1 /* 2 * linux/fs/nfs/file.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * Changes Copyright (C) 1994 by Florian La Roche 7 * - Do not copy data too often around in the kernel. 8 * - In nfs_file_read the return value of kmalloc wasn't checked. 9 * - Put in a better version of read look-ahead buffering. Original idea 10 * and implementation by Wai S Kok elekokws@ee.nus.sg. 11 * 12 * Expire cache on write to a file by Wai S Kok (Oct 1994). 13 * 14 * Total rewrite of read side for new NFS buffer cache.. Linus. 15 * 16 * nfs regular file handling functions 17 */ 18 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/fcntl.h> 24 #include <linux/stat.h> 25 #include <linux/nfs_fs.h> 26 #include <linux/nfs_mount.h> 27 #include <linux/mm.h> 28 #include <linux/pagemap.h> 29 #include <linux/aio.h> 30 #include <linux/gfp.h> 31 #include <linux/swap.h> 32 33 #include <asm/uaccess.h> 34 35 #include "delegation.h" 36 #include "internal.h" 37 #include "iostat.h" 38 #include "fscache.h" 39 40 #define NFSDBG_FACILITY NFSDBG_FILE 41 42 static const struct vm_operations_struct nfs_file_vm_ops; 43 44 /* Hack for future NFS swap support */ 45 #ifndef IS_SWAPFILE 46 # define IS_SWAPFILE(inode) (0) 47 #endif 48 49 int nfs_check_flags(int flags) 50 { 51 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 52 return -EINVAL; 53 54 return 0; 55 } 56 EXPORT_SYMBOL_GPL(nfs_check_flags); 57 58 /* 59 * Open file 60 */ 61 static int 62 nfs_file_open(struct inode *inode, struct file *filp) 63 { 64 int res; 65 66 dprintk("NFS: open file(%s/%s)\n", 67 filp->f_path.dentry->d_parent->d_name.name, 68 filp->f_path.dentry->d_name.name); 69 70 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 71 res = nfs_check_flags(filp->f_flags); 72 if (res) 73 return res; 74 75 res = nfs_open(inode, filp); 76 return res; 77 } 78 79 int 80 nfs_file_release(struct inode *inode, struct file *filp) 81 { 82 dprintk("NFS: release(%s/%s)\n", 83 filp->f_path.dentry->d_parent->d_name.name, 84 filp->f_path.dentry->d_name.name); 85 86 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 87 return nfs_release(inode, filp); 88 } 89 EXPORT_SYMBOL_GPL(nfs_file_release); 90 91 /** 92 * nfs_revalidate_size - Revalidate the file size 93 * @inode - pointer to inode struct 94 * @file - pointer to struct file 95 * 96 * Revalidates the file length. This is basically a wrapper around 97 * nfs_revalidate_inode() that takes into account the fact that we may 98 * have cached writes (in which case we don't care about the server's 99 * idea of what the file length is), or O_DIRECT (in which case we 100 * shouldn't trust the cache). 101 */ 102 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 103 { 104 struct nfs_server *server = NFS_SERVER(inode); 105 struct nfs_inode *nfsi = NFS_I(inode); 106 107 if (nfs_have_delegated_attributes(inode)) 108 goto out_noreval; 109 110 if (filp->f_flags & O_DIRECT) 111 goto force_reval; 112 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 113 goto force_reval; 114 if (nfs_attribute_timeout(inode)) 115 goto force_reval; 116 out_noreval: 117 return 0; 118 force_reval: 119 return __nfs_revalidate_inode(server, inode); 120 } 121 122 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 123 { 124 dprintk("NFS: llseek file(%s/%s, %lld, %d)\n", 125 filp->f_path.dentry->d_parent->d_name.name, 126 filp->f_path.dentry->d_name.name, 127 offset, whence); 128 129 /* 130 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 131 * the cached file length 132 */ 133 if (whence != SEEK_SET && whence != SEEK_CUR) { 134 struct inode *inode = filp->f_mapping->host; 135 136 int retval = nfs_revalidate_file_size(inode, filp); 137 if (retval < 0) 138 return (loff_t)retval; 139 } 140 141 return generic_file_llseek(filp, offset, whence); 142 } 143 EXPORT_SYMBOL_GPL(nfs_file_llseek); 144 145 /* 146 * Flush all dirty pages, and check for write errors. 