status = do_vfs_lock(filp, fl);
807 	if (status < 0)
808 		goto out;
809 
810 	/*
811 	 * Revalidate the cache if the server has time stamps granular
812 	 * enough to detect subsecond changes.  Otherwise, clear the
813 	 * cache to prevent missing any changes.
814 	 *
815 	 * This makes locking act as a cache coherency point.
816 	 */
817 	nfs_sync_mapping(filp->f_mapping);
818 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
819 		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
820 			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
821 		else
822 			nfs_zap_caches(inode);
823 	}
824 out:
825 	return status;
826 }
827 
828 /*
829  * Lock a (portion of) a file
830  */
831 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
832 {
833 	struct inode *inode = filp->f_mapping->host;
834 	int ret = -ENOLCK;
835 	int is_local = 0;
836 
837 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
838 			filp, fl->fl_type, fl->fl_flags,
839 			(long long)fl->fl_start, (long long)fl->fl_end);
840 
841 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
842 
843 	/* No mandatory locks over NFS */
844 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
845 		goto out_err;
846 
847 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
848 		is_local = 1;
849 
850 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
851 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
852 		if (ret < 0)
853 			goto out_err;
854 	}
855 
856 	if (IS_GETLK(cmd))
857 		ret = do_getlk(filp, cmd, fl, is_local);
858 	else if (fl->fl_type == F_UNLCK)
859 		ret = do_unlk(filp, cmd, fl, is_local);
860 	else
861 		ret = do_setlk(filp, cmd, fl, is_local);
862 out_err:
863 	return ret;
864 }
865 EXPORT_SYMBOL_GPL(nfs_lock);
866 
867 /*
868  * Lock a (portion of) a file
869  */
870 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
871 {
872 	struct inode *inode = filp->f_mapping->host;
873 	int is_local = 0;
874 
875 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
876 			filp, fl->fl_type, fl->fl_flags);
877 
878 	if (!(fl->fl_flags & FL_FLOCK))
879 		return -ENOLCK;
880 
881 	/*
882 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
883 	 * any standard. In principle we might be able to support LOCK_MAND
884 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
885 	 * NFS code is not set up for it.
886 	 */
887 	if (fl->fl_type & LOCK_MAND)
888 		return -EINVAL;
889 
890 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
891 		is_local = 1;
892 
893 	/* We're simulating flock() locks using posix locks on the server */
894 	if (fl->fl_type == F_UNLCK)
895 		return do_unlk(filp, cmd, fl, is_local);
896 	return do_setlk(filp, cmd, fl, is_local);
897 }
898 EXPORT_SYMBOL_GPL(nfs_flock);
899 
900 const struct file_operations nfs_file_operations = {
901 	.llseek		= nfs_file_llseek,
902 	.read_iter	= nfs_file_read,
903 	.write_iter	= nfs_file_write,
904 	.mmap		= nfs_file_mmap,
905 	.open		= nfs_file_open,
906 	.flush		= nfs_file_flush,
907 	.release	= nfs_file_release,
908 	.fsync		= nfs_file_fsync,
909 	.lock		= nfs_lock,
910 	.flock		= nfs_flock,
911 	.splice_read	= nfs_file_splice_read,
912 	.splice_write	= iter_file_splice_write,
913 	.check_flags	= nfs_check_flags,
914 	.setlease	= simple_nosetlease,
915 };
916 EXPORT_SYMBOL_GPL(nfs_file_operations);
917