147 */ 148 int 149 nfs_file_flush(struct file *file, fl_owner_t id) 150 { 151 struct dentry *dentry = file->f_path.dentry; 152 struct inode *inode = dentry->d_inode; 153 154 dprintk("NFS: flush(%s/%s)\n", 155 dentry->d_parent->d_name.name, 156 dentry->d_name.name); 157 158 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 159 if ((file->f_mode & FMODE_WRITE) == 0) 160 return 0; 161 162 /* 163 * If we're holding a write delegation, then just start the i/o 164 * but don't wait for completion (or send a commit). 165 */ 166 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 167 return filemap_fdatawrite(file->f_mapping); 168 169 /* Flush writes to the server and return any errors */ 170 return vfs_fsync(file, 0); 171 } 172 EXPORT_SYMBOL_GPL(nfs_file_flush); 173 174 ssize_t 175 nfs_file_read(struct kiocb *iocb, const struct iovec *iov, 176 unsigned long nr_segs, loff_t pos) 177 { 178 struct dentry * dentry = iocb->ki_filp->f_path.dentry; 179 struct inode * inode = dentry->d_inode; 180 ssize_t result; 181 182 if (iocb->ki_filp->f_flags & O_DIRECT) 183 return nfs_file_direct_read(iocb, iov, nr_segs, pos, true); 184 185 dprintk("NFS: read(%s/%s, %lu@%lu)\n", 186 dentry->d_parent->d_name.name, dentry->d_name.name, 187 (unsigned long) iov_length(iov, nr_segs), (unsigned long) pos); 188 189 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 190 if (!result) { 191 result = generic_file_aio_read(iocb, iov, nr_segs, pos); 192 if (result > 0) 193 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 194 } 195 return result; 196 } 197 EXPORT_SYMBOL_GPL(nfs_file_read); 198 199 ssize_t 200 nfs_file_splice_read(struct file *filp, loff_t *ppos, 201 struct pipe_inode_info *pipe, size_t count, 202 unsigned int flags) 203 { 204 struct dentry *dentry = filp->f_path.dentry; 205 struct inode *inode = dentry->d_inode; 206 ssize_t res; 207 208 dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n", 209 dentry->d_parent->d_name.name, dentry->d_name.name, 210 (unsigned long) count, (unsigned long long) *ppos); 211 212 res = nfs_revalidate_mapping(inode, filp->f_mapping); 213 if (!res) { 214 res = generic_file_splice_read(filp, ppos, pipe, count, flags); 215 if (res > 0) 216 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res); 217 } 218 return res; 219 } 220 EXPORT_SYMBOL_GPL(nfs_file_splice_read); 221 222 int 223 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 224 { 225 struct dentry *dentry = file->f_path.dentry; 226 struct inode *inode = dentry->d_inode; 227 int status; 228 229 dprintk("NFS: mmap(%s/%s)\n", 230 dentry->d_parent->d_name.name, dentry->d_name.name); 231 232 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 233 * so we call that before revalidating the mapping 234 */ 235 status = generic_file_mmap(file, vma); 236 if (!status) { 237 vma->vm_ops = &nfs_file_vm_ops; 238 status = nfs_revalidate_mapping(inode, file->f_mapping); 239 } 240 return status; 241 } 242 EXPORT_SYMBOL_GPL(nfs_file_mmap); 243 244 /* 245 * Flush any dirty pages for this process, and check for write errors. 246 * The return status from this call provides a reliable indication of 247 * whether any write errors occurred for this process. 248 * 249 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to 250 * disk, but it retrieves and clears ctx->error after synching, despite 251 * the two being set at the same time in nfs_context_set_write_error(). 252 * This is because the former is used to notify the _next_ call to 253 * nfs_file_write() that a write error occurred, and hence cause it to 254 * fall back to doing a synchronous write. 255 */ 256 int 257 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync) 258 { 259 struct dentry *dentry = file->f_path.dentry; 260 struct nfs_open_context *ctx = nfs_file_open_context(file); 261 struct inode *inode = dentry->d_inode; 262 int have_error, do_resend, status; 263 int ret = 0; 264 265 dprintk("NFS: fsync file(%s/%s) datasync %d\n", 266 dentry->d_parent->d_name.name, dentry->d_name.name, 267 datasync); 268 269 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 270 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 271 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 272 status = nfs_commit_inode(inode, FLUSH_SYNC); 273 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 274 if (have_error) { 275 ret = xchg(&ctx->error, 0); 276 if (ret) 277 goto out; 278 } 279 if (status < 0) { 280 ret = status; 281 goto out; 282 } 283 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 284 if (do_resend) 285 ret = -EAGAIN; 286 out: 287 return ret; 288 } 289 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit); 290 291 static int 292 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 293 { 294 int ret; 295 struct inode *inode = file_inode(file); 296 297 do { 298 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 299 if (ret != 0) 300 break; 301 mutex_lock(&inode->i_mutex); 302 ret = nfs_file_fsync_commit(file, start, end, datasync); 303 mutex_unlock(&inode->i_mutex); 304 /* 305 * If nfs_file_fsync_commit detected a server reboot, then 306 * resend all dirty pages that might have been covered by 307 * the NFS_CONTEXT_RESEND_WRITES flag 308 */ 309 start = 0; 310 end = LLONG_MAX; 311 } while (ret == -EAGAIN); 312 313 return ret; 314 } 315 316 /* 317 * Decide whether a read/modify/write cycle may be more efficient 318 * then a modify/write/read cycle when writing to a page in the 319 * page cache. 320 * 321 * The modify/write/read cycle may occur if a page is read before 322 * being completely filled by the writer. In this situation, the 323 * page must be completely written to stable storage on the server 324 * before it can be refilled by reading in the page from the server. 325 * This can lead to expensive, small, FILE_SYNC mode writes being 326 * done. 327 * 328 * It may be more efficient to read the page first if the file is 329 * open for reading in addition to writing, the page is not marked 330 * as Uptodate, it is not dirty or waiting to be committed, 331 * indicating that it was previously allocated and then modified, 332 * that there were valid bytes of data in that range of the file, 333 * and that the new data won't completely replace the old data in 334 * that range of the file. 335 */ 336 static int nfs_want_read_modify_write(struct file *file, struct page *page, 337 loff_t pos, unsigned len) 338 { 339 unsigned int pglen = nfs_page_length(page); 340 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1); 341 unsigned int end = offset + len; 342 343 if ((file->f_mode & FMODE_READ) && /* open for read? */ 344 !PageUptodate(page) && /* Uptodate? */ 345 !PagePrivate(page) && /* i/o request already? */ 346 pglen && /* valid bytes of file? */ 347 (end < pglen || offset)) /* replace all valid bytes? */ 348 return 1; 349 return 0; 350 } 351 352 /* 353 * This does the "real" work of the write. We must allocate and lock the 354 * page to be sent back to the generic routine, which then copies the 355 * data from user space. 356 * 357 * If the writer ends up delaying the write, the writer needs to 358 * increment the page use counts until he is done with the page. 359 */ 360 static int nfs_write_begin(struct file *file, struct address_space *mapping, 361 loff_t pos, unsigned len, unsigned flags, 362 struct page **pagep, void **fsdata) 363 { 364 int ret; 365 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 366 struct page *page; 367 int once_thru = 0; 368 369 dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n", 370 file->f_path.dentry->d_parent->d_name.name, 371 file->f_path.dentry->d_name.name, 372 mapping->host->i_ino, len, (long long) pos); 373 374 start: 375 /* 376 * Prevent starvation issues if someone is doing a consistency 377 * sync-to-disk 378 */ 379 ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING, 380 nfs_wait_bit_killable, TASK_KILLABLE); 381 if (ret) 382 return ret; 383 384 page = grab_cache_page_write_begin(mapping, index, flags); 385 if (!page) 386 return -ENOMEM; 387 *pagep = page; 388 389 ret = nfs_flush_incompatible(file, page); 390 if (ret) { 391 unlock_page(page); 392 page_cache_release(page); 393 } else if (!once_thru && 394 nfs_want_read_modify_write(file, page, pos, len)) { 395 once_thru = 1; 396 ret = nfs_readpage(file, page); 397 page_cache_release(page); 398 if (!ret) 399 goto start; 400 } 401 return ret; 402 } 403 404 static int nfs_write_end(struct file *file, struct address_space *mapping, 405 loff_t pos, unsigned len, unsigned copied, 406 struct page *page, void *fsdata) 407 { 408 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 409 int status; 410 411 dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n", 412 file->f_path.dentry->d_parent->d_name.name, 413 file->f_path.dentry->d_name.name, 414 mapping->host->i_ino, len, (long long) pos); 415 416 /* 417 * Zero any uninitialised parts of the page, and then mark the page 418 * as up to date if it turns out that we're extending the file. 419 */ 420 if (!PageUptodate(page)) { 421 unsigned pglen = nfs_page_length(page); 422 unsigned end = offset + len; 423 424 if (pglen == 0) { 425 zero_user_segments(page, 0, offset, 426 end, PAGE_CACHE_SIZE); 427 SetPageUptodate(page); 428 } else if (end >= pglen) { 429 zero_user_segment(page, end, PAGE_CACHE_SIZE); 430 if (offset == 0) 431 SetPageUptodate(page); 432 } else 433 zero_user_segment(page, pglen, PAGE_CACHE_SIZE); 434 } 435 436 status = nfs_updatepage(file, page, offset, copied); 437 438 unlock_page(page); 439 page_cache_release(page); 440 441 if (status < 0) 442 return status; 443 NFS_I(mapping->host)->write_io += copied; 444 return copied; 445 } 446 447 /* 448 * Partially or wholly invalidate a page 449 * - Release the private state associated with a page if undergoing complete 450 * page invalidation 451 * - Called if either PG_private or PG_fscache is set on the page 452 * - Caller holds page lock 453 */ 454 static void nfs_invalidate_page(struct page *page, unsigned long offset) 455 { 456 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %lu)\n", page, offset); 457 458 if (offset != 0) 459 return; 460 /* Cancel any unstarted writes on this page */ 461 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 462 463 nfs_fscache_invalidate_page(page, page->mapping->host); 464 } 465 466 /* 467 * Attempt to release the private state associated with a page 468 * - Called if either PG_private or PG_fscache is set on the page 469 * - Caller holds page lock 470 * - Return true (may release page) or false (may not) 471 */ 472 static int nfs_release_page(struct page *page, gfp_t gfp) 473 { 474 struct address_space *mapping = page->mapping; 475 476 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 477 478 /* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not 479 * doing this memory reclaim for a fs-related allocation. 480 */ 481 if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL && 482 !(current->flags & PF_FSTRANS)) { 483 int how = FLUSH_SYNC; 484 485 /* Don't let kswapd deadlock waiting for OOM RPC calls */ 486 if (current_is_kswapd()) 487 how = 0; 488 nfs_commit_inode(mapping->host, how); 489 } 490 /* If PagePrivate() is set, then the page is not freeable */ 491 if (PagePrivate(page)) 492 return 0; 493 return nfs_fscache_release_page(page, gfp); 494 } 495 496 /* 497 * Attempt to clear the private state associated with a page when an error 498 * occurs that requires the cached contents of an inode to be written back or 499 * destroyed 500 * - Called if either PG_private or fscache is set on the page 501 * - Caller holds page lock 502 * - Return 0 if successful, -error otherwise 503 */ 504 static int nfs_launder_page(struct page *page) 505 { 506 struct inode *inode = page_file_mapping(page)->host; 507 struct nfs_inode *nfsi = NFS_I(inode); 508 509 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 510 inode->i_ino, (long long)page_offset(page)); 511 512 nfs_fscache_wait_on_page_write(nfsi, page); 513 return nfs_wb_page(inode, page); 514 } 515 516 #ifdef CONFIG_NFS_SWAP 517 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 518 sector_t *span) 519 { 520 *span = sis->pages; 521 return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1); 522 } 523 524 static void nfs_swap_deactivate(struct file *file) 525 { 526 xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0); 527 } 528 #endif 529 530 const struct address_space_operations nfs_file_aops = { 531 .readpage = nfs_readpage, 532 .readpages = nfs_readpages, 533 .set_page_dirty = __set_page_dirty_nobuffers, 534 .writepage = nfs_writepage, 535 .writepages = nfs_writepages, 536 .write_begin = nfs_write_begin, 537 .write_end = nfs_write_end, 538 .invalidatepage = nfs_invalidate_page, 539 .releasepage = nfs_release_page, 540 .direct_IO = nfs_direct_IO, 541 .migratepage = nfs_migrate_page, 542 .launder_page = nfs_launder_page, 543 .error_remove_page = generic_error_remove_page, 544 #ifdef CONFIG_NFS_SWAP 545 .swap_activate = nfs_swap_activate, 546 .swap_deactivate = nfs_swap_deactivate, 547 #endif 548 }; 549 550 /* 551 * Notification that a PTE pointing to an NFS page is about to be made 552 * writable, implying that someone is about to modify the page through a 553 * shared-writable mapping 554 */ 555 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 556 { 557 struct page *page = vmf->page; 558 struct file *filp = vma->vm_file; 559 struct dentry *dentry = filp->f_path.dentry; 560 unsigned pagelen; 561 int ret = VM_FAULT_NOPAGE; 562 struct address_space *mapping; 563 564 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n", 565 dentry->d_parent->d_name.name, dentry->d_name.name, 566 filp->f_mapping->host->i_ino, 567 (long long)page_offset(page)); 568 569 /* make sure the cache has finished storing the page */ 570 nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page); 571 572 lock_page(page); 573 mapping = page_file_mapping(page); 574 if (mapping != dentry->d_inode->i_mapping) 575 goto out_unlock; 576 577 wait_on_page_writeback(page); 578 579 pagelen = nfs_page_length(page); 580 if (pagelen == 0) 581 goto out_unlock; 582 583 ret = VM_FAULT_LOCKED; 584 if (nfs_flush_incompatible(filp, page) == 0 && 585 nfs_updatepage(filp, page, 0, pagelen) == 0) 586 goto out; 587 588 ret = VM_FAULT_SIGBUS; 589 out_unlock: 590 unlock_page(page); 591 out: 592 return ret; 593 } 594 595 static const struct vm_operations_struct nfs_file_vm_ops = { 596 .fault = filemap_fault, 597 .page_mkwrite = nfs_vm_page_mkwrite, 598 .remap_pages = generic_file_remap_pages, 599 }; 600 601 static int nfs_need_sync_write(struct file *filp, struct inode *inode) 602 { 603 struct nfs_open_context *ctx; 604 605 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC)) 606 return 1; 607 ctx = nfs_file_open_context(filp); 608 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) 609 return 1; 610 return 0; 611 } 612 613 ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov, 614 unsigned long nr_segs, loff_t pos) 615 { 616 struct dentry * dentry = iocb->ki_filp->f_path.dentry; 617 struct inode * inode = dentry->d_inode; 618 unsigned long written = 0; 619 ssize_t result; 620 size_t count = iov_length(iov, nr_segs); 621 622 if (iocb->ki_filp->f_flags & O_DIRECT) 623 return nfs_file_direct_write(iocb, iov, nr_segs, pos, true); 624 625 dprintk("NFS: write(%s/%s, %lu@%Ld)\n", 626 dentry->d_parent->d_name.name, dentry->d_name.name, 627 (unsigned long) count, (long long) pos); 628 629 result = -EBUSY; 630 if (IS_SWAPFILE(inode)) 631 goto out_swapfile; 632 /* 633 * O_APPEND implies that we must revalidate the file length. 634 */ 635 if (iocb->ki_filp->f_flags & O_APPEND) { 636 result = nfs_revalidate_file_size(inode, iocb->ki_filp); 637 if (result) 638 goto out; 639 } 640 641 result = count; 642 if (!count) 643 goto out; 644 645 result = generic_file_aio_write(iocb, iov, nr_segs, pos); 646 if (result > 0) 647 written = result; 648 649 /* Return error values for O_DSYNC and IS_SYNC() */ 650 if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) { 651 int err = vfs_fsync(iocb->ki_filp, 0); 652 if (err < 0) 653 result = err; 654 } 655 if (result > 0) 656 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 657 out: 658 return result; 659 660 out_swapfile: 661 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 662 goto out; 663 } 664 EXPORT_SYMBOL_GPL(nfs_file_write); 665 666 ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe, 667 struct file *filp, loff_t *ppos, 668 size_t count, unsigned int flags) 669 { 670 struct dentry *dentry = filp->f_path.dentry; 671 struct inode *inode = dentry->d_inode; 672 unsigned long written = 0; 673 ssize_t ret; 674 675 dprintk("NFS splice_write(%s/%s, %lu@%llu)\n", 676 dentry->d_parent->d_name.name, dentry->d_name.name, 677 (unsigned long) count, (unsigned long long) *ppos); 678 679 /* 680 * The combination of splice and an O_APPEND destination is disallowed. 681 */ 682 683 ret = generic_file_splice_write(pipe, filp, ppos, count, flags); 684 if (ret > 0) 685 written = ret; 686 687 if (ret >= 0 && nfs_need_sync_write(filp, inode)) { 688 int err = vfs_fsync(filp, 0); 689 if (err < 0) 690 ret = err; 691 } 692 if (ret > 0) 693 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 694 return ret; 695 } 696 EXPORT_SYMBOL_GPL(nfs_file_splice_write); 697 698 static int 699 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 700 { 701 struct inode *inode = filp->f_mapping->host; 702 int status = 0; 703 unsigned int saved_type = fl->fl_type; 704 705 /* Try local locking first */ 706 posix_test_lock(filp, fl); 707 if (fl->fl_type != F_UNLCK) { 708 /* found a conflict */ 709 goto out; 710 } 711 fl->fl_type = saved_type; 712 713 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 714 goto out_noconflict; 715 716 if (is_local) 717 goto out_noconflict; 718 719 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 720 out: 721 return status; 722 out_noconflict: 723 fl->fl_type = F_UNLCK; 724 goto out; 725 } 726 727 static int do_vfs_lock(struct file *file, struct file_lock *fl) 728 { 729 int res = 0; 730 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 731 case FL_POSIX: 732 res = posix_lock_file_wait(file, fl); 733 break; 734 case FL_FLOCK: 735 res = flock_lock_file_wait(file, fl); 736 break; 737 default: 738 BUG(); 739 } 740 return res; 741 } 742 743 static int 744 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 745 { 746 struct inode *inode = filp->f_mapping->host; 747 int status; 748 749 /* 750 * Flush all pending writes before doing anything 751 * with locks.. 752 */ 753 nfs_sync_mapping(filp->f_mapping); 754 755 /* NOTE: special case 756 * If we're signalled while cleaning up locks on process exit, we 757 * still need to complete the unlock. 758 */ 759 /* 760 * Use local locking if mounted with "-onolock" or with appropriate 761 * "-olocal_lock=" 762 */ 763 if (!is_local) 764 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 765 else 766 status = do_vfs_lock(filp, fl); 767 return status; 768 } 769 770 static int 771 is_time_granular(struct timespec *ts) { 772 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000)); 773 } 774 775 static int 776 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 777 { 778 struct inode *inode = filp->f_mapping->host; 779 int status; 780 781 /* 782 * Flush all pending writes before doing anything 783 * with locks.. 784 */ 785 status = nfs_sync_mapping(filp->f_mapping); 786 if (status != 0) 787 goto out; 788 789 /* 790 * Use local locking if mounted with "-onolock" or with appropriate 791 * "-olocal_lock=" 792 */ 793 if (!is_local) 794 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 795 else 796 status = do_vfs_lock(filp, fl); 797 if (status < 0) 798 goto out; 799 800 /* 801 * Revalidate the cache if the server has time stamps granular 802 * enough to detect subsecond changes. Otherwise, clear the 803 * cache to prevent missing any changes. 804 * 805 * This makes locking act as a cache coherency point. 806 */ 807 nfs_sync_mapping(filp->f_mapping); 808 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 809 if (is_time_granular(&NFS_SERVER(inode)->time_delta)) 810 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 811 else 812 nfs_zap_caches(inode); 813 } 814 out: 815 return status; 816 } 817 818 /* 819 * Lock a (portion of) a file 820 */ 821 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 822 { 823 struct inode *inode = filp->f_mapping->host; 824 int ret = -ENOLCK; 825 int is_local = 0; 826 827 dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n", 828 filp->f_path.dentry->d_parent->d_name.name, 829 filp->f_path.dentry->d_name.name, 830 fl->fl_type, fl->fl_flags, 831 (long long)fl->fl_start, (long long)fl->fl_end); 832 833 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 834 835 /* No mandatory locks over NFS */ 836 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 837 goto out_err; 838 839 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 840 is_local = 1; 841 842 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 843 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 844 if (ret < 0) 845 goto out_err; 846 } 847 848 if (IS_GETLK(cmd)) 849 ret = do_getlk(filp, cmd, fl, is_local); 850 else if (fl->fl_type == F_UNLCK) 851 ret = do_unlk(filp, cmd, fl, is_local); 852 else 853 ret = do_setlk(filp, cmd, fl, is_local); 854 out_err: 855 return ret; 856 } 857 EXPORT_SYMBOL_GPL(nfs_lock); 858 859 /* 860 * Lock a (portion of) a file 861 */ 862 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 863 { 864 struct inode *inode = filp->f_mapping->host; 865 int is_local = 0; 866 867 dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n", 868 filp->f_path.dentry->d_parent->d_name.name, 869 filp->f_path.dentry->d_name.name, 870 fl->fl_type, fl->fl_flags); 871 872 if (!(fl->fl_flags & FL_FLOCK)) 873 return -ENOLCK; 874 875 /* 876 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 877 * any standard. In principle we might be able to support LOCK_MAND 878 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 879 * NFS code is not set up for it. 880 */ 881 if (fl->fl_type & LOCK_MAND) 882 return -EINVAL; 883 884 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 885 is_local = 1; 886 887 /* We're simulating flock() locks using posix locks on the server */ 888 fl->fl_owner = (fl_owner_t)filp; 889 fl->fl_start = 0; 890 fl->fl_end = OFFSET_MAX; 891 892 if (fl->fl_type == F_UNLCK) 893 return do_unlk(filp, cmd, fl, is_local); 894 return do_setlk(filp, cmd, fl, is_local); 895 } 896 EXPORT_SYMBOL_GPL(nfs_flock); 897 898 /* 899 * There is no protocol support for leases, so we have no way to implement 900 * them correctly in the face of opens by other clients. 901 */ 902 int nfs_setlease(struct file *file, long arg, struct file_lock **fl) 903 { 904 dprintk("NFS: setlease(%s/%s, arg=%ld)\n", 905 file->f_path.dentry->d_parent->d_name.name, 906 file->f_path.dentry->d_name.name, arg); 907 return -EINVAL; 908 } 909 EXPORT_SYMBOL_GPL(nfs_setlease); 910 911 const struct file_operations nfs_file_operations = { 912 .llseek = nfs_file_llseek, 913 .read = do_sync_read, 914 .write = do_sync_write, 915 .aio_read = nfs_file_read, 916 .aio_write = nfs_file_write, 917 .mmap = nfs_file_mmap, 918 .open = nfs_file_open, 919 .flush = nfs_file_flush, 920 .release = nfs_file_release, 921 .fsync = nfs_file_fsync, 922 .lock = nfs_lock, 923 .flock = nfs_flock, 924 .splice_read = nfs_file_splice_read, 925 .splice_write = nfs_file_splice_write, 926 .check_flags = nfs_check_flags, 927 .setlease = nfs_setlease, 928 }; 929 EXPORT_SYMBOL_GPL(nfs_file_operations); 930